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Abstract: Efficient and optimal design of radar-based Advanced Driver Assistant Systems (ADAS)
needs the evaluation of many different electromagnetic solutions for evaluating the impact of the
radome on the electromagnetic wave propagation. Because of the very high frequency at which these
devices operate, with the associated extremely small wavelength, very fine meshes are needed to
accurately discretize the electromagnetic equations. Thus, the computational cost of each numerical
solution for a given choice of the design or operation parameters, is high (CPU time consuming and
needing significant computational resources) compromising the efficiency of standard optimization
algorithms. In order to alleviate the just referred difficulties the present paper proposes an approach
based on the use of reduced order modeling, in particular the construction of a parametric solution
by employing a non-intrusive formulation of the Proper Generalized Decomposition, combined with
a powerful phase-angle unwrapping strategy for accurately addressing the electric and magnetic
fields interpolation, contributing to improve the design, the calibration and the operational use of
those systems.

Keywords: computational electromagnetism; unwrapping; radar; ADAS; PGD

1. Introduction

Radar is a widely employed technology which relies on wave propagation to detect surrounding
objects. It consists in emitting a radio wave from a transmitter and measuring the reflected wave
with a receiving antenna. The data collected from this measurement can provide information about
a detected object such as its location or its nature. An in-depth analysis of the electromagnetic field
may be necessary to ensure the information inferred from the data is valid.

Radio waves are oscillations of the electromagnetic field and can therefore be computed by
solving Maxwell’s equations. In the present work the electromagnetic problem is solved using the
Finite Differences Time Domain (FDTD) method implemented in CEM One R©, a commercial software
provided by ESI Group, then computing the discrete Fourier transform of the result to obtain the
solution in the frequency domain.
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The fundamentals of radar technology is nowadays used in many driver assistance systems,
needing for a precise quantification of performances and limitations [1]. Its design and use need
addressing many topics, raging from waveform design, propagation and pattern recognition [2–4],
with challenges and opportunities that are driving their evolution [5]. However, its use is not limited
to driver assistance, this technology is nowadays largely employed in many domains like short-range
localization [6], monitoring worker activity [7], aids for visually impaired people [8], physiological
monitoring [9], non-contact identity authentication [10], among many others. Signal pollution is not
excluded and sometimes it must be repaired before making use of it [11].

In outdoor applications, the transmitter and antenna are placed behind a radome, a shell made
of a dielectric material designed to protect the electric components against the weather. Although
dielectric materials are radio-wave transparent, they have an altering effect on the electromagnetic
field and must therefore be taken into account when analyzing the data. Simulation of radio wave
propagation through the radome provides knowledge of the latter’s precise influence on the system
accuracy and performances. Thus, an important issue concerns the effect of bumpers on the radar
performances, topic that attracted great interest [12–17]. In the just referred works the coupling
radar-radome effects (e.g., attenuation, signal pollution, . . . ) was investigated but a parametric
numerical modeling was not considered.

In our work we address precisely the analysis of that coupling, depending on the radar orientation,
however because of the high frequency, the spatial mesh resolution for describing the solution of
Maxwell equations leads to extremely fine meshes, with the consequent impact on the computing time.
Simulation details are included in Appendix B.

To alleviate that issue, we investigate the use of model order reduction (MOR) techniques that
successfully accomplished numerous parametric studies in other engineering domains. Model order
reduction has been successfully applied in problems involving dynamics and waves within the
so-called projection formulation, needing for a certain degree of intrusiveness when using commercial
softwares. Thus, the radial approximation proposed in [18] was extended to mid-frequency dynamics
within the so-called variational theory of complex rays [19]. In [20], a parametric solution of the
Helmholtz equation was successfully obtained using the usual rank-one greedy PGD constructor.
In [21] authors proposed a consistent reduced bases interpolation.

Non-intrusive formulations were proposed for constructing parametric solutions from a number
of high-fidelity simulations performed for different choices of the model parameters, while trying to
reduce as much as possible the size of the sampling for addressing multi-parametric models [22,23].
In those circumstances, usual surrogate models exhibit limitations when the number of parameters
increases, and alternative technologies combining two main ingredients, the separation of variables
and sparse sampling and approximations, appeared and proved their performances [22,24].

When these techniques were employed in radar engineering different difficulties appeared.
The first related to the fact that the sampling scales with the characteristic length of the solution, that is
with the wavelength, extremely small. On the other hand interpolation of complex-valued electric and
magnetic fields produces spurious solutions. Thus, for example, the average of 1 + 0i and −1 + 0i
results 0 + 0i, even if one is expecting having 0 + i.

This limitation was solved by employing and alternative formulation based on the amplitude and
phase. For example, in the scenario just described, the average of 1|0 and 1|π results 1|π/2, result that
seems more physically consistent.

However, the use of an amplitude/phase description faces the difficulty related to its 2π

periodicity, and the associated spurious discontinuities found when combining a phase close to 2π,
e.g., 2π − θ (θ > 0, very small), with another very close too, e.g., 2π + θ′ (θ′ > 0, very small), but that
being higher than 2π reduces to θ′, originating the just referred spurious discontinuity: 2π − θ → θ′.
Even if this issue was addressed in many works that proposed the use of the so-called unwrapping,
usual unwrapping algorithms only performs well when the data sampling is dense enough, but they
fail in the sparse sampling case [25–27] .



The present paper proposes a technique able to conciliate unwrapping and sparse sampling,
technique that constitutes the most important scientific achievement of the preset work.

Before introducing the problem statement in Section 2, the proposed strategy in Section 3 and
proving its performances in Section 4, we are revisiting the main key features of non-intrusive
PGD-based model order reduction in the last part of the present introduction section.

Model Order Reduction

A generic problem in physics consists of a differential operator L(·) acting on the so-called
unknown field (here without loss of generality assumed scalar) u(x, t), with x ∈ Ωx ⊂ R3 and
t ∈ Ωt ⊂ R. The problem can involve a series of parameters grouped in vector µ (µ ∈ Ωµ ⊂ RP) that
being part of the optimization process, one would like to retain explicitly in the problem solution,
i.e., u(x, t; µ).

The separated representations at the heart of the so-called proper generalized decomposition
(PGD), initially proposed in the space-time settings [18] to generalize the proper orthogonal
decomposition (POD) [28], were extended to represent parametric solutions of parametrized
problems [29]

u(x, t, µ1, . . . , µP) ≈
M

∑
i=1

Xi(x)Ti(t)
P

∏
j=1

Mj
i (µj), (1)

enablig simulation, optimization, inverse analysis, uncertainty propagation and simulation-based
control, all them under real-time constraints [28,29].

However, using such a separated representation becomes very intrusive in the sense that specific
algorithms are needed for sequentially compute the different functions involved in (1) by solving 3D
partial differential equations (PDE) for computing functions Xi(x), 1D ordinary differential equations
(ODE) for calculating the time functions Ti(t) and a series of algebraic problems for obtaining the
functions depending on the parameters Mj

i (µj).
To reduce the intrusiveness, different strategies were proposed, among them the so-called Sparse

Subspace Learning (SSL) [22] and its sparse counterpart, the so-called sPGD [24] revisited below.
If we consider the parameters µ1, . . . , µP involved in the model grouped in vector µ ∈ Ωµ,

the sampling constituting the DoE results in the parameters choices µk, k = 1, . . . , K, trying to cover as
much as possible the parametric domain Ωµ, to limit as much as possible extrapolation.

Now, from the computed solutions at µk, noted by uk(x, t), one could try to infer the solution
for any other value of the parameter µ by using a simple interpolation, as usually considered when
constructing surrogate models,

u(x, t; µ) ≈∑
k

uk(x, t)Nk(µ). (2)

However, being the parametric space in general high-dimensional standard interpolation,
e.g., kriging, radial or polynomial approximation bases, ... represented by the functions Nk(µ),
fail for accomplishing an accurate enough approximation in the low-data limit, i.e., K � P, limit in
which even linear regressions do not work.

The sparse-PGD (sPGD) strategy proposed in [24] considers a separated approximation

u(x, t; µ) ≈∑
i

∏
n

Un
i (x, t, µn), (3)

with
Un

i (x, t, µn) = ∑
j

wi,n
j (x, t)Fi

j(µn), (4)

where standard polynomial bases are considered in Fi
j(µn), with the degree of the polynomial

considered to represent Fi
j(µn) increasing with the separated representation mode i, i.e., the higher i,

the higher the polynomial degree considered to represent Fi
j(µn) in order to avoid overfitting.



In order to calculate the approximation unknowns wi,n
j (x, t), we consider the extended collocation

form, within the sPGD rationale

∫
Ωµ

u∗(x, t; µ)∑
k

δµk
(µ)

(
u(x, t; µ)−∑

k
uk(x, t)δµk

(µ)

)
dµ = 0, (5)

with δµk
(µ) the Dirac mass located at µk.

2. Parametric Electromagnetic Fields

In the present context, the transmitter emits waves at a constant frequency in a direction denoted
by an angle θ between 0◦ and 90◦. For each component of the electric and magnetic fields, the data
generated by the simulations consists of an array of N × Nθ values, N being the number of points in
the spatial discretization and Nθ the number of points in the angular discretization. The aim of this
work is to provide a method to determine through the values of the electromagnetic field in all N
discretized points in the geometry for any value of θ between 0◦ and 90◦. In what follows, we will
consider the problem of constructing the interpolation of the z-component of the electric field, Ez,
for all θ in one point of the geometry (on a grid of points will be considered later).

2.1. Real-Imaginary Interpolation Versus Magnitude-Phase Interpolation

Since the solutions provided by the solver are in the frequency domain, they are complex-valued
functions. Complex numbers can be represented either by their real and imaginary parts or by their
magnitude and phase, therefore the interpolation of complex-valued functions can be computed in
multiple ways which are not equivalent. The first option is to treat the real and imaginary parts as two
real-valued functions, interpolate them separately and combine the results. The second option is to
treat the magnitude and phase as two real-valued functions, interpolate them separately and combine
the results.

The performances of these two methods depend on the considered problem. In our case, the data
from the simulation have real and imaginary parts oscillating quite fast compared to the sampling
frequency (Figure 1), hence they are not good candidates for interpolation. However the magnitude
is much smoother which means it may give trustworthy interpolation results. The phase looks more
chaotic but it is not a good indicator because of its natural 2π-periodicity that induced spurious
discontinuities: the phase needs to be “unwrapped” before being interpolated.

Figure 1. Real and imaginary parts (top left and right respectively), magnitude and phase of Ez

(bottom left and right respectively) as a function of θ in one point of the geometry.



2.2. Phase Unwrapping in Smooth Parametric Settings

Phase unwrapping is the reconstruction of a “physically-meaningful” representation of the phase
(as a function of the parameter θ) by adding multiples of 2π to some of its values in order to make
it a continuous function. This step is very important because it determines the number of periods
between two successive values of θ, regardless of the interpolation method used. The unwrapped
phase is defined as the unique representation of the phase which can lead to a correct continuous
interpolation. Unwrapping has been extensively addressed, the interested reader can refer to [26,27]
and the numerous references therein.

The goal is to find a sequence (kn)1≤n≤Nθ
∈ ZNθ , such that the unwrapped phase φ ∈ RNθ verifies:

∀n ∈ [1, Nθ ], φn = Arg Ez(θn) + 2knπ

where Arg is the principal value of the phase in the interval (−π, π], under some regularity constraint.
The proposed solution consists of assuming the derivative of the phase does not vary too much,

or, to put it another way, that the second derivative remains small. This hypothesis discussed later
leads to a minimization of the variation of the derivative using a finite differences scheme to compute
sequentially the values of the unwrapped phase:

k1 = 0
k2 = argmin

k∈Z
|Arg(Ez(θ2)) + 2kπ − φ1|

∀n ≥ 3, kn = argmin
k∈Z

∣∣∣∣Arg(Ez(θn+1)) + 2kπ − φn

θn+1 − θn
− φn − φn−1

θn − θn−1

∣∣∣∣
(6)

Note that θ2 must be chosen close enough to θ1 to ensure |φ2 − φ1| < π. This algorithm can also
be run in descending n order, for example to avoid initialization in a noisy area.

Once applied to our problem, phase unwrapping produces a very smooth curve, which allows
great performance for interpolation (Figure 2).

Figure 2. Example of successful phase unwrapping.

The functioning interval for the just proposed strategy depends on the difference of the phase
derivative between two consecutive sampling points, with respect to the sampling points distance.
Thus, one can expect that ∆φ′ · ∆θ < C, with C = π from our numerical experiments. In order to
enlarge the applicability domain, an important enhancement is proposed in Section 2.

2.3. Robustness Issues

The phase unwrapping method discussed in the previous section performs well on smooth data
but it lacks robustness, mainly for two reasons:



1. Even with very regular data, the phase can have a chaotic behavior when the magnitude is close
to zero, which means our hypothesis on the regularity of the phase is not valid.

2. Since the different phase values are computed sequentially using the previous ones,
local irregularities result in high global error.

However, because a failure of the method is caused by the invalidity of the hypothesis, computing
the finite differences approximation of the second derivative of the phase is a good way to detect when
the unwrapping fails.

2.4. Comparing the Proposed Algorithm with Traditional Unwrapping

To illustrate the advantages of the just introduced methodology, the function having as
unwrapped form

φ = (θ + 10)(θ − 90)(θ − 45)/k f (7)

with k f = 3000, is considered. Figure 3 depicts the wrapped counterpart of the above function.
For unwrapping it, we compare the proposed algorithm with the standard procedure included in the
commercial software Matlab, the unwrap() function. The Matlab function applies when the difference
between consecutive angles is greater than π, and shifts the angles by adding multiples of ±2π until
the difference becomes less than π [30]. As noticed that function achieves a good unwrapping if a fine
enough mesh is used (involving more than 35 nodes). However, the Matlab function fails to perform
correctly in the case of coarser meshes (less than 30 nodes).

On the other hand, the procedure proposed in this paper achieves good results with only 15 nodes,
as it can be seen in Figure 4, with the associated computing time saving.

In order to check the performances when the derivatives involved in the solution increase,
we consider the previous function while increasing the factor 1/k f of 20% and 50%, with the same
coarse mesh consisting of 15 nodes. The comparison is shown in Figures 5 and 6. As it can be noticed,
the proposed procedure seems quite robust when compared with traditional unwrapping.

Figure 3. Original wrapped function.



Figure 4. Comparison of the proposed unwrapping procedure and the standard unwrapping function
implemented in Matlab, in a coarse mesh consisting of 15 nodes.

Figure 5. Comparison of the proposed procedure and the Matlab unwrapping function in a coarse
mesh consisting of 15 nodes with the 1/k f factor 20% higher.



Figure 6. Comparison of the proposed procedure and the Matlab unwrapping function in a coarse
mesh consisting of 15 nodes with the 1/k f factor 50% higher.

3. Improving the Robustness of Phase Unwrapping

So far, we have solved part of the original problem: phase unwrapping can be attempted on all N
points in the spatial discretization and accepted or rejected by setting a threshold for the values of the
second derivative. Thus, a part of the geometry has therefore been dealt with. In this section, we will
discuss how to use these solved points to correct the phase unwrapping in the rest of the geometry.

3.1. Reduced Basis of the Search Space

The geometry can be divided into subdomains inside which the variations of the electromagnetic
field are small. In each subdomain, the search space is reduced using the proper orthogonalized
decomposition (POD) computed with the method of the snapshots where the snapshots are the
unwrapped phases from the points in the subdomain which are already solved. The local coherence of
the electromagnetic field allows the POD to have a very low dimension, typically 2 or 3, denoted in the
following as r.

3.2. Phase Unwrapping in the Reduced Search Space

Out of all the possible configurations of the phase, we are looking for the one closest to the
reduced search space. This can be expressed as a minimization problem:

min
k ∈ ZNθ

α ∈ Rr

∥∥∥∥∥Arg(Ez) + 2πk−
r

∑
i=1

αiwi

∥∥∥∥∥ (8)

where (wi)i=1,...,r are the basis vectors of the search space and (αi)i=1,...,r are the vector coefficients with
respect to this base.

The search of k can easily be limited to [k−, k+]Nθ ⊂ ZNθ , k− and k+ being two integers which
depend on the size of the unwrapping. However, this problem can still be very hard to solve hence we
will approximate the resolution.

The proposed algorithm to work around this high complexity follows three main steps:

1. Using only a few of the raw phase values, generate a discrete subset of the search space which is
likely to be close to the optimal solution.



2. Fit the rest of the phase values to each curve of this subset by adding or subtracting multiples
of 2π.

3. Select the configuration which allowed for the best fit.

Thus, r points (θn1 , . . . , θnr ) are chosen from the θ discretization. For (kn1 , . . . , knr ) ∈ [k−, k+]r,
we can find the unique curve in the search space which can be fit to the r points (Arg(En1) +

2πkn1 , . . . , Arg(Enr ) + 2πknr ), by solving for the coefficients αi:

∀j ∈ J1, rK,
r

∑
i=1

αiwi(θnj) = Arg(Enj) + 2πknj (9)

In practice, we choose the nr-tuple (θn1 , . . . , θnr ) minimizing the condition number of the linear
system represented by Equation (9). Let αi : (kn1 , . . . , knr ) 7→ αi(kn1 , . . . , knr ) be the function that
associates with each configuration the vector coefficients solution to the linear system (9). We can now
solve instead of (8) the following problem:

min
(kn1 ,...,knr )∈[k− ,k+ ]r

min
k∈ZNθ

∥∥∥∥∥Arg(Ez) + 2πk−
r

∑
i=1

αi(kn1 , . . . , knr )wi

∥∥∥∥∥ (10)

3.3. Validation of the Optimization Procedure

We consider the following phase function

φ(θ) = 8π sin(4θ)− 4.5π sin(8θ) + sin(12θ),

involving 30 points in the discretization of the θ parametric coordinate.
Once it is artificially wrapped, both the standard unwrapping algorithm and the procedure

proposed in this paper based on the second derivative, fail to unwrap it.
Assuming we have computed the reduced basis consisting of the three functions

{sin(4θ), sin(8θ), sin(12θ)}, we attempt to unwrap Arg
(

eiφ(θ)+N (0,0.5)
)

using the just described
optimization procedure. The unwrapped phase is exactly the sum of φ(θ) and the added noise,
as Figure 7 proves.

Figure 7. Comparison of reduced-basis based unwrapping versus second derivative minimization
based unwrapping on a test case exhibiting fast variations of the phase.



4. Numerical Results

4.1. Convergence Analysis

Since the simulations of radar devices are too expensive, in this section we consider a simpler
problem able to provide the required data for performing the convergence analysis.

Thus, we consider the Helmholtz problem with damping in a 2D rectangular domain Ω, that looks
for u(x, y) verifying  ∆u + (iνω−ω2)u = f in Ω

∂u
∂n

= 0 on ∂Ω
(11)

where Ω = [0, 9]× [0, 2], ω = 10, ν = 1 and f (x, y; θ) = e120i(cos(θ)x+sin(θ)y).
We discretize and solve this problem using the Finite Element Method (FEM) with Lagrange

P1 elements for a number of values of θ, and interpolate the solution (complex field) at θ = 3◦.
Then, we compare the phase of the interpolated field to the phase of the solution obtained with the
FEM, whose difference is depicted in Figure 8.

The previous figure proves the convergence of the proposed strategy when enriching the sampling.
It can also be noticed that a quite sparse sampling suffices for reaching an acceptable accuracy.

Figure 8. Evolution of the phase error with the parameter sampling refinement.

4.2. Results on the RADAR Problem

The electromagnetic field on a patch antenna (8× 16 rectangular patches) has been computed
for 33 different values of θ between 0◦ and 90◦, 32 of which are used to apply our method and one
as reference to compare the interpolation with the simulation. The reference electromagnetic field
corresponds to the parameter value θre f = 79.8◦. The two closest values of theta used to compute the
interpolation are 76.8◦ and 82.4◦ hence θre f lies in a gap of size ∆θ = 82.4◦− 76.8◦ = 5.6◦. The values of
the electromagnetic field below 0.2 V/m for the electric component (E) and 0.5 mA/m for the magnetic
component (H) are not considered in this study because the signal is not considered significant enough
and the phase cannot be studied because of its singularity (Appendix A). For this reason and due to the
polarization of the electromagnetic field, only the z-component of the electric field Ez and y-component
of the magnetic field Hy provide results. We calculate the absolute error between the phase of the
reference field and the phase of the interpolated field and plot the mean error over each patch of the



antenna using our method (Figures 9 and 10) and the classical unwrapping algorithm for comparison
(Figures 11 and 12).

Figure 9. Mean absolute error on the phase (◦) of the Ez component over each patch of the antenna
using the proposed method.

Figure 10. Mean absolute error on the phase (◦) of the Hy component over each patch of the antenna
using the proposed method.

Figure 11. Mean absolute error on the phase (◦) of the Ez component over each patch of the antenna
using the classical unwrapping algorithm.

With the proposed method, the average error over the entire antenna is 1.6◦ for the electric field
and 1.4◦ for the magnetic field while with the standard unwrapping algorithm, the average error
over the entire antenna is 62.0◦ for the electric field and 63.7◦ for the magnetic field. In comparison,
the average error on the phase when interpolating real and imaginary parts is 166.8◦ for the electric
field and 166.7◦ for the magnetic field.

Our method is accurate and robust as the mean phase error is consistently under 6◦ on the entire
antenna for both the electric and magnetic fields, whereas real and imaginary parts interpolation
completely fails when dealing with such a sparse discretization of the parameter θ.



Figure 12. Mean absolute error on the phase (◦) of the Hy component over each patch of the antenna
using the classical unwrapping algorithm.

5. Conclusions

In this paper, we tackled the computation of parametric solutions for electromagnetic wave
propagation in radar applications. These simulations currently require hundreds of hours of
computations to obtain suitable accuracy.

We have described an interpolation method for complex-valued fields which allows reducing the
computational cost significantly. By exploiting the natural regularity of electromagnetic fields, we are
able to retrieve highly accurate parametric solutions from a very sparse set of simulations.

Author Contributions: Conceptualization, F.C., J.L.D., J.C.K., P.D.; methodology, S.V., V.C., A.S., F.D.; software,
S.V., V.C.; validation, J.C.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Phase Singularity

The phase of a complex-valued function can have very fast variations when its magnitude is close
to zero, even if the function is very regular (Figure A1). This may induce large error in the interpolation
of the phase, which cannot be easily avoided. However since the magnitude is very small, a large error
on the phase does not have too much impact on the complex number itself, which can usually simply
be regarded as zero.

Figure A1. Example of a smooth parametric curve on the complex plane (left) and the phase as
a function of the parameter (right).



Appendix B. Antena Modelling and Simulation

The simulation model discussed in this paper is illustrated in Figure A2. This simplified mock-up
represents the receiving part of a typical automotive radar device operating at 24 GHz and located
behind a plastic bumper (Blind Spot Detection).

The antenna is made of 16× 8 square array elements printed on a rectangular substrate (thickness
about 0.254 mm with a dielectric permittivity set equal to 2.2 and an electrical conductivity of
0.003 S/m). The average thickness of the plastic bumper is 7.5 mm and its permittivity about 2.6
(its conductivity being negligible).

As mentioned in the paper, computational results were obtained using the CEM-TD product
included in the CEM One R© software package and based on the standard FDTD simulation technique
(Finite Difference Time Domain).

Once the device is illuminated by an external plane wave, electric and magnetic field components
can be thus accessed at the level of each basic antenna element and thus expressed in frequency domain
(modulus and phase) using a classical Fourier transform—see for instance Figures 9 and 10.

With an incidence angle of the 24 GHz exciting wave ranging from 0◦ to 90◦ in the horizontal
plane (illustrated in Figure A2 for a given sample of the array antenna), the spureous effect of the
plastic bumper can be evaluated by comparing the fields actually received by the antenna with the
reference signal obtained without any extra obstacle.

Figure A2. Radar antenna and radome.
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