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Similarity-based prediction for channel mapping
and user positioning

Luc Le Magoarou

Abstract—In a wireless network, gathering information at the
base station about mobile users based only on uplink channel
measurements is an interesting challenge. Indeed, accessing
the users locations and predicting their downlink channels
would be particularly useful in order to optimize the network
efficiency. In this paper, a supervised machine learning approach
addressing these tasks in an unified way is proposed. It relies
on a labeled database that can be acquired in a simple way
by the base station while operating. The proposed regression
method can be seen as a computationally efficient two layers
neural network initialized with a non-parametric estimator. It is
illustrated on realistic channel data, both for the positioning and
channel mapping tasks, achieving better results than previously
proposed approaches, at a lower cost.

Index Terms—channel mapping, user positioning, neural
networks, regression.

I. INTRODUCTION

W IRELESS networks are currently undergoing dramatic
changes, driven by significant innovations in the physical

layer. In particular, it has been recently proposed to use massive
multiple input multiple output (massive MIMO) wireless systems
[1], [2], [3] with a large number of antennas in the millimeter-
wave band [4], [5], where a large bandwidth can be exploited.

On the other hand, machine learning techniques made possible
by the growing available computing power have recently led
to tremendous successes in various domains [6], [7]. Machine
learning holds promise for wireless communications (see [8],
[9] for exhaustive surveys). In particular, it is possible to use
uplink channel data that can be acquired easily in modern
MIMO systems to predict quantities of interest. In this paper,
the objective is to use the channel data to predict some target
vector whose content depends on the considered task. The
two tasks of interest are user positioning (in which the user’s
location is to be predicted) and channel mapping (in which
the user’s downlink channel is to be predicted).
Contributions. This paper proposes a similarity-based approach
to tackle these two problems. It is initialized with a non-
parametric method but is fundamentally parametric. Indeed, it cor-
responds to a neural network whose structure at the initialization
mimics nearest neighbors regression [10], [11], [12]. Fine tuning
by gradient descent within this structure allows to improve the
prediction results. A theoretical justification of this simple method
is proposed in the context of channel data. The introduced method
is then empirically evaluated on realistic data and proves com-
putationally efficient and accurate on the two considered tasks.

Luc Le Magoarou is with bcom, Rennes, France. Contact address:
luc.lemagoarou@b-com.com.

Related work. User positioning and channel mapping using
channel data have both been investigated. On the user positioning
side, it has been proposed to tackle the problem with a convolu-
tional neural network (CNN) operating directly on channel data
[13], or on channel data transformed to the angular domain [14].
It has also been proposed to use a classical non-parametric ap-
proach not relying on a neural network [15], operating on the re-
ceived signal strengths (RSS) rather than on the channels directly.
The proposed method takes advantage of the simplicity and low
complexity of non-parametric approaches to guide the structure
of a neural network operating on channels, which distinguishes it
from all these methods. Regarding channel mapping, which is a
more recent problem, it has been tackled with help of a fully con-
nected neural network [16]. The proposed method adopts a totally
different network structure, as well as a different cost function.

II. PROBLEM FORMULATION

The methods proposed in this paper apply to a wide variety of
multi-user MIMO wideband systems, operating indifferently in
time division duplex (TDD) or frequency division duplex (FDD),
where the antennas at the base station are indifferently colocated
or not (in which case it is a distributed MIMO system). Let us
consider N base station antennas and S subcarriers, and denote
h ∈ CNS the uplink channel vector between any given user and
the base station and hn,s ∈ C the channel for the nth antenna on
the sth subcarrier. Note that no index is introduced to denote to
which specific user corresponds the channel, since the proposed
method treats indifferently the channels from all users.

Based on an incoming estimated uplink channel h, the
objective in this paper is to predict a target vector t. Depending
on the considered application, the target vector t may be the
location of the user [13], its downlink channel [16] or any other
quantity of interest. Let us denote f the prediction function
that maps the incoming channel to the target estimate, so that
the estimated target writes

t̂ = f(h). (1)

In order to calibrate the prediction function f , let us assume
a dataset is available containing L labeled samples made of
a channel and the associated target:

{hi; ti}Li=1. (2)

Under this very general framework, two tasks are considered
in this paper.
User positioning. The objective of this task is to predict the
position of the user, based only on the knowledge of its uplink
channel. In that case the target t contains the coordinates of the
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user’s position (either in 2D or 3D depending on the context).
Regarding the labeled data acquisition, it has to be obtained
by an auxiliary sensor such as the GPS [15], either online or
during an offline data collection phase.
Channel mapping. This task aims at eliminating the need for
a downlink channel estimation phase. Indeed, in that case the
target t contains the user’s downlink channel, which has to be
predicted from the knowledge of the uplink channel. Labeled
data can be acquired during a phase where the base station
sends downlink pilots, as explained in details in [16]. Channel
mapping is especially interesting for FDD systems that use
different frequencies for the uplink and downlink transmissions.
In its original formulation [16], channel mapping takes as input
the channel on only a subset of the base station antennas, so as
to lighten the computational cost. This setting is also considered
in the experimental part of this paper.
System operation. For the two considered tasks, the system op-
erates in two phases. During the training phase, data are collected
(using GPS or downlink pilots) and the prediction function is
learned. During the exploitation phase, the learned prediction is
used. For the proposed method, these two phases are not mutually
exclusive in time. Indeed, after an initial training has been carried
out, they can be intertwined and online learning can be used so
as to adapt to changes in the environment or users distribution.

III. SIMILARITY-BASED PREDICTION

Let us now introduce the proposed prediction method, by
unveiling the structure of the prediction function f . The method
is based on the very simple rationale that similar channels lead to
similar targets. The main novelty of this paper is to translate that
rationale into a neural network structure instead of using a generic
network structure, as was done previously [16], [14], [13].

A. The Nadaraya-Watson estimator

The similarity-based prediction method proposed here is
inspired by the Nadaraya-Watson estimator [17], [18], which
is a classical non-parametric regression method. It is based
on an approximation of the joint density of inputs and targets
by kernels located at the training points [19], [20]. Such an
approximation leads to the conditional expectation of the target
given the input taking the form

t̂ = E [t|h]
∑L

i=1 K(h,hi)ti∑L
j=1 K(h,hj)

, (3)

where K(·, ·) is a kernel function measuring the similarity
between two inputs. The estimate of the target is then a convex
combination of targets corresponding to the training points. In
order to perform well, such a non-parametric method requires a
fine enough sampling of the channel space, which may require
a very large number of training points L. However, for the
studied problem, it is argued in section III-C that the particular
nature of channel data allows to overcome this issue.

B. Neural network structure

Let us now propose a neural network structure whose
initialization corresponds to the Nadaraya-Watson estimator,

so as to view this non-parametric method as a parametric
one, whose parameters can be optimized. To do so, a kernel
measuring the similarity between channels using the complex
inner product is used. Indeed, denoting Ik(h) the set of indices
corresponding to the k training channels that are most correlated
to the current channel h, the used kernel takes the form

K(h,hi) ,

{
|hH

i h| if i ∈ Ik(h),
0 otherwise. (4)

It amounts to take into account only the k training channels
most correlated to the current one. The hyperparameter k is
chosen to be small (no more than a few dozens), yielding
sparsity that reduces the computational cost of the method. With
this kernel, the Nadaraya-Watson estimator can be viewed as
an instance of k-nearest neighbors (k-NN) regression.

Instead of considering this estimator as static, it is possible
to view it as the forward pass in a neural network, given in
algorithm 1, where HTk(·) refers to the hard thresholding
operator that keeps unchanged the k entries of greatest modulus
of its input and sets all the others to zero. The sequence of
linear and nonlinear operation can also be visualized on figure 1.

Algorithm 1 Similarity-based prediction (forward pass)

Input: Input h, dictionary matrix D, prediction matrix P,
sparsity level k.

1: Correlation: c← DHh
2: Hard thresholding: s← HTk(c)

3: Normalization: y← |s|
‖s‖1

Output: t̂← Py (estimated target)

x DH HTk(·) |·|
‖·‖1 P t̂

Fig. 1: Feedforward representation of the proposed method.

The matrices D and P are the weights of the neural network
that are to be optimized. Initializing them with

D = (h1, . . . ,hL) , P = (t1, . . . , tL) , (5)

amounts to initialize the neural network as the Nadaraya-Watson
estimator. These weights can then be optimized by gradient
descent using back-propagation [21] to better fit the labeled
dataset, according to some cost function. The precise form of the
used cost functions are given in the experimental part of the paper
since they depend on the considered application. This fine tuning
phase helps because the distribution of the training samples may
not be perfect for the ultimate goal, and the used channels can be
noisy. Fine tuning is meant to correct these two potential defects.
Computational complexity. The proposed method is particu-
larly computationally efficient. Indeed the complexity of the
forward pass is dominated by the first step (multiplication by
DH ), which costs O(NSL) arithmetic operations. The backward
pass is even more efficient since it costs only O(NSk) arithmetic
operations, thanks to the sparsity obtained via the hard threshold-
ing operation. Note that this complexity is much lower than the



SUBMITTED 3

one of concurrent approaches. Moreover, if the number of training
samples L is very large, it is also possible to keep only a subset
of the training samples or to perform clustering to build matrices
D and P in order to further reduce the complexity of the method,
as is classically done for radial basis function networks (RBFN)
[22]. This is one advantage of viewing the method as parametric,
leading to a forward pass costing O(NSL̃) arithmetic operations,
where L̃ is a fixed number independent of the number of training
samples. This possibility is not explored in the current paper, but
an interesting avenue for future developments. The complexity
of the proposed approach is compared precisely to the one of
concurrent approaches in the experimental part of the paper.

C. Why should it work?

Given the simplicity of the proposed method, it is legitimate
to wonder why it should work well with channel data, although
in other domains such as image or audio processing, this kind of
local interpolation methods are outperformed by more elaborate
deep learning methods [6].

In order to answer this question, let us take a step back.
Actually, data processing techniques are often based on the
manifold assumption: Meaningful data (signals) lie near a low
dimensional manifold, although their apparent dimension is
much larger [23], [24] [7, Section 5.11.3] [25, Section 9.3]. The
performance of local interpolation methods is heavily dependent
on the dimension of the data manifold (the lower the better).
In order to perform well for a reasonable number of training
points, the manifold dimension should be low. Indeed, the
number of required training points for a given accuracy grows
exponentially with the manifold dimension [26], [27].

What is the dimension of the channel data manifold? As
previous work suggests, it is reasonable to assume the existence
of a position to channel mapping [16], i.e. a deterministic
function linking the position of the user with the corresponding
channel. The set of possible positions can be modeled as a
two-dimensional manifold (neglecting the elevation dimension).
If it is further assumed that the position to channel mapping is
an homeomorphism (continuous bijection whose inverse is also
continuous), then the channel vectors lie on a two-dimensional
manifold (simple application of the definition of a manifold). This
conclusion is very encouraging since it means that despite the
high apparent dimension of channel vectors (due to the large num-
ber of antennas and subcarriers), the very low dimension of the
channel manifold should allow simple local interpolation methods
to perform well with a reasonable number of training points.

Note that such a simple reasoning cannot be applied to
image or audio data, and the data manifold in these domains
is very likely to be much higher dimensional (e.g. a few dozens
for images [28]). In summary, the channel data is inherently
much less complex than image or audio data, so that local
methods can work well for channel data although much more
computationally complex techniques have to be used in these
domains (such as deep learning).

IV. EXPERIMENTS

In this section, the proposed similarity-based approach is
illustrated on the channel mapping and user positioning tasks.

Implementation details. The method is implemented with
help of the PyTorch library [29], so that gradients are computed
automatically. The optimization is done with minibatch gradient
descent (size of the minibatches depending on the application)
using the Adam optimization algorithm [30]. Note that complex
weights and inputs are handled classically by stacking the
real and imaginary parts so that the neural network treats only
real numbers. Moreover, for the fine tuning, the column of D
corresponding to the current training sample is excluded in order
to avoid trivial solutions during training (using for prediction
a channel which is exactly the current training sample).

A. Channel mapping

The channel mapping application is investigated with help
of the DeepMIMO dataset [31], which is itself based on the
ray-tracing simulator Wireless InSite by Remcom [32]. In order
to ease comparisons with prior art, the considered setting is
exactly the same as in [16], namely multipath channels (5 paths)
obtained from an indoor environment consisting in a 10m×10m
room, with N = 64 antennas on the ceiling and S = 16
subcarriers, an uplink frequency of 2.4GHz and a downlink
frequency of 2.5GHz (see [16] for a more detailed description).
The labeled dataset consists of L uplink channels for which
only 8 randomly picked antennas are considered paired with the
associated downlink channel (on all 64 antennas) corresponding
to users randomly located in the room, with L varying in our
experiment. The cost used in order to fine tune the neural network
of figure 1 (for 100 epochs) is the opposite of the downlink
spectral efficiency averaged over subcarriers obtained when using
the estimated downlink channel as precoder, taking the form

−E
[
1

K

∑K

k=1
log2

(
1 +
|hH

D,kĥD,k|2

‖ĥD,k‖22

)]
, (6)

where hD,k is the downlink channel on the kth subcarrier, ĥD,k

is its estimation given by the neural network, and the expectation
being in practice estimated by averaging over minibatches of
1000 channels. The hard thresholding parameter is fixed to k = 5.
Results. Figure 2 summarizes the obtained results for L ∈
{1000, 3000, 6000, 12000, 30000, 60000}, showing the spectral
efficiency (opposite of the cost (6)) averaged over 1000 randomly
picked test channels. Results are shown for the initialization
(blue dots) and after fine tuning by gradient descent for
L ∈ {3000, 6000, 12000} (red crosses). An upper bound
(obtained using the true channel as precoder) is also shown (black
dashed line). It is interesting to notice that only a reasonable
amount of training data is required to get very close to the upper
bound with the proposed method. Indeed, the obtained results
are within 6% of the upper bound without fine tuning and within
4% with fine tuning, with only 12000 training points. This
performance is superior to the previously proposed method [16,
Figure 7], which obtained results within 9% of the upper bound
with 120000 training samples (ten times more). Moreover, the
proposed method yields a much lighter network (forward pass
costing around 1e6 arithmetic operations) compared to the fully
connected neural network of [16] (around 3e7 arithmetic oper-
ations). In summary, the proposed method yields better results
with fewer training samples, at a lower cost. This experiment
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Fig. 2: Channel mapping results.

shows the great potential of the similarity-based approach for
the channel mapping problem. However, the number of required
training samples may still seem large in regard of the quite small
area considered in this experiment. This issue should be taken
into account in future work. Note that this issue is less significant
in the next experiment regarding the user positioning task.

B. User positioning

The user positioning task is investigated with help of a
dataset originally intended for the IEEE Communication Theory
Workshop (CTW) 2020 data competition [33], built with a
channel sounder described in [13]. The considered base station
comprises N = 56 antennas and communicates over K = 924
subcarriers at the central frequency of 1.27GHz. The labeled
dataset consists of L = 4979 channels h with the corresponding
location p that are measured in an area of approximately 1 km2 in
the streets of Stuttgart, Germany. It is divided into 4096 channels
used for training and 883 channels used as validation data.
Dimensionality reduction. Channels described in the previous
paragraph are of very high dimension. Indeed, they can be
seen as 56× 924 complex matrices. Using directly the method
of algorithm 1 on these channels would result in a very high
computational complexity. In order to reduce the computational
burden, the dimensionality of input channels is reduced by
computing the left singular vector corresponding to the largest
singular value and using it as input for algorithm 1. This results in
inputs of size N = 56 complex numbers (112 real numbers) only.
The cost used to fine tune the network of figure 1 (for 50 epochs)
corresponds to the average localization error, taking the form

E [‖p− p̂‖2] (7)

where p is the true position and p̂ its estimation given by the
neural network, and the expectation being in practice estimated
by averaging over minibatches of 100 channels. The hard
thresholding parameter k is varied between 2 and 16.
Baselines.The proposed method is compared to two baselines
taking the same inputs. The first one is an instance of extreme
learning machine (ELM) as was proposed for user positioning
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Fig. 3: User positioning results.

[34], with a random layer of 50000 neurons and a rectified
linear activation (ReLu) [7, Chapter 6]. The second one is a
simple multilayer perceptron (MLP) [7, Chapter 6] comprising
two layers made of 112 neurons with a ReLu non-linearity
followed by a last linear one with three neurons (outputting
location estimates). It is trained for 200 epochs with the Adam
optimization algorithm [30].
Results. Figure 3 summarizes the obtained results for a varying
number of neighbors (corresponding to the parameter k of the
hard thresholding operator) and for the two baselines. First of
all, note that the proposed method leads to better positioning
results than the baselines (the MLP leading to approximately
70m and the ELM to approximately 80m average errors). Then,
it is interesting to notice that the number of neighbors has only a
modest influence on the localization error, provided it is chosen
not too small (larger than 4). Second, fine tuning shows beneficial
for the localization task (except for k = 1, where the fine tuning
decreases a lot the positioning accuracy). Indeed, the initialization
gives errors around 52m while fine tuning allows to attain errors
around 42m (approximately 20% better). Keeping in mind that
the area on which localization is sought is of 1 km2, such results
are pretty accurate and encouraging. Moreover, note that most of
the time the localization error is much smaller than the average
(the median is around 20m for k = 10). Note that these results
are the first to be reported for this outdoor localization task.
Concurrent parametric methods such as convolutional neural
networks were only applied to indoor localization for now [13].

V. CONCLUSION

In this paper, a generic similarity-based neural network
was introduced in order to operate on channel data, for the
channel mapping and user positioning tasks. It was theoretically
motivated relying on the manifold hypothesis. Moreover, the
proposed method was empirically validated on realistic data for
the two aforementioned tasks. In the future, it would be very
interesting to investigate further the sample complexity of the
method, in order to optimize the training of such systems. One
can also envision using several heuristics aimed at improving
the training of similarity-based neural networks [22].
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