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Similarity-based prediction for channel mapping
and user positioning

Luc Le Magoarou

Abstract—In a wireless network, gathering information at the
base station about mobile users based only on uplink channel
measurements is an interesting challenge. Indeed, accessing the
users locations and predicting their downlink channels would be
particularly useful in order to optimize the network efficiency. In
this paper, we propose a supervised machine learning approach
addressing these tasks in an unified way. It relies on a labeled
database that can be acquired in a simple way by the base station
while operating. The proposed regression method can be seen
as a computationally efficient two layers neural network. It is
illustrated on realistic channel data, both for the positioning and
channel mapping tasks, achieving better results than previously
proposed approaches, at a lower cost.

Index Terms—channel mapping, user positioning, neural net-
works, regression.

I. INTRODUCTION

W IRELESS networks are currently undergoing dramatic
changes, driven by significant innovations in the phys-

ical layer. In particular, it has been recently proposed to
use massive multiple input multiple output (massive MIMO)
wireless systems [1], [2], [3] with a large number of antennas
in the millimeter-wave band [4], [5], where a large bandwidth
can be exploited. Such systems exhibit high resolution both in
the direction and delay domains.

On the other hand, machine learning techniques made pos-
sible by the growing available computing power have recently
led to tremendous successes in various domains [6], [7].
Machine learning holds promise for wireless communications
(see [8], [9] for exhaustive surveys). In particular, it is possible
to use uplink channel data that can be acquired easily in
modern MIMO systems to predict quantities of interest. In this
paper, we are interested in using the channel data to predict
some target vector whose content depends on the considered
task. The two tasks of interest are user positioning (in which
the user’s location is to be predicted) and channel mapping
(in which the user’s downlink channel is to be predicted).
Contributions. We propose a similarity-based approach to
tackle these two problems. It corresponds to a neural network
whose structure at the initialization mimics nearest neighbors
regression [10], [11], [12]. Fine tuning by gradient descent
within this structure allows to improve the prediction results.
A theoretical justification of this simple method is proposed
in the context of channel data. The introduced method is then
empirically evaluated on realistic data and proves computa-
tionally efficient and accurate on the two considered tasks.
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Related work. User positioning and channel mapping using
channel data have both been investigated. On the user po-
sitioning side, it has been proposed to tackle the problem
with a convolutional neural network (CNN) operating directly
on channel data [13], or on channel data transformed to
the angular domain [14]. It has also been proposed to use
a classical non-parametric approach not relying on a neural
network [15], operating on the received signal strengths (RSS)
rather then on the channels directly. The method we propose
takes advantage of the simplicity and low complexity of
non-parametric approaches to guide the structure of a neural
network operating on channels, which distinguishes it from
all these methods. Regarding channel mapping, which is a
more recent problem, it has been tackled with help of a fully
connected neural network [16]. The method we propose adopts
a totally different network structure, as well as a different cost
function.

II. PROBLEM FORMULATION

The methods proposed in this paper apply to a wide variety
of multi-user MIMO wideband systems, operating indiffer-
ently in time division duplex (TDD) or frequency division
duplex (FDD), where the antennas at the base station are
indifferently colocated or not (in which case it is a distributed
MIMO system). Let us consider N base station antennas and
S subcarriers, and denote h ∈ CNS the uplink channel vector
between any given user and the base station and hn,s ∈ C the
channel for the nth antenna on the sth subcarrier. Note that
we do not introduce an index to denote to which specific user
corresponds the channel since our methods treat indifferently
the channels from all users.

Based on an incoming estimated uplink channel h, the
objective in this paper is to predict a target vector t. Depending
on the considered application, the target vector t may be the
location of the user [13], its downlink channel [16] or any other
quantity of interest. Let us denote f the prediction function
that maps the incoming channel to the target estimate, so that
the estimated target writes

t̂ = f(h). (1)

In order to calibrate the prediction function f , let us assume
a dataset is available containing L labeled samples made of a
channel and the associated target:

{hi; ti}Li=1. (2)

Under this very general framework, we consider two tasks in
this paper.
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User positioning. The objective of this task is to predict the
position of the user, based only on the knowledge of its uplink
channel. In that case the target t contains the coordinates of the
user’s position (either in 2D or 3D depending on the context).
Regarding the labeled data acquisition, it has to be obtained
by an auxiliary sensor such as the GPS [15], either online or
during an offline data collection phase.
Channel mapping. This task aims at eliminating the need for
a downlink channel estimation phase. Indeed, in that case the
target t contains the user’s downlink channel, which has to be
predicted from the knowledge of the uplink channel. Labeled
data can be acquired during a phase where the base station
sends downlink pilots, as explained in details in [16]. Channel
mapping is especially interesting for FDD systems that use dif-
ferent frequencies for the uplink and downlink transmissions.
In its original formulation [16], channel mapping takes as input
the channel on only a subset of the base station antennas, so
as to lighten the computational cost. We consider this setting
as well in the experimental part of this paper.

III. SIMILARITY-BASED PREDICTION

Let us now introduce the proposed prediction method, by
unveiling the structure of the prediction function f . The
method is based on the very simple rationale that similar
channels lead to similar targets. The main novelty of this paper
is to translate that rationale into a neural network structure
instead of using a generic network structure, as was done
previously [16], [14], [13].

A. The Nadaraya-Watson estimator

The similarity-based prediction we propose is inspired by
the Nadaraya-Watson estimator [17], [18]. It is based on an
approximation of the joint density of inputs and targets by
kernels located at the training points [19], [20]. Such an
approximation leads to the conditional expectation of the target
given the input taking the form

t̂ = E [t|h]
∑L

i=1 K(h,hi)ti∑L
j=1 K(h,hj)

, (3)

where K(·, ·) is a kernel function measuring the similarity
between two inputs. The estimate of the target is then a convex
combination of targets corresponding to the training points. In
order to perform well, such a non-parametric method requires
a fine enough sampling of the channel space, which may
require a very large number of training points L. However,
for the studied problem, we argue in section III-C that the
particular nature of channel data allows to overcome this issue.

B. Neural network structure

Let us now propose a neural network structure whose
initialization corresponds to the Nadaraya-Watson estimator.
To do so, we use a kernel measuring the similarity between
channels using the complex inner product. Indeed, denoting
Ik(h) the set of indices corresponding to the k training

channels that are most correlated to the current channel h,
the kernel we use takes the form

K(h,hi) ,

{
|hH

i h| if i ∈ Ik(h),
0 otherwise. (4)

It amounts to take into account only the k training channels
most correlated to the current one. The hyperparameter k is
chosen to be small (no more than a few dozens), yielding spar-
sity that reduces the computational cost of the method. With
this kernel, the Nadaraya-Watson estimator can be viewed as
an instance of k-nearest neighbors (k-NN) regression.

Instead of considering this estimator as static, we propose to
view it as the forward pass in a neural network, given in algo-
rithm 1, where HTk(.) refers to the hard thresholding operator
that keeps unchanged the k entries of greatest modulus of its
input and sets all the others to zero. The sequence of linear
and nonlinear operation can also be visualized on figure 1.

Algorithm 1 Similarity-based prediction (forward pass)

Input: Input h, dictionary matrix D, prediction matrix P,
sparsity level k.

1: Correlation: c← DHh
2: Hard thresholding: s← HTk(c)

3: Normalization: y← |s|
‖s‖1

Output: t̂← Py (estimated target)

x DH HTk
|·|
‖·‖1 P t̂

Fig. 1: Feedforward representation of the proposed method.

The matrices D and P are the weights of the neural network
that are to be optimized. Initializing them with

D = (h1, . . . ,hL) , P = (t1, . . . , tL) , (5)

amounts to initialize the neural network as the Nadaraya-
Watson estimator. These weights can then be optimized by
gradient descent using back-propagation [21] to better fit the
labeled dataset, according to some cost function. The precise
form of the used cost functions are given in the experimental
part of the paper since they depend on the considered appli-
cation.
Computational complexity. The proposed method is partic-
ularly computationally efficient. Indeed the complexity of the
forward pass is dominated by the first step (multiplication by
DH ), which costs O(NSL) arithmetic operations. The back-
ward pass is even more efficient since it costs only O(NSk)
arithmetic operations, thanks to the sparsity obtained via the
hard thresholding operation. Note that this complexity is much
lower than the one of concurrent approaches. Moreover, if the
number of training samples L is very large, it is also possible
to keep only a subset of the training samples or to perform
clustering to build matrices D and P in order to further reduce
the complexity of the method. This possibility is not explored
in the current paper. The complexity of the proposed approach
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is compared precisely to the one of concurrent approaches in
the experimental part of the paper.

C. Why should it work?

Given the simplicity of the proposed method, it is legitimate
to wonder why it should work well with channel data, although
in other domains such as image or audio processing, this
kind of local interpolation methods are outperformed by more
elaborate deep learning methods [6].

In order to answer this question, let us take a step back.
Actually, data processing techniques are often based on the
manifold assumption: Meaningful data (signals) lie near a low
dimensional manifold, although their apparent dimension is
much larger [22], [23] [7, Section 5.11.3] [24, Section 9.3].
The performance of local interpolation methods is heavily
dependent on the dimension of the data manifold (the lower
the better). In order to perform well for a reasonable number of
training points, the manifold dimension should be low. Indeed,
the number of required training points for a given accuracy
grows exponentially with the manifold dimension [25], [26].

What is the dimension of the channel data manifold? As
previous work suggests, it is reasonable to assume the exis-
tence of a position to channel mapping [16], i.e. a deterministic
function linking the position of the user with the corresponding
channel. The set of possible positions can be modeled as a two-
dimensional manifold (neglecting the elevation dimension).
If we further assume that the position to channel mapping
is an homeomorphism (continuous bijection whose inverse
is also continuous), then the channel vectors lie on a two-
dimensional manifold (simple application of the definition of a
manifold). This conclusion is very encouraging since it means
that despite the high apparent dimension of channels vectors
(due to the large number of antennas and subcarriers), the very
low dimension of the channel manifold should allow simple
local interpolation methods to perform well with a reasonable
number of training points.

Note that such a simple reasoning cannot be applied to
image or audio data, and the data manifold in these domains is
very likely to be much higher dimensional (e.g. a few dozens
for images [27]). In summary, the channel data is inherently
much less complex than image or audio data, so that local
methods can work well for channel data although much more
computationally complex techniques have to be used in these
domains (such as deep learning).

IV. EXPERIMENTS

In this section, the similarity-based approach we propose is
illustrated on realistic data for the channel mapping and user
positioning tasks.
Implementation details. The method is implemented with
help of the PyTorch library [28], so that gradients are com-
puted automatically. The optimization is done with minibatch
gradient descent (size of the minibatches depending on the
application) using the Adam optimization algorithm [29]. Note
that complex weights and inputs are handled classically by
stacking the real and imaginary parts so that the neural network
treats only real numbers.

A. Channel mapping

The channel mapping application is investigated with help
of the DeepMIMO dataset [30], which is itself based on the
ray-tracing simulator Wireless InSite by Remcom [31]. In
order to ease comparisons with prior art, we consider exactly
the same setting as in [16], namely an indoor environment
consisting in a 10m× 10m room, with N = 64 antennas on
the ceiling and S = 16 subcarriers, an uplink frequency of
2.4GHz and a downlink frequency of 2.5GHz (see [16] for a
more detailed description). The labeled dataset consists of L
uplink channels for which only 8 randomly picked antennas
are considered paired with the associated downlink channel
(on all 64 antennas) corresponding to users randomly located
in the room, with L varying in our experiment. The cost used
in order to fine tune the neural network of figure 1 (for 100
epochs) is the opposite of the downlink spectral efficiency
averaged over subcarriers obtained when using the estimated
downlink channel as precoder, taking the form

−E 1

K

∑K

k=1
log2

(
1 +
|hH

D,kĥD,k|2

‖ĥD,k‖22

)
, (6)

where hD,k is the downlink channel on the kth subcarrier,
ĥD,k is its estimation given by the neural network, and the
expectation being in practice estimated by averaging over
minibatches of 1000 channels. The hard thresholding param-
eter is fixed to k = 5.
Results. Figure 2 summarizes the obtained
results for a varying number of training samples
L ∈ {1000, 3000, 6000, 12000, 30000, 60000}, showing
the spectral efficiency (opposite of the cost (6)) averaged over
1000 randomly picked test channels. Results are shown for
the initialization (blue dots) and after fine tuning by gradient
descent for L ∈ {3000, 6000, 12000} (red crosses). An upper
bound (obtained using the true channel as precoder) is also
shown (black dashed line). It is interesting to notice that
only a reasonable amount of training data is required to get
very close to the upper bound with the proposed method.
Indeed, the obtained results are within 6% of the upper
bound without fine tuning and within 4% with fine tuning,
with only 12000 training points. This performance is superior
to the previously proposed method [16], which obtained
results within 9% of the upper bound with 120000 training
samples. Moreover, the proposed method yields a much
lighter network (forward pass costing around 1e6 arithmetic
operations) compared to the fully connected neural network
of [16] (around 30e6 arithmetic operations). In summary, the
proposed method yields better results with fewer training
samples, at a lower cost. This experiment shows the great
potential of the similarity-based approach for the channel
mapping problem.

B. User positioning

The user positioning task is investigated with help of
a dataset originally intended for the IEEE Communication
Theory Workshop (CTW) 2020 data competition [32], built
with a channel sounder described in [13]. The considered base
station comprises N = 56 antennas and communicates over
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Fig. 2: Channel mapping results.

K = 924 subcarriers at the central frequency of 1.27GHz.
The labeled dataset consists of L = 4979 channels h with
the corresponding location p that are measured in an area of
approximately 1 km2 in the streets of Stuttgart, Germany. It is
divided into 4096 channels used for training and 883 channels
used as validation data.
Dimensionality reduction. Channels described in the previous
paragraph are of very high dimension. Indeed, they can
be seen as 56 × 924 complex matrices. Using directly the
method of algorithm 1 on these channels would result in a
very high computational complexity. In order to reduce the
computational burden, we propose to reduce the dimension-
ality of input channels by computing the left singular vector
corresponding to the largest singular value and using it as input
for algorithm 1. This results in inputs of size N = 56 only.
The cost used to fine tune the network of figure 1 (for 50
epochs) corresponds to the average localization error, taking
the form

E ‖p− p̂‖2 (7)

where p is the true position and p̂ its estimation given by the
neural network, and the expectation being in practice estimated
by averaging over minibatches of 100 channels. The hard
thresholding parameter k is varied between 2 and 16.
Results. Figure 3 summarizes the obtained results for a
varying number of neighbors (corresponding to the parameter
k of the hard thresholding operator). First of all, it is interesting
to notice that the number of neighbors has only a modest
influence on the localization error, provided it is chosen not
too small (larger than 4). Second, fine tuning shows beneficial
for the localization task. Indeed, the initialization gives errors
around 52m while fine tuning allows to attain errors around
42m (approximately 20% better). Keeping in mind that the
area on which localization is sought is of 1 km2, such results
are pretty accurate and encouraging. Moreover, the error
histogram for k = 10 after fine tuning is given on figure 4,
showing that most of the time the localization error is much
smaller than the average (the median is around 20m). Note
that these results are the first to be reported for this outdoor
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Fig. 3: User positioning results.

localization task. Concurrent methods such as convolutional
neural networks were only applied to indoor localization for
now [13].
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Fig. 4: Localization error histogram.

V. CONCLUSION

In this paper, a generic similarity-based neural network was
introduced in order to operate on channel data, for the chan-
nel mapping and user positioning tasks. It was theoretically
motivated relying on the manifold hypothesis. Moreover, the
proposed method was empirically validated on realistic data
for the two aforementioned tasks.

In the future, it would be very interesting to investigate
further the sample complexity of the method, in order to opti-
mize the training of such systems. One can also envision using
several heuristics aimed at improving the training of similarity-
based neural networks [33]. Finally, the proposed method
obviously requires to be tested on diverse environments and
settings in order to further demonstrate its relevance.
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