
HAL Id: hal-02974826
https://hal.science/hal-02974826v1

Submitted on 22 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Learning-Based Concurrent Brain Registration
and Tumor Segmentation

Théo Estienne, Marvin Lerousseau, Maria Vakalopoulou, Emilie Alvarez
Andres, Enzo Battistella, Alexandre Carré, Siddhartha Chandra, Stergios

Christodoulidis, Mihir Sahasrabudhe, Roger Sun, et al.

To cite this version:
Théo Estienne, Marvin Lerousseau, Maria Vakalopoulou, Emilie Alvarez Andres, Enzo Battistella,
et al.. Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation. Frontiers in
Computational Neuroscience, 2020, Multimodal Brain Tumor Segmentation and Beyond, �10.3389/fn-
com.2020.00017�. �hal-02974826�

https://hal.science/hal-02974826v1
https://hal.archives-ouvertes.fr


1

Deep Learning-Based Concurrent Brain
Registration and Tumor Segmentation
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ABSTRACT2

Image registration and segmentation are the two most studied problems in medical image3
analysis. Deep learning algorithms have recently gained a lot of attention due to their success4
and state-of-the-art results in variety of problems and communities. In this paper, we propose5
a novel, efficient, and multi-task algorithm that addresses the problems of image registration6
and brain tumor segmentation jointly. Our method exploits the dependencies between these7
tasks through a natural coupling of their interdependencies during inference. In particular, the8
similarity constraints are relaxed within the tumor regions using an efficient and relatively simple9
formulation. We evaluated the performance of our formulation both quantitatively and qualitatively10
for registration and segmentation problems on two publicly available datasets (BraTS 2018 and11
OASIS 3), reporting competitive results with other recent state-of-the-art methods. Moreover, our12
proposed framework reports significant amelioration (p < 0.005) for the registration performance13
inside the tumor locations, providing a generic method that does not need any predefined14
conditions (e.g. absence of abnormalities) about the volumes to be registered.15
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1 INTRODUCTION

Brain tumors and more specifically gliomas as one of the most frequent types, are across the most18
dangerous and rapidly growing types of cancer (C. Holland, 2002). In clinical practice, multi-modal19
magnetic resonance imaging (MRI) is the primary method of screening and diagnosis of gliomas. While20
gliomas are commonly stratified into Low grade and High grade due to different histology and imaging21
aspects, prognosis and treatment strategy, radiotherapy is one of the mainstays of treatment (Sepúlveda-22
Sánchez et al., 2018; Stupp et al., 2014). However, radiotherapy treatment planning relies on tumor manual23
segmentation by physicians, making the process tedious, time-consuming, and sensitive to bias due to low24
inter-observer agreement (Wee et al., 2015).25

In order to overcome these limitations, numerous methods have been proposed recently that try to provide26
tools and algorithms that will make the process of gliomas segmentation automatic and accurate (Parisot27
et al., 2016; Zhao et al., 2018). Towards this direction, the multimodal brain tumor segmentation challenge28
(BraTS) (Bakas et al., 2017b,c,a; Menze et al., 2015) is annually organized, in order to highlight29
efficient approaches and indicate the way towards this challenging problem. In recent years, most of30
the approaches that exploit BraTS have been based on deep learning architectures using 3D convolutional31
neural networks (CNNs) similar to VNet (Milletari et al., 2016). In particular, the best performing32
approaches use ensembles of deep learning architectures (Kamnitsas et al., 2018; Zhou et al., 2018), with33
autoencoder regularization (Myronenko, 2018) or they even combine deep learning architectures together34
with algorithms such as conditional random fields (CRFs) (Chandra et al., 2019). Other top-performing35
methods at the BraTS 2017 and 2018 used cascaded networks, multi-view and multi-scale approaches36
(Wang et al., 2017), generic UNet architecture with data augmentation and post processing (Isensee et al.,37
2018), dilated convolutions and label uncertainty loss (McKinley et al., 2018), and context aggregation and38
localization pathways (Isensee et al., 2017). A more detailed comparison and presentation of the last years39
challenges on BraTS is presented and summarized in (Bakas et al., 2018).40

Image registration is a challenging task for medical image analysis in general and for rapidly evolving41
brain tumors in particular, where longitudinal assessment is critical. Image registration seeks to determine42
a transformation that will map two volumes (source and reference) to the same coordinate system. In43
practice, we seek a volume mapping function that changes the coordinate system of the source volume44
into the coordinate system of the reference volume. Among the different types of methods employed in45
medical applications, deformable or elastic registration is the most commonly used (Sotiras et al., 2013).46
Linear methods are an alternative but in that case a linear global transformation is sought for the entire47
volume. Deformable registration has been addressed with a variety of methods, including for example48
surface matching (Robinson et al., 2018; Postelnicu et al., 2009) or graph based approaches (Glocker et al.,49
2009). These methods have been extended to address co-registration of multiple volumes (Ou et al., 2011).50
Moreover, some of the most popular methods traditionally used for the accurate deformable registration51
include (Klein et al., 2009; Avants et al., 2008; Shi et al., 2013). Recently a variety of deep learning52
based methods have been proposed, reducing significantly the computational time but maintaining the53
accuracy and robustness of the registration (Dalca et al., 2018; Christodoulidis et al., 2018). In particular,54
the authors in (Dalca et al., 2018) presented a deep learning framework trained for atlas-based registration55
of brain MR images, while in (Christodoulidis et al., 2018) the authors present a scheme for a concurrent56
linear and deformable registration of lung MR images. However, when it comes to anatomies that contain57
abnormalities such as tumoral areas, these methods fail to register the volumes at certain locations, due to58
lack of similarity between the volumes. This most of the times ends to complete distortion of the tumor59
area of the deformed image.60
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To overcome this problem, in this paper, we propose a dual deep learning based architecture that addresses61
registration and tumor segmentation simultaneously, relaxing the registration constraints inside the predicted62
tumor areas, providing displacements and segmentation maps at the same time. Our framework bears63
concept similarities with the work presented in (Parisot et al., 2012) where a Markov Random Field (MRF)64
framework has been proposed to address both of tumor segmentation and image registration jointly. Their65
method required approximately 6 minutes for the registration of one pair and the segmentation of one66
class tumor region was performed with handcrafted features and classical machine learning techniques67
using only one MRI modality. Moreover, there are methods in the literature that try to address the problem68
of registration of brain tumor MRI by registering on atlases or MRIs without tumoral regions (Gooya69
et al., 2010, 2012). Here, we introduce a highly scalable, modular, generic and precise 3D-CNN for70
both registration and segmentation tasks and provide a computationally efficient and accurate method for71
registering any arbitrary subject involving possible abnormalities. To the best of our knowledge this is the72
first time that a joint deep learning-based architecture is presented, showing very promising results in two73
publicly available datasets for brain MRI. The proposed framework provides a very powerful formulation74
introducing the means to elucidate clinical, or functional trends in the anatomy or physiology of the brain75
due to the registration part. Moreover, it enables the modeling and the detection of brain tumor areas due to76
the synergy with the segmentation part.77

2 MATERIALS AND METHODS

Consider a pair of medical volumes from two different patients —a source S, and a reference R together78
with their annotations for the tumor areas (Sseg andRseg). The framework consists of a bi-cephalic structure79
with shared parameters, depicted in Figure 1. During training the network uses as input a source S and80
a reference R volumes and outputs their brain tumor segmentation masks Ŝseg and R̂seg and the optimal81
elastic transformation G which will project or map the source volume to the reference volume. The goal of82
the registration part is to find the optimal transformation to transform the source (S) to the reference (R)83
volume. In this section, we present the details for each of the blocks as well as our final formulation for the84
optimization.85

2.1 Shared encoder86

One of the main differences of the proposed formulation with other registration approaches in the literature87
is the way that the source and reference volumes are combined. In particular, instead of concatenating88
the two initial volumes, these volumes are independently forwarded in a unique encoder, yielding two89
sets of features maps (called latent codes) Csource and Creference for the source and the reference volumes90
respectively. These two codes are then independently forwarded into the segmentation decoder, providing91
the predicted segmentation maps Sseg and Rseg. Simultaneously, the two codes are merged before being92
forwarded in the registration decoder — this operation is depicted in the ”Merge” block in Figure 1.93
The motivation behind adopting this strategy is based on forcing the encoder to extract meaningful94
representations from individual volumes instead of a pair of volumes. This is equivalent to asking the95
encoder discovering a template, ”deformation-free” space for all volumes, and encoding each volume96
against this space (Shu et al., 2018), instead of decoding the deformation grid between every possible pair97
of volumes. Besides, from the segmentation point of view, there are no relationship between the tumor98
maps of the source volume and the reference volume, so the codes to be forwarded into the segmentation99
decoder should not depend on each other.100
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We tested two merging operators, namely concatenation and subtraction. Both source and reference101
images are 4D volumes whose first dimension corresponds to the 4 different MRI modalities that are used102
per subject. After the forward to the encoder, the codes Csource and Creference are also 4D volumes with103
the first dimension corresponding to nf , which is the number of convolutional filters of the last block104
of the encoder. Before Csource and Creference are inserted into the registration decoder, they are merged,105
outputting one 4D volume of size 2×nf in the case of the concatenation, and of size nf for the elementwise106
subtraction operator, both leaving the rest of the dimensions unchanged. In particular, the subtraction107
presents the following natural properties for every coding image CI :108

• ∀CI ∈ R4 : Merge(CI , CI) = 0109

• ∀CI , CJ ∈ R4 × R4 : Merge(CI , CJ) = −Merge(CJ , CI)110

2.2 Brain tumor segmentation decoder111

Inspired by the latest advances reported on the BraTS 2018 dataset, we adopt a powerful autoencoder112
architecture. The segmentation and registration decoders share the same encoder (Section 2.1) for feature113
extraction and they provide brain tumor segmentation masks (Ŝseg and R̂seg) for the source and the114
reference images. These masks refer to valuable information about the regions that cannot be registered115
properly as there is no corresponding anatomical information on the pair. This information is integrated116
into the optimisation of the registration component, relaxing the similarity constraints and preserving to a117
certain extent the geometric properties of the tumor.118

Variety of loss functions have been proposed in the literature for the semantic segmentation of 3D medical119
volumes. In this paper, we performed all our experiments using weighted categorical cross-entropy loss120
and optimising 3 different segmentation classes for the tumor area as provided by the BraTS dataset. In121
particular,122

Lseg = CE(Sseg, Ŝseg) + CE(Rseg, R̂seg) (1)

where CE denotes the weighted cross entropy loss. The cross entropy is calculated for both the source123
and reference images and the overall segmentation loss is the sum of the two. Here we should note that124
different segmentation losses can be applicable as for example the dice coefficient (Sudre et al., 2017),125
focal loss (Lin et al., 2017), e.t.c.126

2.3 Elastic registration decoder127

In this paper, the registration strategy is based on the one presented in (Christodoulidis et al., 2018), with128
the main component being the 3D spatial transformer. A spatial transformer deforms (or warps) a given129
image S with a deformation grid G. It can be represented by the operation,130

D =W(S,G),

whereW(·, G) indicates a sampling operationW under the deformation G and D the deformed image.131
The deformation is hence fed to the transformer layer as sampling coordinates for a backward trilinear132
interpolation sampling, adapting a strategy similar to (Shu et al., 2018). The sampling process is then133
described by134
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D(~p) =W(S,G)(~p) =
∑
~q

S(~q)
∏
d

max (0, 1− |[G(~p)]d − ~qd|) ,

where ~p and ~q denote pixel locations, d ∈ {x, y, z} denotes an axis, and [G(~p)]d denotes the d-component135
of G(~p). Moreover, instead of regressing per-pixel displacements, we predict a matrix Ψ of spatial gradients136
between consecutive pixels along each axis. The actual grid G can then be obtained by applying an137
integration operation on Ψ along the x-, y- and z-axes, which is approximated by the cumulative sum in138
the discrete case. Consequently, two pixels ~p and ~p+ 1 will have moved closer, maintained distance, or139
moved apart in the warped image, if Ψ~p is respectively less than 1, equal to 1, or greater than 1.140

2.4 Network Architecture141

Our network architecture is a modified version of the fully convolutional VNet (Milletari et al., 2016)142
for the underlying encoder and decoders parts, maintaining the depth of the model and the rest of the143
filter’s configuration unchanged. The model, whose computational graph is displayed in Table 1, comprises144
several sequential residual convolutional blocks made of one to three convolutional layers, followed by145
downsampling convolutions for the encoder part and upsampling convolutions for the decoder part. We146
replaced the initial 5×5×5 convolutions filter-size by 3×3×3 in order to reduce the number of parameters147
without changing the depth of the model, and also replace PReLu activations by ReLU ones. In order to148
speed up its convergence, the model uses residual connections between each encoding and corresponding149
decoding stage for both the segmentation and the registration decoder. This allows every layer of the150
network, particularly the first ones, to be trained more efficiently since the gradient can flow easier from151
the last layers to the first ones with less vanishing or exploding gradient issues. The encoder part deals with152
4-inputs per volume, representing the 4 different MRI modalities that are available on the BraTS dataset,153
an extra 1× 1× 1 convolution is added to fuse the initial modalities. Moreover, the architecture contains 2154
decoders of identical blocks, 1 dedicated to the segmentation of tumors for the source and reference image155
and 1 dedicated to the optimal displacement that will map the source to the reference image.156

2.5 Optimization157

The network is trained to minimize the segmentation and registration loss functions jointly. For the158
segmentation task the loss function is summarized in Eq. 1. For registration, the classical optimization159
scheme is to minimize the Frobenius norm between the R and D image intensities:160

Lreg = ||(R−D)||2 + α ‖Ψ−ΨI‖1 (2)

Here, in order to better achieve overall registration, the Frobenius norm within the regions predicted to161
be tumors is excluded from the loss function. We argue that by doing this, the model does not focus on162
tumor regions, which might produce very high norm due to their texture, but rather focuses on the overall163
registration task by looking at regions outside the tumor which contain information more pertinent to the164
alignment of the volumes. Here we should mention that on Ŝseg we apply the same displacement grid as on165

S, resulting in Dseg = W(Ŝseg, G). Further, let R̂0
seg and D0

seg be binary volumes indicating the voxels166
which are predicted to be outside any segmented regions. Then, the registration loss can be written as167

L?reg = ||(R−D) ·D0
seg · R̂0

seg||2 + α ‖Ψ−ΨI‖1 (3)
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where · is the element-wise multiplication, || · ||2 indicates the Frobenius norm, ΨI is the spatial gradient168
of the identity deformation and α is the regularization hyperparameter. The use of regularisation on the169
displacements Ψ is essential in order to constrain the network to predict smooth deformation grids that are170
anatomically more meaningful while at the same time regularize the objective function towards avoiding171
local minimum.172

Finally the final optimisation of the framework is performed by the joint optimisation of the segmentation173
and registration loss functions174

L = Lreg + βLseg

where β is a weight that indicates the influence of each of the components on the joint optimization of175
the network and was defined after grid search.176

For the training process, the initial learning rate was 2 · 10−3 and subdued by a factor of 5 if the177
performance on the validation set did not improve for 30 epochs. The training procedure stops when there178
is no improvement for 50 epochs. The regularization weights α and β were set to 10−10 and 1 after grid179
search. As training samples, random pairs among all cases were selected with a batch size limited to 2180
due to the limited memory resources on the GPU. The performance of the network was evaluated every181
100 batches, and both proposed models converged after nearly 200 epochs. The overall training time was182
calculated to ∼ 20 hours, while the time for inference of one pair, using 4 different modalities was ∼ 3 sec,183
using an NVIDIA GeForce GTX 1080 Ti GPU.184

2.6 Datasets185

We evaluated the performance of our method using two publicly available datasets, namely the Brain186
Tumor Segmentation (BraTS) (Bakas et al., 2018) and Open Access Series of Imaging Studies (OASIS187
3) (Marcus et al., 2010) datasets. BraTS contains multi-institutional pre-operative MRI scans of whole188
brains with visible gliomas, which are intrinsically heterogeneous in their imaging phenotype (shape and189
appearance) and histology. The MRIs are all pre-operative and consist of 4 modalities, i.e. 4 3D volumes,190
namely a) a native T1-weighted scan (T1), b) a post-contrast Gadolinium T1-weighted scan (T1Gd), c) a191
native T2-weighted scan (T2), and d) a native T2 Fluid Attenuated Inversion Recovery scan (T2-FLAIR).192
The BraTS MRIs are provided with voxelwise ground-truth annotations for 5 disjoint classes denoting a)193
the background, b) the necrotic and non-enhancing tumor core (NCR/NET), c) the GD-enhancing tumor194
(ET), d) the peritumoral edema (ED) as well as invaded tissue, and finally e) the rest of the brain, i.e. brain195
with no abnormality nor invaded tissue. Each center was responsible for annotating their MRIs, with a196
central validation by domain experts. We use the original dataset split of BraTS 2018 which contains 285197
training samples and 66 for validation. In order to perform our experiments, we split this training set into 3198
parts, i.e. train, validation and test sets (199, 26 and 60 patients, respectively), while we used the 66 unseen199
cases on the platform to report the performance of the proposed and the benchmarked methods. Moreover,200
and especially for the registration task, we evaluated the performance of the models trained on BraTS on the201
OASIS 3 dataset to test the generalisation of the method. This dataset consists of a longitudinal collection202
of 150 subjects which were characterized as either nondemented or with mild cases of Alzheimer’s disease203
(AD) using the Clinical Dementia Rating (CDR). Each scan is made of 3 to 4 individual T1-weighted204
MRIs, which has been intended to reduce the signal-to-noise ratio visible with single images. The scans205
are also provided with annotations for 47 different structures for left and right side of the brain generated206
with FreeSurfer. Some samples of both datasets can be seen in Figure 2.207
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The same pre-processing steps have been applied for both datasets. MRIs were resampled to voxels208
of volume 1mm3 using trilinear interpolation. Each scan is then centered by automatically translating209
their barycenter to the center of the volume. Ground-truth masks of training and validation steps were210
accordingly translated. Each modality of each scan has been standardised, i.e. the values of the voxels of211
the 3D subscans were of zero mean and of unit variance. This normalization step is done independently for212
each patient and for each channel in order to equally consider each channel since modalities have voxels213
values in completely different ranges. Finally, these consequent scans are cropped into (144, 208, 144)214
sized volumes.215

2.7 Statistical evaluations216

Our contributions in the study are threefold: multi-task segmentation and registration, registration with a217
shared encoder and latent space merge operator, as well as the loss L?reg (Equation 3) that alleviates the218
registration modifications of tumor tissues in both source and reference patients. Our experiments were219
intended to weigh the impact of these novelties for both tumor segmentation and registration of MRIs with220
tumor areas.221

2.7.1 Methods benchmarked222

We therefore benchmark multiple versions of our proposed approach with a subset of these novelties to223
assess their impact on both registration and segmentation. We notably derive 2 variants for both merging224
operators subtraction and concatenation. The first variant is our fully proposed architecture with a shared225
encoder for registration and one decoder for segmentation whose tumor predictions are used to implement226
the proposed loss L?reg. These models are named ”Proposed concatenation with L?reg” and ”Proposed227
subtraction with L?reg”. The second variant of models does not use the proposed loss, and are identified228
with ”w/o L?reg”. Finally, we also derive a third variant of our approach, yielding one method per merging229
operator, by discarding the segmentation decoder. Because the proposed loss use the predicted tumor maps230
from a segmentation decoder, this variant does not rely on it. These latter methods are named ”Proposed231
concatenation only reg.” and ”Proposed subtraction only reg.”, and are primarily benchmarked to assess the232
performance of the segmentation decoder and the loss L?reg with respect to our fully proposed architecture.233

We also benchmark baseline methods, without any of the proposed contributions. Since our deep learning234
architecture is derived from the Vnet (Milletari et al., 2016), this model is used as baseline for segmentation.235
This comparison seems fair since the fully proposed approach can be seen as a Vnet for the task of236
segmentation: the shared encoder and the proposed loss are primarily designed for registration, and have237
no direct impact on the segmentation apart from the features learnt in the encoder. For completeness, the238
top performing results on the BraTS (Bakas et al., 2018) challenge are reported, although we argue that239
the comparison is unfair since our deep learning architecture is entirely based on the Vnet (Milletari et al.,240
2016), which is not specifically designed to perform well on the BraTS segmentation task. Finally, we also241
report the performance of Voxelmorph (Dalca et al., 2018), a well performing brain MRI registration neural242
network-based approach, although their entire deep learning structure as well as their grid formulation is243
different.244

2.7.2 Performance assessment245

For performance assessment of the segmentation task, we reported the Dice coefficient metric and246
Hausdorff distance to measure the performance for the tumor classes Tumor Core (TC), Enhancing Tumor247
(ET) and Whole Tumor (WT) as computed and provided from the BraTS submission website. These classes248
are the ones used in the BraTS challenge (Bakas et al., 2018), but differ from the original ones provided in249
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the BraTS dataset: TC is the same as the one labelled in the BraTS dataset for necrotic core (NCR/NET),250
ET is the disjoint union of the original classes NCR/NET and ET, while WT refers to the union of all251
tumoral and invaded tissues.252

For the registration, we evaluated the change on the tumor area together with the Dice coefficient253
metric for the following categories of the OASIS 3 dataset: brain stem (BS), cerebrospinal fluid (CSF),254
4th ventricle (4V), amygdala (Am), caudate (Ca), cerebellum cortex (CblmC), cerebellum white matter255
(CblmWM), cerebral cortex (CeblC), cerebral white matter (CeblWM), hippocampus (Hi), lateral ventricle256
(LV), pallidum (Pa), putamen (Pu), ventral DC (VDC) and 3rd ventricle (3V) categories. Here we should257
mention that for the experiments with the OASIS 3 dataset, we performed a training only with the T1-258
weighted MRIs of the BraTS dataset, in order to match the available modalities of the OASIS 3 dataset.259
This evaluation is important as i) BraTS does not provide anatomical annotations in order to evaluate260
quantitatively the registration performance and ii) the generalisation of the proposed method on an unseen261
dataset is evaluated. For the registration of tumor tissues, which might not exist in the source or reference262
MRIs, we expect the model to register tumor areas while maintaining their geometric properties. In263
particular, we do not really expect the tumor areas to stay completely unchanged. However, we expect264
that the volume of the different tumor types would change with a ratio similar to the one that the entire265

source to the reference volume changes. We calculate this ratio by computing Dj
seg

Sj
seg

where j = {0, 1, 2, 3}266

corresponds to the entire brain and the different tumor classes (NCR/NET, ET and ED). We then assess267
the change of the tumor by calculating the absolute value of the difference between j = 1 and every other268
tumor class. Ideally, we expect a model which preserves the tumor geometry and shape during inference to269
present a zero difference between the entire brain and tumor class ratio. We independently calculate this270
difference for each tumor class in order to monitor the behavior of each class, but also after merging the271
entire tumor area.272

For statistical significance evaluations between any two methods, we compute independent t-tests as273
presented in (Rouder et al., 2009), defining as null hypothesis the evaluation metrics of the two populations274
to be equal. We then report the associated p-value, and the Cohen’s d (Rice and Harris, 2005), which we275
use to measure the effect size. Such statistical significance evaluation is reported in the form (t(n); p; d)276
where n is the number of samples for each population, t(n) is the t-value, p is the p-value and d is Cohen’s277
d. We defined the difference of two population means is statistically significant if the associated p-value is278
lower than 0.005, and consider, as a rule of thumb, that a value of d of 0.20 indicates small effect size, 0.50279
for medium effect size and 0.80 for large effect size. All of the results in this paper have been computed on280
unseen testing sets, and the performance of all benchmarked models has been assessed once.281

For rigor and for each t-test conducted, we ensure the following assumptions are met by the underlying282
distributions: observations are independent and identically distributed, the outcome variable follows a283
normal distribution in the population (with (Jarque and Bera, 1980)), and the outcome variable has equal284
standard deviations in two considered (sub)populations (using Levene’s test (Schultz, 1985)). Finally, when285
comparing two populations, each made of several subpopulations, we merge such subpopulations into a286
single set, then compute t-tests on the obtained two gathered-populations.287
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3 RESULTS

3.1 Evaluation of the Segmentation288

Segmentation results for the tumor regions are displayed in Table 2 for the case of the same autoencoder289
architecture trained only with a segmentation decoder (Baseline segmentation) and the proposed method290
using different merging operations and with or without L?reg. One can observe that all evaluated methods291
perform quite similarly with Dice higher than 0.66 for all the classes and models. The baseline segmentation292
model reports slightly better average Dice coefficient and average Haussdorf distance measurements, with293
an average Dice 0.03 higher, and an average Hausdorff95 distance 0.6 higher than the proposed with294
concatenation merging operator, although none of these differences are found statistically significant as295
indicated in Table 5. As an illustration, for Dice, the minimum received p-value was p = 0.24, reported296
between baseline segmentation and proposed concatenation with L?reg together with an associated Cohen’s297
d = 0.21 indicating a small size effect. Similarly, for Hausdorff95, the minimum received p-value was298
p = 0.46, reported this time between baseline segmentation and proposed concatenation w/o L?reg with299
d = 0.13 also indicating a small size effect, which indicated that the means differences between those two300
models and any other two models are not statistically significant. This is very promising if we take into301
account that our proposed model is learning a far more complex architecture addressing both registration302
and segmentation, with the same volume of training data without significant drop of the segmentation303
performance.304

The superiority of the baseline segmentation seems to be presented mainly due to higher performance for305
the TC class (baseline segmentation and proposed subtraction withL?reg: t(66) = 1.41; p = 0.16; d = 0.24).306
Moreover, the concatenation operation seems to perform slightly better for the tumor segmentation than307
the subtraction, with at least 0.02 improvement for average Dice coefficient, although this improvement308
is not statistically significant (proposed concatenation with L?reg and proposed subtraction with L?reg:309
t(66) = 0.62; p = 0.53; d = 0.11).310

Moreover, even if one of the main goals of our paper is the proper registration of the tumoral regions, we311
perform a comparison with the two best performing methods presented in BraTS 2018 (Myronenko, 2018;312
Isensee et al., 2018) evaluated on the validation dataset of BraTS 2018. In particular, the (Myronenko,313
2018) reports an average dice of 0.82, 0.91 and 0.87 for ET, WT and TC respectively, while (Isensee et al.,314
2018) reports 0.81, 0.91 and 0.87. Both methods outperform our proposed approach on the validation set315
of BraTS 2018 by integrating novelties specifically designed to the tumor segmentation task of BraTS316
2018. In this study, we based our architecture in a relatively simple and widely used 3D fully convolutional317
network (Milletari et al., 2016) although different architectures with tumor specific components (trained318
on the evaluated tumor classes), trained on more data (similar to the ones that are used from (Isensee319
et al., 2018)), or even integrating post processing steps can be easily integrated boosting considerably the320
performance of our method.321

Finally, in Figure 3 we represent the ground truth and predicted tumor segmentation maps comparing the322
baseline segmentation and our proposed method using the different components and merging operators. We323
present three different cases, two from our custom test set, on which we have the ground truth information324
and one from the validation set of the BraTS submission page. One can observe that all the methods provide325
quite accurate segmentation maps for all the three tumor classes.326
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3.2 Evaluation of the Registration327

3.2.1 Evaluation on anatomical structures328

The performance of the registration has been evaluated on an unseen dataset with anatomical information,329
namely OASIS 3. In Table 3 the mean and standard deviation of the Dice coefficient for the different330
evaluated methods are presented. With rigid we indicate the Dice coefficient after the translation of the331
volumes such that the center of the brain mass is placed in the center of the volume. It can be observed that332
the performance of the evaluated methods are quite similar something which indicates that the additional333
tumor segmentation decoder does not decrease the performance of the registration. On the other hand, it334
provides additional information about the areas of tumor in the image. From our experiments, we show335
that the proposed formulation can provide registration accuracy similar to the recent state-of-the-art deep336
learning based methods (Dalca et al., 2018) with approximate the same average Dice values, that is 0.50337
for (Dalca et al., 2018) and 0.49 for all but one of the proposed variants. Moreover, again this difference338
in the performance between (Dalca et al., 2018) and the proposed method is not statistically significant339
with t(150) = 0.64; p = 0.52; d = 0.07. From our comparisons, the only significant difference on the340
evaluation of the registration task was reported between the proposed method concatenation only reg. with341
an average difference of dice reaching 0.05% and with maximum p-values calculated with concatenation342
with L? (t(200) = 3, 33; p < 10−3; d = 0, 38). From our experiments we saw that the merging operation343
affects a lot the performance of the only reg. model, with the concatenation reporting the worst average344
dice than the rest of the methods.345

In Figure 4 we present some qualitative evaluation of the registration component, by plotting three346
different pairs and their registration from all the evaluated models. The first two columns of the figure347
depict the source and reference volumes together with their tissue annotations. The rest of the columns348
present the deformed source volume together with the deformed tissue annotations for each of the evaluates349
methods. Visually, all methods perform well on the overall shape of the brain with the higher errors in the350
deformed annotations being presented at the cerebral write matter and cerebral cortex classes.351

Finally, we should also mention that the subjects of the OASIS 3 dataset do not contain regions with352
tumors. However, our proposed formulation provides tumor masks so that we could evaluate the robustness353
of the segmentation part. Indeed, our model for all the different combinations of merging operations354
and loss functions, reported a precision score of more than 0.999, indicating its robustness for the tumor355
segmentation task.356

3.2.2 Evaluation on the tumor areas357

Even if the proposed method reports very similar performance with models that perform only registration,358
we argue that it addresses better the registration of the tumor areas, maintaining their geometric properties,359
as can be inferred in Table 4. This statement is also supported by the statistical tests we performed to360
evaluate the difference in performance between the methods, while registering tumor areas (Table 6). In361
particular, for each of the tumor classes NCR/NET, ET and ED the difference between the (Dalca et al.,362
2018) and the proposed method subtraction with L?reg was significant with NCR/NET: t(200) = 10.69;363
p < 10−3; d = 1.07 — ET: t(200) = 10.51; p < 10−3; d = 1.05 — ED: t(200) = 8.05; p < 10−3;364
d = 0.81. The similar behavior was obtained when the evaluation was performed by merging all 3 tumor365
classes into one (denoted Combined). Again, we reported significant differences between (Dalca et al.,366
2018) and the proposed method: t(200) = 11.38; p < 10−3; d = 1.14.367
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To evaluate the performance of the different variants of our proposed method, we compared the368
performance of the proposed subtraction with L?reg and concatenation with L?reg that reported the best369
performances. Indeed, we did not find significant changes between the two different components except the370
edema class (t(200) = 2.78; p < 10−3; d = 0.28). Moreover, the proposed concatenation only reg. reports371
also competitive results without using the segmentation masks. In particular, even if the specific method372
does not report very good performance on the registration evaluated on anatomical structures (Section373
3.2.1), it reports very competitive performance on the Combined and the smallest in size tumor class (ET).374
However, for the other two classes the difference on the performance that it reports in comparison to the375
proposed variant subtraction with L?reg is significant different: NCR/NET: t(200) = 6, 03; p < 10−3;376
d = 0, 60 — ED: t(200) = 7, 03; p < 10−3; d = 0, 70). Here we should mention that even though377
subtraction only reg. works very well for the registration of the anatomical regions (Section 3.2.1), it378
reports one of the worst results about tumor preservation, with values close to the ones reported by (Dalca379
et al., 2018). This indicates again that the only reg. model is highly sensitive to the merging operation and380
it cannot simultaneously provide good performance on tumor areas and registration of the entire volume,381
proving its inferiority to the proposed method using the with L?reg.382

Independently of the merging operation with both registration and segmentation tasks, ie with or without383
L?reg, we find that the proposed approach works significantly better in preserving tumor areas when384
optimized with L?reg than without (NCR/NET: t(200) = −14.33; p < 0.005; d = 1.43 — ET: t(200) =385
−9.99; p < 0.005; d = 1.00 — ED: t(200) = −14.17; p < 0.005; d = 1.42 — Combined: t(200) =386
−10.94; p < 0.005; d = 1.09).387

Figure 5 presents some qualitative examples from the BraTS 2018 to evaluate the performance of the388
different methods. The first two columns present the pair of images to be registered and segmented and the389
rest of the columns the deformed source image with the segmented tumor region superimposed. One can390
observe that the most of the methods that are based only on registration ((Dalca et al., 2018), proposed391
concatenation and subtraction only reg.) together with the proposed concatenation and subtraction w/o392
L?reg do not preserve the geometry of the tumor, tending to significantly reduce the area of tumor after393
registration, or intermix the different types of tumor. On the other hand the behavior of the proposed with394
L?reg seems to be much better, with the tumor area properly maintained in the deformed volume.395

Moreover, in Figure 6 we provide a better visualisation for the displacement grid inside the tumor area,396
highlighting the importance of Eq. 2. Indeed, one can observe that the displacements inside the tumor area397
are much smoother and relaxed when we use the information about the tumor segmentation.398

4 DISCUSSION

In this study, we proposed a novel deep learning based framework to address simultaneously segmentation399
and registration. The framework combines and generates features, integrating valuable information from400
both tasks within a bidirectional manner, while it takes advantage of all the available modalities, making401
it quite robust and generic. The performance of our model indicates highly promising results that are402
comparable to recent state-of-the-art models that address each of the tasks separately (Dalca et al., 2018).403
However, we reported a better behavior of the model in the proximity of tumor regions. This behavior has404
been achieved by training a shared encoder that generates features that are meaningful for both registration405
and segmentation problems. At the same time, these two problems have been coupled in a joint loss406
function, enforcing the network to focus on regions that exist in both volumes.407
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Even if we could not do a proper comparison with (Parisot et al., 2012) which shares similar concepts, our408
method provides very good improvements. In particular, we train both problems at the same time, without409
using pre-calculated classification probabilities. The method proposed in (Parisot et al., 2012)) is based on410
a pre-calculated classifier indicating the tumoral regions. The authors provided their segmentation results411
by adapting Gentle Adaboost algorithm and using different features including intensity values, texture such412
as Gabor filters and symmetry. After training the classifier they defined an MRF model to optimise their413
predictions by taking into account pairwise relations. By adopting this strategy, the used probabilities for414
the tumoral regions are not optimised simultaneously with the registration, something that it is not the case415
in our methodology. In particular, by sharing representation between the registration and segmentation416
tasks we argue that we can create features that are more complex and useful sharing information that comes417
from both problems. By using a deep learning architecture that is end-to-end trainable, we are able to418
extract features that are suitable to deal with both problems automatically. Moreover, our implementation419
is modular and scalable permitting easy integration of multiple modalities, something that is not so420
straightforward with (Parisot et al., 2012) as it is more complicated to adapt and calculate the different421
similarity measures and classifiers taking into account all these modalities. Finally, we should mention422
that our method takes advantage of GPU implementation needing only a few seconds in order to provide423
segmentation and displacement maps while the method in (Parisot et al., 2012) needs approximately 6424
minutes.425

Both qualitative and quantitative evaluations of the proposed architecture highlight the great potentials426
of the proposed method reporting more than 0.66 Dice coefficient for the segmentation of the different427
tumor areas, evaluated on the publicly available BraTS 2018 validation set. Our formulation reported428
similar behavior than the model with only the segmentation block which indicates that the joint formulation429
did not really affect the performance of the tumor segmentation, however, it provides more complex430
models providing tumor segmentation masks for two images at the same time, predicting simultaneously431
optimal displacements between them. Moreover, both concatenation and subtraction operators report432
similar performances, an expected result for the specific segmentation task, since the merging operation is433
mainly used on the registration decoder, even if it affects the learned parameters of the encoder and thus434
indirectly the segmentation decoder.435

Concerning the comparison between top performing tumor segmentation methods, although our436
formulation underperforms the winning methods of BraTS 2018, we want to highlight two major points.437
First of all, our formulation is modular in the sense that different network architectures with optimised438
components for tumor segmentation can be evaluated depending on the application and the goals of the439
problem. For our experiments we chose a simple VNet architecture (Milletari et al., 2016) proving that440
the registration components do not significantly hinder the segmentation performance and indicating the441
soundness of our method however any other encoder decoder architecture can be used and evaluated.442
Secondly, the main goal of our method was the proper registration and segmentation of the tumoral regions443
together with the rest of the anatomical structures and that was the main reason we did not optimize444
our network architecture according to the winning methods of BraTS 2018. However, we demonstrated445
that with a very simple architecture, we can register properly tumoral and anatomical structures while446
segmenting with more than 76% of Dice the tumoral regions.447

Continuing with the evaluation of the registration performance, once more the joint multi task framework448
reports similar and without statistical difference performance with formulations that address only the449
registration task evaluated on anatomical regions that exist on both volumes. However, we argue that450
abnormal regions registration is better addressed both in terms of qualitative and quantitative metrics.451
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Moreover, from our experiments we observed that subtraction of the coding features of the tumors reports452
higher performances for the registration of the tumor areas. This indicates that the subtraction can capture453
and code more informative features for the registration task. What is more, we achieved very good454
generalization for all the deep learning based registration methods, as they reported very stable performance455
in a completely unseen dataset (part of the OASIS3).456

Even if, from our experiments, the competence of our proposed method for both registration and457
segmentation tasks is indicated, we report a much better performance for the registration of the tumoral458
regions. In particular, in one joint framework we were able to produce efficiently and accurately tumor459
segmentation maps for both source and reference images together with their displacement maps that register460
the source volume to the reference volume space. Our experiments indicated that the proposed method461
with the L?reg variant register properly the anatomical together with the tumoral regions with statistical462
significance compare to the rest of the methods for the latter. Both qualitative and quantitative evaluations463
of the different components indicate the superiority of the with L?reg variant of the proposed method for464
brain MRI registration with tumor extent preservation. Using such a formulation, the network focus on465
improving local displacements on tissues anywhere in the common brain space instead of minimizing466
the loss within the tumoral regions, which are empirically the regions with the highest registration errors.467
Consequently, the network improves its registration performance on non-tumor regions (as discussed in468
Section Evaluation on anatomical structures), while also relaxing the obtained displacements inside those469
predicted tumor regions.470

Some limitations of our method include the number of parameters that have to be tuned during the471
training due to the multi task nature of our formulation, namely α and β that affect the performance of the472
network. Moreover, due to the multimodal nature of the input and the two decoders, the network cannot be473
very deep due to GPU memory limitations.474

Although the pipeline was built using different patients for the registration task as a proof of concept,475
such tool could have numerous applications in clinical practice, especially when applied in different images476
acquired from the same patient. Regarding the radiotherapy treatment planning, several studies have477
shown that significant changes of the targeted volumes in the brain occurred during radiotherapy raising478
the question of replanning treatment to reduce the amount of healthy brain irradiated in case of tumor479
reduction, or to re-adapt the treatment for brain tumors that grow during radiation (Champ et al., 2012;480
Yang et al., 2016; Mehta et al., 2018). Since MR-guided linear accelerator will offer the opportunity to481
acquire daily images during RT treatment, the proposed tool could help with automatic segmentation and482
image registration for replanning purposes, and it could also allow accurate evaluation of the dose delivered483
in targeted volumes and healthy tissues by taking into account the different volume changes. Moreover,484
while changes of imaging features under treatment is known to be associated with treatment outcomes485
in several cancer diseases (Fave et al., 2017; Vera et al., 2014), the registration grid computed from two486
same-patient acquisitions realized at different times allows an objective and precise evaluation of the tumor487
changes.488

Future work involves a better modeling of the prior knowledge through a more appropriate geometric489
modeling of tumor proximity that encodes more accurately the registration errors in these areas. This490
modeling can be integrated into the existing formulation with some additions specific to tumor losses that491
will further constrain its change. Moreover, we have noticed that the use of Fobenius norm during the492
training of the registration part is very sensitive to artifacts in the volume, preventing the network process493
from being completely robust. In the future, we aim to evaluate the performance of the proposed framework494
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using adversarial losses in order to better address multimodal cases. Finally, means to automatically obtain495
the training parameters α and β would be investigated.496
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TABLES

FIGURES

Figure 1. A schematic representation of the proposed framework. The framework is composed by two
decoders, one which provides tumor segmentation masks for both S and R images, and one the provides the
optimal displacement grid G that will accurately map the S to the R image. The merge bloc will combine
the forward signal of the source input and the reference input (which are forwarded independently in the
encoder).
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Name Input Res. input Operations Output shape
Encoder

Enc1 4D MRI Conv1,8, ReLU, (Conv3,8, ReLU), AddId, (144, 208, 144, 8)
Enc2 Enc1 Conv2,16, ReLU, (Conv3,16, ReLU)∗2, AddId (72, 104, 72, 16)
Enc3 Enc2 Conv2,32, ReLU, (Conv3,32, ReLU)∗3, AddId (36, 52, 36, 32)
Enc4 Enc3 Conv2,64, ReLU, (Conv3,64, ReLU)∗3, AddId (18, 26, 18, 64)
Enc5 Enc4 Conv2,128, ReLU, (Conv3,128, ReLU)∗3, AddId (9, 13, 9, 128)

Segmentation decoder
Dec4seg Enc5 Enc4 DeConv2,64, ReLU, ResConc, (Conv3,64, ReLU)∗3, AddId (18, 26, 18, 64)
Dec3seg Dec4seg Enc3 DeConv2,32, ReLU, ResConc, (Conv3,32, ReLU)∗3, AddId (36, 52, 36, 32)
Dec2seg Dec3seg Enc2 DeConv2,16, ReLU, ResConc, (Conv3,16, ReLU)∗2, AddId (72, 104, 72, 16)
Dec1seg Dec2seg Enc1 DeConv2,8, ReLU, ResConc, (Conv3,8, ReLU), AddId (144, 208, 144, 8)
Dec0seg Dec1seg Conv1,4, Softmax (144, 208, 144, 4)

Registration decoder
Merge EnciR, EnciS For all 1 ≤ i ≤ 5,MEnci = EnciR ⊕ EnciS
Dec4reg MEnc5 MEnc4 DeConv2,64, ReLU, ResConc, (Conv3,64, ReLU)∗3, AddId (18, 26, 18, 64)
Dec3reg Dec4reg MEnc3 DeConv2,32, ReLU, ResConc, (Conv3,32, ReLU)∗3, AddId (36, 52, 36, 32)
Dec2reg Dec3reg MEnc2 DeConv2,16, ReLU, ResConc, (Conv3,16, ReLU)∗2, AddId (72, 104, 72, 16)
Dec1reg Dec2reg MEnc1 DeConv2,8, ReLU, ResConc, (Conv3,8, ReLU), AddId (144, 208, 144, 8)
Dec0reg Dec1reg Conv1,3, Sigmoid (144, 208, 144, 3)

Table 1. Layer architecture of the encoder, the segmentation and the registration decoders. The sub-
architectures are grouped into blocks, one per table line, whose names are indicated in the first column.
Each block processed a forward signal as input identified by the second column. Additionally, both decoders
have residual connections from different stages of the encoder, identified by the third column. The blocks
are made of a set of successive operations where Convw,f (resp. DeConvw,f ) stands for a convolutional
(resp. deconvolutional) layer with weight size w×w×w and f filters, ReLU - Rectified Linear Unit, AddId
- intra-block residual connection with the output of the first activated convolution of the corresponding
block, ResConc - encoder to decoder residual connection from the output of the third column block to
the current signal, Softmax and Sigmoid - finale output activation. ∗ indicates successive repetition of the
previous operations in parenthesis. For convolutions and deconvolutions layers, strides is 1× 1× 1 except
for the Conv2,· which is 2×2×2. The first layer of the registration decoder indicates the merging operation
of the source signal and the reference signal, which are obtained by inferring them successively in the
encoder; ⊕ indicates elementwise subtraction or channelwise concatenation of the source and reference
list of tensors (forward network signal and 4 residual connection signals). The last column indicates each
block output shape (channels last).

Average Dice Hausdorff95
Method Dice Hausdorff95 ET WT TC ET WT TC
Baseline segmentation 0.79 ±0.29 7.0 ± 9.6 0.73 ±0.29 0.87 ±0.13 0.75 ±0.24 4.7 ±8.2 7.2 ±9.4 9.2 ±8.9
Proposed

concatenation w/o L?reg 0.74 ±0.29 8.3 ± 10.4 0.70 ±0.29 0.87 ±0.11 0.65 ±0.29 6.2 ±9.8 7.8 ±11.1 11.3 ±7.1
concatenation with L?reg 0.73 ±0.29 7.6 ± 9.9 0.68 ±0.30 0.87 ±0.12 0.66 ±0.28 6.3 ±9.9 5.6 ±4.2 10.8 ±6.6
subtraction w/o L?reg 0.76 ± 0.27 7.8 ± 10.3 0.71 ± 0.28 0.88 ±0.10 0.70 ±0.24 6.5 ±10.8 7.4 ±11.0 10.0 ±7.4
subtraction with L?reg 0.76 ±0.27 7.9 ± 10.1 0.71 ±0.29 0.88 ±0.10 0.69 ±0.25 5.8 ±9.6 7.7 ±11.5 11.1 ±8.3

Table 2. Quantitative results of the different methods on the segmentation task on the BraTS 2018
validation dataset. Dice and Hausdorff95 are reported for the three classes Whole Tumor (WT), Enhancing
Tumor (ET) and Tumor Core (TC) together with their average values. Results are reported with mean
across patients (MRIs) along with the associated standard deviation. We upload our predictions on the
official leaderboard of the validation set (66 patients).
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Method BS CSF CblmC CblmWM CeblWM Pu VDC Pa Ca LV Hi 3V 4V Am CeblC Average
Rigid 0.58

±
0.15

0.39
±
0.11

0.46 ±
0.13

0.40 ±
0.14

0.49 ±
0.05

0.44
±
0.13

0.47
±
0.13

0.35
±
0.17

0.27
±
0.15

0.40
±
0.13

0.34
±
0.13

0.39
±
0.17

0.15
±
0.15

0.24
±
0.18

0.36
±
0.04

0.38
±
0.13

Voxelmorph 0.69
±
0.12

0.46
±
0.13

0.63 ±
0.11

0.57 ±
0.13

0.73 ±
0.083

0.42
±
0.14

0.5 ±
0.11

0.33
±
0.14

0.42
±
0.17

0.62
±
0.14

0.38
±
0.13

0.53
±
0.18

0.32
±
0.23

0.25
±
0.17

0.6 ±
0.084

0.5 ±
0.14

Proposed
concatenation

only reg. 0.65
±
0.15

0.34
± 0.1

0.58 ±
0.11

0.48 ±
0.14

0.6 ±
0.056

0.46
±
0.12

0.47
±
0.12

0.38
±
0.14

0.35
±
0.15

0.54
±
0.14

0.35
±
0.13

0.4
±
0.16

0.21
±
0.17

0.27
±
0.18

0.46
±
0.051

0.44
±
0.13

w/o L?reg 0.72
±
0.13

0.42
± 0.1

0.61 ±
0.11

0.51 ±
0.12

0.63 ±
0.056

0.47
±
0.14

0.51
±
0.12

0.37
±
0.16

0.44
±
0.15

0.65
±
0.13

0.42
±
0.14

0.46
±
0.17

0.31
±
0.22

0.31
±
0.19

0.48
±
0.052

0.49
±
0.13

with L?reg 0.7 ±
0.15

0.44
±
0.12

0.6 ±
0.13

0.52 ±
0.14

0.66 ±
0.06

0.47
±
0.14

0.52
±
0.13

0.38
±
0.16

0.42
±
0.16

0.65
±
0.14

0.4 ±
0.15

0.51
±
0.19

0.3
±
0.22

0.28
±
0.2

0.49
±
0.058

0.49
±
0.14

subtraction
only reg. 0.71

±
0.13

0.41
± 0.1

0.61 ±
0.12

0.53 ±
0.13

0.66 ±
0.058

0.47
±
0.12

0.5 ±
0.11

0.37
±
0.15

0.43
±
0.14

0.63
±
0.12

0.4 ±
0.13

0.47
±
0.16

0.34
±
0.22

0.29
±
0.19

0.49
±
0.054

0.49
±
0.13

w/o L?reg 0.7 ±
0.13

0.41
± 0.1

0.6 ±
0.11

0.52 ±
0.12

0.65 ±
0.057

0.48
±
0.13

0.53
±
0.11

0.39
±
0.15

0.43
±
0.14

0.64
±
0.13

0.41
±
0.13

0.49
±
0.17

0.3
±
0.22

0.29
±
0.18

0.48
±
0.053

0.49
±
0.13

with L?reg 0.72
±
0.12

0.4 ±
0.11

0.61 ±
0.11

0.53 ±
0.12

0.64 ±
0.058

0.47
±
0.12

0.51
±
0.11

0.38
±
0.15

0.41
±
0.15

0.63
±
0.13

0.43
±
0.13

0.44
±
0.17

0.3
±
0.22

0.33
±
0.18

0.48
±
0.054

0.49
±
0.13

Table 3. The mean and standard deviation of the dice coefficient for the 15 different classes of OASIS
3 dataset for the different evaluated methods. The first two rows are baseline methods. The rest of the
rows present the results of our proposed method evaluating the different variants and merging operators.
The names of the columns represent various brain structures, namely: brain stem (BS), cerebrospinal fluid
(CSF), 4th ventricle (4V), amygdala (Am), caudate (Ca), cerebellum cortex (CblmC), cerebellum white
matter (CblmWM), cerebral cortex (CeblC), cerebral white matter (CeblWM), hippocampus (Hi), lateral
ventricle (LV), pallidum (Pa), putamen (Pu), ventral DC (VDC) and 3rd ventricle (3V).

Method NCR/NET ET ED Combined
(Dalca et al., 2018) 2.27 ± 2.68 0.67 ± 0.55 1.96 ± 3.03 0.62 ± 0.51
Proposed

concatenation only reg. 0.51 ± 0.61 0.26 ± 0.19 0.71 ± 0.94 0.22 ± 0.15
concatenation w/o L?reg 1.35 ± 1.14 0.64 ± 0.41 1.80 ± 1.82 0.64 ± 0.42
concatenation with L?reg 0.26 ± 0.20 0.26 ± 0.13 0.30 ± 0.28 0.21 ± 0.12

subtraction only reg. 1.34 ± 0.77 0.77 ± 0.59 2.02 ± 1.65 0.68 ± 0.52
subtraction w/o L?reg 1.74 ± 1.35 0.72 ± 0.72 2.38 ± 1.74 0.74 ± 0.76
subtraction with L?reg 0.24± 0.17 0.25± 0.13 0.23± 0.22 0.20 ± 0.11

Table 4. Quantitative estimates on tumor shrinking. The measure used is the average over 200 testing
pairs of patients of the distance between the ratio of the volumes of the deformed source ground-truth
mask and the original ground-truth mask for each original class of the BraTS 2018 dataset (NCR/NET,
ET and ED), and the ratio of the reference brain volume over the source brain volume. In this context, the
best performance reachable is 0 for each class. Additionally, ground-truth masks are binarized into Whole
Tumor masks, with a value of 1 if and only if a voxel is annotated as one of the 3 tumor classes, and the
same measure is computed in the last column (”Combined”), which should indicate the overall impact of
tumor shrinking of the whole tumor without considering swapping of intra-tumoral classes.
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Average Dice Hausdorff95
Method Dice Hausdorff95 ET WT TC ET WT TC
Baseline segmentation 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Proposed

concatenation w/o L?reg 0.32 0.46 0.55 1.00 0.03 0.34 0.74 0.14
concatenation with L?reg 0.24 0.72 0.33 1.00 0.05 0.31 0.21 0.24
subtraction w/o L?reg 0.55 0.65 0.69 0.62 0.24 0.28 0.91 0.58
subtraction with L?reg 0.55 0.60 0.69 0.62 0.16 0.48 0.79 0.21

Table 5. Statistical significance of the proposed methods with (Milletari et al., 2016) on the BraTS
segmentation task. For each model (line) and each performance measure (column), the displayed value
is the p-value, up to 2 significant figures, of the statistical significance between the model and (Milletari
et al., 2016) for the corresponding measure (Dice or Hausdorff95) on the corresponding tumor class (ET,
WT, TC, or the union of the 3 latter in the two columns Average) on the 66 testing samples of BraTS. No
p-values are statistically significant between all of the proposed variants and (Milletari et al., 2016). Blue
line represents the reference model, red cells indicate no statistical significant p-values (cutoff 0.005) while
green color represent statistical significant p-values.

Method NCR/NET ET ED Combined
(Dalca et al., 2018) < 10−3 < 10−3 < 10−3 < 10−3

Proposed
concatenation only reg. < 10−3 0.540 < 10−3 0.130
concatenation w/o L?reg < 10−3 < 10−3 < 10−3 < 10−3

concatenation with L?reg 0.282 0.442 0.006 0.386

subtraction only reg. < 10−3 < 10−3 < 10−3 < 10−3

subtraction w/o L?reg < 10−3 < 10−3 < 10−3 < 10−3

subtraction with L?reg 1.000 1.000 1.000 1.000

Table 6. Statistical significance of the proposed methods and (Dalca et al., 2018), with the best proposed
variant subtraction with L?reg regarding the tumor shrinking preservation on the OASIS 3 registration task.
For each model (line) and each performance measure (column), the displayed value is the p-value, up to 3
significant figures, of the statistical significance between the model and subtraction with L?reg for the tumor
preservation measure on the corresponding tumor class (NCR/NET, ET, ED, and the union of the 3 latter in
the column Combined) on the 200 testing pairs of OASIS 3. Blue line represents the reference model, red
cells indicate no statistical significant p-values while green color represent statistical significant p-values.
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Figure 2. Illustration of one slice from two examples from both BraTS and OASIS 3 datasets. The data
from BraTS are 3D spatial volumes with 4 modalities (T1, T1 gadolinium, T2, T2 FLAIR), along with
voxelwise annotations for the 3 tumor tissue subclasses depicting the overall extent of tumors. OASIS 3
contains 3D volume only for the T1 modality, and images are provided with voxelwise annotations of 13
normal brain structures for patients without brain tumors.
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Figure 3. The segmentation maps produced by the different evaluated methods displayed on post-contrast
Gadolinium T1-weighted modalities. We present the provided segmentation maps both on the our test
dataset and on the BraTS 2018 validation dataset. NCR/NET: necrotic core, ET: GD-enhancing tumor, ED:
peritumoral edema.
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Source Dalca	et	al.,
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Figure 4. Qualitative evaluation of the registration performance for the different evaluated methods,
displayed on T1 modalities. For an easier visualisation, we group left and right categories and only display
the following 9 classes: caudate (Ca), cerebellum cortex (CblmC), cerebellum white matter (CblmWM),
cerebral cortex (CeblC), cerebral white matter (CeblWM), lateral ventricle (LV), pallidum (Pa), putamen
(Pu), ventral DC (VDC).
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Figure 5. Qualitative evaluation of the tumor deformation of the different evaluated methods, displayed
on T1 modalities. Each line is a sample, with source MRI in the first column to be registered on reference
MRI in the second column. BraTS ground-truth annotations are plotted onto the source MRI. 7 models are
benchmarked, one for each of the remaining columns which display the result of applying the predicted
grid onto the source MRI. For each model and each line, the source ground-truth annotation masks of
the source MRI were also registered with the predicted deformation grid, and the consequently obtained
deformed ground-truth were plotted onto each deformed source MRI to illustrate the impact of all methods
regarding the preservation of tumor extent.
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Figure 6. Comparison of the registration grid of the proposed model using the subtraction operation with
and w/o L?reg. This figure is obtained by sampling three random pairs of test patients, and computing the
predicted registration fields, which are displayed by line for the two models, and in consecutive columns,
one for each of the 3 dimensions, showing the registration field as a warped grid (grayscale) and as a
colored map obtained by computing its norm pixelwise (blue-green map). Furthermore, the contour of the
Whole Tumor is plotted on top of each image, obtained from the ground truth segmentation.
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