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DOA and Range Estimation using a Uniform Linear
Antenna Array without a Priori Knowledge of the

Source Number
Jianzhong Li, Yide Wang, Zhigang Ren, XiaoBo Gu, Ming Yin and Zongze Wu

Abstract—A new efficient root-propagator method based on
a uniform linear antenna array is proposed to estimate the
directions of arrival (DOAs) and ranges of near-field sources with-
out a priori knowledge of the source number. A non-Hermitian
matrix is firstly designed which allows the applications of rooting
methods. Then by constructing two propagators, the parameter
estimation for near-field sources can be achieved through rooting
methods in a decoupled way without eigenvalue decomposition
(EVD) and spectrum searches. At last, the importance of the
priori source number to source localization problems is studied,
and specifically, an improvement is proposed to get rid of this
dependence. Numerical examples are carried out to show the
effectiveness and validate the theoretical analysis of the proposed
root-propagator method. The results show that the proposed
method provides more superior performance for near-field source
localization than other existing similar methods. Even in the
case without a priori knowledge of the source number, the
performance of the proposed method is still satisfactory.

Index Terms—Root-propagator, near-field, source localization,
source number

I. INTRODUCTION

For the latest decades, source localization is an important
topic to the research of array signal processing, which con-
tributes impressively to civil and military applications [1]-
[3]. In the far-field situation, the wave-front of a source
signal is considered plane. The model is only parameterized
by the direction-of-arrival (DOA), and plenty of localization
methods have been proposed for this situation [4]-[10]. When
the sources are located in the Fresnel region, the wave-
fronts are considered to be spherical. Not only the DOAs,
but also the ranges are required to characterize the near-field
sources [11]-[20]. The most obvious idea for near-field source
localization is extending the classical one-dimensional (1D)
DOA estimators to two-dimensional (2D) ones, like the 2D
multiple signal classification (MUSIC) method [21]. For many
methods, a 2D spectrum search is usually required, which
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et Télécommunications de Rennes (IETR), Université de Nantes, UMR
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would introduce a high computational burden, limiting its
application in some practical scenarios (for example, long-time
field work without guaranteed electronic energy due to the fact
that algorithms with higher complexities would consume more
energy, and therefore lead to an exhaustion more quickly).

The decoupled estimation of the two parameters of near-
field sources is firstly proposed by using high-order cumulant
in [22]-[23]. The high number of degrees of freedom provides
the possibility to design various matrices containing the in-
formation of only one parameter and the two parameters are
estimated independently. But they need to be paired through
parameter matching algorithms for the source localization.
Recently another family of methods is investigated for the
localization of near-field sources in a decoupled way [24]-[31].
The 2D spectrum search can be avoided through these methods
without additional parameter matching algorithms, bringing
a significant improvement to the computational efficiency.
These methods consist mainly of two steps. By designing
a Hermitian matrix which can eliminate the information of
the ranges, the DOAs are firstly estimated. Then the range
associated with each estimated DOA is estimated with another
Hermitian matrix. [24] estimates the DOA firstly by applying a
focusing technique. However, a preestimation technique based
on beamforming is necessary. [26]-[27] achieve the DOA
estimation with the anti-diagonal elements of the second-
order covariance matrix, but suffer from an aperture loss.
The application of high-order cumulant [28]-[31] avoids the
aperture loss and achieves better performance due to the high
resistance to Gaussian noise. However, all these methods need
to construct at least two different Hermitian matrices and
usually the eigenvalue decomposition (EVD) has to be applied
to each constructed Hermitian matrix. Although in [32] we
have proven that it is not necessary to use Hermitian matrices
and proposed a new MUSIC-like method with only one EVD
and one non-Hermitian matrix, it is applicable only when the
constructed matrix is diagonalizable. Besides, the most critical
point is that all the existing source localization methods,
including near-field and far-field, are developed based on an
accurate priori knowledge of the source number. When the
number is not known apriori, or cannot be estimated perfectly,
the localization through these methods is no longer credible.

Therefore, a new root-propagator-based method is proposed
in this paper for near-field source localization using only a sin-
gle non-Hermitian matrix, where none of the EVD, spectrum
search or source number is necessary. Firstly, a non-Hermitian
matrix is designed with the fourth-order cumulant to meet the
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requirement of the application of rooting methods. Secondly,
the way to construct subspaces will be decided according to
whether the source number is known or not. Thirdly, two prop-
agators associated with two different parameters are calculated
with the corresponding subspaces. Finally, the two localization
parameters of near-field sources will be estimated through
rooting methods. Compared with existing methods, there are
five contributions in the proposed root-propagator method:
(i) only one matrix is required for the decoupled estimation
of two parameters; (ii) the EVD operation is avoided by
calculating propagators; (iii) the rooting method is applied for
estimating the parameters without parameter matching steps;
(iv) the proposed method is allowed to be carried out with
a larger aperture than those used in other methods, leading
to a higher estimation accuracy; (v) the effect of the source
number is studied and an improvement is proposed to make
the proposed method capable of localizing sources without a
priori knowledge of the source number.

The rest of this paper is organized as follows. Section II
presents the signal model and the problems of near-field source
localization. In Section III, the proposed method is described
in details, and its complexity is analyzed to show the com-
putational efficiency. Section IV provides several numerical
examples to evaluate the performance of the proposed method.
At last, this paper is concluded in Section V.

Notation: In this paper, the superscripts T , H and ∗ rep-
resent the transpose operation, the conjugate transpose and
the complex conjugate respectively. cum{·} stands for the
cumulant operation, E[·] is the statistical expectation and
rank(·) denotes the rank of the matrix.

II. SIGNAL MODEL AND PROBLEM STATEMENT

In this section, the signal model of near-field source local-
ization will be presented firstly. Then the main problems of
localizing near field sources will be discussed.

A. Signal Model

-M -2 -1 0 M +121

rk

kth source

θk

Fig. 1. Near-field source localization with ULA.

As demonstrated in Fig. 1, a uniform linear array (ULA) is
adopted in this paper. The array consists of 2M + 2 antennas,

and the inter-antenna spacing is d. We take the antenna at the
centre as the reference antenna (marked as the 0th antenna).
Assume that there are K (K < 2M+1) near-field independent
narrow-band signals impinging on the ULA. The output of the
mth antenna can be written as

ym(t) =
K∑
k=1

sk(t)ejϕmk + nm(t), t = 1, 2, . . . , T, (1)

with T representing the number of snapshots, sk(t) the kth
source signal with non-zero kurtosis received at the 0th anten-
na and nm(t) the additive Gaussian noise (white or coloured)
received at the mth antenna. The noises received at different
antennas are supposed to be independent from each other and
from all the signal sources. ϕmk is the phase difference due
to the propagation time between the mth antenna and 0th one,
which can be expressed as

ϕmk =
2π

λ
(
√
r2k + (md)2 − 2rkmd sin θk − rk)

≈ ωkm+ φkm
2, (2)

where
ωk = −2πd

λ
sin θk, (3)

φk =
πd2

λrk
cos2 θk. (4)

λ is the wavelength of the source signal, which satisfies
λ ≥ 2d. rk and θk are the range and DOA of the kth source
respectively. For the near-field source localization, the sources
are located in the Fresnel region:

rk ∈ (0.62(D3/λ)1/2, 2D2/λ), (5)

with D being the aperture of the array.
The received signal can be written in the matrix form as

follows:
y(t) = A(θ, r)s(t) + n(t), (6)

with y(t) being the (2M + 2)× 1 received signal vector:

y(t) = [y−M (t), y−M+1(t), . . . , yM+1(t)]T , (7)

s(t) the K × 1 source signal vector:

s(t) = [s1(t), s2(t), . . . , sK(t)]T , (8)

A(θ, r) the (2M + 2)×K steering matrix:

A(θ, r) = [a(θ1, r1), a(θ2, r2), . . . , a(θK , rK)], (9)

a(θk, rk) the (2M + 2)× 1 steering vector:

a(θk, rk) = [ej[(−M)ωk+(−M)2φk], . . . ,

ej[(M+1)ωk+(M+1)2φk]]T , (10)

and n(t) the (2M + 2)× 1 noise vector:

n(t) = [n−M (t), n−M+1(t), . . . , nM+1(t)]T . (11)

B. Problem of Localizing Near-field Sources

From (2) it is clear that the phase ϕmk does not change
linearly along the elements of the steering vector a(θk, rk),
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which prevents the application of rooting methods [33]. In
near-field source localization, the spectrum search is still
necessary for most subspace-based methods, like MUSIC-
based methods. In addition, the traditional way to obtain the
desired subspaces is the application of EVD or singular value
decomposition (SVD). The specific group of eigenvectors or
singular vectors, corresponding to the K largest eigenvalues
or singular values, can span the desired subspaces, but this de-
composition is computationally intensive and time-consuming.
More importantly, the selection of eigenvectors or singular
vectors is directly related to the number of sources K, which
must be a priori knowledge or an accurate estimate for source
localization problems.

Thus, in this paper we investigate a computationally effi-
cient method to localize near-field sources, where the rooting
technique can be applied and the EVD operation is not
required. Furthermore, the effect of the source number K to
source localization is studied, and we propose an improvement
for the case when K is unknown or not known precisely.

III. PROPOSED SCHEME

In order to show the solution to the above problems step by
step, firstly under the assumption that the number of sources
K is known, a root-propagator method based on the fourth-
order cumulant is proposed to estimate φ and ω respectively in
Sections A and B. Secondly, the effect of K to the proposed
root-propagator method is analyzed and a further improvement
is made to get rid of the dependence of K in Section C.
In Section D, the computational complexity analysis among
different methods is provided to make a comparison, revealing
the effectiveness of the proposed method.

As described before, the fourth-order cumulant will be
adopted in this paper. When the statistic order is greater than
2, the cumulant of Gaussian noise would be zero [34]:

cum{np(t), n∗q(t), ni(t), . . .} = 0. (12)

Consequently, the high-order cumulant shows a superior re-
sistance to the noise following Gaussian distribution. For the
simplification of our analysis, the noise term in equations of
high-order cumulant can be omitted, and we can focus on the
source signal terms.

The fourth-order cumulant of the received signal can be
written as [22], [29], [30]:

cum{ym(t), y∗n(t), yp(t), y
∗
q (t)}

=
K∑
k=1

c4ske
j[(m−n+p−q)ωk+(m2−n2+p2−q2)φk], (13)

cum{sm(t), s∗n(t), sp(t), s
∗
q(t)}

=

 c4sk , (m = n = p = q = k)

0, (others)
(14)

with c4sk being the fourth-order cumulant of sk.

A. φ Estimation with Priori Source Number
Firstly, we consider the regular situation where the source

number K is known. In this case, we develop a low complexity

method to localize near-field sources without EVD and spec-
trum searches. A matrix of fourth-order cumulant is designed
to allow the application of rooting methods. The (m̄, n̄)th
element of this matrix is given by:

C(m̄, n̄)

= cum{ym+1, y
∗
m, y0, y

∗
n}

=
K∑
k=1

c4ske
j(ωk+φk)ej(2mφk)e−j(ωkn+φkn

2), (15)

with −M ≤ m,n ≤M and m̄ = m+M+1, n̄ = n+M+1.
This matrix can be expressed as follows:

C = A1(φ)C4sAH2 (ω,φ). (16)

C4s is a diagonal matrix with the size K×K, and the diagonal
entries are c4s1e

j(ω1+φ1), c4s2e
j(ω2+φ2), . . . , c4sKe

j(ωK+φK):

C4s =

 c4s1e
j(ω1+φ1) . . . 0

...
0 . . . c4sKe

j(ωK+φK)

 . (17)

A1(φ) and A2(ω,φ) are the following two (2M + 1) × K
steering matrices:

A1(φ) = [a1(φ1), a1(φ2), . . . , a1(φK)], (18)

A2(ω,φ) = [a2(ω1, φ1), a2(ω2, φ2), . . . , a2(ωK , φK)], (19)

with a1(φk) and a2(ωk, φk) being the following two (2M +
1)× 1 vectors:

a1(φk) = [ ej2(−M)φk , ej2(−M+1)φk ,

. . . , ej2Mφk ]T , (20)

a2(ωk, φk) = [ ej[(−M)ωk+(−M)2φk],

. . . , ej(Mωk+M
2φk)]T . (21)

We can see from (16) that all the columns of C can be
expressed as a linear combination of the columns of A1(φ),
and the corresponding expansion coefficients are the products
of C4sAH2 (ω,φ). With the assumption that the accurate source
number K is known as a priori knowledge, the first K columns
of C can be taken to construct a new matrix Us1:

Us1 = [c1, c2, . . . , cK ]. (22)

Us1 spans the same column subspace as A1(φ) does. Define

Un1 = I2M+1 − Us1(UHs1Us1)−1UHs1, (23)

where I2M+1 is an identity matrix with the size of (2M +
1)× (2M + 1). It is obvious that

UHs1Un1 = 0K×(2M+1), (24)

where 0p×q is a zero matrix with the size of p× q. Therefore,
Us1 is orthogonal to Un1, which is equivalent to

AH1 (φ)Un1 = 0K×(2M+1). (25)

Comparing (20) with (2), we can see that by using the
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proposed procedure, 2mφk is a linear phase that shifts along
the antennas of the array. The polynomial for rooting can be
expressed as

f1(z) = z2M+1aT (z−1)Un1UHn1a(z), (26)

where a(z) = [z−M , . . . , z−1, 1, z, . . . , zM ]T and z = ej2φ.
Due to the conjugate symmetry of the polynomial f1(z), its
roots appear in pairs where one root is the conjugate reciprocal
of the other [6]. The roots closest to and inside the unit circle
can be used to estimate the parameter φ:

φ̂k =
∠(zk)

2
, (27)

where ∠(z) is the angle of the complex variable z.

B. ω Estimation with Priori Source Number

Considering again the cumulant matrix in (16), the rows
of C can be considered as a linear combination of those of
AH2 (ω,φ). We can construct another matrix as follows:

Us2 = [r1, r2, . . . , rK ], (28)

where rH1 , rH2 , . . . , rHK denote to the first K rows of C. Define

Un2 = I2M+1 − Us2(UHs2Us2)−1UHs2, (29)

Similar to the previous discussion, A2(ω,φ) is orthogonal to
Un2:

AH2 (ω,φ)Un2 = 0K×(2M+1). (30)

The phase of the kth steering vector a2(ωk, φk) is mωk +
m2φk, which of course does not change linearly along the
elements of the steering vector and rooting methods cannot
be applied directly. However, mωk alone does shift linearly.
As we have already estimated φk, the kth steering vector
a2(ωk, φ̂k) can be decomposed as

a2(ωk, φ̂k) = Γ(φ̂k)a21(ωk), (31)

with

Γ(φ̂k) =


ej(−M)2φ̂k 0 . . . 0

0 ej(−M+1)2φ̂k . . . 0
...
0 0 . . . ejM

2φ̂k


(32)

and
a21(ωk) = [ej(−M)ωk , . . . , ejMωk ]T . (33)

According to the above discussion, we have A2(ω,φ) ⊥ Un2.
Substitute each estimated φ̂k into (32) and a new matrix Vnk
orthogonal with a21(ωk) can be formed as

Vnk = ΓH(φ̂k)Un2. (34)

From (33), we observe that the phase changes linearly along
the elements of a21(ωk), satisfying the requirement for apply-
ing rooting methods [33]. Therefore, another polynomial could
be expressed as follows:

f2(z) = z2M+1aT (z−1)VnkVHnka(z), (35)

where z = ejω. Unlike the estimation of φ, there is only one
pair of roots that is on the unit circle, which represents the
ωk estimate for the substituted kth φ estimate φ̂k. Therefore,
the paring of ω and φ is achieved automatically. No extra
pairing algorithms are required, reducing the complexity of the
algorithm. Take the root closest to and inside the unit circle
and we can estimate ωk by

ω̂k = ∠(ẑ). (36)

Substituting φ̂k and ω̂k into (3) and (4), the DOA and range
estimates of the kth near-field source can be achieved.

Remark A: Other methods for decoupled near-field source
localization, such as HOS in [29], SOS in [26] and LOFNS
in [27], work well under the requirement of d ≤ λ

4 . In
those methods, the kth DOA is estimated through a steering
vector with the mth element being ej2mω . In order to guar-
antee the uniqueness of DOA estimates, the requirement that
2ω = − 4πd

λ sin θk ∈ [−π, π] must be satisfied. As the result,
we have d ≤ λ

4 , limiting the array aperture to only λM
2 . For

the proposed method, the DOA estimation is carried out with
the steering vector whose mth phase is ejmω as shown in
(33). In this case, it only requires d ≤ λ

2 . Therefore, our
method is also effective for a ULA with a larger value of
d. The corresponding array aperture is λM , which leads to a
smaller angular resolution cell and, hence, potentially a higher
estimation accuracy.

C. Improvement without Priori Source Number

Source number detection and source localization are two
major applications of antenna arrays [35]. For source localiza-
tion problems, one of the basic assumptions is that the number
of sources K is known. Nearly all the source localization
methods rely heavily on the priori source number (for example,
in ESPRIT-based methods, K eigenvectors are used to form
the signal subspace). When the source number K cannot be
known or is not estimated accurately, the source localization
procedure cannot be carried out properly.

For the proposed root-propagator method in Sections A
and B, the source number K is used to decide the selection
of vectors to form the matrices Us1 and Us2 (see (22) and
(28)). Assume that the number of sources K is no longer
known, and K̃ columns of C are taken to form Us1. When
K̃ < K, we have rank(Us1) ≤ K̃ < K = rank(A1(φ)).
The orthogonality between A1(φ) and Un1 cannot hold true,
resulting in the failure of the estimation of φ. When K̃ > K,
the size of Us1 is (2M + 1)× K̃ and Us1 is not full column-
rank. Notice that in (23), there is a term for inverse operation:
(UHs1Us1)−1, which means that Un1 cannot be constructed
when K̃ > K. This analysis also holds true for Us2 and Un2.

In order to obtain Un1 and Un2, it is necessary to make the
items UHs1Us1 and UHs2Us2 always full rank before the inverse
operation. Firstly, K̃ columns and rows will be taken to form
Us1 and Us2. (22) and (28) are replaced with

Us1 = [c1, c2, . . . , cK̃ ] (37)

and
Us2 = [r1, r2, . . . , rK̃ ]. (38)
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Fig. 2. Spectra of φ with 4 sources when K̃ = 2M + 1 and M = 2.

Then define

Un1 = I2M+1 − Us1(UHs1Us1 + µIK̃)−1UHs1, (39)

and

Un2 = I2M+1 − Us2(UHs2Us2 + µIK̃)−1UHs2. (40)

According to matrix theory, UHs1Us1 and UHs2Us2 are positive
semi-definite. There exist uncountable positive values for µ
(µ > 0) to make UHs1Us1 + µIK̃ and UHs2Us2 + µIK̃ always
full rank. When µ is small enough, we have UHs1Us1 +µIK̃ ≈
UHs1Us1 and UHs2Us2 + µIK̃ ≈ UHs2Us2. The impact of the ad-
ditive identity matrix to the orthogonality between the steering
matrices and the orthogonal matrices can be negligible.

Fig. 2 shows three different spectra with four near-field
sources when 2M + 1 columns are taken to form Us1 (i.e.,
K̃ = 2M + 1). In (a), µ = 0 is considered for the case
where no processing is made to UHs1Us1. The term is not full
rank and the corresponding spectrum is actually a random one.
The impact of different values for µ to the performance of the
proposed method is shown in (b) and (c). When µ = 10−5,
we can see that the peaks are not sharp enough, which may
result in some bias for the estimates. When µ = 10−7, the

computation of
cumulant matrix

taking K columns
and rows to form

two matrices

K is known?

taking 2M +1 columns
and rows to form

two matrices

computation of two
orthogonal matrices
with (39) and (40)

φ estimation with
root-propagator

ω estimation with
root-propagator

Yes No

calculation of DOA
and range

computation of a
orthogonal matrix
for kth signal

computation of two
orthogonal matrices
with (23) and (29)

threshold for the
distance between

the unit circle and
roots

Fig. 3. Procedure of the proposed root-propagator method.

peaks are well distinguishable and each peak may refer to the
parameter value in the ground truth.

It is worthy to note that, although the introduction of
µIK̃ can help to get rid of the dependence of the priori
knowledge of the source number, the selection of µ must be
comprehensively considered in practice. When µ is not small
enough, this processing may affects the estimation similarly
to the noise. Both the estimation accuracy and the resolution
ability may be poor. When µ is too small, the term µIK̃
may not work, and the propagators constructed with (39)
and (40) would fail. Therefore, this hyperparameter selection
must be comprehensively considered according to the practical
environment, including signal-to-noise radio (SNR) and the
numbers of antennas and sources. Through simulations, we
find that generally µ = 10−7 can well improve the estimation
when the SNR is high. If the SNR is not high enough and
there are much more antennas than sources, the value of 10−3

for µ would be more suitable.
Remark B: Theoretically, the proposed method can work

when K̃ ≥ K. In order to guarantee that Un1 and Un2 are
orthogonal with all the steering vectors, we suggest in practice
to take K̃ = 2M + 1 columns or rows to form Us1 or Us2,
even though the corresponding computational complexity will
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be a little higher.
Remark C: In the proposed method, a cumulant matrix C

with the size (2M +1)× (2M +1) is designed, which is used
for estimating both ω and φ. Therefore, with the proposed
method 2M sources can be located at most, which can be
verified by the spectra in Fig. 2.

D. Complexity Analysis

As for the computational complexity, we select flops to
evaluate the method. The definition of one flop is a floating-
point addition or multiplication operation. The procedure of
the proposed root-propagator method is shown in Fig. 3. In
the case where the number of sources is available, the im-
plementation of the proposed root-propagator method and the
corresponding computational complexity can be summarized
as follows:

1) Estimate C from y(t) with (15).

9(2M + 1)2T flops

2) Take K columns and rows to form Us1 and Us2 with
(22) and (28).

2(2M + 1)K flops

3) Estimate Un1 and Un2 from Us1 and Us2 with (23) and
(29).

2(2M + 1)2K flops

4) Estimate φ with the root-propagator method (26).

(2M + 1)K2 flops

5) Estimate Vnk and ωk with (34) and (35).

(2M + 1)3 + (2M + 1)K2 flops

6) Estimate the DOA θk and range rk from the estimated
φ̂k from ω̂k with (3) and (4).

9K flops

In conclusion, the computational complexity of the proposed
root-propagator method is about in the order of O((2M +
1)2T +(2M+1)3 +(2M+1)2K+(2M+1)K2). The imple-
mentation of HOS [29], MOS [30] and SOS [26] includes the
construction of two matrices, the application of EVD to each
matrix and the spectrum searches. The complexity is roughly
in the order of O((2M + 1)2T + (2M + 1)3 + (2M + 1)K2 +
N(2M + 1)2) with N being the grid number for spectrum
searches (N �M,K). Besides the computational complexity,
constructing two different Hermitian matrices and applying the
EVD to each of the two Hermitian matrices also makes the
implementations of the methods much more lengthy than that
of the proposed root-propagator method.

Remark D: When the source number is not known, the
proposed method just needs to replace K with K̃, process
UHs1Us1 and UHs2Us2 with an identity matrix, and replace
(22), (28), (23) and (29) with (37), (38), (39) and (40). The
corresponding complexities of Steps 2) and 3) would be
replaced by 2(2M+1)K̃ and 2(2M+1)2K̃ flops. In this case,
it is also necessary to set a threshold for the distance between

the unit circle and roots, which allows the determination of the
true roots. And the corresponding complexity can be neglected.
In conclusion, the extra computational complexities are very
small compared with other parts. The complexity when K is
unknown is only a little higher than that when K is known
as a priori knowledge. But for other methods, the estimator of
the source number, such as the Akaike information criterion
(AIC), Rissanen’s minimum description length (MDL) princi-
ple [36] and Bayesian information criterion (BIC) [37], must
be applied first. The corresponding complexity should also be
considered along with those of the localization methods.

Remark E: Theoretically, the fourth-order cumulant can
eliminate the effect of Gaussian noise, and achieve unbiased
estimation for parameters φ and ω. However in practical
applications, the number of snapshots received by the array
is always finite. The fourth-order cumulant of the noise
would not be zero for a limited number of snapshots. The
performance of the proposed method would still be affected
by the noise variance, but not as much as the methods based
on the second-order statistics. Indeed, the mean square error
(MSE) of the estimation is roughly in inverse proportion to
the number of snapshots. In most cases where there are less
than 10 antennas, most methods can estimate DOA with an
MSE smaller than 10−1 degree when more than 105 snapshots
are received. For range estimation, the MSE can be as low as
10−1.5 wavelength.

IV. NUMERICAL EXAMPLES

In this section, several numerical examples are displayed
to evaluate the performance of the proposed root-propagator
method. The results will be compared with some existing
similar methods such as HOS in [29], SOS in [26], LOFNS in
[27] and the joint-diagonalization method (JDM) in [12]. An
array of 8 antennas is applied in all the examples (i.e., M = 3).
For the proposed root-propagator method, the maximum inter-
element spacing of the array d can be λ

2 . For other methods,
d has to be no larger than λ

4 due to their limitation. Examples
1 and 2 are carried out with the priori knowledge of the
source number while Example 3 is mainly to demonstrate the
performance when the source number is not known. Examples
4 and 5 are designed to verify the ability of source number
estimation and source detection.

Example 1-Performance versus SNR: For the following
examples, the root mean square error (RMSE) of estimates is
used to evaluate the performance of different methods, which
is defined as follows:

RMSE =

√∑P
p=1 | α̂p − αtrue |2

P
, (41)

where α̂p is the estimate in the pth trial, αtrue stands for the
true value and P represents the number of independent Monte
Carlo trials. The definition of SNR is given as follows:

SNR = 10 log10

∑K
k=1 Psk
σ2

, (42)

where Psk represents the power of the kth signal. Two well-
separated near-field sources are considered in the examples,
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Fig. 4. RMSEs of the DOA estimates for the near-field sources (�: proposed
root-propagator with d = λ

4
; 5: LOFNS; ©: SOS; �: HOS; 4: JDM; −:

CRB; ∗: proposed root-propagator with d = λ
2

; −−: CRB with d = λ
2

).

located at (−8◦, 1.3λ) and (20◦, 2.6λ) respectively. Assume
that the number of snapshots is 200, and the SNR varies
from −10 dB to 30 dB. In order to offer a clear comparison,
the proposed method is firstly run with d = λ

4 to meet
the same simulation environment with other methods. The
corresponding Cramer-Rao Bound (CRB) given in [16] is also
provided. Specifically, the proposed method can be carried out
with d = λ

2 , and the corresponding RMSEs are added in the
figures to make a comparison among the best performance that
each method can achieve. All the results plotted in Figs. 4 and
5 are obtained through 1000 independent trials.

Comparing HOS with SOS, the excellent resistance of
high-order cumulant to Gaussian noise shows a promotion
of the estimation accuracy. Indeed, for most second-order
statistics methods (like SOS and LOFNS), the independent
DOA estimation often suffers from an aperture loss, where
the effective antennas are fewer than the practical ones (the
dimension of the covariance matrix for DOA estimation is
only (M + 1)× (M + 1) while the array consists of 2M + 2
antennas). As the result, the capacity of the system (i.e., the
maximum number of sources that the system can estimate with
the array) is reduced and the accuracy is degraded. For the
range estimation, these second-order methods do not suffer
from the aperture loss, but it relies on the DOA estimation,
and the estimation accuracy is also impacted indirectly. The
negative effect would be very distinct when the numbers of
sources and array antennas are close. Therefore, the second-
order statistics methods often require that the number of array
antennas should be much bigger than that of the sources to
relieve the imperfection: 2M + 1 � K. For other second-
order statistics methods (like JDM which provides a similar
performance with SOS and LOFNS), no aperture loss needs
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Fig. 5. RMSEs of the range estimates for the near-field sources (�: proposed
root-propagator with d = λ

4
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CRB; ∗: proposed root-propagator with d = λ
2

; −−: CRB with d = λ
2

).

to be considered. However, the effect of the noise cannot
be ignored. The dependence on optimization techniques also
affects the performance of JDM, which may produce local
optimal solutions instead of global optimal ones. Besides, all
the existing methods of this family need to limit the inter-
element spacing of the array d ≤ λ

4 , which also results in
a smaller aperture. Conversely, the root-propagator method
enables the estimation to be carried out with a larger value
of d (i.e., a larger aperture). When d = λ

4 , the proposed
method performs almost the same as the other methods.
However, when d = λ

2 , the proposed root-propagator performs
much better than the other methods, especially for the DOA
estimation. The RMSEs are lower than those of all the other
methods, as well as the CRBs with d = λ

4 . By comparing
the performance of different sources, it can be seen that
the accuracies of the DOA estimates are almost the same.
However, for the range estimation the RMSEs can tell an
apparent difference. The estimation accuracy will be improved
if the sources are located closer to the antenna array, which
has also been stated in the theoretical analysis in [38].

Example 2-Performance versus Number of Snapshots: In the
second example, the relationship between the RMSE and the
number of snapshots is studied. The simulation parameters are
almost the same with those in Example 1, except the SNR and
the number of snapshots. Let the number of snapshots vary
from 10 to 10000. The results with the SNR being 15 dB are
shown in Figs. 6 and 7.

In Fig. 6, when there are less than 1000 snapshots re-
ceived at the array, HOS outperforms SOS, LOFNS and JDM
for DOA estimation benefiting from the high resistance to
Gaussian noise. However, HOS reaches its upper limit of
estimation accuracy when the number of snapshots is more
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than 1000. LOFNS would provide a better estimation even
though it is based on second-order covariance matrix. As for
the proposed root-propagator method, when d = λ

4 it does not
perform better than the other methods. But when d = λ

2 , the
estimation accuracy shows an impressive improvement with
the increasing of snapshots. It performs much better than the
other methods for all the numbers of snapshots, revealing its
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Fig. 8. RMSEs of the DOA estimates for the two near-field sources (∗:
proposed root-propagator with K known; I: proposed root-propagator with
K unknown).
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Fig. 9. RMSEs of the range estimates for the two near-field sources (∗:
proposed root-propagator with K known; I: proposed root-propagator with
K unknown).

robustness. The range estimation is very sensitive to the noise.
Although LOFNS, SOS and JDM are all based on the second-
order statistics, LOFNS provides the best performance, which
benefits from the fact that the effect of noise is eliminated in
LOFNS. High-order methods can still show some resistance
to the noise even though the number of snapshots is small.
But the effect is not as good as the technique used in LOFNS.

Example 3-Performance without Priori Source Number: The
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third example, of which the simulation conditions are the same
with those in Example 1, would investigate the performance
in the situation where the number of sources K is not known.
The effectiveness of the proposed root-propagator method is
already shown through some spectra in Fig. 2, and the RMSEs
versus the SNR are displayed in Figs. 8 and 9. In order to
provide intuitive results, the RMSEs of the proposed method
when K is known are also plotted as a comparison.

It can be seen from the figures that the proposed root-
propagator method performs well even without the priori
source number. For the two different situations (knowing
the source number and the contrary respectively), the root-
propagator method shows only a small difference, especially
for the DOA estimation. When the SNR is not high enough, the
proposed root-propagator method without K performs even
better. The robustness and accuracy of the root-propagator
method are enhanced by using all the 2M + 1 columns
and rows of the cumulant matrix, although the computational
complexity would be higher than that when K is known.
When the SNR gets higher, the estimation accuracies achieved
by the root-propagator in the two situations are almost the
same while the other existing methods are unable to work
at all without source number estimation. Compared with the
RMSEs in Example 1, the root-propagator provides a much
better performance than the other methods, in terms of both
the computational complexity and estimation efficiency, even
though the other methods are carried out with the priori source
number.

Example 4-Failure Rate of Source Number Estimation ver-
sus SNR: The fourth example is carried out to verify the failure
rate of the estimation of the source number K, where the simu-
lation conditions are the same with those in Example 1. Indeed,
the estimation of K is achieved implicitly when estimating φ.
A hyperparameter is set to determine whether a root can be
considered as the desired one. Here, the hyperparameter is a
threshold for the distance between the unit circle and roots,
which is set to be 0.1. When the distance is smaller than the
threshold, the corresponding root can be used to estimate φ.
The number of these roots is the estimation of the source
number, and the failure rate of this estimation versus SNR is
shown in Fig. 10.

From the figure, we can see that the estimation is very
effective. When the SNR is 0 dB, the failure rate is about
40%. As the SNR grows, the failure rate drops significantly.
The source number can be perfectly estimated even when
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Fig. 11. Probability of Detection versus Probability of False Alarm (−I:
SNR=0 dB; −−I: SNR=−3 dB; −.I: SNR=−5 dB).

the SNR is about only 4 dB. Compared with other methods
specifically for source number estimation (AIC, MDL and
BIC), the proposed method shows a similar result. We can
also see that when the SNR is extremely low, the proposed
method outperforms others, revealing the better resistance to
the noise.

Example 5-Probability of Detection versus Probability of
False Alarm: The relationship between the probabilities of
detection and false alarm is studied in the fifth example
to verify the receive-operator characteristics (ROC) of the
proposed method. Let Nd denote the number of the trials
in which at least one source is detected with the proposed
method. When source signal exists in the situation, the ratio
between Nd and the number of total trials refers to the
probability of detection. But in the situation where no source
exists, this ratio refers to the probability of false alarm.

According to the constant false alarm rate (CFAR) defi-
nition, two different situations are designed in this example.
Firstly, the situation is considered where there is only noise
received by the array. By changing the threshold which stands
for the distance between the unit circle and roots, we can
obtain the corresponding probabilities of false alarm. Secondly,
we consider another situation where one source located at
(−8◦, 1.3λ) exists as well as the noise. The probability of
false alarm varies from 0 to 1, and the corresponding threshold
is used to obtain the probability of detection. In this example,
200 snapshots are received and all the probabilities are decided
with 10000 trials. Fig. 11 shows the results of the proposed
method when the SNRs are −5, −3 and 0 dB respectively. We
can see that as the SNR increases, the probability of detection
shows a significant improvement. When the SNR is 0 dB, the
proposed method can detect the source with the probability
of nearly 100% even though the probability of false alarm is
only 10%.

V. CONCLUSION

In this paper, a root-propagator method is proposed to local-
ize near-field sources. For the proposed method, an array with
a larger aperture can be adopted to improve the localization
accuracy. Only one matrix needs to be constructed and the
computationally burdensome EVD and the spectrum search
are avoided efficiently, leading to a much lower computational
complexity than those of other methods. Specifically, the case
without the priori source number is studied and an improve-
ment is proposed to deal with this problem. The effectiveness
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and performance of the proposed method are verified with
several numerical examples.
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