
HAL Id: hal-02974771
https://hal.science/hal-02974771

Submitted on 5 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the stability of redundancy models
Elene Anton, Urtzi Ayesta, Matthieu Jonckheere, Ina Maria Maaike Verloop

To cite this version:
Elene Anton, Urtzi Ayesta, Matthieu Jonckheere, Ina Maria Maaike Verloop. On the stability of
redundancy models. Operations Research, 2021, 69 (5), pp.1540-1565. �10.1287/opre.2020.2030�.
�hal-02974771�

https://hal.science/hal-02974771
https://hal.archives-ouvertes.fr

On the stability of redundancy models

E. Anton1,3, U. Ayesta1,2,3,4, M. Jonckheere5, and I.M. Verloop1,3

1CNRS, IRIT, 2 rue Charles Camichel, 31071 Toulouse, France
2IKERBASQUE - Basque Foundation for Science, 48011 Bilbao, Spain

3Université de Toulouse, INP, 31071 Toulouse, France
4UPV/EHU, University of the Basque Country, 20018 Donostia, Spain

5Instituto de Cálculo - Conicet, Facultad de Ciencias Exactas y Naturales, Universidad de
Buenos Aires (1428) Pabellón II, Ciudad Universitaria Buenos Aires, Argentina.

Abstract

We investigate the stability condition of redundancy-d multi-server systems. Each server has its
own queue and implements popular scheduling disciplines such as First-Come-First-Serve (FCFS),
Processor Sharing (PS), and Random Order of Service (ROS). New jobs arrive according to a Poisson
process and copies of each job are sent to d servers chosen uniformly at random. The service times
of jobs are assumed to be exponentially distributed. A job departs as soon as one of its copies
finishes service. Under the assumption that all d copies are i.i.d., we show that for PS and ROS (for
FCFS it is already known) sending redundant copies does not reduce the stability region. Under
the assumption that the d copies are identical, we show that (i) ROS does not reduce the stability
region, (ii) FCFS reduces the stability region, which can be characterized through an associated
saturated system, and (iii) PS severely reduces the stability region, which coincides with the system
where all copies have to be fully served. The proofs are based on careful characterizations of scaling
limits of the underlying stochastic process. Through simulations we obtain interesting insights on
the system’s performance for non-exponential service time distributions and heterogeneous server
speeds.

1 Introduction

The main motivation to investigate redundancy models comes from empirical evidence suggesting that
redundancy can help improve the performance of real-world applications. For example Vulimiri et
al. [29] illustrate the advantages of redundancy in a DNS query network where a host computer can
query multiple DNS servers simultaneously to resolve a name. Dean and Barroso [12] note that Google’s
big table services use redundancy in order to improve latency. While there are several variants of a
redundancy-based system, the general notion of redundancy is to create multiple copies of the same job
that will be sent to a subset of servers. By allowing for redundant copies, the aim is to minimize the
system latency by exploiting the variability in the queue lengths and the capacity of the different servers.
Several recent works, both empirically ([2, 3, 12, 29]) and theoretically ([13, 16, 20, 22, 23, 28]), have
provided indications that redundancy can help in reducing the response time of a system.

Most of the literature on performance evaluation of redundancy systems has been carried out under
the assumption of i.i.d. copies. Only very recently, a few works that relax this assumption have appeared,
see Section 2 for more details. In particular, Gardner et al. [13] recently showed that the i.i.d. assumption
can be unrealistic, and that it might lead to theoretical results that do not reflect the results of replication
schemes in real-life computer systems.

1

ar
X

iv
:1

90
3.

04
41

4v
2

 [
m

at
h.

PR
]

 1
0

A
pr

 2
02

0

Motivated by the above, in this paper we aim to study the impact that the modeling assumptions have
on the performance of the redundancy-d model. In particular, we study the dependence of the stability
condition on e.g. the number of redundant copies, the type of copies (i.i.d. copies or identical copies)
and the service policy implemented in the servers. To some extent, stability is a theoretical notion, since
in reality a system will induce stability, for example by limiting the number of accepted jobs. However,
stability, or the lack thereof, gives an indication of the quality of the performance that can be expected
in practice.

Before detailing our main contributions, we describe a known result that provides a starting point
for our work. Gardner et al. [14, 16] and Bonald and Comte [9] show that under the assumption of
exponential service times and i.i.d. copies, and when the First-Come-First-Serve (FCFS) discipline is
implemented in all servers, the stability region is not reduced due to adding redundant copies. This
might seem counter-intuitive at first, as redundancy induces a waste on resources on the d − 1 servers
that work on copies that do not end up being completely finished. The reason why the stability is not
reduced is due to the assumption of exponential service times and independent copies. Hence, as soon as
all servers are busy, the instantaneous copy departure rate (and hence job departure rate) is the maximum
possible.

1.1 Main contributions

We briefly describe the redundancy-d model we consider. There are K servers each with their own
queue. The scheduling discipline implemented in all servers is either First-Come-First-Serve (FCFS),
Processor Sharing (PS), or Random Order of Service (ROS). New jobs arrive according to a Poisson
process at rate λ and d ≤ K copies are sent to d servers chosen uniformly at random. The service
times of jobs are assumed to be exponentially distributed with parameter µ. A job’s service is completed
as soon as one of its copies finishes its service. In the absence of redundancy (d = 1) and for any
work-conserving scheduling policy implemented in the servers, the sufficient and necessary condition
for stability is ρ := λ

µK < 1. In this paper, we show that adding redundancy can impact the stability
condition. An overview of our main results can be found in Table 1.

Table 1: Summary of stability conditions

FCFS PS ROS
i.i.d. copies ρ < 1 ρ < 1 (Prop 3) ρ < 1 (Prop 3)

identical copies ρ < ¯̀/K (Prop 4) ρ < 1/d (Prop 11) ρ < 1 (Prop 19)

In the case of i.i.d. copies, we prove that with both PS and ROS, the stability region is not reduced.
Hence, even though copies are unnecessarily served, the system remains stable. This statement might
lead the reader to think that for any work-conserving policy with i.i.d copies the system is stable under
the condition ρ < 1. This is however not the case, and we present a counterexample based on a priority
policy.

Surprisingly at first sight, in the case of identical copies, we prove that the stability condition heavily
depends on the scheduling discipline employed by the servers.

When implementing the Random Order of Service (ROS) discipline, redundancy does not impact
the stability condition, that is, it is stable whenever ρ < 1.

The stability condition for FCFS with identical copies is given by ρ < ¯̀/K, where ¯̀ denotes the
mean number of jobs in service in an associated saturated system that we characterize. It holds that
¯̀< K − (d− 1), which follows easily by noting that among the jobs being served, the oldest job in the
system is served simultaneously in d servers. In the particular case of d = K − 1, the stability region

2

becomes ρ < 2/K, i.e., it reduces by a factor 2/K. Although in general we cannot obtain closed-form
expressions for ¯̀, we prove that ¯̀/K, and hence the stability region, increases as the number of servers,
K, increases. In the limit, as K → ∞, we numerically observed that ¯̀/K converges to some c < 1.
Furthermore, we numerically observe that ¯̀/K, and hence the stability region, decreases in the number
of redundant copies, d.

Under PS with identical copies, the system is stable if and only if ρ < 1/d. In particular, the stability
region reduces as the number of redundant copies increases. In fact, under PS the stability condition is
the same as in a system in which all d copies have to be fully served, and hence represents the worst
possible reduction in the system’s stability region.

Through a light-traffic analysis, we obtain an approximation for the mean number of jobs under
either FCFS, PS or ROS with identical copies, and find that d∗ = bK/2c is the value of d that minimizes
the mean number of jobs. This shows that, although the stability region is reduced, redundancy does
improve the performance for sufficiently low loads.

Through simulations, we explore the stability region for general service requirement distributions.
Our numerical results indicate the following. First, for i.i.d. copies and either FCFS or PS, the stability
region increases in the number of copies d, and in the variability of the service requirements. However,
with ROS the stability condition seems to be invariant to the service requirement distribution. Second,
if one considers instead identical copies and either FCFS or ROS, the performance deteriorates as the
service time variability and/or d increases. Third, for identical copies and PS, the performance deterio-
rates as d increases but seems to be nearly insensitive to the service time distribution beyond its mean
service time. Finally, we consider heterogeneous server speeds and present a preliminary analysis and
numerics, and observe that for sufficiently heterogeneous servers, the stability region under both FCFS
and PS increases in d.

In summary, the main takeaway message from our work is that the stability region strongly depends
on the modeling assumptions. As shown in the theoretical results, the stability condition depends on the
scheduling discipline deployed in servers and on the correlation structure between copies. Our simula-
tion results illustrate that both the service requirement distribution as well as the service speeds have an
important impact on the performance of the system. In particular, we believe that our analysis serves
as a warning that redundancy needs to be implemented with care in order to prevent an unnecessary
degradation of the performance.

The techniques to prove the results are largely based on sufficiently precise characterizations of
scaling limits of the Markov processes describing the number of jobs present in the system, combined
with stochastic comparison results.

The rest of the paper is organized as follows. First, in Section 2 we discuss related work. Section 3
describes the model. Section 4 presents the stability results for i.i.d. copies. Sections 5, 6 and 7 focus on
identical copies and present the stability results for FCFS, PS and ROS, respectively. Section 8 is devoted
to insights obtained through simulations and includes the light-traffic analysis. Section 9 concludes the
paper with some final remarks. For the sake of readability, the proofs are deferred to the Appendix.

2 Related work

In redundancy systems with cancel-on-complete (c.o.c., as considered in this paper), once one of the
copies has completed service, the other copies are deleted and the job is said to have received service.
Most of the recent literature on redundancy has focused on c.o.c. and i.i.d. copies with FCFS as service
policy implemented in the servers. For example, under these assumption, a thorough performance anal-
ysis has been carried out by Gardner et al. [14, 16], and as mentioned in the introduction, the stability
condition has been fully characterized in [9, 16]. In Gardner et al. [16], the authors consider a class-
based model where redundant copies of an arriving job type are dispatched to a type-specific subset of
servers, and show that the steady-state distribution has a product form. In Gardner et al. [14], the pre-

3

vious result is applied to analyze a multi-server model with homogeneous servers where incoming jobs
are dispatched to randomly selected d servers. An important insight obtained there is that stability is not
affected by d and that the mean job delay in the system reduces as the redundancy degree d increases.

In a recent study, Gardner et al. [15], the impact of the scheduling policy employed in the server is
investigated for i.i.d. copies and exponential service. The authors show that for FCFS the performance
might not improve as the number of redundant copies increases, while for other policies as proposed in
that paper, redundancy does improve the performance.

In Koole and Righter [21] the authors show that with FCFS and certain service time distributions (in-
cluding exponential), the best policy is to replicate as much as possible. Raaijmakers et al. [25], consider
FCFS and i.i.d. copies, and consider non-exponential distributed service requirements. As opposed to
exponential service requirements, they show that the stability region increases (without bound) in both
the number of copies, d, and in the parameter that describes the variability of the service requirements.

Very recently, preliminary results on redundancy without the i.i.d. assumption have been published.
Gardner et al. [13] propose a model in which the service time of a redundant copy is decoupled into
two components, one related to the inherent job size of the task, and the other related to the server’s
slowdown. The paper also proposes a load balancing scheme that in case all servers are busy, it would
only dispatch one copy per job. Such a dispatching policy, under the assumption that the dispatcher has
the information regarding the status of servers, would be stable under the condition ρ < 1. Hellemans
and van Houdt [18] consider identical copies and FCFS, and develop a numerical method to compute
the workload and response time distribution when the number of servers tend to infinity. In order for
this method to work, the authors assume the parameters to be such that the system is stable. However,
no characterization of the stability region is given in [18].

As opposed to c.o.c., in redundancy systems with cancel-on-start (c.o.s.), once one of the copies
starts being served, the other copies are deleted. Up till now, c.o.s. has received far less attention than
c.o.c.. The main reason for this comes from the fact that in practice, redundancy aims at exploiting
server’s speed variability, which is a task that c.o.c. achieves better. From the stability point of view,
c.o.s. does not bring any extra work to the system, and thus, its stability region is the same as in the
non-redundant system. The steady-state distribution of c.o.s has been recently analyzed in Ayesta et
al. [5], and the equivalence of the c.o.s. redundancy model with two other parallel-service models has
been shown in Adan et al. [1]. A thorough analysis of c.o.s. in the mean-field regime has been derived
in Hellemans and van Houdt [19].

3 Description of the model

As briefly introduced in Section 1, the redundancy-d model consists of K homogeneous servers each
with capacity 1, see Figure 1. Jobs arrive according to a Poisson process with rate λ. An arriving job
chooses d servers out of K uniformly at random and sends d copies to these servers.

. . .

λ

. . .

d

µ µ µ µ

Figure 1: Redundancy-d model

We consider two possible correlation structures between copies of the same job:

4

• The d copies of one job are all i.i.d. and have exponentially distributed service requirements with
mean 1/µ. We refer to this as the redundancy model with i.i.d. copies.

• The d copies are exact replicas and hence have all the same service requirement, which is ex-
ponentially distributed with mean 1/µ. We refer to this as the redundancy model with identical
copies.

When one of the d copies of a certain job completes its service, the rest of the copies are immediately
removed.

We denote by S the set of all servers, S = {1, . . . ,K}. Each job will be assigned a type label, c =
{s1, . . . , sd}, with s1, . . . , sd ∈ S, si 6= sj , i 6= j, to indicate the d servers to which a copy is sent. We
denote by C the set of all types, that is, C := {{s1, . . . , sd} ⊂ S : si 6= sj , ∀i 6= j}, and |C| =

(
K
d

)
.

We denote by C(s) the subset of types that are served at server s, that is, C(s) = {c ∈ C : s ∈ c}. The
number of types served at server s equals the number of possible ways to choose d − 1 servers out of
the remaining K − 1 servers, that is |C(s)| =

(
K−1
d−1

)
.

We denote by Nc(t) the number of type-c jobs at time t and ~N(t) = (Nc(t), c ∈ C). Furthermore,
we denote by Ms(t) :=

∑
c∈C(s)Nc(t), s = 1, . . . ,K, the number of copies per server, and ~M(t) =

(M1(t), . . . ,MK(t)). For the i-th type-c job, let bcis denote the realization of the service requirement of
its copy in server s, i = 1, . . . , Nc(t), s ∈ c. Note that in case the copies are identical, then bcis = bci for
all s ∈ c. We let acis(t) denote the attained service in server s of the i-th type-c job at time t. We denote
by Ac(t) = (acis(t))is a matrix on R+ of dimension Nc(t) × d. Note that the number of type-c jobs
increases by one at rate λ

(Kd)
, which implies that a row composed of zeros is added to Ac(t). When one

element acis(t) in matrix Ac(t) reaches the required service bcis, the corresponding job departs and all
of its copies are removed from the system. Hence, row i in matrix Ac(t) is removed. The rate at which
the attained service acis(t) increases is determined by the employed scheduling policy in that server.

Within a server, a service discipline determines how the capacity of the server is shared among the
copies. In this paper, we mostly focus on three service disciplines: (i) First-Come-First-Serve (FCFS),
where copies within a server are served in order of arrival, (ii) Processor Sharing (PS), where each copy
in server s receives capacity 1/Ms(t), and (iii) Random Order of Service (ROS), where an idle server
chooses uniformly at random a new copy from its queue. All these three policies have in common that
they schedule only based on {Nc(t), Ac(t), c ∈ C}t≥0. Hence, the latter is a Markovian descriptor of the
system. As to distinguish between the different policies, we will add a superscript {FCFS, PS,ROS}
to the process ~N(t).

We call the system stable when the process ~N(t) is positive recurrent, and unstable when the process
~N(t) is transient. We define the total traffic load by ρ := λ

µK . Note that without redundancy, i.e., d = 1,
the system is stable if and only if ρ < 1 for any work-conserving policy employed in the servers.
We further note that for both i.i.d. copies and identical copies, the stability region might reduce, but
cannot increase. This follows since under exponentially distributed services and homogeneous servers,
the total departure rate is at most Kµ, while the total arrival rate is λ. Hence, ρ < 1 is a necessary
stability condition for any value of d. In the remainder of the paper, we will determine the exact stability
conditions under the various redundancy models considered.

4 Independent identically distributed copies

In this section we analyze the stability of the redundancy-d model when copies of a job are i.i.d.. For
FCFS, it was recently proved that ρ < 1 is the stability condition with i.i.d. copies ([9, 16]), that is,
the stability condition is not impacted by the redundancy parameter d. In Section 4.1, we prove that the
same result holds for PS and ROS. This result does however not extend to any arbitrary work-conserving

5

policy, as we will show through a counterexample in Section 4.2. Appendix A contains the proofs of all
results obtained in this section.

4.1 PS and ROS

In this section, we study the policies PS and ROS and prove that their stability condition is ρ < 1 under
the i.i.d. copies assumption. An intuitive explanation for this result is the following. Under both PS and
ROS, on average a fraction Nc(t)/Ms(t) of server s is dedicated to type-c jobs at time t. Since copies
are i.i.d. the departure rate of type-c jobs is given by the sum of the departure rates in the d servers (in
the set c) the job is sent to, that is, µ

(∑
s̃∈c

Nc(t)
Ms̃(t)

)
. Now, summing over all jobs types that have a copy

in server s, we obtain as total departure rate from server s,

µ

 ∑
c∈C(s)

∑
s̃∈c

Nc(t)

Ms̃(t)

 . (1)

For a given time t, let smax be a server containing the largest number of copies, i.e., Msmax(t) ≥Ms(t),
for all s. It then follows that the departure rate from a server with the largest number of copies equals

µ

 ∑
c∈C(smax)

∑
s̃∈c

Nc(t)

Ms̃(t)

 ≥ µ 1

Msmax(t)

 ∑
c∈C(smax)

∑
s̃∈c

Nc(t)

 = µ
d

Msmax(t)

∑
c∈C(smax)

Nc(t) = µd.

The arrival rate of copies to a server equals d
Kλ. If ρ < 1, then λ d

K < µd, hence the total arrival rate
to a server with the largest number of copies is smaller than its departure rate, which allows us to prove
stability.

In order to make the above exact, we investigate the fluid-scaled system. The fluid-scaling consists
in studying the rescaled sequence of systems indexed by parameter r. For r > 0, denote by N IID,r

c (t)
the system where the initial state satisfies N IID

c (0) = rnc(0), for all c ∈ C. The superscript IID
refers to the system under either PS or ROS in the system with i.i.d. copies. Using standard arguments,
see [10], we can write for the fluid-scaled number of jobs per type

N IID,r
c (rt)

r
= nc(0) +

1

r
Ãc(rt)−

1

r
S̃c(T

IID,r
c (rt)), (2)

where Ãc(t) and S̃c(t) are independent Poisson processes having rates λ

(Kd)
and µ, respectively, and

T IID,rc (t) =
∑

s∈c T
IID,r
s,c (t), where T IID,rs,c (t) is the cumulative amount of capacity spend on serving

type-c jobs in server s ∈ c during the time interval (0, t].
In the following result, we obtain the general characterization of a fluid limit.

Lemma 1. For almost all sample paths ω and sequence rk, there exists a subsequence rkj such that for
all c ∈ C and t ≥ 0,

lim
j→∞

N
IID,rkj
c (rkj t)

rkj
= nIIDc (t) u.o.c1 and (3)

lim
j→∞

T
IID,rkj
c (rkj t)

rkj
= τ IIDc (t) u.o.c.,

1where u.o.c. stands for uniformly on compact sets.

6

with (nIIDc (·), τ IIDc (·)) continuous functions. In addition,

nIIDc (t) = nc(0) +
λ(
K
d

) t− µτ IIDc (t),

where nIIDc (t) ≥ 0, τ IIDc (0) = 0, τ IIDc (t) ≤ t, and τ IIDc (·) are non-decreasing and Lipschitz continu-
ous functions for all c ∈ C.

The following lemma gives a partial characterization of the fluid process.

Lemma 2. The fluid limit mIID
s (t) :=

∑
c∈C(s) n

IID
c (t) satisfies:

dmIID
s (t)

dt
≤ λ d

K
− µd, if mIID

s (t) = max
l∈S
{mIID

l (t)} > 0.

In the case ρ < 1, the drift in the above expression is strictly negative. That is, the maximum of the
fluid process ~m(t) is strictly decreasing with constant rate. Hence, there is a finite time T when the fluid
process is empty. From this, we can directly conclude that the system is stable, see for instance [27].

Proposition 3. Under either PS or ROS with i.i.d. copies, the system is stable when ρ < 1.

Remark 1 (General scheduling policies). We believe that the above result holds for any non-preferential
scheduling policy that treats all job types equally, but we did not succeed in obtaining a unifying proof.
Our approach to prove Proposition 3 can be readily extended to cover all policies whose fluid drift is (i)
continuous and (ii) is equal or larger than µd for the server(s) with the largest number of copies. Both
PS and ROS satisfy this property, but not FCFS. Given the lack of generality of the class of policies that
satisfy (i) and (ii), we chose to restrict the presentation to PS and ROS.

Remark 2 (General service requirement distributions). In this paper we focus on exponential distributed
service requirements. The analysis of general service requirement distributions is a very challenging
problem and it will require a different proof technique. For instance, FCFS with i.i.d. copies has been
studied in [25] for a specific choice of highly variable service requirements. For an asymptotic regime,
the authors show that the stability region increases without bound as the service requirement becomes
more variable and/or the number of redundant copies increases. This is explained by the fact that each
job has d independent copies, and hence, in the (unlikely) event that a copy has a relatively large size,
the probability that this copy will be served will become very small as the number of redundant copies
increases, or the sizes of the copies become more variable, since the completion of a small-sized copy
will directly cancel this large copy. Therefore, the combination of variable job sizes and redundancy,
increases the stability region. In Section 8.1 we analyze the stability condition of the system under
non-exponential service times under PS and ROS service policies.

4.2 Priority policy

Given Proposition 3, one might wonder whether any work-conserving policy would be maximum stable
when copies are i.i.d. Indeed, whenever all servers have copies to serve, the total departure rate of jobs
equals Kµ. This is however not enough to conclude for stability. In Example 1 we give a counterexam-
ple.

Example 1. We consider the system withK = 3 and d = 2, hence there are three different types of jobs:
C = {{1, 2}, {1, 3}, {2, 3}}. In server 1, FCFS is implemented. In server 2 and server 3, jobs of types
{1, 2} and {1, 3} have preemptive priority over jobs of type {2, 3}, respectively. Additionally, within a
type, jobs are served in order of arrival.

In Figure 2 we have plotted the trajectory of the system when ρ = 0.96 < 1. One observes that the
number of type-{2, 3} jobs in the system grows large, while the number of type-{1, 2} and type-{1, 3}

7

Figure 2: The trajectory of the number of jobs per type with time for the system with λ = 2.9.

jobs stay close to 0. Hence, the system is clearly unstable, even though ρ < 1. This is explained as
follows: jobs of type-{1, 2} and jobs of type-{1, 3} are oblivious to the presence of jobs of type-{2, 3},
due to the preemptive priority assumed in servers 2 and 3. Type-{1, 2} and type-{1, 3} jobs have only
one server in common. Such a FCFS-redundancy system (M -model) has been analysed in [16], where it
was obtained that this system (and hence the number of type-{1, 2} jobs and type-{1, 3} jobs) is stable
when ρ = λ

3µ <
3
2 .

Type-{2, 3} jobs are served in server 2 (3) whenever there are no type-{1, 2} jobs (type-{1, 3} jobs)
present in the system. Note that type-{1, 2} and type-{1, 3} jobs behave independent from type-{2, 3}
jobs. Assuming type-{1, 2} and type-{1, 3} are in steady state, the drift of the number of type-{2, 3}
jobs in the system is given by

d

dt
E~n
[
N{2,3}(t)

]∣∣∣
t=0

=
λ

3
− µP (N{1,2} = 0, N{1,3} > 0)− µP (N{1,3} = 0, N{1,2} > 0)− 2µP (N{1,2} = 0, N{1,3} = 0).

By [16], we have that

P (N{1,2} = 0, N{1,3} > 0) = P (N{1,3} = 0, N{1,2} > 0) = P (N{1,3} = 0, N{1,2} = 0)

(
2µ

2µ− λ/3
− 1

)
,

where P (N{1,3} = 0, N{1,2} = 0) =
(

(2µ−λ/3)2(3µ−2λ/3)
4µ2(3µ−2λ/3)+(λ/3)2µ

)
. After some algebra, we have

d

dt
E~n
[
N{2,3}(t)

]∣∣∣
t=0

=
λ

3
− 2µ

(
(2µ− λ/3)2(3µ− 2λ/3)

4µ2(3µ− 2λ/3) + (λ/3)2µ

)(
2µ

2µ− λ/3

)
.

It can be checked that the latter is strictly negative if and only if ρ < 0.91. From this one can conclude
that the system is unstable when ρ > 0.91, using fluid scaling techniques. We however omit the proof
as it is out of the scope of this paper.

5 FCFS service policy and identical copies

In this section we consider the redundancy-d model when copies of a job are identical and when FCFS
is employed. We characterize the necessary and sufficient stability condition and show that the stability
condition is reduced when adding redundant copies. This as opposed to the i.i.d. case, for which the
stability condition remained fixed in d. Appendix B contains the proofs of the results obtained in this
section.

8

5.1 Characterization of stability condition

Under the FCFS service policy, jobs are served in order of arrival. If the copies in service in the K
servers belong to k different jobs, the departure rate of the system is equal to kµ. The latter is strictly
smaller than Kµ, even though K servers are busy. This follows from the observation below.

OBSERVATION 1. At every instant of time when the system is not empty, the job that is longest in the
system will be running on d servers.

Since at every instant of time there is a subset of d servers giving service to all the copies of the same
job and copies are identical, the total output rate of this subset of d servers is reduced to µ. Regarding
the K − d remaining servers, the order of arrivals of the jobs impacts the output rate of the remaining
servers. As an example, when K = 4 and d = 2, the K − d = 2 remaining servers have as total output
rate either µ (if copies of the same job are first in line in both servers) or 2µ. In total, this would give as
total output rate either 2µ or 3µ. In both cases, it is strictly less than Kµ = 4µ.

From the above, it is clear that the total departure rate is not order independent, that is, the total
departure rate depends on the order of arrivals of the jobs that are in service. Note that in the case of
i.i.d. copies, the order-independence property was key to obtain a product-form steady state distribution,
see [4]. For the case of identical copies (as considered here), the lack of the order-independence assump-
tion prevents us from obtaining a closed-form expression for the stability condition. Instead, in the main
result of this section we will characterize the stability condition through the average departure rate in a
corresponding system with infinite backlog, referred to as the saturated system. Formally, the saturated
system is defined as follows.

Definition 1. Saturated system: There is an infinite backlog of jobs waiting in the system, sampled
uniformly over types. There are K servers and the service policy within a server is FCFS. The d copies
corresponding to a job are identical.

We denote the long-run time average number of distinct jobs served in the saturated system by ¯̀.
Hence, the total departure rate in a saturated system is ¯̀µ. Below we show that λ < ¯̀µ, or equivalently,
ρ < ¯̀/K, is a necessary and sufficient condition for the original FCFS system with identical copies to be
stable. The characterization of the stability condition through a saturation system is reminiscent of the
saturation rule obtained in [6] to prove stability of a large class of queueing systems. We can however
not use here their framework due to certain specifics of our model. Instead, in order to prove the stability
condition, we resort to stochastic coupling, martingale arguments and fluid limits. The proof will be
given in Section 5.2.

Proposition 4. Under FCFS and identical copies, the system is stable if ρ < ¯̀/K and unstable if
ρ > ¯̀/K .

We will prove in Section 6, that the stability condition under PS and identical copies is ρ < 1/d.
Note that ¯̀≥ dK/de, since at least dK/de jobs are being served at a given time in the saturated system.
This gives the following corollary.

Corollary 5. The stability region under FCFS, ρ < ¯̀/K, is larger than under PS, ρ < 1/d.

In the remainder of this section, we characterize ¯̀. In order to do so, we consider the Markovian
state descriptor of the form ~e = (O`∗ , L`∗−1, . . . , O2, L1, O1). Here, `∗ denotes the number of jobs
that receive service in state ~e and Oj denotes the type of the j-th job in service. Furthermore, there are
Lj jobs that arrived after job Oj and cannot be served since they are waiting for servers that are busy
serving types O1, . . . , Oj . Note that the state descriptor ~e retains the order of the arriving jobs per type
from right to left.

9

For a given state ~e, we let `∗(~e) denote the number of jobs in service, i.e., `∗. Let Ē denote the state
space of the saturated system. The mean number of jobs in service can formally be written as

¯̀ :=
∑
~e∈Ē

π(~e)`∗(~e), (4)

with π(~e) the steady-state distribution of the saturated system.

Figure 3: The table and figure show the values of ¯̀/K for different values of d and K.

¯̀/K K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9

d = 1 1 1 1 1 1 1 1 1

d = 2 0.5 0.666 0.719 0.744 0.760 0.770 0.775 0.781

d = 3 0.333 0.5 0.547 0.573 0.589 0.600 0.608

d = 4 0.25 0.4 0.438 0.461 0.476 0.488

d = 5 0.2 0.333 0.364 0.384 0.398

d = 6 0.166 0.285 0.310 0.328

d = 7 0.142 0.250 0.270

In general, no closed-form expression is known for ¯̀. In Appendix B, we write a general expression
for the balance equations of the saturated system and state them explicitly for the case d = K − 2
(simplest non-trivial case, since then either two or three jobs are served in the saturated system). From
this, we can obtain numerically the value of ¯̀. When d ∈ {1,K−1,K}, we can instead get closed-form
expressions for ¯̀. When d = K−1, there are d servers that process copies of one job, and the remaining
K − d = 1 server serves one additional job, hence, ¯̀= 2. When instead d = 1, there is no redundancy
and each server serves one job in the saturated system, i.e., ¯̀ = K. When d = K, the system behaves
as a single server with capacity µ, that is, ¯̀= 1.

In Figure 3, we present ¯̀/K for different values of d and K: the table (left) shows ¯̀/K for small
values of K and the figure (right) plots the value of ¯̀/K as K grows large. To obtain the value of ¯̀ for
d 6= 1,K − 2,K − 1,K, we simulated the saturated system, rather than solving the balance equations.
We observe from Figure 3 that ¯̀/K (and hence the stability region) increases when the number of
servers (K) grows large. We make this formal in the proposition below, which is proved using stochastic
coupling arguments.

Proposition 6. For the saturated system, it holds that ¯̀/K is increasing in K.

It would be interesting to determine limK→∞ ¯̀/K, as this would represent the stability condition
in a mean-field setting. The values in the figure at Figure 3 seem to indicate that lim

K→∞
¯̀/K = c with

c < 1, that is, the stability region reduces as compared to d = 1. We observed that this value c coincides
with the value obtained by the numerical method developed in [19].

From Figure 3 we further observe that ¯̀/K decreases when the number of redundant copies (d)
increases. Unfortunately, we did not succeed in finding a coupling argument to prove this property.

5.2 Proof of stability condition

In this section we show that ρ < ¯̀/K is both a necessary and sufficient stability condition, that is, we
prove Proposition 4. The dependency on the order of arrivals of the total departure rate makes exact
analysis hard. In order to prove the stability conditions, we formulate two auxiliary systems that we
can compare sample-path wise to the original system. These systems will have the property that for a
sufficiently large period of time, a saturated system is observed, and hence, have as average departure
rate ¯̀µ, which allows us to prove the stability condition.

10

5.2.1 Necessary stability condition

The auxiliary process Ñ (T)(t) is defined as follows. At time t = 0, we assume that Ãc(T) type-c jobs
arrive, ∀c ∈ C. During the interval (0, T] there are no further arrivals. After time t > T , new type-c
jobs arrive according to the original Poisson process with rate λ/

(
K
d

)
. In the Ñ (T)-system, each server

serves according to FCFS.
To compare the auxiliary process with the original FCFS system, we need to introduce some nota-

tion. The attained service of the copy of the i-th type-c job in server s, aFCFScis (t), will be compared
to the attained service of the same copy in the Ñ (T)-system. For that, (with slight abuse of notation),
we let aÑ

(T)

cis (t) denote the attained service of this same copy, where we assume that in case this copy
has already departed in the Ñ (T)-system, then aÑ

(T)

cis (t) is set equal to its service requirement bci. In the
result below we show that sample-path wise, a job departs earlier in the Ñ (T) system than in the original
system. In particular, this implies that if the original FCFS model is stable, then the Ñ (T)-system is
stable as well.

Lemma 7. Assume NFCFS
c (0) = Ñ

(T)
c (0) and aFCFScis (0) = aÑ

(T)

cis (0), for all c, i, s. Then, Ñ (T)
c (t) ≤

NFCFS
c (t)+(Ãc(T)− Ãc(t))+ and aFCFScis (t) ≤ aÑ(T)

cis (t), for all i = 1, . . . , NFCFS
c (t), c ∈ C, s ∈ S.

Let the random variable τ(T) > 0 denote the moment that one of the servers becomes empty. In
the time interval [0, τ(T)], the Ñ (T)-system will behave as a saturated system. We will prove that as T
grows large, τ(T) grows large, and due to the law of large numbers, the time-average number of jobs
in service in the interval [0, τ(T)] will be equal to ¯̀, as defined in (4). Since each job in service has a
departure rate µ, this allows us to prove that if the Ñ (T)-system is stable, then λ < ¯̀µ. Together with
Lemma 7 this gives the following result.

Proposition 8. Under FCFS and identical copies, the system is unstable if ρ > ¯̀/K .

5.2.2 Sufficient stability condition

In order to prove that ρ < ¯̀/K is a sufficient stability condition, we define the process N̂(t) as follows.
In the time interval [0, |N̂(0)|/µ], only those jobs that were already present at time 0 are allowed to be
served (according to FCFS). From time t, t ≥ |N̂(0)|/µ onwards, all jobs present in the system can be
served.

We first establish a sample-path comparison with the original FCFS system, which allows us to
conclude for stability of the original process. We let aN̂cis(t) denote the attained service of the i-th type-c
job in the N̂ -system. The attained service of the i-th type-c job in server s in the N̂ -system will be
compared to the attained service of the same copy in the FCFS system. In order to do so, with a slight
abuse of notation, we let aFCFScis (t) denote the attained service of this same copy, where we assume that
in case this copy has already departed in the FCFS-system, then it is set equal to its service requirement
bci.

Lemma 9. Assume NFCFS
c (0) = N̂(0) and aFCFScis (0) = aN̂cis(0), for all c, i, s. Then, N̂c(t) ≥

NFCFS
c (t) and aN̂cis(t) ≤ aFCFScis (t), for all i = 1, . . . , N̂c(t), c ∈ C, s ∈ S.

For the stochastic process N̂(·), we will see that the system is stable if ρ < ¯̀/K. To do so, we
will characterize the fluid limit. We will show that at the moment the auxiliary process can start serving
jobs that were not present at time 0, the queue has built up, and during a considerable amount of time
the system will behave as a saturated system. Hence, the average number of occupied servers equals ¯̀,
which allows us to prove that N̂(t) is stable if ρ < ¯̀/K. Together with Lemma 9 this gives the following
result.

Proposition 10. Under FCFS and identical copies, the system is stable if ρ < ¯̀/K.

11

6 PS service policy and identical copies

In this section we investigate the redundancy-d model with identical copies when PS is employed in all
the servers. We will show that the system is stable if and only if ρ < 1/d. We note that this coincides
with the stability condition of a system where all d copies have to be fully served.

Proposition 11. Under PS and identical copies, the system is stable if ρ < 1
d and unstable if ρ > 1

d .

Before proceeding to the intuition (Section 6.1) and proof of Proposition 11 (Section 6.2), we first
introduce a new notation. Under PS, the attained service of the copy of the i-th type-c job in server s
increases at speed 1/MPS

s (t), that is, daPS
cis (t)
dt = 1

MPS
s (t)

, ∀c ∈ C(s), i = 1, . . . , Nc(t). Note that a
departure of a job is due to a departure in the server where it has the largest attained service. Denote
by s∗ci(t) the server that contains the copy of the i-th type-c job with the largest attained service, that is,
s∗ci(t) := argmaxs∈c{aPScis (t)}, for all c ∈ C, i = 1, . . . , Nc(t). The instantaneous departure rate of the
i-th type-c job under PS is hence µ

MPS
s∗
ci

(t)
(t)
. In particular, the number of type-c jobs decreases at rate

NPS
c (t)∑
i=1

µ

MPS
s∗ci(t)

(t)
. (5)

6.1 Intuition behind stability condition and its proof

To illustrate why ρ < 1/d is the stability condition, we have plotted in Figure 4 the trajectories of the
number of copies in each of the servers, MPS

s (t), for two settings, K = 3 and K = 8, with d = 2. In
both cases, we assume the load is such that ρ > 1/d. We let the processes start in a very large state, and
plot the trajectories over a large time horizon.

In Figure 4, we observe the following effect. When the processes MPS
s (t) are unbalanced (as is

the case for t < 104), the numbers of copies at the most loaded servers decrease. Consider one of the
highly-loaded servers, referred to as server s̃. Now, a copy in service in server s̃will leave because either
it has obtained full service in server s̃, or a copy of the same job finished service in another less-loaded
server. The rate at which a copy is served at such a less-loaded server, is higher than that in the high-
loaded server s̃. Thus, the effective departure rate of copies from server s̃ will be higher than µ. Since
the arrival rate of new copies to a given server equals λ d

K , this explains why the number of copies in
server s̃ (a higher loaded server) can go down, even though λd/K > µ (ρ > 1/d).

Hence, during a certain time, the system experiences a ”good phase” in which higher-loaded servers
decrease and the total queue length decreases as well. However, once the servers are more equally
loaded, we observe that the total queue length starts to build up. To explain this, consider the symmetric
case, i.e., MPS

s (t) = m, for all s. Then, each copy of a job receives in each server the same fraction
of capacity. Hence, the departure rate of copies from a server is µ (see Eq. (5)). Since λd/K > µ, the
servers will build up from then on, and the total number of jobs will diverge.

In order to prove the stability condition, the challenge is to prove instability. We note that the total
number of jobs cannot be taken as Lyapunov function: As we described above, inside some cone around
the diagonal (symmetric states), the drift of the total number of copies in the system is strictly positive,
while outside that cone, the drift of the total number of jobs is decreasing. We further observe from
Figure 4 that the drift of the server with the minimum number of copies is strictly positive, while the
drifts of the higher-loaded servers is first negative, until they join the minimum, from which point on they
stay together and increase. This motivated us to study the drift of the server with the minimum number
of copies. Though it is a complicated (non-monotone) function for the stochastic process, one can show
that for the fluid limit, the drift of the server with the minimum number of copies is strictly positive. So,
even if at a short time scale, the minimum cannot be taken as Lyapunov function, the minimum at a fluid
scale does go up if ρ > 1/d. This is exactly what is used in order to prove unstability, see Lemma 14.

12

Figure 4: The dashed line represents the total number of jobs in the system under PS with identical
copies. The other lines represent the number of copies in each of the servers. (left) K = 3, d = 2 and
ρ = 0.53, (right) K = 8, d = 2 and ρ = 0.52.

6.2 Proof of stability condition

Having identical copies makes exact analysis hard, as it requires to keep track of the attained service of
the copies in each of the servers. In order to derive the necessary and sufficient stability condition, i.e. to
prove Proposition 11, we describe two systems that lower and upper bound the original PS system. These
systems will have the property that the departure rate no longer depends on the attained service, which
allows us to prove necessary (sufficient) conditions for stability for the lower bound (upper bound), and
hence also for the original system. The full proofs can be found in Appendix C.

6.2.1 Necessary stability condition

For the original system, the departure rate of the number of type-c jobs depends on the attained service,
see Equation (5). More precisely, the departure rate of the i-th type-c job equals

µ

MPS
s∗ci(t)

(t)
, (6)

where we recall that s∗ci(t) denotes the server where a copy of this job has received most service so far.
The lower-bound system is defined as follows: We replace (6) by

µ

MPS
smin
c (~N(t))

(t)
,

where sminc (~N(t)) := arg mins∈c{Ms(t)} is the server with the least number of copies that contains
a type-c job at time t (ties are broken at random). That is, in the lower-bound system, a type-c job
receives service from the server in the set c with the minimum number of copies. We note that since
the lower-bound system does no longer depend on the attained service, it is more amenable to get the
stability condition.

The lower-bound system is described by {NLB
c (t), c ∈ C}t≥0, living on the countable set Z(Kd)

+ .
Here, NLB

c (t) denotes the number of type-c jobs in the lower-bound system. The process NLB
c (t)

increases by one at rate λ/
(
K
d

)
(as is the case for the original process), and decreases by one at rate

µ
NLB
c (t)

MLB
smin
c (~NLB(t))

(t)
, (7)

13

where MLB
s =

∑
c∈C(s)N

LB
c . Note that Equation (7) coincides with Equation (5), where now s∗ci(t)

is replaced by sminc (~N(t)) (because for a given type, all jobs share the same server with the smallest
number of copies). Below, we prove that this system gives a stochastic lower bound for the original
system.

Lemma 12. Assume NPS
c (0) = NLB

c (0), for all c. Then, NPS
c (t) ≥st N

LB
c (t), for all c ∈ C and t ≥ 0.

In Lemma 13 below, we give an expression for the departure rate from a server s in the lower-
bound system. Before doing so, we need to introduce some notation. For each server s, we define
Ds(~N

LB(t)) := {l ∈ S : MLB
s (t) ≥ MLB

l (t)}. We denote by Csl (~N(t)) := {c ∈ C(s) : l =

sminc (~N(t))}, the subset of types that are served in server s and for whom server l is the server with
the minimum number of copies that serve type c. Notice that C(s) is the disjoint union of the above
elements, C(s) = ∪l∈Ds(~N(t))C

s
l (
~N(t)).

Lemma 13. For the lower-bound system, when in state ~NLB(t) = ~nLB , the number of copies in
server s, MLB

s (t), decreases by one at rate

µ

1 +
∑

l∈Ds(~nLB)

(MLB
s (t)−MLB

l (t))
∑

c∈Csl (~n)N
LB
c (t)

MLB
s (t)MLB

l (t)

 . (8)

In particular, from Equation (8) we clearly see the improvement brought by redundancy. For the
server with the minimum number of copies, Equation (8) simplifies to µ. This server is hence not re-
ceiving any help from the other (higher-loaded) servers. However, servers that do not have the minimum
number of copies, do benefit from redundant copies, as their service rate is µ plus some additional posi-
tive fractions. This is due to the fact that in the lower-bound system, all types in server s that also have
a copy in another server with less copies, will receive as effective service rate that what they would get
in this latter server, and hence receive a higher capacity than what they would get in server s.

We study the fluid limit of the lower bound system in order to conclude the lower-bound system
is transient when ρ > 1/d. The fluid-scaling consists in studying the rescaled sequence of systems
indexed by parameter r. For r > 0, denote by NLB,r

c (t) the system where the initial state satisfies
NLB
c (0) = rnc(0), for all c ∈ C. The associated number of copies per server is given by MLB,r

s (t) =∑
c∈C(s)N

LB,r
c (t), for all s ∈ S. For the fluid-scaled number of jobs per type we can write

NLB,r
c (rt)

r
= nc(0) +

1

r
Ãc(rt)−

1

r
S̃c(T

LB,r
c (rt)), (9)

where TLB,rc (t) is defined as the cumulative amount of capacity spent on serving type-c jobs in server
sminc (~NLB,r(·)) during the time interval (0, t]. The existence of fluid limits can be proved as before:
The statement of Lemma 1 indeed directly translates to the process ~NLB,r(t), and is therefore left out.
In the following result, we obtain the general characterization of a fluid limit.

Lemma 14. The fluid limit mLB
s (t) :=

∑
c∈C(s) n

LB
c (t) satisfies:

dmLB
s (t)

dt
= λ

d

K
− µ, if mLB

s (t) = min
l∈S
{mLB

l (t)} > 0,

and
dmLB

s (t)

dt
≥ λ d

K
− µ, if mLB

s (t) = min
l∈S
{mLB

l (t)} = 0.

14

In case λd/K−µ > 0, this partial characterization of the fluid limit implies the following. Consider
servers whose amount of fluid is the minimum, that is, consider servers belonging to the set U(t) :=
{s ∈ S : mLB

s (t) ≤ mLB
s̃ (t),∀s̃}. By Lemma 14, the amount of fluid in these servers increases with a

strictly positive rate λd/K − µ. Moreover, if at time t0 > t, some server s̃ is added to this set, that is,
U(t0) = U(t)∪{s̃}, this server will increase as well from that moment on with the same rate λd/K−µ.

This uniform divergence of the fluid limit, together with bounds on the macroscopic drifts, allows us
to show instability of the stochastic process ~NLB(t) via a usual transience criterion for Markov chains
whenever the fluid drift λd/K − µ is strictly positive. Together with Lemma 12, this allows us to prove
the following result.

Proposition 15. Under PS and identical copies, the system is unstable if ρ > 1/d.

6.2.2 Sufficient stability condition

For the original system, a job departs the system once a copy has received its service in one of the
servers. We will now upper bound this, by considering the same system, but where a job departs from
the system only if all its copies have completed service.

For the UB-system, we let NUB
c (t) denote the number of type-c jobs, and AUBc (t) = (aUBcis (t))is,

with aUBcis (t) the attained service of the i-th type-c job in server s. Note that the number of copies in

server s is given by MUB
s (t) =

∑
c∈C(s)

∑NUB
c (t)

i=1 1(aUB
cis (t)<bci)

, since a copy is only present in server s
when aUBcis (t) is strictly smaller than the service requirement bci. The i-th type-c job in server s is served

at speed 1/MUB
s (t), hence daUB

cis (t)
dt = 1/MUB

s (t). Now, the i-th type-c job departs from the system
once aUBcis (t) = bci for all servers s ∈ c, that is, when all the copies of a job are fully served.

To compare the UB-system with the original PS system, we need to compare the attained service of
the i-th arrived job in both systems. For that, we denote by αUBi,s (t) and αPSi,s (t) the attained service of
the i-th arrived job in server s, for UB and PS, respectively. With slight abuse of notation, we set αPSi,s (t)
equal to βi (the service requirement of the i-th arrived job) for all servers s, in case it has departed from
the PS system.

Lemma 16. Assume αPSi,s (0) = αUBi,s (0), for all i = 1, . . . , and s ∈ S. Then, αUBi,s (t) ≤st αPSi,s (t) for
all t ≥ 0, i = 1, . . ., and s ∈ c. In particular, NUB

c (t) ≥st NPS
c (t).

In the upper-bound system, all copies need to be served until a job departs. Hence, each queue
receives copies at rate λd/K and copies depart at rate µ, that is, its marginal distribution is that of an
M/M/1 system with arrival rate λd/K and departure rate µ. The latter is positive recurrent if and only
if ρ < 1/d. Since ~NUB(t) serves as an upper bound for our model (Lemma 16), this implies that the
original system is positive recurrent as well, as stated in the result below.

Proposition 17. Under PS and identical copies, the system is stable if ρ < 1/d.

7 ROS service policy and identical copies

In this section we study ROS with identical copies and show that the stability condition is ρ < 1.
Appendix D contains the proofs of the results obtained in this section.

7.1 Intuition behind stability condition and its proof

Under ROS with identical copies, an idle server chooses uniformly at random a new copy from its queue
and serves it until the copy finishes service, or one of its identical copies finishes service in another
server. Note that if k servers are serving different jobs, then the total departure rate of these k servers is

15

µk. If however these k servers are serving a copy from the same job, then these k servers give together
a total departure rate µ (since copies are identical), hence capacity is wasted.

From the above, we observe that P(every copy in service belongs to a unique job) is an important
measure to determine the stability condition under ROS. Note that this probability is strictly smaller
than 1 when the queue length is small, hence capacity is wasted. However, as the queues grow large,
this probability will converge to 1, showing that under the fluid scaling no capacity is wasted. This then
allows us to conclude that the stability condition is not reduced when adding redundant copies, that is,
ρ < 1 is the stability condition.

7.2 Proof of stability condition for ROS

In order to prove the stability, we investigate the fluid-scaled system. For r > 0, denote by NROS,r
c (t)

the system where the initial state satisfies ~NROS,r(0) = r~n(0). Using routing arguments, we can write

NROS,r
c (rt)

r
= nc(0) +

1

r
Ãc(rt)−

1

r
S̃c(T

ROS,r
c (rt)), (10)

where TROS,rc (t) is defined as the cumulative amount of capacity spent on serving a first copy of type-c
jobs in the interval (0, t]. For a given job, we refer with “first copy” to that copy (out of the d) that was
first to enter into service.

The existence of the fluid limit can be proved. In fact, the statement of Lemma 1 and its proof
directly carries over, and is therefore left out. The following lemma gives a partial characterization of
the fluid process. For the proof see Appendix D.

Lemma 18. The fluid limit mROS
s (t) :=

∑
c∈C(s) n

ROS
c (t) satisfies the following:

dmROS
s (t)

dt
≤ λ d

K
− µd, if mROS

s (t) = max
l∈S
{mROS

l (t)} > 0.

In case ρ < 1, the drift in the above expression is strictly negative. That is, the maximum of the
fluid process ~m(t) is strictly decreasing with constant rate. Hence, there is a finite time T when the
fluid process is empty. From this, we can directly conclude stability (same steps as in the proof of
Proposition 3).

Proposition 19. Under ROS with identical copies, the process ~NROS(t) is ergodic when ρ < 1.

8 Simulation analysis

We have implemented a simulator in order to assess numerically the impact of redundancy. We run these
simulations for a sufficiently large number of busy periods (106), so that, the variance and confidence
intervals of the mean number of jobs in the system are sufficiently small.

We simulate the system under the same assumptions as considered in the theoretical results, that
is, exponential service times and homogeneous servers. In order to assess the impact of our model-
ing assumptions, we also simulate the queueing model with other service time distributions, such as
deterministic services, or degenerate hyperexponential distributions. Under the latter distribution, with
probability p the service requirement is exponentially distributed with parameter µp, and is 0 otherwise,
hence, the mean service time equals 1/µ (independent of p). The squared coefficient of variation how-
ever equals 2

p − 1, which increases as p decreases. As a consequence, this distribution allows us to
study the impact of the service time variability on the performance. We also consider a system with
heterogeneous servers and present some preliminary analysis in this setting.

Without loss of generality, throughout this section we assume that the mean service requirement of
a copy equals 1. In Section 8.1 we present the numerics for i.i.d. copies and in Section 8.2 for identical
copies.

16

Figure 5: Mean number of jobs for the homogeneous server system (K = 5) with exponential service
times and i.i.d. copies vs. the load for FCFS, PS and ROS service policies.

8.1 IID copies

In this section we consider that copies are i.i.d. copies. Under FCFS, PS and ROS, the system is stable
whenever ρ < 1. In Figure 5 we plot the mean number of jobs (scaled by 1 − ρ) under these policies
for different values of d. For a given d, we observe that the plots under FCFS, PS and ROS are very
similar. In addition, we observe that increasing the number of redundant i.i.d. copies, d, improves the
performance.

In Figure 6 we plot the mean number of jobs under FCFS, PS, and ROS for exponential, determin-
istic, and degenerate hyperexponential (p = 0.25 and p = 0.1) service time distributions. We assume
K = 5 servers and plot the performance for d = 2 and d = 4 copies. For either FCFS, PS or ROS,
we can draw similar qualitative observations: (i) For variable service distributions, the performance im-
proves as d increases while it is the other way around for deterministic copies, and (ii) for a given d, the
performance improves as the variability of the service time distribution increases. Only under FCFS and
PS, with the degenerate hyperexponential distribution the system remains stable even if ρ > 1, while
the stability region with deterministic service requirements seems to be reduced. The increase in the sta-
bility region when the service requirements become more variable was proved in an asymptotic regime
by [25] for FCFS. In general, this can be intuitively explained by noting that when copies of a job are
i.i.d., the probability that a job departs due the completion of a rather large copy will become small as
the variability in the copies increases. For PS, the increase in performance due to variability of service
sizes is even more profound than with FCFS (see also Figure 6), as only jobs that have a positive service
time for their d copies will enter service (which happens with probability pd), while all other jobs are
served instantaneously.

Under ROS, simulation results seem to indicate that the stability condition remains ρ < 1 for any
service time distributions. Since copies are being randomly chosen for service, the system does not
seem to profit from the variability of the service times of the i.i.d. copies. For example, in the case
of degenerate hyperexponential distribution, when ρ is close to 1, with probability p a job will start
being served in a server where its copy has strictly positive service requirement. Due to ROS, in a high
congested system, the probability that another copy (possible of size 0) of this job will receive service in
another server will be close to zero. Hence, with probability p a job needs exponential service time with
parameter µp and with probability 1 − p its service time equals zero. On average it needs 1/µ, which
explains why ρ < 1 can be the stability condition. Further note that for d = 4, it seems that the system
remains stable when ρ = 1. This is however not the case. For ρ close to 1, the mean number of jobs
in the system is close to zero, which can be explained as follows: A job has a strictly positive service

17

Figure 6: Mean number of jobs for the homogeneous server system for exponential, deterministic and
degenerate hyperexponential (p = 0.25 and p = 0.1) service times (i.i.d. copies) vs. the load for (top
left) FCFS, (top right) PS and (bottom) ROS.

requirement with probability pd. When d = 4 and p ∈ {0.25, 0.1}, it holds that p4 < 10−2. Hence, it is
very likely that for a very long time, zero jobs are present in the system (as all arriving jobs spend zero
time in the system). This explains why for ρ < 1, the mean number of jobs stays very close to zero. We
however believe that the stability condition is ρ < 1.

8.2 Identical copies

In this section we consider jobs with identical copies. We have proved that the stability condition
strongly depends on the employed scheduling policy and on the number of copies d. In Section 8.2.1
we evaluate the system for different values of d and observe that the stability region reduces as d grows
large. In Section 8.2.2 we characterize the performance and its dependence on d for a light-load regime,
and observe that when the load is small enough, redundancy can improve the performance. In Sec-
tion 8.2.3, we numerically study the impact of different service time distributions on the performance.
Finally, in Section 8.2.4, we present a preliminary analysis and numerics for a heterogeneous servers
setting.

18

Figure 7: Mean number of jobs for the homogeneous server system (K = 5) with exponential service
times and identical copies vs. the load: (top left) FCFS, (top right) PS and (bottom) ROS.

8.2.1 Exponential service times

In Figure 7 we plot the mean number of jobs under FCFS (top left), PS (top right) and ROS (bottom)
respectively, for different values of d. The vertical lines in Figure 7 correspond to the stability regions
(for different values of d) as derived in Proposition 11, Proposition 4 (where ¯̀/K has been obtained via
simulation of the saturated system) and Proposition 19. Indeed, we observe that the mean numbers of
jobs under FCFS, PS and ROS have an asymptote at the point ¯̀/K, 1/d and 1, respectively.

An interesting observation we can draw from Figure 7 is that for every d, the stability region under
FCFS is larger than under PS, as proved in Corollary 5.

Under ROS, we observe that the best performance of the system is achieved when d = 2, for any
load ρ. Hence, adding redundant copies (d = 2) when the scheduling policy is ROS does improve
the performance of the system for any value of ρ. This as opposed to FCFS and PS, where the best
performance for high load is obtained in d = 1.

In Figure 8 we focus on FCFS. As before, the vertical lines correspond to the stability region, ρ <
¯̀/K. In the figure on the left, we fix the number of copies to d = 2 and plot the performance for several
values of the number of servers K. We note that the stability region increases in K (as also proved in
Proposition 6) and that it converges as K grows large to a constant value. In the figure on the right, we
instead set d = K−2, so that the number of copies increases withK. Now, we observe that the stability
condition reduces as the number of servers K increases. Hence, the negative impact due to having one
more redundant copy, is more important than the benefit of having one more server. This is in agreement
with the case d = K − 1, for which the the stability region (ρ < 2

K) also decreases in K.

19

Figure 8: Mean number of jobs for the homogeneous server system under FCFS with exponential service
times and identical copies vs. the load: (left) d = 2 and K = 2, . . . , 9, (right) d = K − 2 and K =
4, . . . , 10.

Figure 9: Ratio of the mean delay with d identical copies and the mean delay with no redundant copies
(d = 1), as a function of ρ. For the homogeneous server system (K = 5) with exponential service times
and identical copies: (left) FCFS and (right) PS.

8.2.2 Light-traffic approximation

In this section we consider the steady-state performance for extremely low traffic load, i.e., the so-
called light-traffic regime pioneered in [26], see also [30]. The light-traffic approximation corresponds
to the first-order asymptotic expansion of the system as λ → 0. More precisely, as λ → 0 we seek
to write E(| ~NP (∞)|) = N̄LT,P (λ) + o(λ2), for a given service policy P . We defer the details of
the light-traffic analysis to Appendix E, and we give here the main result of the approach in which we
characterize N̄LT,FCFS(λ), N̄LT,ROS(λ) and N̄LT,PS(λ).

Lemma 20. The leading term of the light-traffic approximation for FCFS, ROS and PS with identical
copies is given by N̄LT,FCFS(λ) = N̄LT,ROS(λ) = λ

µ + 3λ2

2µ2
1

(Kd)
, and N̄LT,PS(λ) = λ

µ + λ2

µ2
1

(Kd)
,

respectively.

We note that for all three policies, the light-traffic term is minimized in d∗ := bK/2c. To explain
this, we note that at very low loads, an arriving job will find at most one other job present. In particular
this implies that this new arrival will wait for service if and only if it is of the same type as the job already

20

present in the system. The probability of being of the same type is equal to 1/
(
K
d

)
, which is minimized

by setting d equal to d∗.
For ROS, we saw in Figure 7 that d = 2 indeed minimizes the mean number of jobs. In Figure 9

(left) and (right) we consider FCFS and PS, respectively, for low load. We plot the ratio of the mean total
number of jobs for the system with d identical copies with that of a system with no redundant copies
(d = 1). If the ratio is below 1, this implies that redundancy (for the particular value of d) improves the
performance. As predicted in Lemma 20, redundancy reduces the mean delay for ρ small enough, and
the best performance is obtained in d = 2. Recall that for sufficiently large load, the minimum delay is
obtained with d = 1, see Figure 7.

8.2.3 Non-exponentially distributed service requirements

Figure 10: Mean number of jobs for the homogeneous server system (K = 5) and exponential, deter-
ministic and degenerate hyperexponential (p = 0.25 and p = 0.1) service times (identical copies) vs.
the load: (top left) FCFS, (top right) PS and (bottom) ROS.

In Figure 10 we compare the mean number of jobs for exponential, deterministic, and degenerate
hyperexponential service time distributions. We consider K = 5 servers and d = 2 and d = 4 identical
copies.

We observe that for FCFS, PS and ROS, the performance degrades as d increases. This is in contrast
to the i.i.d. case, where we observed the opposite effect. This is due to the fact that with identical copies,
capacity is wasted on serving the exact same copy, while with i.i.d. copies, the system benefits from the
difference in the requirement per copy.

21

For FCFS and ROS, we observe that, unlike in the i.i.d. case, the performance of the system de-
grades as the variability of the service time increases. In particular, for a given d, the best performance
is obtained with deterministic service times. Moreover, for the degenerate hyperexponential service dis-
tribution, the performance deteriorates as p decreases. For FCFS, these observations are in agreement
with the results obtained by [19] for the mean field analysis.

From the numerics, it seems that for deterministic or degenerate hyperexponential service require-
ments, ROS is more stable than when FCFS and PS are implemented.

Another interesting observation is that for PS the performance seems to be nearly insensitive to the
service time distribution (beyond its mean value). When degenerate hyperexponential service times are
considered, it is trivial that the performance coincides with that of exponential service requirements.
This can be explained as follows: With identical copies, only a fraction p of the arrivals have a non-
zero service requirement, and this is exponentially distributed with mean 1/(pµ). Thus, the system
with degenerate hyperexponential service requirements with parameter p is equivalent to the system
with arrival rate λ and exponentially distributed service requirements with mean 1/µ where time is
parametrized with parameter p.

8.2.4 Heterogeneous server capacities

In this section we investigate the stability region of the previously analysed systems PS and FCFS for
heterogeneous servers. We take exactly the same model as before, that is, a type-c job arrives at rate
λ/
(
K
d

)
and sends d identical copies (exponentially distributed with parameter µ) to d servers chosen at

random. However, now, instead of having homogeneous servers, we assume that server s has capacity
νs, for s ∈ S. This is a rather simple heterogeneous model, as the arrival rates of the different types are
taken uniformly, but in spite of this, it provides interesting insights. In fact, redundancy might have the
complete opposite effect when the capacity of the servers is sufficiently spread out.

When d = 1, there is no redundancy and each server receives arrivals at rate λ/K. For any work-
conserving policy implemented in the servers, the latter system is stable if and only if ρ < νmin, where
νmin = mins∈S{νs}.

When d = K, each job sends identical copies to all K servers. Assume one starts with an empty
system at time 0. It can easily be seen that in each server the queue length is the same, and a departure
of a job is always due to a copy finishing its service requirement in the server with the highest capacity.
This holds for both FCFS and PS. Hence, the system behaves as a single server with capacity µνmax,
where νmax = maxs∈S{νs}. Therefore, under FCFS or PS with d = K, the system is stable if and
only if λ < µνmax, i.e., ρ < νmax

K . From this, we observe that adding d = K identical copies to the
system reduces the stability region if and only if νmax < Kνmin. Hence, when the difference between
the smallest and largest capacity is not that large, redundancy reduces the stability region, as we saw for
the homogeneous case. However, when the difference is sufficiently large, adding K redundant copies
to the system can in fact improve the system.

To see the impact of d < K identical copies, we performed simulations. In Figure 11 we plot
the mean number of jobs under FCFS and PS, respectively, for K = 3 and two different setting of
parameters: (ν1, ν2, ν3) = (3, 5, 6) (lines with �) and (ν1, ν2, ν3) = (1, 4, 8) (lines with ◦). Note that
when (ν1, ν2, ν3) = (3, 5, 6), the stability condition for d = 1 is λ < 9, and for d = K is λ < 6. As
in the case of homogeneous servers, the stability condition is larger in the system with no redundancy
than when d = K. However, when the server capacities are (ν1, ν2, ν3) = (1, 4, 8) (lines with ◦), we
observe the opposite effect: the stability condition for d = 1 is λ < 3, and for d = K is λ < 8. Since
νmax < Kνmin, having d = 3 redundant copies improves the stability of the system.

From Figure 11 we observe that for FCFS, the performance of the system is improved when d = 2
copies are considered. In addition, the stability region under d = 2 seems to be larger than that under
d = 1. Similarly for PS service policy we observe that under different capacity parameters, the stability

22

condition of the system could be improved when d = 2 copies are considered.

Figure 11: Mean number of jobs with heterogeneous servers (K = 3 and ν = (1, 4, 8) and ν = (3, 5, 6))
with exponential service times (identical copies) vs. the arrival rate (λ): (left) FCFS and (right) PS.

Even if these results are not conclusive for the study of the stability condition under heterogeneous
server capacities and identical copies, these results are insightful for a future understanding of the impact
of redundancy in heterogeneous server systems. As a general conclusion, we see that heterogeneity in
server’s speeds has a profound impact on the stability condition with identical copies.

9 Conclusion

In recent years, redundancy has emerged as a promising technique to reduce the response time of jobs in
data centers, and researchers have obtained encouraging results showing that indeed, redundancy could
help improving the performance. Due to mathematical tractability, a large body of the literature has
assumed that redundant copies are exponentially distributed and independent among each other, and
that the scheduling discipline in servers is FCFS. Under these assumptions, one of the main conclusions
from literature is that redundancy does not impact the stability region, that is, the amount of work that
the system can handle remains unchanged.

However, we believe our analysis serves as an indication that redundancy needs to be implemented
with care, in order to prevent an unnecessary degradation of the performance. Indeed, the main takeaway
message from our work is that the stability region strongly depends on the modeling assumptions (in
some cases in a somehow unexpected manner), for instance on (i) the scheduling discipline deployed
in servers, (ii) the correlation structure between copies, (iii) service requirement distribution, and (iv)
the variability of server speeds. The fact that the stability condition depends strongly on the employed
scheduling discipline was initially unexpected for us, given that in the M/M/1 case, size-unaware
policies like PS, ROS and FCFS have the same steady-state distribution with exponential service times.

An important question for future work is to characterize a set of disciplines that, just like ROS, do
not reduce the stability region under the identical copies assumption, and to analyze their performance
as a function of the redundancy degree d. Other interesting questions that emerge from our work are to
investigate the stability of redundancy when combined with size based scheduling policies like Shortest-
Remaining-Processing-Time and Least Attained Service. All our theoretical results are restricted to the
case of exponentially distributed service times. To characterize the stability condition to general service
times is a very challenging problem and it will require a different proof technique. For instance, to
extend the maximum stability result of alpha-fair bandwidth allocations in networks from exponential
assumptions (proved in [7]) to general distributions (proved in [24]) took a decade.

23

We conclude by noting that in our study we have considered a rather basic model of redundancy. In
practice, one might expect servers to be heterogeneous in terms of speeds and scheduling discipline, and
the service time distribution of copies to show other correlation structures. However, we believe that our
analysis provides sufficient ground to conclude that redundancy needs to be implemented with care, in
order to prevent an unnecessary degradation of the performance.

Acknowledgments

The authors are thankful to Rhonda Righter for useful comments that helped improve the presentation
of the paper. The Ph.D. project of E. Anton is funded by the French “Agence Nationale de la Recherche
(ANR)” through the project ANR-15-CE25-0004 (ANR JCJC RACON). This work (in particular re-
search visits of E. Anton and M. Jonckheere) was partially funded by a STIC AMSUD GENE project.
Urtzi Ayesta has received funding from the Department of Education of the Basque Government through
the Consolidated Research Group MATHMODE (IT1294-19).

References

[1] Ivo Adan, Igor Kleiner, Rhonda Righter, and Gideon Weiss. FCFS parallel service systems and
matchings models. Valuetools (2017), pages 106–112, 2017.

[2] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Effective straggler mitiga-
tion: Attack of the clones. In NSDI, volume 13, pages 185–198, 2013.

[3] Ganesh Ananthanarayanan, Srikanth Kandula, Albert G Greenberg, Ion Stoica, Yi Lu, Bikas Saha,
and Edward Harris. Reining in the outliers in map-reduce clusters using mantri. In OSDI’10 Pro-
ceedings of the 9th USENIX conference on Operating systems design and implementation, pages
265–278, 2010.

[4] Urtzi Ayesta, Tejas Bodas, Jan-Pieter L Dorsman, and Ina Maria Verloop. A token-based central
queue with order-independent service rates. arXiv, 1902.02137, 2019.

[5] Urtzi Ayesta, Tejas Bodas, and Ina Maria Verloop. On a unifying product form framework for
redundancy models. Performance Evaluation, 127-128:93–119, May 2018.

[6] François Baccelli and Serguei Foss. On the saturation rule for the stability of queues. Journal of
Applied Probability, 32(2):494–507, 1995.

[7] Thomas Bonald and Laurent Massoulié. Impact of fairness on Internet performance. In Proceed-
ings of ACM SIGMETRICS/Performance, pages 82–91, 2001.

[8] Thomas Bonald and Alexandre Proutière. Insensitive bandwidth sharing in data networks. Queue-
ing Systems, 44:69–100, 2003.

[9] Thomas Bonald and Céline Comte. Balanced fair resource sharing in computer clusters. Perfor-
mance Evaluation, 116:70–83, 2017.

[10] Maury Bramson. Stability of Queueing Networks. Springer, 2008.

[11] Xiuli Chao. Networks with customers, signals, and product form solution. In Richard J. Boucherie,
Nico M. Dijk, and Frederick S. Hillier, editors, Queueing Networks, volume 154, pages 217–267.
Springer US, 2011.

24

[12] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the ACM, 56(2):74–80,
2013.

[13] Kristen Gardner, Mor Harchol-Balter, Alan Scheller-Wolf, and Benny van Houdt. A better model
for job redundancy: Decoupling server slowdown and job size. IEEE/ACM Transactions on Net-
working, 25(6):3353–3367, 2017.

[14] Kristen Gardner, Mor Harchol-Balter, Alan Scheller-Wolf, Mark Velednitsky, and Samuel Zbarsky.
Redundancy-d: The power of d choices for redundancy. Operations Research, 65:1078–1094,
2017.

[15] Kristen Gardner, Esa Hyytia, and Rhonda Righter. A little redundancy goes a long way: Convexity
in redundancy systems. Performance Evaluation (2019), 2019.

[16] Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-Balter, Esa Hyytiä, and Alan
Scheller-Wolf. Queueing with redundant requests: exact analysis. Queueing Systems, 83(3-4):227–
259, 2016.

[17] Nicolas Gast and Bruno Gaujal. Markov chains with discontinuous drifts have differential inclu-
sions limits. Performance Evaluation, 69:623–642, 2012.

[18] Tim Hellemans and Benny van Houdt. Analysis of redundancy(d) with identical replicas. Perfor-
mance Evaluation Review, 46(3):1–6, 2018.

[19] Tim Hellemans and Benny van Houdt. On the power-of-d-choices with least loaded server selec-
tion. Proc. ACM Meas. Anal. Comput. Syst., 2(2):27:1–27:22, June 2018.

[20] Gauri Joshi, Emina Soljanin, and Gregory Wornell. Queues with redundancy: Latency-cost analy-
sis. ACM SIGMETRICS Performance Evaluation Review, 43(2):54–56, 2015.

[21] Ger Koole and Rhonda Righter. Resource allocation in grid computing. Journal of Scheduling,
ISSN 1094-6136. 2007.

[22] Kangwook Lee, Ramtin Pedarsani, and Kannan Ramchandran. On scheduling redundant requests
with cancellation overheads. IEEE/ACM Transactions on Networking (TON), 25(2):1279–1290,
2017.

[23] Kangwook Lee, Nihar B Shah, Longbo Huang, and Kannan Ramchandran. The mds queue:
Analysing the latency performance of erasure codes. IEEE Transactions on Information Theory,
63(5):2822–2842, 2017.

[24] Fernando Paganini, Ao Tang, Andrés Ferragut, and Lachlan Andrew. Network stability under alpha
fair bandwidth allocation with general file size distribution. IEEE Transactions. on Automatic
Control, 57(3):579–591, 2012.

[25] Youri Raaijmakers, Sem Borst, and Onno Boxma. Redundancy scheduling with scaled bernoulli
service requirements. arXiv, 1811.06309, 2018.

[26] Martin I Reiman and Burton Simon. An interpolation approximation for queueing systems with
poisson input. Operations Research, 36:454–469, 1988.

[27] Philippe Robert. Stochastic Networks and Queues. Springer-Verlag, 2003.

[28] Nihar B Shah, Kangwook Lee, and Kannan Ramchandran. When do redundant requests reduce
latency? IEEE Transactions on Communications, 64(2):715–722, 2016.

25

[29] Vulimiri, Ashish, Godfrey, Philip Brighten, Mittal, Radhika, Sherry, Justine, Ratnasamy, Sylvia,
Shenker, and Scott. Low latency via redundancy. In Proceedings of the ACM conference on
Emerging networking experiments and technologies, pages 283–294. ACM, 2013.

[30] Jean Walrand. Chapter 11 queueing networks. In D.P. Heyman and M.J. Sobel, editors, Stochastic
Models, volume 2 of Handbooks in Operations Research and Management Science, pages 519 –
603. Elsevier, 1990.

Appendix

A: Proofs of Section 4

Proof of Lemma 1:

From the law of large numbers, we obtain that almost surely,

lim
r→∞

1

r
Ãc(rt) =

λ(
K
d

) t and lim
r→∞

1

r
S̃c(s)ds = µt. (11)

The cumulative amount of capacity spent on serving type-c jobs in server s, T IID,rs,c (t) increases
at rate N IID

c (t)/M IID
s (t) ≤ 1. Hence, 1

rT
IID,r
s,c (rt) − 1

rT
IID,r
s,c (ru) ≤ t − u for every t ≥ u, i.e.,

T IID,rs,c (rt)/r is Lipschitz continuous. Therefore, by the Arzela-Ascoli theorem we obtain that for almost

all sample path ω and any sequence rk, there exists a subsequence rkj such that lim
j→∞

T
IID,rkj
c (rkj t)

rkj
=

τ IIDc (t), u.o.c.. Together with (2) and (11), we obtain Equation (3).

Proof of Lemma 2:

For ease of notation, we removed the superscript IID throughout the proof. Let f(~n) = (fc(~n), c ∈ C),
with fc(~n) : R|C|+ → R|C|, denote the drift vector field of ~N(t) when starting in state ~N(0) = ~n, i.e.,

f(~n) = d
dtE

~n
[
~N(t)

]∣∣∣
t=0

. We can deduce from the results of [17, Proposition 5] that the fluid limit ~n(t)

satisfies
d~n(t)

dt
∈ F (~n(t)), (12)

where
F (~n) := conv

(
accr→∞ f(r~nr) with lim

r→∞
~nr = ~n

)
. (13)

Here, accr→∞ xr denotes the set of accumulation points of the sequence xr when r goes to infinity and
conv(A) is the convex hull of set A. An illustration of how F is constructed is available in Figure 1
in [17, Section 2].

Using Equations (12) and (13), we can partly characterize the fluid process ms(t) =
∑

c∈C(s) nc(t).
Denote by f̃s(~n) =

∑
c∈C(s) fc(~n) the one-step drift of Ms(t). The arrival rate of copies to server s

equals λ
(
K−1
d−1

)
/
(
K
d

)
= λd/K. Recall from (1) that the total departure rate of copies from server s

equals µ
(∑

c∈C(s)
∑

l∈c
nc
ml

)
. Hence, in state ~n, the drift of server s is equal to

f̃s(~n) = λ
d

K
− µ

 ∑
c∈C(s)

∑
l∈c

nc
ml

 . (14)

26

Let G2(~n) := {s ∈ S : ms ≥ ml,∀l}. Note that if s ∈ G2(~n), then
(∑

c∈C(s)
∑

l∈c
nc
ml

)
≥(∑

c∈C(s)
∑

l∈c
nc
ms

)
=
∑

c∈C(s) d
nc
ms

= d.

Now, let limr→∞ ~n
r = ~n, and ~n 6= ~0. Then, for s ∈ G2(~n),

lim
r→∞

f̃s(r~n
r) = λd/K − µ

 ∑
c∈C(s)

∑
l∈c

nc
ml

 ≤ λd/K − µd.
Together with (12), (13) and

∑
c∈C(s)

dnc(t)
dt = dms(t)

dt , this concludes the proof.

Proof of Proposition 3:

Define mIID
max(t) := maxs∈S{mIID

s (t)} and fix T = mIID
max(0)/d(µ − λ

K). From Lemma 2, we know
that at time T , mmax(T) = 0. Since for any s ∈ S, mIID

s (t) ≤ mIID
max(t), we conclude that at time T

the fluid system is empty. From [27, Corollary 9.8], we then conclude that the process is ergodic.

B: Comments and proofs of Section 5

Balance equations of the saturated system

For ~e1, ~e2 ∈ E, we denote by q(~e1, ~e2) the transition probability from state ~e1 to state ~e2. Recall that
in state ~e = (O`∗ , . . . , O2, L1, O1) ∈ Ē, exactly `∗(~e) := `∗ jobs are being served, each of them with
departure rate µ. Hence, the balance equations of the saturated system are given by

µ`∗(~e1)π(~e1) =
∑
~e2∈Ē

q(~e2, ~e1)π(~e2),

with π(~e) the steady-state distribution.
We will write down the balance equations in the case d = K − 2. In that case, at any moment in

time there is one job that is served in d = K− 2 servers. In the remaining two servers, either one job, or
two jobs are served. Hence, the states of the saturated system are of the form ~e = (O3, L2, O2, L1, O1)
and ~e = (O2, L1, O1). We denote by C(O1) := {c ∈ C : c ∪O1 = {1, . . . ,K}} the subset of types that
together with type O1 make all servers busy. Hence, if the system is in state ~e = (c, L1, O1), c ∈ C(O1),
the total departure rate is 2µ. We denote by C̄(O1) := C −O1 ∪ C(O1) the subset of types that together
with O1 do not use all servers. For O1, O2 ∈ C, we denote by C(O1, O2) := {c ∈ C : c ∪ O1 ∪ O2 =
{1, . . . ,K}} the subset of types that together with O1 and O2 make all servers busy.

The balance equations are given by:

2µπ(O2, L1, O1) = µπ(O2, L1 + 1, O1) + µ
∑

c∈C(O1)

L1∑
j=0

(
1

|C|
)j+1π(c, L1 − j,O1)

+µ
∑

c∈C(O1)

(
1

|C|
)L1+1π(O1, 0, c) + µ

∑
c∈C̄(O1)

(
1(

K−1
d

))L1

π(O2, L1, O1, 0, c)

+µ
∑

c∈C̄(O1)

L1∑
j=0

(
1(

K−1
d

))j π(O2, j, c, L1 − j,O1),

with L1 ≥ 0, O1 ∈ C, and O2 ∈ C(O1). The term (1/
(
K−1
d

)
)j in the fourth and fifth term on the right

represents the probability that all j waiting jobs are of type O1 (types O1 and c occupy K − 1 servers,

27

hence
(
K−1
d

)
is the number of possible types that can compose L1). For a 3µ departure rate configuration

state we have

3µπ(O3, L2, O2, L1, O1) = µπ(O3, L2, O2, L1 + 1, O1)

+µ
∑

c∈C̄(O1)∩C(O1,O3)

∑L1
j=0

(
1

(K−1
d)

)j+1

π(O3, L2 + j + 1, c, L1 − j,O1)

+µ
∑

c∈C(O1,O2)

∑L2
j=0

(
(K−1

d)
|C|

)j
1
|C|(c, L2 − j,O2, L1, O1)

+µ
∑

c∈C̄(O1)∩C(O1,O3)

(
1

(K−1
d)

)L1+1

π(O3, L1 + L2 + 1, O1, 0, c)

+µ
∑

c∈C̄(O1)∩C(O1,O2)

(
(K−1

d)
|C|

)L2
1
|C|

(∑L1
j=0

(
1

(K−1
d)

)j
π(O2, j, c, L1 − j,O1)

+

(
1

(K−1
d)

)L1

π(O2, L1, O1, 0, c)

)
+µ
∑

c∈C(O1)

(
(K−1

d)
|C|

)L2 (
1
|C|

)2 (∑L1
j=0

(
(1
|C|)

jπ(c, L1 − j,O1)
)

+ (1
|C|)

L1π(O1, 0, c)
)
,

with O1 ∈ C, O2 ∈ C̄(O1), O3 ∈ C(O1, O2) and L1, L2 ≥ 0. Note that on the right-hand-side, the

term (K−1
d)
|C| is the probability that an arriving job is of type c ∈ O1 ∪ O2 (the number of types c with

c ∈ O1 ∪O2 is equal to
(
K−1
d

)
).

Some properties of ¯̀

In the proof, we will make use of the following properties for the saturated system (as defined in Def-
inition 1). Recall that the average total departure rate of the saturated system is given by ¯̀µ, where ¯̀

is defined in (4) as the average number of jobs in service. For the saturated system, recall that `∗(~e)
denotes the number of jobs that is served in state ~e. Hence

lim
t→∞

1

t

∫ t

0
`∗(~e(u))du = ¯̀, almost surely. (15)

For the saturated system, let `∗c(~e) equal 1 if a type-c job is served in state ~e and 0 otherwise. Note that∑
c∈C `

∗
c(~e) = `∗(~e). Hence, using the system symmetry, (or more precisely, the exchangeability of the

server contents), and together with (15), we obtain that

lim
t→∞

1

t

∫ t

0
`∗c(~e(u))du =

¯̀(
K
d

) , almost surely. (16)

Proof of Proposition 6

We are given a saturated system with K servers, with a central queue where jobs wait in order of arrival.
The system starts serving at time 0. Let cK(i) denote the type of the i-th job at time 0 in this central
queue. Let αKis (t) denote the attained service of this job at time t in server s ∈ cK(i). Once the job i
departs, the attained service αKis (t) is set equal to βi, the service requirement of job i. Let DK

c (t) denote
the number of departed type-c jobs in the interval (0, t] and DK

s (t) :=
∑

c∈CK(s)D
K
c (t) the number of

departed jobs from server s, with CK the set of types with K servers. We will prove that

DK
s (t) ≥st DK−1

s (t), with s an arbitrary server in each of the systems. (17)

Before proving this, we first show how (17) implies that ¯̀/K is increasing in K, as stated in Propo-
sition 6. From (17) we have limt→∞

1
tD

K
s (t) ≥ limt→∞

1
tD

K−1
s (t), that is, the long-run departure rate

28

from server s is increasing in the number of servers. Note that µ
∑

c∈C(s) `
∗
c(~e(t)) is the instantaneous

departure rate from server s, where `∗c(~e(t)) equals 1 if a type-c job is served, and equals 0 other-
wise. From (16), we have that the long-run departure rate from server s can equivalently be written as
limt→∞

1
tµ
∑

c∈C(s)
∫ t

0 `
∗
c(~e(t))du =

¯̀µ

(Kd)

(
K−1
d−1

)
= d¯̀µ

K . Since the long-run departure rate is increasing

in the number of servers, this implies that ¯̀

K is increasing inK and proves the statement of Proposition 6.
We are left with proving (17). In order to do so, we will couple the system with K servers to a

system with K − 1 servers as follows. We consider the central queue associated to the saturated system
with K servers, which corresponds to an infinite backlog of jobs (at time 0) ordered according to arrival
(from −∞). In the K − 1 server model, server K is removed. We couple the K − 1 server model to
the K server model, by creating the central queue for the K − 1 system as follows. For each i-th job in
the central queue that has a copy in server K, i.e., K ∈ cK(i), we choose uniformly at random another
server among the remainingK\cK(i) servers, denoted by sK−1(i). Hence, for any job withK ∈ cK(i),
we set its type in the K − 1 system as cK−1(i) = (cK(i)\K) ∪ sK−1(i). For all jobs with K /∈ cK(i),
we set cK−1(i) = cK(i). Below we show that for all t ≥ 0,

αKis (t) ≥ αK−1
is (t), ∀i = 1, . . . and ∀s ∈ cK(i)\K. (18)

and
αKiK(t) ≥ αK−1

isK−1(i)
(t). (19)

From (18) and (19) we obtain that (17) holds: If a job i departs from a server s in the K − 1 system,
then (i) either also s ∈ cK(i), in which case this job has departed at a time u ≤ t in the K system
(from (18)), (ii) or s 6= cKi , which implies that the type of the job is different in the K system and K− 1
system, hence s = sK−1(i). Then, from (19) it follows that this job has departed at a time u ≤ t in the
K system. To conclude, in both cases, job i has already departed in the K system before it departs in
the K − 1 system, hence, (17) holds.

The result in (18) and (19) will be proved by induction. It holds at time 0. Now assume that for all
u ≤ t it holds that αKis (u) ≥ αK−1

is (u),∀i = 1, . . . and ∀s ∈ cK(i)\K. and αKiK(u) ≥ αK−1
isK−1(i)

(u).

We prove that this remains true at time t+.
In order for the inequality (18) to no longer be valid at time t+, it needs to hold that either (18) or

(19) hold with strict equality. We first assume the first case, that is, αKis (t) = αK−1
is (t), for some i and

s ∈ cK(i)\K. If αKis (t) = αK−1
is (t) = 0 and in the K − 1 system it holds that αK−1

is (t+) > 0, then this
implies that one of the following occurs:

(1) in the K system, the server s is serving the i1-th job, with i1 < i, while in the K − 1 system,
server s starts serving job i at time t+. However, since αKi1s̃(t) ≥ αK−1

i1s̃
(t), for all s̃ ∈ cK(i)\K,

this implies that job i1 should not have a copy in server s in the K − 1 system, since otherwise,
job i1 was also still in service in the K − 1 system. However, due to the construction of the
coupling and since s 6= K, such a job i1 does not exist.

(2) in the K − 1 system, this job i finishes its service in server s̃, that is, αK−1
is̃ (t+) = βi and hence

αK−1
is (t+) = βi. But since (18) and (19) hold at time t, this job is then also finished in the K

system, and hence also αKis (t+) = βi.

Now assume αKis (t) = αK−1
is (t) > 0 for some i and s ∈ cK(i)\K. Then, both jobs are in service

in server s, hence the inequality remains valid, unless the job departs in the K − 1 system (and hence
αK−1
is (t+) = βi), but not in theK system. This can however not happen, sinceαKjs̃(t) ≥ α

K−1
js̃ (t), ∀js̃ ∈

cK(j)\K. and αKjK(t) ≥ αK−1
jsK−1(j)

(t). Hence, the inequality remains valid at time t+.

To prove that αKis (t) = αK−1
is (t), implies αKis (t+) = αK−1

is (t+) follows exactly the same steps and
is therefore left out.

29

Proof of Lemma 7.

Both systems are coupled as follows: At time t = 0, NFCFS
c (0) = 0 and Ñ (T)

c (0) = Ãc(T), where
Ãc(t) is the arrival process of type-c jobs. During the time interval [0, T], we couple the original system
and its modified version by using the same arrivals and service times in the FCFS systems, as those that
arrived in the Ñ (T)-system at time 0.

The result will be proved by induction. It holds at time 0. Now assume that for all u ≤ t it holds that
Ñ

(T)
c (u) ≤ NFCFS

c (u)+(Ãc(T)− Ãc(u))+ and aFCFScis (u) ≤ aÑ(T)

cis (u), for all i = 1, . . . , NFCFS
c (t),

c ∈ C, s ∈ S. We prove that this remains true at time t+.
For that, assume there is a c such that Ñ (T)

c (t) = NFCFS
c (t) + (Ãc(T)− Ãc(t))+. If t < T , only in

the FCFS system we can have an arrival, in which case NFCFS
c (t+) = NFCFS

c (t) + 1 and (Ãc(T) −
Ãc(t

+))+ = (Ãc(T)− Ãc(t))+−1. Hence, the inequality remains valid. If t ≥ T , then an arrival in the
FCFS system is coupled to an arrival in the Ñ (T)-system, hence Ñ (T)

c (t+) = NFCFS
c (t+) (and note that

(Ãc(T)− Ãc(t))+ = 0). Now, assume the i-th type-c job departs in the FCFS system (which can cause
a violation of the inequality). Since aFCFScis̃ (t) ≤ aÑ

(T)

cis̃ (t), for all s̃, it holds that the same job departs
in the Ñ (T)-system. Hence, in all cases, the inequality Ñ (T)

c (t+) ≤ NFCFS
c (t+) + (Ãc(T)− Ãc(t+))+

remains valid at time t+.
Now assume there exists a c, i, s such that aFCFScis (t) = aÑ

(T)

cis (t). First assume aFCFScis (t) =

aÑ
(T)

cis (t) > 0. Because of FCFS, in both systems this copy has entered service in server s at the
same instant of time. Hence, it cannot happen that aFCFScis (t+) > aÑ

(T)

cis (t+). If instead aFCFScis (t) =

aÑ
(T)

cis (t) = 0, the i-th type-c copy in server s is waiting in the queue in both systems. We need to prove
that if this copy would enter service in server s at time t+ in the FCFS system, it also enters service in
the Ñ (T)-system in server s. From the FCFS discipline and aFCFSc̃js (t) ≤ aÑ

(T)

c̃js (t), for all c̃, j ≤ i, this
follows directly.

Proof of Proposition 8

We will prove that if the Ñ (T)-system is stable and T is sufficiently large, then λ ≤ ¯̀µ. From Lemma 7,
it follows that stability of the FCFS system, implies stability of the Ñ (T)-system, and hence λ ≤ ¯̀µ,
which would conclude the proof.

We will now prove that if the Ñ (T)-system is stable, then λ ≤ ¯̀µ. We define the random variable
τ(T) as the first moment in time a servers gets empty in the Ñ (T)-system, i.e., τ(T) := min{u :

M̃
(T)
s (u) = 0, for some server s}. Up till time τ(T), the Ñ (T)-system is stochastically equivalent to the

saturated system. Hence, using the Markovian description of the process M Ñ(T)

s and Dynkin’s formula,
we have that there exists a martingale (Zs(t))t≥0 such that

M Ñ(T)

s (τ(T))

τ(T)
=
dλ

K

(T + (τ(T)− T)+)

τ(T)
− 1

τ(T)

∫ τ(T)

0
µ
∑
c∈C(s)

`c(~e(u))du+
Zs(τ(T))

τ(T)
, (20)

Since the increasing process associated to Zs is bounded in mean by Ct, with C > 0, it follows that
suptE

(Zs(t)
t

)2 ≤ Ct
t2

, which in turn implies that Zs(τ(T))
τ(T) → 0 in L2 and hence the convergence holds

almost surely.
Since by the law of large numbers for the Poisson process, lim infT

τ(T)
T ≥ c > 0, almost surely,

together with (16), it follows that

lim
T→∞

M Ñ(T)

s (τ(T))

τ(T)
=
dλ

K

T + (τ(T)− T)+

τ(T)
− d

K
¯̀µ, almost surely. (21)

30

By assumption, the Ñ (T)-system is stable, hence, E(τ(T)) < ∞. We can therefore focus on a
sample path realization ω such that τ(T) <∞. From (21), it follows that for each ε > 0, we can find T

such that M
Ñ(T)
s (τ(T))
τ(T) ≥ dλ

K
T+(τ(T)−T)+

τ(T) − d
K

¯̀µ − ε. Let server s̃ be such that M Ñ(T)

s̃ (τ(T)) = 0. If

τ(T) ≤ T , then, 0 =
MÑ(T)

s̃ (τ(T))
τ(T) ≥ d

K (λT
τ(T) − ¯̀µ) − ε. Since τ(T) ≤ T , this implies λ ≤ ¯̀µ + K

d ε.

On the other hand, if τ(T) > T , then, 0 =
MÑ(T)

s̃ (τ(T))
τ(T) ≥ d

K (λ − ¯̀µ) − ε, i.e., λ ≤ ¯̀µ + K
d ε. Since

this holds for any ε, we conclude that λ ≤ ¯̀µ.

Proof of Lemma 9

We couple both systems as follows: at time zero, both systems start in the same initial state, that is,
N̂c(0) = NFCFS

c (0) and aN̂cis(0) = aFCFScis (0), for all c, i, s. Arrivals and their service requirements are
coupled.

The result will be proved by induction. It holds at time 0. Now assume that for all u ≤ t it holds
that N̂c(u) ≥ NFCFS

c (u) and aN̂cis(u) ≤ aFCFScis (u) for all i = 1, . . . , NFCFS
c (t), c ∈ C, s ∈ S. Below,

we prove that this remains true at time t+.
Assume there is a c such that N̂c(t) = NFCFS

c (t). The inequality can be violated at time t+ if there
is a type-c departure in N̂ , but not in FCFS. However, note that if the head-of-the-line type-c job in the
N̂ -system departs, since aN̂c1s̃(t) ≤ aFCFSc1s̃ (t), this job would also depart from the FCFS system. Hence,
N̂c(t

+) = NFCFS
c (t+) at time t+.

Now assume there exists a c, i, s such that aN̂cis(t) = aFCFScis (t). First assume aN̂cis(t) = aFCFScis (t) >
0. Because of FCFS, in both systems this copy has entered service in server s at the same instant of
time. Hence, it cannot happen that aN̂cis(t

+) > aFCFScis (t+). If instead aN̂cis(t) = aFCFScis (t) = 0, the
i-th type-c copy in server s is waiting in the queue in both systems. We need to prove that if this copy
would enter service in server s at time t+ in the N̂ -system, it also enters service in the FCFS-system in
server s. From the FCFS discipline and aN̂c̃js(t) ≤ aFCFSc̃js (t), for all c̃, j ≤ i, this follows directly.

Proof of Proposition 10

From Lemma 9 we have that N̂(t) is an upper bound for the original FCFS system. Hence, it will be
enough to prove stability of the process N̂(t).

In order to prove stability of N̂(t), we study the fluid-scaled system. That is, for each r, we study
N̂ r(t), with N̂ r(0) = rn(0). Define T0 = |n(0)|

µ . By definition of N̂ r(t), in the interval [0, rT0], only

those jobs present at time 0 are served (according to FCFS). From time rT0 = |N(0)|
µ onwards, all jobs

can be served.
We write N̂ r(t) = N̂ r

A(t) + N̂ r
B(t), where N̂ r

A(t) denotes the number of old jobs, that is, the
number of jobs present at time t among those that were already present at time t = 0. We let N̂ r

B(t) =

N̂ r(t) − N̂ r
A(t) denote the number of new jobs present at time t. Similarly, we let M̂s,B(t) denote the

number of new jobs that have a copy in server s.
We now show that for any fluid limit n̂(t) of N̂ r(rt) it holds that it is zero at some time smaller than

or equal to T1 := T0
λ

λ−¯̀µ
= |n(0)| λ

µ(λ−¯̀µ)
, that is |n̂(T̃1)| = 0.

In the interval [0, rT0], the system serves only the jobs present at time 0. Let ˆ̀r
A(t) denote the

number of such jobs in service at time t in the N̂ r-system. Hence, using the Markovian description of
the process |N̂ r

A(rt)| and Dynkin’s formula, we have that there exists a martingale (Z(t))t≥0 such that

|N̂ r
A(rt)|
r

= |~n(0)| − µ1

r

∫ rt

0

ˆ̀
A(u)du+

Z(rt)

r
, (22)

31

for t ∈ [0, T0]. Since the increasing process associated to Z is bounded in mean by Ct, with C > 0, it
follows that suptE

(Z(rt)
r

)2
<∞, which in turn implies that Z(rt)

r → 0 almost surely. Further note that
ˆ̀
A(u) ≥ 1 whenever ~n 6= ~0. Together, this gives that

lim
r→∞

|N̂ r
A(rt)|
r

= max(0, |~n(0)| − µt), for t ∈ [0, T0].

Hence, for any fluid limit n̂A(t), we have |n̂A(t)| ≤ max(0, |n(0)| − µt), so that |n̂A(T0)| = 0.
In the remainder of the proof, we study fluid limits of the process N̂B(rt)/r. We define the random

variable T r1 := inf{t > T0 : there is an s s.t.M̂s,B(r(T0 + t)) = 0} as the first moment after time T0

that one of the servers gets empty. By the law of large numbers, lim infr T
r
1 ≥ c > 0, almost surely.

Hence, without loss of generality, we can focus on sample paths, such that the latter is the case. For a
given sample path, let

T̃1 := lim inf
r→∞

T r1 .

Note that T̃1 ≥ c. We consider henceforth the subsequence rj of any given sequence r, such that

T
rj
1 > T̃1 − ε, ∀rj .

In particular, this implies that all servers are working on new jobs during the interval [rjT0, rjT0 +
rj(T̃1 − ε)], for any rj . Also note that all jobs N̂B(T1) are “freshly” sampled, and hence the system
behaves as a saturated system during this time frame.

Using the Markovian description of the process M̂ r
B(rt) and Dynkin’s formula, we have that there

exists a martingale (Zs(t))t≥0 such that

lim
j→∞

|M̂ rj
s,B(rj(T0 + T̃1 − ε))|

rj

= λ
d

K
(T0 + T̃1 − ε)−

µ

rj

∫ rj(T0+T̃1−ε)

rjT0

∑
c∈C(s)

`∗c(~e(u))du+
Zs(rj(T0 + T̃1 − ε))

rj
, (23)

where we recall that `∗c(~e(u)) equals 1 if a type-c job is in service, and equals zero otherwise. Since the
increasing process associated toZs is bounded in mean byCt, withC > 0, it follows that suptE

(Zs(rt)
r

)2 ≤
Ctr
r2

= Ct
r , which in turn implies that Zs(rt)

r → 0 almost surely. Now together with (16), we conclude
that for this sample path

lim
j→∞

|M̂ rj
s,B(rj(T0 + T̃1 − ε))|

rj
= λ

d

K
(T0 + T̃1 − ε)− ¯̀µ

d

K
(T̃1 − ε) = λ

d

K
T0 + (λ− ¯̀µ)

d

K
(T̃1 − ε).

Hence, the corresponding fluid limit satisfies

m̂s,B(T0 + T̃1 − ε) = λ
d

K
T0 + (λ− ¯̀µ)

d

K
(T̃1 − ε). (24)

In case T̃1 > T1, we set ε = T̃1−T1, and since T1 = T0
λ

λ−¯̀µ
, one obtains from (24) that m̂s,B(T1) =

0 for all s. Now assume T̃1 ≤ T1. By definition of T r1 , it holds that
∏
s M̂

r
s,B(r(T0 + T r1)) = 0 and

hence
∏
s m̂s,B(T0 + T̃1) = 0. From (24) one has m̂s,B(T0 + T̃1 − ε) = m̂s̃,B(T0 + T̃1 − ε), for any

s, s̃ and any ε > 0. This, together with the fact that a fluid limit n̂B(t) is a continuous function and∏
s m̂s,B(T0 + T̃1) = 0, it follows that m̂s,B(T0 + T̃1) = 0 for all s.

We conclude that at time T0 + T̃1, for any fluid limit n̂(·) of N̂ r(·), it holds that n̂(T0 + T̃1) = 0.
From [27, Corollary 9.8], we conclude that the process N̂(t) is ergodic.

32

C: Proofs of Section 6

Proof of Lemma 12:

We couple the two systems as follows: at time zero, start in the same initial state. Arrivals are coupled
in both systems. Below it will become clear how the departures are coupled under both systems.

Assume that at time t ≥ 0, NPS
c (t) ≥ NLB

c (t) for all c ∈ C. We prove that this remains valid at
time t+. We only need to analyse states such that NPS

c (t) = NLB
c (t) = nc, for some c ∈ C. Under

this situation, note that MPS
s∗ci(t)

(t) ≥ MPS
smin
c (~NPS(t))

(t) ≥ MLB
smin
c (~NPS(t))

(t) ≥ MLB
smin
c (~NLB(t))

(t) for all

i = 1, . . . , NPS
c (t). Hence, the departure rate of type-c jobs in the PS system, µ

∑NPS
c (t)

i=1
1

MPS
s∗
ci

(t)
(t)

,

is smaller than or equal to that in the LB-system, µ NLB
c (t)

MLB
smin
c (~NLB(t))

(t)
. We can therefore couple the

systems such that if there is a type-c departure in the original PS model, then also a type-c departure
occurs in the LB-system. Since arrivals are coupled in both systems, it follows directly that at time t+,
NPS
c (t+) ≥ NLB

c (t+).

Proof of Lemma 13:

For simplicity in notation, we remove the superscript LB throughout the proof. From (7), we have that
the departure rate of Ms(t) is given by ∑

c∈C(s)

Nc(t)

Msmin
c (~n)(t)

. (25)

Recall that c ∈ Csl (~n) if server l is the server with the minimum number of copies that serves a type-c
job. Hence, if c ∈ Csl (~n), then sminc (~n) = l. Since C(s) = ∪l∈Ds(~n)Csl (~n), Equation (25) can be written
as ∑

l∈Ds(~n)

∑
c∈Csl (~n)Nc(t)

Ml(t)
. (26)

Using that
∑

c∈Css(~n)Nc(t) can equivalently be written as Ms(t) −
∑

l∈Ds(~n),l 6=s
∑

c∈Csl (~n)Nc(t), we
obtain that (26) is equal to

∑
l∈Ds(~n),l 6=s

∑
c∈Csl (~n)Nc(t)

Ml(t)
+ 1−

∑
l∈Ds(~n),l 6=s

∑
c∈Csl (~n)Nc(t)

Ms(t)
= 1 +

∑
l∈Ds(~n)

(Ms(t)−Ml(t))
∑

c∈Csl (~n)Nc(t)

Ms(t)Ml(t)
.

Proof of Lemma 14:

For ease of notation, we removed the superscript PS throughout the proof.
Let f(~n) = (fc(~n), c ∈ C), with fc(~n) : R|C|+ → R|C|, denote the drift vector field of ~N(t) when

starting in state ~N(0) = ~n, i.e. f(~n) = d
dtE

~n
[
~N(t)

]
t=0

. Recall that the fluid limit can be characterized
as in Equations (12) and (13). We want to partly characterize the fluid process ms(t) =

∑
c∈C(s) nc(t).

We denote by f̃s(~n) =
∑

c∈C(s) fc(~n) the drift of Ms(t).

From Lemma 13, we can write the drift of Ms(·), starting in state ~N(0) = ~n, as

f̃s(~n) = λ
d

K
− µ1(ms>0) − µ1(ms>0)

 ∑
l∈Ds(~n)

(ms −ml)
∑

c∈Csl (~n) nc

msml

 , (27)

33

where Ds(~n) = {l ∈ S : ms ≥ ml} is the set of servers that have less than or equal number of copies,
compared to server s, in state ~n.

Let G1(~n) := {s ∈ S : ms ≤ ml,∀l}. If s ∈ G1(~n) and limr→∞
∑

c∈C(s) n
r
c = limr→∞m

r
s > 0,

it follows from (27) that
lim
r→∞

f̃s(r~n
r) = λd/K − µ.

If instead s ∈ G1(~n) and limr→∞m
r
s = 0, then

conv
(
accr→∞ f̃s(r~n

r) with lim
r→∞

~nr = ~n
)

= conv(λd/K − µ, λd/K).

Combining (12) and
∑

c∈C(s)
dnc(t)

dt = dms(t)
dt , we conclude the proof.

Proof of Proposition 15:

From Lemma 12 we have that if the lower-bound system is unstable, then also the original PS system.
Hence, to prove Proposition 15, it will be enough to prove that ~NLB(t) is unstable if ρ > 1/d. This is
done in the remainder of the proof.

For ease of notation, we remove the superscript LB throughout the proof. To prove that the system
is transient, below we will show that there is a subsequence of t such that the system ~N(t) converges
towards +∞.

Define mmin(t) := mins∈S{ms(t)} and fix T = (|~n| + δ)/(λd/K − µ), for some δ > 0. From
Lemma 14, we know that at time T , mmin(T) ≥ |~n|+ δ, when ~n(0) = ~n. Hence, as well,

|~n(T)| ≥ mmin(T) ≥ |~n|+ δ. (28)

For almost all sample paths, and any subsequence rk of r, there exists a further subsequence rkj such

that limj→∞
| ~N

rkj (rkjT)|
rkj

= |~n(T)| ≥ |~n| + δ, with ~N r(0) = r~n and ~n(t) a fluid limit (the inequality

follows from (28)). Hence, when considering the liminf subsequence, this gives, for all ~n,

lim inf
r→∞

∣∣∣ ~N r(rT)

r

∣∣∣ ≥ |~n|+ δ,

where ~N r(0) = r~n. From Fatou’s lemma, this implies

lim inf
r→∞

E
∣∣∣ ~N r(rT)

r

∣∣∣ ≥ |~n|+ δ.

Hence, there exists r0(~n) ≥ 1, such that ~N r0(~n)(0) = r0(~n)~n and

E
∣∣∣ ~N r0(~n)(r0(~n)T)

∣∣∣ ≥ r0(~n) (|~n|+ δ − ε) , (29)

for some ε, with 0 < ε < δ. Now, for any ~n, define the discrete time stochastic process (~Yl, ~Zl), l ≥ 0:

~Z0 = ~n,

~Yl+1 = ~N r0(~Zl)(r0(~Zl)T), where ~N r0(~Zl)(0) = r0(~Zl)~Zl,

~Zl+1 = ~Yl+1~r0(~Zl), l ≥ 0.

Observe that:

1. (~Yl, ~Zl) is Markov, since ~N is a Markov process.

34

2. It follows from (29) that E
(
|~Zl+1|

∣∣∣~Zl)− |~Zl| ≥ δ − ε > 0, l ≥ 0.

3. Using Dynkins formula for the continuous time process ~N(t), we see that

E
(
E|~Zl+1| − |~Zl|

)
= E

(
|~Zl|+

1

r0(~Zl)

∫ r0(~Zl)T

0
a(~Ns)ds− |~Zl|

)
= E

(1

r0(~Zl)

∫ r0(~Zl)T

0
a(~Ns)ds

)
,

where a(·) is the drift of the norm function. Note that given the model (bounded rates of arrival
and departures) this drift is a bounded function (say by γ), which implies that

E
∣∣∣|~Zl+1| − |~Zl|

∣∣∣ ≤ E
(
E
(γr0(~Zl)T

r0(~Zl)

∣∣∣~Zl)) = γT <∞.

Using a classical transience criterion for Markov chains, (see for instance Proposition 8.9 in [27]), we
obtain that Zl is transient. This in turn directly implies that ~N(t) converges along one subsequence of t
towards +∞, which implies that it is transient.

Proof of Lemma 16:

We couple both systems as follows: at time zero, we start in the same initial state. Arrivals and their
service requirements are coupled in both systems.

The result will be proved by induction. It holds at time 0. Now assume that for all u ≤ t it holds
that αUBi,s (u) ≤ αPSi,s (u) for all i = 1, . . . , and s ∈ S. Below we prove that this remains true at time t+.

Let c(i) denote the type of the i-th arrived job and let Ã(t) denote the number of arrivals until time t.
Assume there is an i ≤ Ã(t) and s ∈ c(i) such that αUBi,s (t) = αPSi,s (t). Note that for all c,

NUB
c (t) =

Ã(t)∑
j=1

1{c=c(j)}1{∃s̃∈c(j), s.t. αUB
j,s̃ (t)<βj} and NPS

c (t) =

Ã(t)∑
j=1

1{c=c(j)}1{∀s̃∈c(j),αPS
j,s̃ (t)<βj}.

Since αUBj,s̃ (t) ≤ αPSj,s̃ (t), for all j, s̃, it follows that NUB
c (t) ≥ NPS

c (t), for all c, hence MUB
s̃ (t) ≥

MPS
s̃ (t) for all servers s̃. In particular, this implies that

dαUB
i,s (t)

dt = 1
MUB

s (t)
≤ 1

MPS
s (t)

=
daPS

i,s (t)

dt , for

s ∈ c(i), which together with αUBi,s (t) = αPSi,s (t) gives that αUBi,s (t+) ≤ αPSi,s (t+) holds at time t+.

D: Proofs of Section 7

Proof of Lemma 18:

For ease of notation, we remove the superscript ROS throughout the proof.
Assume at time 0 we are in state ~N(0) = ~N . We first will write the probability that a given server s

is serving a copy that is not in service in any other server. We denote this probability by Ps(~N). In order
to derive that, we consider Ps(~N |c) defined as the probability that server s is serving a type-c job, s ∈ c,
and this job is not in service in any other server.

Let −T̃s < 0 denote the time that server s started working on the copy which it is serving at time 0.
When the server becomes idle, it chooses a copy uniformly at random. Hence, the probability that a copy
from a type-c job is being served in server s is given by Nc(−T̃s)

Ms(−T̃s)
. Using the law of total probability, we

have

Ps(~N) =
∑
c∈C(s)

Nc(−T̃ rs)

Ms(−T̃ rs)
Ps(~N |c). (30)

35

To calculate Ps(~N |c), note that Nc(−T̃ r
l)−1

Ml(−T̃ r
l)

is the probability that server l is not serving the type-c copy

that is now in service in server s, with l, s ∈ c. Hence,

Ps(~N |c) = Πl∈c,l 6=s
Ml(−T̃ rl)− 1

Ml(−T̃ rl)
, s ∈ c. (31)

We now characterize the fluid limits, which we recall can be characterized as in Equations (12)
and (13). Let f(~n) = (fc(~n), c ∈ C), with fc(~n) : R|C|+ → R|C|, denote the drift vector field of ~N(t)

when starting in state ~N(0) = ~n, i.e., f(~n) = d
dtE

~n
[
~N(t)

]
t=0

. Hence, we study the fluid drift in points
r~nr, where limr→∞ ~n

r = ~n. That is, ~N(0) = r~nr.
Since the transition rates µ and λ are of order O(1), it follows directly that T̃ rs and ~N(−T̃ rs)− ~N(0)

are of order O(1) as well, so that

lim
r→∞

Nc(−T̃ rs)

Ms(−T̃ rs)
= lim

r→∞

Nc(0)

Ms(0)
=

nc(0)

ms(0)
and lim

r→∞

Ml(−T̃ rl)− 1

Ml(−T̃ rl)
= 1. (32)

It hence follows from (30) and (31) that

lim
r→∞

Ps(r~n
r) = 1. (33)

We denote by f̃s(~n) =
∑

c∈C(s) fc(~n) the one-step drift of Ms(t). When starting in state ~N(0) =
r~nr, the latter is in the limit equal to

lim
r→∞

f̃s(r~n
r) = λ

d

K
− µ

 ∑
c∈C(s)

∑
l∈c

nc
ml

lim
r→∞

(Pl(r~n))− lim
r→∞

(gc,l,s(r~n
r)(1− Pl(r~n)))

 (34)

with gc,l,s = O(1). Note that the first term multiplied by µ in (34) represents departures of type-c
jobs, c ∈ C(s), who were served in one unique server. Here nc

ml
represents the probability (in the limit)

that a copy from type c is being served in server s, see (32). The second term multiplied by µ in (34)
represents departures due to a type-c job that is being served in more than one server simultaneously.
Together with (33), we obtain

lim
r→∞

f̃s(r~n
r) = λ

d

K
− µ

∑
c∈C(s)

∑
l∈c

nc
ml
, (35)

Now, note that (35) is equal to (14) (the fluid drift for the PS model with i.i.d. copies). Hence, the
proof now follows as in the proof of Lemma 2.

E: Proof of Section 8.2.2

Light-traffic approximation

In the light-traffic regime, the number of jobs in the system will be very small. In particular, in our light-
traffic approximation, we will assume that at most two jobs will be in the system. Then, the main idea
consists in calculating the mean sojourn time of a tagged job conditioned on its service requirement b,
its type c, and on having at most one other job present in the system upon its arrival. Unconditioning on
the service requirement b, one then obtains the light-traffic approximation for the unconditional mean
sojourn time, denoted by D̄LT,P (λ), where P denotes the scheduling discipline used in the servers.
Using Little’s law on the light-traffic approximation, i.e. N̄LT,P (λ) = λD̄LT,P (λ), one obtains the
result for the mean number of jobs in the system as presented in Lemma 20.

36

For a given arrival rate λ > 0, let D̄P (λ, b) denote the mean sojourn time for the tagged job condi-
tioned on its size being b. We let c be the type of the tagged job. Using the ideas as presented in [30],
we can write D̄P (λ, b) = D̄LT,P (λ, b) + o(λn+1), as λ→ 0, where

D̄LT,P (λ, b) := D̄(0)(0, b) + λD̄(1)(0, b) + . . .+
λn

n!
D̄(n)(0, b), (36)

is referred to as the light-traffic approximation of order n. Here, the i-th term, D̄(i)(0, b), denotes the
mean sojourn time when in addition to the tagged job, i other jobs arrive to the system in the interval
(−∞,∞). We note that for the ease of notation we drop the dependency on P of D̄(n)(0, b).

We calculate the light-traffic approximation of order 1, that is, in (36) we set n = 1. Hence, we will
calculate the sojourn time of the tagged job conditioned on, at most, having one other job present in the
system. Let Ã(t0, t1) denote the number of arrivals in the time interval [t0, t1) in addition to the tagged
job who is assumed to arrive at time 0. The zeroth and first light-traffic derivatives satisfy, see [30]:

D̄(0)(0, b) := E
(
D̄(0, b)|Ã(−∞,∞) = 0

)
and

D̄(1)(0, b) :=

∫ ∞
−∞

(
E
(
D̄(0, b)|Ã(−∞,∞) = 1, τ = t

)
−E

(
D̄(0, b)|Ã(−∞,∞) = 0

))
dt,

where τ is the arrival time of the other job. For any work-conserving policy, it readily follows that
D̄(0)(0, b) = b, since only the tagged job is present, and all copies of this job are equal to b.

When in addition to the tagged job, another job is present, the delay of the tagged job will depend
on the type of the job already in the system, denoted by c1. If both jobs are of a different type, the new
job will start being served immediately, and hence the first term in the integral of D(1)

(0, b) = b, that
is, the first light-traffic derivative is equal to zero. On the other hand, if both jobs have the same type,
which happens with probability 1

(Kd)
, the job that is already in the system will have an impact on the

sojourn time of the tagged job. We note that the precise value of the impact will depend on P , which we
quantify later on in the proof of Lemma 20. We thus have:

D̄(1)(0, b) :=
1(
K
d

) ∫ ∞
−∞

(
E
(
D̄(0, b)|Ã(−∞,∞) = 1, τ = t, c1 = c

)
−E

(
D̄(0, b)|Ã(−∞,∞) = 0

))
dt,

(37)
where we note that in the first term we conditioned on the job being of the same type as the tagged job.

We note that if the scheduling policy does not depend on d, then E(D̄(0, b)|Ã(−∞,∞) = 1, τ =
t, c1 = c) will not either, hence the light-traffic approximation of order 1 is minimized when d is set
equal to d∗ = bK/2c.

Proof of Lemma 20:

In order to obtain an expression for N̄LT,P (λ), we will calculate D̄LT,P (λ, b), uncondition on b and then
apply Little’s law. By (36) and (37), calculating D̄LT,P (λ, b) reduces to calculating
E
(
D̄(0, b)|Ã(−∞,∞) = 1, τ = t, c1 = c

)
. Below we do so for exponentially distributed service re-

quirements and with P equal to PS, FCFS, or ROS.
First consider FCFS. If in addition to the tagged job, another job arrives in the interval (−∞,∞),

which is of the same type c1 = c and has service time B1 = b1, then the sojourn time of the tagged job
will be given by

E
(
D̄(0, b)|Ã(−∞,∞) = 1, τ = t, B1 = b1, c1 = c

)
=


b if t ≤ −b1,
t+ b1 + b if − b1 ≤ t ≤ 0,
b if t ≥ 0.

37

For example, the second equation is the case where the other job arrives before the tagged job, and has
still b1 + t remaining service left. Hence, the tagged job has to wait b1 + t, so that its sojourn time equals
b + b1 + t. To calculate D̄(1)(0, b), we subtract from the above D̄(0)(0, b) = b and we multiply with

1

(Kd)
, integrate over t, and uncondition on the service requirements b1. Further unconditioning on b gives

3λ
2µ2

1

(Kd)
. On the other hand, unconditioning D̄(0)(0, b) over b readily yields 1/µ. Summing both terms,

we get D̄LT,FCFS(λ) = 1
µ + 3λ

2µ2
1

(Kd)
, and multiplying by λ (Little’s law) we obtain the expression for

N̄LT,FCFS(λ).
The analysis of FCFS carries directly over to ROS, since at most two jobs are considered to be

present in the system, in which case jobs under ROS will be served in order of arrival.
We now consider PS. We consider the case where in addition to the tagged job, another job arrives

in the system in the interval (−∞,∞). Let b1 denote the service of this other job and c1 its type. We
have

E
(
D̄(0, b)|Ã(−∞,∞) = 1, τ = t, B1 = b1c1 = c

)
=



b if t ≤ −b1,
b+ b1 + t if − b1 ≤ t ≤ −b1 + b and b ≤ b1,
2b if − b1 + b ≤ t ≤ 0 and b ≤ b1,
b+ b1 + t if − b1 ≤ t ≤ 0 and b ≥ b1,
b+ b1 if 0 ≤ t ≤ b− b1 and b ≥ b1,
2b− t if b− b1 ≤ t ≤ b and b ≥ b1,
2b− t if 0 ≤ t ≤ b and b ≤ b1,
b if t ≥ b.

The expression above takes into account all the possible events. For example, the first equation is the
case when the other job arrives and leaves before the tagged job arrives. The second equation is the
case where the other job arrives before the tagged job and leaves first. In that case, the sojourn time
experienced by the tagged job is b plus the capacity spend on serving the other job b1 − (−t). The third
equation is the case where the other job arrives before the tagged job and leaves after the tagged job. In
that case, the tagged job has shared during its whole stay the server, hence its sojourn time equals 2b.

To calculate D̄(1)(0, b), we combine all the cases, subtract D̄(0)(0, b) = b and multiply by 1

(Kd)
,

integrate over t and uncondition over b1. Then, further unconditioning on b we get the expression
λ
µ2

1

(Kd)
. As in the case of FCFS, summing now with 1/µ, we get D̄LT,PS(λ) = 1

µ + λ
µ2

1

(Kd)
. Multiplying

by λ yields N̄LT,PS(λ).

38

	1 Introduction
	1.1 Main contributions

	2 Related work
	3 Description of the model
	4 Independent identically distributed copies
	4.1 PS and ROS
	4.2 Priority policy

	5 FCFS service policy and identical copies
	5.1 Characterization of stability condition
	5.2 Proof of stability condition
	5.2.1 Necessary stability condition
	5.2.2 Sufficient stability condition

	6 PS service policy and identical copies
	6.1 Intuition behind stability condition and its proof
	6.2 Proof of stability condition
	6.2.1 Necessary stability condition
	6.2.2 Sufficient stability condition

	7 ROS service policy and identical copies
	7.1 Intuition behind stability condition and its proof
	7.2 Proof of stability condition for ROS

	8 Simulation analysis
	8.1 IID copies
	8.2 Identical copies
	8.2.1 Exponential service times
	8.2.2 Light-traffic approximation
	8.2.3 Non-exponentially distributed service requirements
	8.2.4 Heterogeneous server capacities

	9 Conclusion

