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INTRODUCTION

The SNCF (French Railway Company) is in charge of the management, exploitation and operation of railway infrastructure in France. This infrastructure totals 30 000 km railway lines with 560 traction substations containing Power Supply Equipment of the Electric Lines (PSEEL). The company is composed of two entities: "SNCF Réseau" (formerly RFF, French Rail Network) which is in charge of management, operations and development of railway infrastructure, and "SNCF Mobilité" which manages transportation of travelers and merchandises.

The PSEELs are the electrical supply points of the electrified lines, called catenary. Their role is to transform, to supply, and to rectify in the case of DC supply, the electrical energy at high voltage into lower voltages (1500V DC or 25kV AC) compatible with traction units (trains). These electrical systems are subject to strict railway safety standards (EN 50126, 2012;IEC 60870-4, 1993). A PSEEL is broadly composed of three electric subsystems: o A High Voltage part (HV) connected directly to the electricity transport and distribution networks.

o A Transformer Group (GT) which transforms the received High Voltage energy into a lower voltage adapted to traction units. It is mainly composed of transformer(s), switches, circuit breakers, and a rectifier (in case of DC supply).

o A Track Feeder (FT) which distributes the converted energy to traction units through catenaries. A Track Feeder is composed of switches and circuit breakers.

For example, the PSEEL presented in Figure 1 contains five electric subsystems: one High Voltage part, two Transformer Groups, and two connected Track Feeders supplying three catenaries. A PSEEL is a distributed system that is remotely controlled. The role of the control system is to manage the PSEEL in such a way to supply traction units with electricity while guaranteeing the safety of the installation. It is composed of electric cabinets, each of which controlling a specific electric subsystem and including mainly:

o one or more PLCs (Programmable Logic Controller), o a terminal block through which the inputs/outputs of the PSEEL are connected to the PLC(s), o several digital protective relays for monitoring and protecting the PSEEL against electrical accidents.

A control system communicates also with a centralized supervision system which supervises all the PSEEL located in a given area. At SNCF, design and V&V (verification and validation) phases of a PSEEL have been traditionally performed by systems engineers who are subject to a very tight schedule during an automation project. The design phase of the control system consists traditionally in manual design of models/programs which are commonly called deliverables in the domain of railway automation. These deliverables are the electric diagrams of control system's cabinets, the PLC programs, and recipe books for V & V. The recipe book is a document comprising tens or hundreds of test cases (Figure 2) which are defined, each, by the initial conditions required to perform the test and a set of sequential test instructions to be executed by an operator with a set of expected results for each instruction. To avoid starting from scratch, the engineers reuse and adapt similar deliverables of existing projects to the new specifications. Then after proofreading of the new deliverables, the V&V phases are conducted in factory before real commissioning. During this V & V phase, the engineers verify (through manual testing) the conformity of the control system (PLC programs and electric cabinets) with respect to functional and safety requirements. The know-how and accumulated experience during the last decades have lead the control engineers of SNCF to consider that a PSEEL's control system is valid if it satisfies all testing procedures of the recipe books.

The manual design phase of PLC programs and recipe books is time consuming and error-prone due to the repetitive tasks involved, the complexity of control system, and the sheer size of required deliverables. The V&V process of railway control systems is also conventionally informal and mostly manual [START_REF] Vu | Formal Development and Verification of Railway Control Systems -In the context of ERTMS/ETCS Level 2[END_REF], hence time-consuming, costly, and error-prone. The lengthy manual tests of the V&V phases, though involving around 100 test procedures, are not exhaustive enough to formally guarantee the safety of the installation.

These working conditions can cause significant workload and stress leading to human errors during both design and V&V phases of control system.

To contribute to the improvement of the design and V&V phases of PSEEL's control systems, a long-term partnership has been established since 2012 between SNCF's engineering management division and CReSTIC laboratory (of the University of Reims Champagne Ardenne). The overall aim is to improve and automate the traditional workflow as shown in Figure 3. The first phase of this partnership [START_REF] Coupat | Methodology for Railway Automation Study and Automatic Generation of PLC Programs[END_REF][START_REF] Coupat | Méthodologie pour les études d'automatisation et la génération automatique de programmes Automates Programmables Industriels sûrs de fonctionnement[END_REF] focused on the improvement of design phase of PSEEL's control system. This phase resulted in the development of a method/tool for the automatic generation of deliverables to avoid repetitive tasks during design phase, in such a way that SNCF's engineers can focus their attention on cognitive tasks. It resulted not only in a reduced error, workload and stress for the engineers, but also in an estimated 115 hours reduction of the time required for a project [START_REF] Coupat | Méthodologie pour les études d'automatisation et la génération automatique de programmes Automates Programmables Industriels sûrs de fonctionnement[END_REF]. As SNCF engineers have to achieve at least 10 PSEEL automation projects per year, the automatic generation of deliverables represents a total gain of at least 1150 hours per year to the SNCF.

The second phase of this partnership has started in 2015 and focuses on V&V. Its resulting improvements are twofold:

o Application of formal verification and control synthesis techniques on PLC programs in order to guarantee installation safety [START_REF] Niang | Formal verification for validation of PSEEL's PLC program[END_REF][START_REF] Niang | Vérification formelle et simulation pour la validation des systèmes de contrôle commande des EALE (Equipements d'Alimentation des Lignes Électrifiées[END_REF] ;

o Use of virtual commissioning for automatic verification and validation of control systems, including PLC programs and electric cabinets' wiring [START_REF] Niang | Vérification formelle et simulation pour la validation des systèmes de contrôle commande des EALE (Equipements d'Alimentation des Lignes Électrifiées[END_REF].

The full implementation of the developed V & V techniques is currently under evaluation by the SNCF.

The initial feedback from the engineers is positive in terms of maintenance, quality and safety improvements as well as overall project time and comfort. The main contribution of the paper is related to 1) the formulation of the overall methodology underlying the new workflow; and 2) the presentation of the new approach for V&V of PSEEL's control system.

Section 2 deals with the state of the art on design and V&V techniques of control system. Section 3 presents the design phase of the new workflow [START_REF] Coupat | Methodology for Railway Automation Study and Automatic Generation of PLC Programs[END_REF] and the associated methodology for automatic generation of deliverables. The approach for the V&V phase of PSEEL's control systems is presented in Section 4. This approach involves: 1) Formal verification of safety and functional requirements of PLC programs (Section 4.1); and 2) Automatic validation of control systems (Section 4.2). Section 5 applies the formal verification approach to a transformer group.

STATE OF THE ART

This section presents an overview of design methods (Section 2.1) and V&V methods (Section 2.2) for control system.

Design of control system

Control engineers today mainly handle the development of industrial automation applications by direct implementation of the control task based on the interpretation of informal specification and text documents. This procedure is assisted by standardized engineering tools for the programming of PLCs. However, the informal specifications of the control software have to be manually and intuitively transferred into the control program as they are not formally defined in practice due to a lack of time and expertise [START_REF] Zaytoon | Synthesis and implementation of logic controllers -A review[END_REF]. This practice [START_REF] Timothy L | Improving automation software dependability: A role for formal methods[END_REF] most often leads to a deficient documentation of sequential interdependencies within the control program and additional costs caused by the erroneous interpretation of the textual requirements. To solve these problems, many formal approaches have been proposed for the design of logic controllers. An overview of formal approaches for the synthesis and implementation of logic controllers is provided in [START_REF] Zaytoon | Synthesis and implementation of logic controllers -A review[END_REF].

One class of formal approaches, qualified as control synthesis, [START_REF] Ramadge | Supervisory control of a class of discrete event processes[END_REF][START_REF] Roussel | Design of Logic Controllers Thanks to Symbolic Computation of Simultaneously Asserted Boolean Equations[END_REF][START_REF] Vieira | A method for PLC implementation of supervisory control of discrete event systems[END_REF][START_REF] Zaytoon | Synthesis of control implementation for discrete manufacturing systems[END_REF] aims at generating the control laws that satisfy the required properties by construction, without involvement of the designer (or at least by limiting his/her involvement as much as possible). To this end, the Supervisory Control Theory [START_REF] Ramadge | Supervisory control of a class of discrete event processes[END_REF], provides algorithms for the synthesis of supervisory controllers from their specifications: a supervisor is computed from two distinct automata, the first representing the discrete-event model of a given Plant and the second representing the Specification that describe the required controlled behavior of plant. The implementation of the synthesized supervisors to control industrial plants is an active research field and the major difficulties are related to: i) the state-space explosion problem when a supervisor is to be synthesized for complex systems involving many components; ii) how to model the plant and the desired specification at the granularity level required for control implementation; and iii) how to deal with the semantic and behavioral discrepancy between the abstract SCT supervisors and the resulting control realization.

Modelling languages and appropriate methods from the software engineering domain have also been adapted to the automation engineering domain to generate control code from a specification model of the controller. Though having great opportunities and a wide acceptance in academic field [START_REF] Delaval | Integrating discrete controller synthesis into a reactive programming language compiler[END_REF][START_REF] Hajjar | Synthesizing safe control-command systems out reusable components[END_REF][START_REF] Lukman | Model-driven engineering of process control softwarebeyond device-centric abstractions[END_REF][START_REF] Thramboulidis | Towards a model-driven IEC 61131-based development process in industrial automation[END_REF][START_REF] Witsch | Close integration between UML and IEC 61131-3: New possibilities through object-oriented extension[END_REF], most of those methods and tools still lack acceptance in industrial practice. The reason is twofold: on the one hand formal methods proposed in the literature are based on modeling languages which are usually not familiar to control practitioners. On the other hand, most model-driven approaches are not easy to apply in practice since they only allow performing modifications and revisions within the (formal) models. However, practical experience of the PLC engineering shows that the major modifications are directly implemented within the PLC code and thus need to be re-documented into the corresponding specification.

In the industrial automation field, companies like Siemens (with Comos 1 ) and Schneider Electric (with Unity Application Generator, UAG 2 ) propose environments dedicated to the description of a specific system, which can lead to the generation of the code corresponding to their PLC programming platform (TIA, Unity Pro, …). Even if a standard like PLCopen 3 proposes a standardized design format (in XML files) of PLC programs, the compatibility between PLC programs from different PLC manufacturers is not a reality today. EN 50123 (EN 50123, 2004) and IEC 61508-15 . However, these tools, to be really efficient and easy to use, must be linked to formal approaches to test and to guarantee the quality of the deliverables and particularly the generated PLC code. Consequently, they require modifying the traditional workflow for automation projects.

V&V of control system

The process of verification and validation (V&V) is essential for any successful automation project. It ensures that control systems meet the functional specifications while it guarantees installation safety.

Conventionally, the verification and validation process of PSEEL control systems is informal and mostly manual, hence time-consuming, costly, and error-prone [START_REF] Vu | Formal Development and Verification of Railway Control Systems -In the context of ERTMS/ETCS Level 2[END_REF]. Thus, the improvement of V&V for railway control systems is an active research topic, investigated by several research groups [START_REF] Vu | Formal Development and Verification of Railway Control Systems -In the context of ERTMS/ETCS Level 2[END_REF][START_REF] Haxthausen | Modelling and verification of relay interlocking systems[END_REF][START_REF] Winter | Optimising ordering strategies for symbolic model checking of railway interlockings[END_REF][START_REF] Ferrari | Model checking interlocking control tables[END_REF]. The most used methods for V&V of control system can be classified in 3 categories: testing, virtual commissioning, and formal methods.

Testing

Testing is the most used approach in the industrial world [START_REF] Bjørner | 40 Years of Formal Methods[END_REF] and has contributed to V&V of control systems for several decades. According to the IEEE-729 standard (IEEE-729, 1983), testing is the process of exercising or evaluating a system by manual or automated means to verify that it satisfies specified requirements or to identify differences between expected and actual results (i.e. it meets the specifications, see Figure 4). Thus a control system is valid if it satisfies all testing procedures of the recipe book. Testing activities are structured into sequences of test cases, and a test case is a specification fragment covering a test requirement, i.e., the expected behavior of the system. Testing architecture can be open-loop or closed-loop [START_REF] Babic | Model-based approach to real-time embedded control systems development with legacy components integration[END_REF]. In open-loop testing, the input signals for a controller are test stimuli sent during test execution [START_REF] Mani | Automatic test case generation for programmable logic controller using function block diagram[END_REF][START_REF] Ma | Introducing plant features to model-based testing of programmable controllers in automation systems[END_REF].

In closed-loop testing, test stimuli are sent to the plant and then induce consequence on the controller evolution [START_REF] Park | Plant model generation for PLC simulation[END_REF]. Test execution can either be manual or automated [START_REF] Leitner | Reconciling Manual and Automated Testing: The AutoTest Experience[END_REF] depending on whether they are executed without or with the assistance of tools and programs. The choice of testing mode (manual or automated) depends on various factors, including project requirements, budget, timeline, expertise, and suitability [START_REF] Admin | Automated Testing vs Manual Testing: Which Should You Use, and When?[END_REF]. Both manual and automated testing offer benefits and disadvantages as indicated in Table 1, which is inspired from Admin (2014), [START_REF] Leitner | Reconciling Manual and Automated Testing: The AutoTest Experience[END_REF], and [START_REF] Fernandez | Testing & verification of PLC code for process control, ICALEPCS conference[END_REF].

Four testing levels are traditionally used to facilitate the diagnosis of possible errors in control system:

o Unit testing: consists in testing separately any block of the system (function, programs...) to verify that it meets the specifications.

o Integration testing: focuses on the interfaces between units, to make sure they work together well.

o Acceptance testing: consists in testing the whole control system in factory (Factory Acceptance Test -FAT (ISA-62381, 2012)) without connecting it to the real plant.

o Installation testing (real commissioning): The system is tested again in pre-production on site (Site Acceptance Test -SAT (ISA-62381, 2012)) with the presence of the real plant.

Installation testing of control system is only possible after integration. As a result, many detected errors must be fixed during the real commissioning, with the risks of personal injuries, damaging equipment and delays. To reduce these errors, Virtual Commissioning method is now gaining widespread attention.

Virtual Commissioning

Virtual commissioning [START_REF] Drath | An evolutionary approach for the industrial introduction of virtual commissioning[END_REF] is a technique that is used for the development and testing of control systems (hardware and software parts) which are used for the operation of complex machines and systems. While the real commissioning of a manufacturing system involves a real plant system and a real controller, the virtual commissioning deals with a virtual plant model and a controller. The controller can either be i) virtual in the case of Software-In-the-Loop Simulation (SILS), or ii) real in the case of Hardware- In-the-Loop Simulation (HILS).

The physical plant is replaced by a virtual model, a faithful replica of the existing one, executed in a real time simulator equipped, in the case of HILS, with inputs / outputs and communicating with the control system via a physical interface (Figure 5). During the two last decades, HILS have been applied to transportation systems, traditionally in the aerospace and automotive fields and, more recently in railway systems [START_REF] Baccari | Real-Time Hardware-in-the-Loop in Railway: Simulations for Testing Control Software of Electromechanical Train Components[END_REF][START_REF] Di Tommaso | The simulation of anomalies in the functional testing of the ERTMS/ETCS trackside system[END_REF]. SILS on the other hand is based on a fully virtual model that is used upstream to HILS [START_REF] Lee | Survey on the virtual commissioning of manufacturing systems[END_REF]. The execution of PLC program is simulated in a PLC emulator (SoftPLC) which interacts directly with the real time simulator of the plant. There are many benefits of using virtual commissioning throughout the entire engineering process (Kleijn, 2014). The total engineering time and prototype waste are reduced and the errors are less expensive to correct since they are detected earlier. Moreover, the control system quality and safety are largely improved because the engineer works on a virtual system on which he/she can test several risk-free scenarios.

Formal methods

Formal methods [START_REF] Clarke | Formal Methods: State of the Art and Future Directions[END_REF] are mathematical techniques for the specification, development and verification of software and hardware systems. Formal verification proves the correctness of the system by checking whether a formal model of the system satisfies the properties or requirements [START_REF] Fernandez | Testing & verification of PLC code for process control, ICALEPCS conference[END_REF]. In contrary to other testing mechanisms that can never guarantee error-free applications, these formal techniques are efficient for V&V of control system. Therefore, formal methods are strongly recommended by many industrial standards for safety/mission-critical hardware/software systems in aerospace, aviation, defense, railway, or finance domains. For example, in the railway domain, the CENELEC standard (CENELEC -EN50128, 2012) strongly recommends the use of formal methods in development and verification of systems with the highest safety requirement.

Application of formal methods to the railway domain has been investigated by many research groups, to show how these techniques would help producing efficiently more robust railway control systems. For this purpose, [START_REF] Vu | Formal Development and Verification of Railway Control Systems -In the context of ERTMS/ETCS Level 2[END_REF] used formal methods to provide tools supporting efficient verification of safety-critical railway control systems, applied to "Danish railway interlocking systems". The ultimate goal is to produce methods for developing railway control systems efficiently while ensuring safety. A general overview of these trends can be found in [START_REF] Fantechi | Twenty-five years of formal methods and railways: What next?[END_REF] and [START_REF] Ferrari | Model-based development and formal methods in the railway industry[END_REF]. Two most well-established approaches in formal verification are model-checking [START_REF] Clarke | Model Checking[END_REF][START_REF] Baier | Principles of model checking[END_REF] and theorem proving [START_REF] Duffy | Principles of Automated Theorem Proving[END_REF][START_REF] Fitting | First-Order Logic and Automated Theorem Proving[END_REF].

Model checking is a technique that relies on building a finite model of a system and checking automatically that a desired property holds in that model [START_REF] Ovsiannikova | Closed-loop verication of a compensating group drive model using synthesized formal plant model[END_REF]. Model checkers provide counterexamples, when the model does not satisfy a given property. Generally speaking, the check is performed as an exhaustive state space search that is guaranteed to terminate if the model is finite. System behavior is formalized using automata [START_REF] Moor | Discrete Supervisory Control of Hybrid Systems Based on l-Complete Approximations[END_REF] or Petri nets [START_REF] Reisig | Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies[END_REF] and the properties are formulated in temporal logic or automata. Model checking is limited by the state explosion problem. Because it implies an exhaustive state space traversal, the resources used in the process (memory, run-time) quickly become a limiting bottleneck. However model checking is one of the most used and promising techniques for verifying safety properties of systems thanks to its capability to be fully automated [START_REF] Kesraoui | Intégration des techniques de vérification formelle dans une approche de conception des systèmes de contrôle-commande : application aux architectures SCADA[END_REF]. Some well-known tools for model-checking are NuSMV 6 , SPIN [START_REF] Holzmann | The SPIN model checker: Primer and reference manual[END_REF], and Uppaal [START_REF] Larsen | Uppaal in a nutshell[END_REF]). An integrated environment for formal, model-based verification of the execution control of function blocks following the IEC61499 international standard has been proposed by Vyatkin and Hanisch (2004).

Theorem proving is another well-established formal verification technique in which both the system and its expected properties are expressed as formulas in some mathematical logic. A formal system is built by defining a set of axioms and a set of inference rules. The proof method consists in finding the axioms of the properties from the axioms of the system, using the inference rules [START_REF] Roussel | Designing dependable logic controllers using algebraic specifications[END_REF]. A major advantage of theorem proving is the avoidance of the state-explosion problem. But it involves a mathematical proof of a design's correctness and is limited by the high manual effort required.

AUTOMATIC GENERATION OF DELIVERABLES

The solution for automatic generation of PSEEL's deliverables [START_REF] Coupat | Methodology for Railway Automation Study and Automatic Generation of PLC Programs[END_REF] dedicated to SNCF's engineers has been achieved by adapting a software package (named ODIL) to automatically generated deliverables from a graphic description which represents the PSEEL architecture. The design of such a single-line diagram (also called layout) of PSEEL is the first task of the systems engineers when handling a new a project. ODIL [START_REF] Coupat | Methodology for Railway Automation Study and Automatic Generation of PLC Programs[END_REF] is an automatic generation solution developed by the company Prosyst 7 and based on DSM methods (Domain Specific Modeling) [START_REF] Kelly | Domain-Specific Modeling: Enabling Full Code Generation[END_REF]. It can be adapted to generate the required deliverables for a specific domain, in a specified format. For example, the Renault car manufacturing company has adapted ODIL to generate the required deliverables through standardization.

3.1

Methodology for automatic generation of PSEEL's deliverables with ODIL Figure 6 represents the steps of the methodology that has been used to adapt the ODIL solution to the domain of PSEEL. The aim of the methodology is to improve the quality of generated PSEEL deliverables by formalizing the accumulated experience of control engineers and providing standardized domainspecific templates for PLC programs and recipe books. These templates consist of rules to enrich or adapt prototypes (or examples) of predefined code. A summary of the methodology is given below and the details can be found in [START_REF] Coupat | Methodology for Railway Automation Study and Automatic Generation of PLC Programs[END_REF][START_REF] Coupat | Méthodologie pour les études d'automatisation et la génération automatique de programmes Automates Programmables Industriels sûrs de fonctionnement[END_REF].

Step 1: Reverse engineering of existing PLC programs and recipe books coming from previous projects to 6 http://nusmv.fbk.eu/ 7 www.prosyst.fr understand their structure. This is a process of analyzing a system to obtain a representation at a high level of abstraction [START_REF] Chikofsky | Reverse engineering and design recovery: A taxonomy[END_REF] to allow the engineers to standardize the programming principles and to ensure that the existing PLC code is not erroneous.

Step 2: Standardization of deliverables to make them uniform. For example, a PLC program dedicated to control a circuit breaker of a Transformer Group (type 25kV AC) should always have the same structure, whereas several types of programs have been used so far by engineers to achieve the same function.

Step 3: Applying structural analysis to decompose PSEEL, control systems, and deliverables by using metamodels that are defined through DSM.

Step 4: Formalization and definition of a set of templates necessary for automatic generation of deliverables.

The templates are pieces of code specific for each PSEEL's sub-system.

Step 5: Integration of the templates into the data structure of ODIL software to generate the deliverables (PSEEL and recipe book models, Uppaal models, Functional and Safety requirements, PLC programs) to be used during the second phase of verification and validation. The resulting adaptation of ODIL to PSEEL can now be used for the automatic generation of PLC programs and recipe book during an automation project (phase 1 of the new workflow in Fig. 3) as indicated in Figure 7. o Each electric subsystem should be connected to one or more PLC.

In the case of inconsistency of input data, ODIL's interface provides information about the number and type of errors to help the engineer correct the errors. If the input data are consistent, ODIL automatically generates: 1) the target PLC programs dedicated to PSEEL's control system; and 2) the recipe books, traditionally used by engineers, for V&V of control systems in the factory.

In certain cases, concerning about 10% of PSEELs, the deliverables cannot be fully generated by ODIL, because of their particularities which cannot be standardized. In these cases, the engineers should manually complete the partially generated deliverables.

One of the strengths of this methodology is to translate the systems engineer's know-how into templates which correspond to their current working methods. The automatic generation avoids multiple entry of the same information in different deliverables, thus relieving the development engineers from these monotonous tasks. Then with the unique data entering, the systems engineers can optimize their mental workload and focus their attention on cognitive tasks [START_REF] Coupat | Méthodologie pour les études d'automatisation et la génération automatique de programmes Automates Programmables Industriels sûrs de fonctionnement[END_REF]. Thanks to automatic generation, the design phase of deliverables can be achieved by SNCF's engineers with 115 hours less than with the traditional manual approach requiring about 290 hours for each new PSEEL project [START_REF] Coupat | Methodology for Railway Automation Study and Automatic Generation of PLC Programs[END_REF]. However, this approach does not guarantee that generated PLC code is correct with respect to the safety and functional requirements. Consequently, V&V phases are still necessary. As mentioned in Section 2.2, the most used approaches in industry for V&V of control systems are testing, virtual commissioning and formal methods. Each of these techniques has benefits and disadvantages, but they can complement each other [START_REF] Fernandez | Testing & verification of PLC code for process control, ICALEPCS conference[END_REF][START_REF] Constant | Integrating formal verification and conformance testing for reactive systems[END_REF][START_REF] Rusu | From Safety Verification to Safety Testing[END_REF][START_REF] Tretmans | Testing concurrent systems: A formal approach[END_REF]. The second phase of the new workflow (Figure 3) is based on the combination of these approaches to obtain a methodological approach adapted to SNCF's engineers for an efficient and reliable V&V of PSEEL's control systems. This V&V phase is presented in Figure 9. It is based on:

o Phase 2-a: formal verification of safety and functional requirements of PLC programs. This step consists of using a model checker to execute the test cases of the recipe books on the PLC programs to verify the functional requirements and help the automation engineer to correct the PLC programs in case these requirements are not satisfied. The safety requirements are verified by checking that no dangerous situations are reached for all possible inputs of the controlled plant. If the safety requirements are not satisfied, a safety-filter is introduced to synthesize a PLC program that avoids the dangerous situations. The safety and the functional requirements of the synthesized program including the filter are verified again. If the required properties are not satisfied, the filter is corrected again, and the verifications are reiterated. The use of formal verification prior to the validation phase makes it possible to detect and to correct the PLC programs as early as possible. As a result, the duration of the validation phase is reduced because any problems encountered during this phase will more likely be related to wiring errors. In this view, we have chosen to use the model checker Uppaal [START_REF] Larsen | Uppaal in a nutshell[END_REF]. This tool offers a compact description language, a simulation module and a model-checker. The graphical representation of models and counter examples (or witnesses) returned after verification of properties facilitate the process of errors detection in PLC programs. In Uppaal, a system is represented by a collection of Timed Automata (TA). For each automaton, a given location represents a particular configuration of the model. A timed automaton can communicate with another one through binary synchronizations (or channels).

To formally verify the functional and safety requirements of PLC programs, the following models are required: o The target PLC programs to be verified, translated into Uppaal language (algebraic equations).

o
To avoid human errors during modeling, some of the above models are automatically generated by ODIL. For this, the data structure of ODIL has been extended to generate not only the traditional deliverables (PLC programs and recipe books, see Figure 7), but also the models of PSEEL electrical equipment (switch, circuit breaker…), the PLC scan cycle model and the recipe book formalized in TA (Figure 9). These models are then imported and grouped together in Uppaal to obtain the global model to be checked.

Verification of PLC programs through model checking requires the use of a behavioral model of the PSEEL's control system that matches the program execution on the target PLC. The different models indicated above are synchronized as described in Figure 10. The initialization step is executed only during the first PLC cycle to initialize the control (SFC) programs and the PSEEL state, through a function named "initialisation()". Following the initialization, the evolution of the models iterates a cycle comprising the following steps:

1-Inputs reading: all inputs of the PSEEL (sensors) are read by the PLC controlling the PSEEL. The signal "reading!" is sent by the PLC cycle's model 2-Commands reading: the PLC reads also the orders sent by operators to the PSEEL through signal "command!";

3-Timers evolution: the control programs use timing operations. This step is used to synchronize the evolution of all timers used in the PLC programs. The signal "TON!" is sent to all the models of timers (such as the one in Figure 16) so that they run in parallel with the control programs;

4-Main program execution and outputs computation using a function named "computing()". "computing()" is a stateless function which emulates the execution of PLC program by using internal variables, without interfering with the other Uppaal models;

5-Evolution of the PSEEL's state according to the new output values of the control programs through the signal "PO!" which is sent to the PSEEL elements (such as the one in Figure 15); 6-Recipe book execution through signal "end!". The test cases contained in the recipe book are sequentially executed on the controlled PSEEL for verification of functional requirements. The state of recipe book's execution is updated during each cycle. To synchronize the execution of the 6 tasks as depicted in Figure 10, the main Uppaal model, corresponding to the PLC scan cycle, is connected (binary synchronized by communicating channel) to the other models through sending messages that trigger their execution at the required time in the cycle. The structures of different models will be illustrated through the example in Section 5.

Once the cyclic evolution of the models is programmed in the model checker, we can verify the functional and safety requirements of the control programs (phase 2-a of Figure 9). The Verification of functional requirements consists in automatically executing a set of test cases of the recipe books on the PLC programs, and comparing the results with the expected ones to determine the satisfaction of each test case (Figure 11).

A test case provides an initial condition and a set of sequential instruction to be executed by the operator as well as a set of expected results for each instruction. An illustration will be given in figure 19. The test cases of the recipe books define how the controlled plant should behave if the control programs are well designed. Therefore, the functional requirements are satisfied by the control programs only if, after test cases execution, the obtained results correspond to the expected ones. A timed automaton, synchronized with the main Uppaal model, is used to apply the test cases on the controlled plant. This timed automaton executes all the test cases sequentially, checks that each of them is satisfied by the control programs.

Otherwise, manual corrections are applied to the control programs. An example of model of recipe book will be presented in Section 5 (Figure 21).

The long-cumulated experience of SNCF engineers in the design of PSEEL control systems and the design improvement due to first phase of our methodology have shown to result in a high-quality PLC programs and recipe books. Furthermore, it has been noticed that most of the safety issues that may arise, are already implicitly taken into consideration by the engineers when they develop test cases of the recipe books. Therefore, the control errors that are not detected by a recipe book correspond to exceptional unsafe situations with minimal probability of occurrence. To avoid these residual unsafe situations, safety requirements are formulated and formally verified, without using the recipe book. Safety requirements correspond to a set of dangerous states that the controlled plant should never reach for fear of damaging the system. The verification of safety requirements consists in checking that these dangerous states are never reached for all possible inputs of the controlled plant. An additional timed automaton (see Figure 22) that generates arbitrary values of the PLC inputs (sensors, orders...) during any PLC scan cycle is therefore used to browse the whole state space of the controlled plant during the verification using Uppaal. Then, for each browsed state (characterized by a specific input/output vector), the model checker verifies whether the safety requirements, expressed as queries, are violated or not by the control program.

If a safety requirement is not satisfied, the automation engineers are not entitled to exploit the verification results to directly modify the control programs. This is due to the industrial certification constraints at SNCF, which considers that a PSEEL's control system is valid if and only if it satisfies all the testing procedures of the recipe book. Consequently, the modification of standardized PLC code, that is generated with ODIL and used by all engineers throughout the different running projects of SNCF, requires lengthy certification procedures.

Therefore, given the time constraints of the automation projects, when safety requirements are not satisfied by the control programs, a safety filter [START_REF] Pichard | Safety of Manufacturing Systems Controllers by Logical Constraints With Safety Filter[END_REF] is applied to guarantee the safety of the installation (Figure 9). This safety filter is represented in the form of a code introduced at the end of the PLC programs, to correct (force) the PLC outputs in conformance with the safety requirements expressed as logical constraints. During each PLC cycle and before the outputs writing (evolution of the PSEEL's state in Figure 10), the filter checks whether the outputs computed by the existing control program violate the logical constraints (safety requirements) defined in the filter, and corrects the corresponding outputs.

However, knowing that the safety filter can force the PLC outputs to correct them if needed, the expected functional behavior of a PLC program may change after the implementation of the safety filter (Marangé et al., 2009 ;Göbe et al., 2016). Therefore, it is not only necessary to verify that the safety requirements are met after the safety filter implementation, but also to check if the functional requirements (initially satisfied by the control program) are still met by the new control program including the robust filter. If these requirements are not met, the safety filter should be corrected until all requirements are satisfied by the control program (Figure 9). The correction of the safety filter may consist in modifying the priority order of the logical constraints (expressing the safety requirements) and their resolution [START_REF] Pichard | Safety of Manufacturing Systems Controllers by Logical Constraints With Safety Filter[END_REF].

This iteration of the safety filter design can theoretically be non-terminating in case it is impossible to find a safety filter which is compatible with the functional requirementsfor example, if the safety filter blocks outputs which are needed for the progress of the system. However, the experience conducted so far has shown that the quality of resulting PLC programs from the first design phase, when associated with a welldesigned filter, should guarantee the detection and the correction of these errors in compliance with functional requirements.

The verification of the functional requirements is not subject to combinatory explosion because it is scenario-driven, through the consecutive execution of the test cases of a recipe book. Furthermore, the model of the PSEEL plant is taken into account during these executions, which limits the combinations of input values of the PSEEL sensors that are read by the PLC program. On the other hand, the verification of the safety properties requires checking the whole state space and has shown to converge in 80% of the verifications that have been conducted so far, with less than 300 seconds execution time on a "core i5" windows machine with 4Gb RAM. In the 20% remaining cases, where the safety verification does not converge, the safety property is considered to be unsatisfied. In this case, the safety filter is introduced and results in limiting the state space to browse during the subsequent iterations of the formal verification of the safety requirements.

Automatic validation of control system (PLC programs and electric cabinets)

After formal verification of PLC programs (phase 2-a), the next step (step i of phase 2-b, Figure 9) consists of automatic validation of PLC programs through SILS (Figure 5). For this, the verified (and corrected) PLC programs are transferred in SoftPLCs (communicating through shared memory protocol), connected to a Virtual Commissioning software (Figure 12) whose input models are automatically generated by ODIL. This Virtual Commissioning software is dedicated to validation of PSEEL's control system at SNCF. The specifications of the software have therefore been established to satisfy the requirements of SNCF engineers.

The principle of automatic validation of PLC programs is based on automatic execution of test cases on the Virtual plant, controlled by softPLCs running the target PLC programs. For this, the generated input models for Virtual Commissioning should include not only the virtual model of the target PSEEL, but also all required tests cases contained in the recipe book. These test cases are the same as those used in the formal verification phase.

When the connection between softPLCs and the Virtual Commissioning software is established, the engineer can start the SILS for automatic validation of PLC programs. As in the case of formal verification with Uppaal Model Checker (phase 2-a), the validation phase stops when there exists a blocking instruction in the recipe book. Otherwise, the PLC programs are considered to be valid and ready for real commissioning. At the end of the validation phase, a report is generated with a trace of the test cases that are executed successfully and the blocking test cases.

In addition to automatic execution of tests cases on virtual plant, the engineer can manually control the plant by playing specific scenarios, different from tests cases included in the recipe book. In this way, he/she can, for example, verify that the dangerous scenariospreviously identified by the model checker (during formal verification of safety requirements)cannot occur anymore further to the introduction of the safety filter.

The final step of the methodology (step ii of phase 2-b, Figure 9) is related to the automatic validation of electric cabinets, using the same Virtual Commissioning software. Once the control program is validated, it is transferred to the PLC based control system in the factory. The PLCs involved are then connected to the Virtual Commissioning software through a physical interface that is embedded in specialized computers, called cases. The architecture of the resulting HILS for automatic validation of electric cabinets is presented in Figure 13. The physical interface is composed of: o An injection case used to simulate faults in the system, during the execution of tests cases.

o A gateway case used to verify the connection of the control system with the centralized supervision system, which controls remotely all PSEEL located in the same area.

The principle of the validation of electric cabinets is the same as for the SILS validation of PLC programs, through automatic execution of test cases on control system.

APPLICATION OF FORMAL VERIFICATION TO A TRANSFORMER GROUP

This section presents an example of application of the formal verification methodology to the Transformer Group N°1, which is controlled by one PLC and presented in Figure 1. The PLC programs are designed with STRATON software (www.copalp.com) and the programming languages used (IEC 61131-3, 2013) are Ladder Diagram (LD) and Sequential Function Chart (SFC). The objective is to formally verify these PLC programs generated by ODIL and dedicated to control the electric subsystem. The required models are presented below. To synchronize the execution of the models and tasks, the Uppaal model presented in Figure 10 is used. This main model is represented by a timed automaton structured as a loop, which includes a clock "x" to measure the PLC scan cycle time (equal to 20 time units here). As the duration of inputs reading and outputs writing is negligible in the target PLC execution, six among the seven locations of the model are declared as "committed (C)" so that time can elapse only during the execution of PLC programs.

Committed locations freeze time and are useful for creating atomic sequences and for encoding synchronization between multiple components.

Model of the Transformer Group

In order to verify the PLC program and its integration into the plant it has to control, a model of the Transformer Group is required. This implies a thorough knowledge of the plant, particularly the behavior of each plant element and its reaction time. In a PSEEL, there exist about 20 types of devices (switches and circuits breakers), but according to their structure and behavior (inputs/outputs), these devices can be classified in 4 generic categories. To facilitate the automatic generation of PSEEL's models, the four generic devices are modeled as discrete event systems and integrated into ODIL's data structure. For a given installation, ODIL selects and generates all required models to compose the global model of the plant.

The Transformer Group, as shown in Fig. 1, is composed of a switch "sect1", a circuit breaker "DJ1", and a transformer "Tr1". The switch "Sect1" and the circuit breaker "DJ1" belong respectively to the first and third category of generic devices. Figure 14 shows the inputs/outputs and parameters of these two devices represented as black boxes. The inputs "open" and "close" correspond respectively to the opening and closing orders of the device. These orders are sent by the corresponding PLC program, and each device is controlled by its own program. The outputs "so" and "sf" correspond respectively to the states "opened" and "closed" of the corresponding device. These outputs are fed back to the PLC programs. The parameters "TimeOP" and "TimeCL" correspond respectively to the opening and closing times of the device. Finally, "Tmin" and "Tmax" represent temporal parameters of the device. Though the transformer "Tr1" has a continuous behavior, it is modeled as a structure of Boolean variables representing internal faults, because these faults (overcurrent, short circuit, overheating...) are the only information that the program needs. These faults are modelled as an arbitrary fault generator (figure 22).

The above structural analysis of the Transformer Group is followed by its functional analysis to understand the behavior of the devices in order to model them in the model checker Uppaal. For example, the behavior of the switch "sect1" (device category 1) is modelled with the Uppaal timed automata presented in figure 15. The switch is initially opened, but it starts closing once it receives closing order (input "close") from its PLC program. Then, after a certain duration (TimeCL) it becomes fully closed if the order was still maintained, otherwise it returns to the initial state if the closing order was released or if opening order was activated. When the device is closed, a rising edge of input "open" is sufficient to open the device after a certain duration (TimeOP). The Uppaal model of the switch "sect1" (Figure 15) is synchronized with the signal "PO!" sent by the model of the PLC scan cycle (Figure 10). The signal "PO?" is present on each transition. The variable "x" represents the internal clock of the model, and the Boolean variable "flag" is an observer indicating the states "opening" or "closing" of the switch. Details and explanation about models of the switch, circuit breaker and transformer are presented in [START_REF] Niang | Vérification formelle et simulation pour la validation des systèmes de contrôle commande des EALE (Equipements d'Alimentation des Lignes Électrifiées[END_REF].

Figure 15. Uppaal model of the switch "Sect1"

Models of timers

The PLC program, mainly the SFC programs, contains timing operations described by functional blocks called TON (Timer On-delay). These TON functional blocks are described in IEC 61131-3 standard (IEC 61131-3, 2013). A TON block has:

o two input variables: 1) Boolean variable "in" to start or stop counting time; 2) time parameter "PT" indicating the timing delay (defined in Figure 18).

o and two output variables: 1) Boolean variable "Q" which equals 1 if the delay has expired; 2) time variable "x" which gives the time elapsed from the last rising edge of the input "in".

The timers are modeled in Uppaal as timed automata that run in parallel with the control programs. During the instantiation of timers, the above input/output variables are set for each instance of the timer, which is synchronized with the PLC cycle's model through the signal "TON!" (Figure 16). Details about this model are presented in [START_REF] Niang | Vérification formelle et simulation pour la validation des systèmes de contrôle commande des EALE (Equipements d'Alimentation des Lignes Électrifiées[END_REF]. These control programs communicate with each other through shared variables. For formal verification, the Model-Checker Uppaal does not accept Ladder Diagram or SFC language but only textual equations or representation by automata. For programs coded into Ladder Diagram (LD), the translation into algebraic equations is trivial and consists in interpreting several simple logic functions [START_REF] Seabra | Simulation and formal verification of realtime systems: A case study[END_REF]). On the other hand, the SFC programs are translated into algebraic equations that are sequentially executed by computing: 1) the clearing conditions of the transitions, 2) the values of the step variables, and 3) the actions (Machado et al.).

Figure 17 presents the SFC program of the switch "sect1". The translated program, written in algebraic equations, is depicted in Figure 18. The function of a transition, ft, is given by a conjunction of the state of the previous steps and the logical condition associated with the transition. A step is activated if the function of one of its input transitions is true. It remains active as long as the function of one of its output transitions is false. The actions associated with a step are active when the step is active. A tool has been developed for automatic translation of SFC and LD control programs into algebraic equations in Uppaal. This tool is based on the structured methodology proposed in [START_REF] Machado | Logic Controllers Dependability Verification using a Plant Model[END_REF]. After the translation of the control programs, they are instantiated into the main program "computing()" which executed during any PLC cycle. The verification of functional requirements consists in verifying that the PLC program satisfies a set of test cases defined in the recipe book. These test cases are not exhaustive enough to formally guarantee the safety of the installation.

For the Transformer Group defined in Figure 1, ten test cases are required to validate its functional requirements. Figure 19 presents the first test case, entitled "Circuit breaker's reaction after overcurrent". It consists in verifying that if an overcurrent fault appears in the Transformer Group, the circuit breaker "DJ1" remains open as long as the fault has not disappeared.

To verify with Uppaal if the control program satisfies this test case, the latter should be formalized in the model checker. A test case is, somehow, similar to a SFC program, because it is mainly composed of: 1) initial condition, actions (instructions), and 2) transitions (Expected results). Thus, the formalization of a test case consists in translating it into a SFC program, and then into algebraic equations as we did for the SFC control program of the switch "sect1". The method of self-holding programming is also used to translate SFC program into algebraic equations. The translation of the test case of Figure 19 is depicted in Figure 20. This translation should be applied to each test case. To verify if the PLC program of the Transformer Group satisfies all testing procedures, it is enough to check if there exist at least one blocking instruction in the recipe book. An instruction is blocking if, after its execution on the controlled Transformer Group, the corresponding expected result is not obtained after a certain duration. This property can be easily checked in Uppaal by to the following "query" which checks whether or not the timeout of the "RecipeBook" timer is signaled:

E <> RecipeBook.timeout
The "RecipeBook" timer counts, for each instruction of recipe book, the elapsed time between the execution of the instruction and the obtainment of the corresponding expected result. The timeout represents an elapsed time which cannot be attained if the program is valid. If the timeout is attained, the program presents an error because this means that the output transition of the current active step of the corresponding SFC program cannot be fired. The delay of the timeout is quantified by the upper threshold of the test case that has the longest execution time. The satisfaction of this query will therefore mean that there exists at least one blocking instruction. Then, the model checker Uppaal provides the patha witness -(a witness in this case) leading to the blocking instruction and the corresponding testing procedure.

The verification of functional requirements of the Transformer Group's control program were performed on a "core i5" windows machine with 4Gb RAM. It takes at most 70 milliseconds for the model checker to return a blocking instruction if the program contains errors. In this case, the path returned by the model checker Uppaal helps the engineers to diagnose and correct the corresponding error of the PLC programs.

The modeling and verification procedures of functional requirements are further detailed in [START_REF] Niang | Vérification formelle et simulation pour la validation des systèmes de contrôle commande des EALE (Equipements d'Alimentation des Lignes Électrifiées[END_REF].

Formalization and verification of safety requirements

Two examples of safety requirements of the Transformer Group (named property 1 and property 2) are defined below:

o property 1: never attempt to open the circuit breaker "DJ1" in charge, i.e., when the switch "sect1" is closed, expressed by the following query: E<>cycle.end and tempoDef.timeout and APP2.sf o property 2: any fault that appears in the Transformer Group must be eliminated by the circuit breaker "DJ1" within 300 milliseconds, expressed by the following query: E<>cycle.end and tempoDef.timeout and DJ1.sf Some of the 10 testing procedures dedicated to the Transformer Group (Figure 21) are intended to verify that the dangerous states (corresponding to properties 1 and 2) are unreachable. For example, the second test case in Figure 21 (named "SGT( )") consists in putting the Transformer Group in an initial state, then executing the predefined scenario and verifying if the circuit breaker "DJ1" can be opened in charge. However, even if this testing procedure is satisfied by the control program, it does not imply that property 1 will always be satisfied, because there may exist other scenarios of the control program that violate this property. A more exhaustive approach for formal verification of safety requirements is therefore needed. For this, the dangerous states should be expressed as queries in Uppaal. Then, the models in Figure 22 are used to generate arbitrary values of the system's inputs for exhaustive verification (as has been explained in Section 4.1).

Figure 22. Arbitrary generator of input values

The left-hand side model of Figure 22 is synchronized with the PLC cycle's model through the signal "reading?" (inputs reading step of Figure 10), whereas the right-hand side model is synchronized through the signal "command?" ("commands reading" step of Figure 10). During any PLC cycle, the first model generates arbitrary values for one Boolean input (a sensor, a fault...), while the second model generates arbitrary command sent by the operator, such as the opening or closing of a switch or a circuit-breaker. These models are instantiated several times in the global model, depending on the number of inputs and devices of the plant. To limit the state space during formal verification of safety requirements, only faults or sensor inputs relative to the given test case are generated. Guards are therefore associated with the transitions of these models. For example, the guard "flag" of the first model of Figure 22 is a Boolean variable which allows the activation of the fault "b" only if it will make the control program evolve during the current PLC cycle. "flagCO" and "flagCF" are used in a similar way for the second model of Figure 22.

The formal verification of safety requirements consists in verifying in Uppaal (through a query) "if there exists a scenario (or inputs vector) that can occur in the system and leads it to violate the safety requirements". When the properties are violated, the model checker returns the scenario(s) leading to the dangerous state(s) to help the engineer correct the errors. Formal verification results showed that the safety requirements are not formally satisfied by the control program of the given example. In fact we have proved that, even if their occurrence is rare, there exist some scenarios that can lead the control program to violate the safety requirements, and the corresponding errors must be corrected. Due to the requirement to search the whole state space, the verification of safety properties requires m u ch more computer time (about 30 seconds for our example using a "core i5" windows machine with 4Gb RAM) than that required for the verification of functional properties.

While this formal technique allows engineers to detect errors in PLC programs, it does not allow them to correct the program to ensure it never violates the safety requirements. For this purpose, we implement a safety filter in the PLC, as proposed by [START_REF] Pichard | Safety of Manufacturing Systems Controllers by Logical Constraints With Safety Filter[END_REF] as a piece of ST code placed at the end of the program (Figure 23) to formally guarantee the safety of installation. For example, let's consider that the designed control program has violated the property 1 (opening "DJ1" in charge). When the operator needs to open the circuit breaker, the safety filter checks first (thanks to logical constraints) if the request corresponds to an opening order in charge. In this case, the opening request is filtered and not sent to the circuit breaker. The filter is therefore used to complement (or refine) the existing control program to obtain the final and safe control program. In this way, the engineer is not required to modify the PLC program in order to guarantee its safe execution. The design method of the safety filter is presented in [START_REF] Pichard | Safety of Manufacturing Systems Controllers by Logical Constraints With Safety Filter[END_REF].

To formally verify that the safety filter guarantees the safety of installation as expected, it was implemented in the model of the PLC program controlling the Transformer Group. Then we formally verify if the safety requirements have been met. The design of the safety filter is based on algebraic equations. Therefore its implementation in the model of the main program "computing()" (Figure 10) does not need any translation.

As expected, the safety requirements are no longer violated by the control program thanks to the safety filter, while the functional requirements are still satisfied in our example.

CONCLUSION

The aim of the methodological approach presented in this paper is to bridge the gap between formal approaches in academia and industrial applications by proposing an original workflow for automation study. This workflow focuses on the improvement of the traditional workflow of SNCF engineers, which involves a design and a V&V phases of PSEEL's control systems, without modifying the way they are used to program PLC. The traditional design phase is replaced by an automatic generation process of deliverables, and the manual testing approach for V&V of control system is replaced by a methodological approach that encompasses formal verification of PLC programs, automatic validation of PLC programs (through SIL), and automatic validation of electric cabinets (through HIL). The recipe book, which is traditionally used to perform the tests, is automatically generated and used as the requirement specification model for formal verification of functional properties.

Formal verification compensates the lack of exhaustiveness of the traditional testing approach, and the implementation of the safety filter guarantees that the control system satisfies the safety requirements without modifying the initial PLC code. The Virtual Commissioning technique allows the engineers to automate the Validation procedure of the control system, and to provide interactive traceability for critical and faulty situations. This technique is also useful for training new operators.

The new workflow has been implemented by SNCF and has improved the working conditions of SNCF engineers during automation projects while guaranteeing the safety of installation. Thanks to automatic generation of deliverables, the repetitive tasks are avoided, and human errors are reduced during the design phase.
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Table 1 .

 1 Comparison between manual and automated testing

	Manual testing	Automated testing
	not always accurate due to human error, hence less	more reliable thanks to tools and/or programs assistance
	reliable	
	time-consuming, taking up human resources	executed by software tools, hence significantly faster
	more appropriate if the test cases cannot be	more appropriate if test cases can be automated
	automated or require human intervention	

more adapted if test cases require tester's knowledge, experience, analytical/logical skills, creativity, and intuition not well adapted in such situations practical only if the test cases are run once or twice, and frequent repetition is not required practical when the test cases are run repeatedly over a long time period allows for human interaction, which stimulates userfriendliness or improved expertise does not entail human interaction and cannot guarantee user-friendliness or enhanced customer expertise

o

  Phase 2-b: automatic validation of PLC programs through SILS and, then, of electric cabinets in factory through HILS. The test cases are executed automatically on a virtual or real plant. PLC programs are validated by using SILS virtual commissioning. Once the control program is validated, it is transferred to the PLC based control system in the factory. The PLCs are then connected to the HILS Virtual Commissioning software through a physical interface for automatic validation of electric cabinets.4.1 Formal verification of functional and safety requirements of PLC programsFrom the various known verification techniques presented in Section 2.2.3, we focus on model checking.
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