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A methodology for automatic generation, formal verification and 

implementation of safe PLC programs for Power Supply Equipment 

of the Electric Lines of Railway Control Systems 

Abstract:  

Industry 4.0 requires proposing advanced methodologies and tools adapted to control engineers in order to 

improve safety, flexibility and to save time during automation projects. 

To improve the design, Verification and Validation phases of Power Supply Equipment of the Electric Lines 

control systems at French Railway Company (SNCF), this paper proposes an integrated methodology, for 

automatic generation, formal verification and implementation of safe Programmable Logic Control (PLC) 

programs. The main objective is to save time and to improve the “overloaded” workflow of systems 

engineers.  

This methodology is compliant with the traditional engineering workflow. The first phase of the 

methodology focuses on the automatic generation of PLC programs, wiring diagrams, and test-based recipe 

books, based on reusing and adapting similar models of existing projects to the new specifications 

(corresponding to functional and safety requirements). The second phase is related to the application of 

formal verification and control synthesis techniques to guarantee the safety of the control installation. The 

first phase of the methodology has been successfully deployed at SNCF. The second phase is currently 

being evaluated. 

Keywords: Railway engineering, Standardization, Control system, safety, formal verification, validation, 

Virtual Commissioning  

1. INTRODUCTION

The SNCF (French Railway Company) is in charge of the management, exploitation and operation of 

railway infrastructure in France. This infrastructure totals 30 000 km railway lines with 560 traction 

substations containing Power Supply Equipment of the Electric Lines (PSEEL). The company is composed 

of two entities: "SNCF Réseau" (formerly RFF, French Rail Network) which is in charge of management, 

operations and development of railway infrastructure, and "SNCF Mobilité" which manages transportation 

of travelers and merchandises. 

The PSEELs are the electrical supply points of the electrified lines, called catenary. Their role is to transform, 

to supply, and to rectify in the case of DC supply, the electrical energy at high voltage into lower voltages 

(1500V DC or 25kV AC) compatible with traction units (trains). These electrical systems are subject to strict 

railway safety standards (EN 50126, 2012; IEC 60870-4, 1993). A PSEEL is broadly composed of three 
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electric subsystems: 

o A High Voltage part (HV) connected directly to the electricity transport and distribution networks.  

o A Transformer Group (GT) which transforms the received High Voltage energy into a lower voltage 

adapted to traction units. It is mainly composed of transformer(s), switches, circuit breakers, and a 

rectifier (in case of DC supply). 

o A Track Feeder (FT) which distributes the converted energy to traction units through catenaries. A 

Track Feeder is composed of switches and circuit breakers. 

For example, the PSEEL presented in Figure 1 contains five electric subsystems: one High Voltage part, two 

Transformer Groups, and two connected Track Feeders supplying three catenaries. A PSEEL is a distributed 

system that is remotely controlled. The role of the control system is to manage the PSEEL in such a way to 

supply traction units with electricity while guaranteeing the safety of the installation. It is composed of 

electric cabinets, each of which controlling a specific electric subsystem and including mainly: 

o one or more PLCs (Programmable Logic Controller), 

o a terminal block through which the inputs/outputs of the PSEEL are connected to the PLC(s), 

o several digital protective relays for monitoring and protecting the PSEEL against electrical 

accidents. 

A control system communicates also with a centralized supervision system which supervises all the PSEEL 

located in a given area. 

 
Figure 1. Architecture of PSEEL 

 

At SNCF, design and V&V (verification and validation) phases of a PSEEL have been traditionally 

performed by systems engineers who are subject to a very tight schedule during an automation project. The 

design phase of the control system consists traditionally in manual design of models/programs which are 

commonly called deliverables in the domain of railway automation. These deliverables are the electric 
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diagrams of control system’s cabinets, the PLC programs, and recipe books for V & V. The recipe book is 

a document comprising tens or hundreds of test cases (Figure 2) which are defined, each, by the initial 

conditions required to perform the test and a set of sequential test instructions to be executed by an operator 

with a set of expected results for each instruction. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. An example of a test case of a recipe book 

 

To avoid starting from scratch, the engineers reuse and adapt similar deliverables of existing projects to the 

new specifications. Then after proofreading of the new deliverables, the V&V phases are conducted in 

factory before real commissioning. During this V & V phase, the engineers verify (through manual testing) 

the conformity of the control system (PLC programs and electric cabinets) with respect to functional and 

safety requirements. The know-how and accumulated experience during the last decades have lead the 

control engineers of SNCF to consider that a PSEEL’s control system is valid if it satisfies all testing 

procedures of the recipe books. 

The manual design phase of PLC programs and recipe books is time consuming and error-prone due to the 

repetitive tasks involved, the complexity of control system, and the sheer size of required deliverables. The 

V&V process of railway control systems is also conventionally informal and mostly manual (Vu, 2015), 

hence time-consuming, costly, and error-prone. The lengthy manual tests of the V&V phases, though 

involving around 100 test procedures, are not exhaustive enough to formally guarantee the safety of the 

installation.  

These working conditions can cause significant workload and stress leading to human errors during both 

design and V&V phases of control system. 

To contribute to the improvement of the design and V&V phases of PSEEL’s control systems, a long-term 

partnership has been established since 2012 between SNCF’s engineering management division and 

CReSTIC laboratory (of the University of Reims Champagne Ardenne). The overall aim is to improve and 

automate the traditional workflow as shown in Figure 3. The first phase of this partnership (Coupat et al., 

2018, Coupat, 2014) focused on the improvement of design phase of PSEEL’s control system. This phase 

resulted in the development of a method/tool for the automatic generation of deliverables to avoid repetitive 

tasks during design phase, in such a way that SNCF’s engineers can focus their attention on cognitive tasks. 

It resulted not only in a reduced error, workload and stress for the engineers, but also in an estimated 115 

hours reduction of the time required for a project (Coupat, 2014). As SNCF engineers have to achieve at 

least 10 PSEEL automation projects per year, the automatic generation of deliverables represents a total 

gain of at least 1150 hours per year to the SNCF. 
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The second phase of this partnership has started in 2015 and focuses on V&V. Its resulting improvements 

are twofold: 

o Application of formal verification and control synthesis techniques on PLC programs in order to 

guarantee installation safety (Niang et al., 2017; Niang, 2018) ; 

o Use of virtual commissioning for automatic verification and validation of control systems, including 

PLC programs and electric cabinets’ wiring (Niang 2018). 

The full implementation of the developed V & V techniques is currently under evaluation by the SNCF. 

The initial feedback from the engineers is positive in terms of maintenance, quality and safety 

improvements as well as overall project time and comfort. 

 
Figure 3.  Improvement of the traditional engineering workflow 

 

The main contribution of the paper is related to 1) the formulation of the overall methodology underlying 

the new workflow; and 2) the presentation of the new approach for V&V of PSEEL’s control system. 

Section 2 deals with the state of the art on design and V&V techniques of control system. Section 3 presents 

the design phase of the new workflow (Coupat et al., 2018) and the associated methodology for automatic 

generation of deliverables. The approach for the V&V phase of PSEEL’s control systems is presented in 

Section 4. This approach involves: 1) Formal verification of safety and functional requirements of PLC 

programs (Section 4.1); and 2) Automatic validation of control systems (Section 4.2). Section 5 applies the 

formal verification approach to a transformer group.    

 

2.  STATE OF THE ART 

This section presents an overview of design methods (Section 2.1) and V&V methods (Section 2.2) for 

control system. 

 

2.1 Design of control system 

Control engineers today mainly handle the development of industrial automation applications by direct 

implementation of the control task based on the interpretation of informal specification and text documents. 

This procedure is assisted by standardized engineering tools for the programming of PLCs. However, the 

informal specifications of the control software have to be manually and intuitively transferred into the 
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control program as they are not formally defined in practice due to a lack of time and expertise (Zaytoon 

& Riera, 2017). This practice (Timothy, 2007) most often leads to a deficient documentation of sequential 

interdependencies within the control program and additional costs caused by the erroneous interpretation 

of the textual requirements. To solve these problems, many formal approaches have been proposed for the 

design of logic controllers. An overview of formal approaches for the synthesis and implementation of logic 

controllers is provided in (Zaytoon & Riera, 2017).  

One class of formal approaches, qualified as control synthesis, (Ramadge & Wonham, 1987; Roussel & 

Lesage, 2014, Vieira et al, 2017; Zaytoon & Carré-Ménétrier, 2001) aims at generating the control laws 

that satisfy the required properties by construction, without involvement of the designer (or at least by 

limiting his/her involvement as much as possible). To this end, the Supervisory Control Theory (Ramadge 

& Wonham, 1987), provides algorithms for the synthesis of supervisory controllers from their 

specifications: a supervisor is computed from two distinct automata, the first representing the discrete-event 

model of a given Plant and the second representing the Specification that describe the required controlled 

behavior of plant. The implementation of the synthesized supervisors to control industrial plants is an active 

research field and the major difficulties are related to:  i) the state-space explosion problem when a 

supervisor is to be synthesized for complex systems involving many components; ii) how to model the plant 

and the desired specification at the granularity level required for control implementation; and iii) how to 

deal with the semantic and behavioral discrepancy between the abstract SCT supervisors and the resulting 

control realization.  

Modelling languages and appropriate methods from the software engineering domain have also been 

adapted to the automation engineering domain to generate control code from a specification model of the 

controller. Though having great opportunities and a wide acceptance in academic field (Delaval, Rutten, & 

Marchand, 2013; Hajjar, Dumitrescu, Pietrac, & Niel, 2015; Lukman, Godena, Gray, Hericko, & Strmcnik, 

2013; Thramboulidis & Frey, 2011; Witsch & Vogel-Heuser, 2009), most of those methods and tools still 

lack acceptance in industrial practice. The reason is twofold: on the one hand formal methods proposed in 

the literature are based on modeling languages which are usually not familiar to control practitioners. On 

the other hand, most model-driven approaches are not easy to apply in practice since they only allow 

performing modifications and revisions within the (formal) models. However, practical experience of the 

PLC engineering shows that the major modifications are directly implemented within the PLC code and 

thus need to be re-documented into the corresponding specification. 

In the industrial automation field, companies like Siemens (with Comos1) and Schneider Electric (with 

Unity Application Generator, UAG2) propose environments dedicated to the description of a specific 

system, which can lead to the generation of the code corresponding to their PLC programming platform 

(TIA, Unity Pro, …). Even if a standard like PLCopen3 proposes a standardized design format (in XML 

files) of PLC programs, the compatibility between PLC programs from different PLC manufacturers is not 

a reality today. Specific tools have therefore been developed in industry (particularly for manufacturing 

systems) to support the control engineer’s work at the different stages of controller design, implementation 

and test, independently of the hardware. The main idea is to offer a fully customizable software environment 

(like ODIL from Prosyst4, and ControlBuild from Dassault Systemes) for performing automation studies 

 
1 www.siemens.com/comos  
2 www.schneider-electric.com/en/product-range-presentation/628-uag-unity-application-generator/  
3 www.plcopen.org  
4 www.prosyst.fr  
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and generating the associated documentation, PLC programs and Human Machine Interfaces.  

These open Automation Software Platforms allow seamless progress through all phases of the application 

development cycle and offer the advantage of using DSM (Domain Specific Modeling) to ensure the 

consistency and quality of deliverables. These innovative environments for designing and validating control 

software applications are based on a model-driven approach and supported by a structured set of libraries. 

They enable the control engineer to model, simulate, test, and deploy the IEC 61131-3 control applications. 

Key Highlights and Benefits of these tools for industry are: project time reduction (models and data are 

defined only once), development costs, quality and safety improvements, management and minimization 

of plant commissioning risks, maintenance of control software, compliance with industry safety-related 

standards such as, EN 50123 (EN 50123, 2004) and IEC 61508-15. However, these tools, to be really 

efficient and easy to use, must be linked to formal approaches to test and to guarantee the quality of the 

deliverables and particularly the generated PLC code. Consequently, they require modifying the traditional 

workflow for automation projects. 

 

2.2 V&V of control system 

The process of verification and validation (V&V) is essential for any successful automation project. It 

ensures that control systems meet the functional specifications while it guarantees installation safety. 

Conventionally, the verification and validation process of PSEEL control systems is informal and mostly 

manual, hence time-consuming, costly, and error-prone (Vu, 2015). Thus, the improvement of V&V for 

railway control systems is an active research topic, investigated by several research groups (Vu, 2015; 

Haxthausen et al., 2010; Winter, 2012; Ferrari et al., 2011). The most used methods for V&V of control 

system can be classified in 3 categories: testing, virtual commissioning, and formal methods. 

2.2.1 Testing 

Testing is the most used approach in the industrial world (Bjørner and Havelund, 2014) and has contributed 

to V&V of control systems for several decades. According to the IEEE-729 standard (IEEE-729, 1983), 

testing is the process of exercising or evaluating a system by manual or automated means to verify that it 

satisfies specified requirements or to identify differences between expected and actual results (i.e. it meets 

the specifications, see Figure 4). Thus a control system is valid if it satisfies all testing procedures of the 

recipe book. Testing activities are structured into sequences of test cases, and a test case is a specification 

fragment covering a test requirement, i.e., the expected behavior of the system. 

 
Figure 4. Testing approach 

 

 
5 https://webstore.iec.ch/preview/info_iec61508-1%7Bed2.0%7Db.pdf  
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Testing architecture can be open-loop or closed-loop (Babic, 2014). In open-loop testing, the input signals 

for a controller are test stimuli sent during test execution (Mani and Prasanna, 2016; Ma and Provost, 2019). 

In closed-loop testing, test stimuli are sent to the plant and then induce consequence on the controller 

evolution (Park et al., 2010). Test execution can either be manual or automated (Leitner et al., 2007) 

depending on whether they are executed without or with the assistance of tools and programs. The choice 

of testing mode (manual or automated) depends on various factors, including project requirements, budget, 

timeline, expertise, and suitability (Admin, 2014). Both manual and automated testing offer benefits and 

disadvantages as indicated in Table 1, which is inspired from Admin (2014), Leitner et al. (2007), and 

Fernandez et al. (2013). 

 

 

Four testing levels are traditionally used to facilitate the diagnosis of possible errors in control system: 

o Unit testing: consists in testing separately any block of the system (function, programs...) to verify 

that it meets the specifications. 

o Integration testing: focuses on the interfaces between units, to make sure they work together well. 

o Acceptance testing: consists in testing the whole control system in factory (Factory Acceptance Test 

- FAT (ISA-62381, 2012)) without connecting it to the real plant. 

o Installation testing (real commissioning): The system is tested again in pre-production on site (Site 

Acceptance Test - SAT (ISA-62381, 2012)) with the presence of the real plant. 

Installation testing of control system is only possible after integration. As a result, many detected errors 

must be fixed during the real commissioning, with the risks of personal injuries, damaging equipment and 

delays. To reduce these errors, Virtual Commissioning method is now gaining widespread attention. 

 

2.2.2 Virtual Commissioning 

Virtual commissioning (Drath et al., 2008) is a technique that is used for the development and testing of 

control systems (hardware and software parts) which are used for the operation of complex machines and 

systems. While the real commissioning of a manufacturing system involves a real plant system and a real 

controller, the virtual commissioning deals with a virtual plant model and a controller. The controller can 

either be i) virtual in the case of Software-In-the-Loop Simulation (SILS), or ii) real in the case of Hardware-

Manual testing Automated testing 

not always accurate due to human error, hence less 

reliable 

more reliable thanks to tools and/or programs assistance 

time-consuming, taking up human resources executed by software tools, hence significantly faster 

more appropriate if the test cases cannot be 

automated or require human intervention 

more appropriate if test cases can be automated 

more adapted if test cases require tester’s 

knowledge, experience, analytical/logical skills, 

creativity, and intuition 

not well adapted in such situations  

practical only if the test cases are run once or twice, 

and frequent repetition is not required 

practical when the test cases are run repeatedly over a 

long time period 

allows for human interaction, which stimulates user-

friendliness or improved expertise 

does not entail human interaction and cannot guarantee 

user-friendliness or enhanced customer expertise 

 
Table 1. Comparison between manual and automated testing 
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In-the-Loop Simulation (HILS).  

The physical plant is replaced by a virtual model, a faithful replica of the existing one, executed in a real 

time simulator equipped, in the case of HILS, with inputs / outputs and communicating with the control 

system via a physical interface (Figure 5). During the two last decades, HILS have been applied to 

transportation systems, traditionally in the aerospace and automotive fields and, more recently in railway 

systems (Baccari et al., 2012; Di Tommaso et al., 2005). SILS on the other hand is based on a fully virtual 

model that is used upstream to HILS (Lee and Park, 2014). The execution of PLC program is simulated in 

a PLC emulator (SoftPLC) which interacts directly with the real time simulator of the plant. 

 

 
 

Figure 5. Software and Hardware-In-the-Loop Simulations 

 

There are many benefits of using virtual commissioning throughout the entire engineering process (Kleijn, 

2014). The total engineering time and prototype waste are reduced and the errors are less expensive to 

correct since they are detected earlier. Moreover, the control system quality and safety are largely improved 

because the engineer works on a virtual system on which he/she can test several risk-free scenarios. 

 

2.2.3 Formal methods 

Formal methods (Clarke and Wing, 1996) are mathematical techniques for the specification, development 

and verification of software and hardware systems. Formal verification proves the correctness of the system 

by checking whether a formal model of the system satisfies the properties or requirements (Fernandez et 

al., 2013). In contrary to other testing mechanisms that can never guarantee error-free applications, these 

formal techniques are efficient for V&V of control system. Therefore, formal methods are strongly 

recommended by many industrial standards for safety/mission-critical hardware/software systems in 

aerospace, aviation, defense, railway, or finance domains. For example, in the railway domain, the 

CENELEC standard (CENELEC - EN50128, 2012) strongly recommends the use of formal methods in 

development and verification of systems with the highest safety requirement. 

Application of formal methods to the railway domain has been investigated by many research groups, to 

show how these techniques would help producing efficiently more robust railway control systems. For this 

purpose, Vu (2015) used formal methods to provide tools supporting efficient verification of safety-critical 

railway control systems, applied to "Danish railway interlocking systems". The ultimate goal is to produce 

methods for developing railway control systems efficiently while ensuring safety. A general overview of 

these trends can be found in Fantechi (2014) and Ferrari et al. (2013). Two most well-established approaches 
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in formal verification are model-checking (Clarke et al., 1999; Baier and Katoen, 2008) and theorem 

proving (Duffy, 1991; Fitting, 1996). 

Model checking is a technique that relies on building a finite model of a system and checking automatically 

that a desired property holds in that model (Ovsiannikova et al., 2017). Model checkers provide counter-

examples, when the model does not satisfy a given property. Generally speaking, the check is performed as 

an exhaustive state space search that is guaranteed to terminate if the model is finite. System behavior is 

formalized using automata (Moor et al., 2002) or Petri nets (Reisig, 2013) and the properties are formulated 

in temporal logic or automata. Model checking is limited by the state explosion problem. Because it implies 

an exhaustive state space traversal, the resources used in the process (memory, run-time) quickly become a 

limiting bottleneck. However model checking is one of the most used and promising techniques for 

verifying safety properties of systems thanks to its capability to be fully automated (Kesraoui, 2017). Some 

well-known tools for model-checking are NuSMV6, SPIN (Holzmann, 2004), and Uppaal (Larsen et al., 

1997). An integrated environment for formal, model-based verification of the execution control of function 

blocks following the IEC61499 international standard has been proposed by Vyatkin and Hanisch (2004). 

Theorem proving is another well-established formal verification technique in which both the system and its 

expected properties are expressed as formulas in some mathematical logic. A formal system is built by 

defining a set of axioms and a set of inference rules. The proof method consists in finding the axioms of the 

properties from the axioms of the system, using the inference rules (Roussel and Faure, 2006). A major 

advantage of theorem proving is the avoidance of the state-explosion problem. But it involves a 

mathematical proof of a design’s correctness and is limited by the high manual effort required. 

3  AUTOMATIC GENERATION OF DELIVERABLES 

The solution for automatic generation of PSEEL’s deliverables (Coupat et al., 2018) dedicated to SNCF’s 

engineers has been achieved by adapting a software package (named ODIL) to automatically generated 

deliverables from a graphic description which represents the PSEEL architecture. The design of such a 

single-line diagram (also called layout) of PSEEL is the first task of the systems engineers when handling 

a new a project. ODIL (Coupat et al., 2018) is an automatic generation solution developed by the company 

Prosyst7 and based on DSM methods (Domain Specific Modeling) (Kelly and Tolvanen, 2008). It can be 

adapted to generate the required deliverables for a specific domain, in a specified format. For example, the 

Renault car manufacturing company has adapted ODIL to generate the required deliverables through 

standardization. 

 

3.1 Methodology for automatic generation of PSEEL’s deliverables with ODIL 

Figure 6 represents the steps of the methodology that has been used to adapt the ODIL solution to the 

domain of PSEEL. The aim of the methodology is to improve the quality of generated PSEEL deliverables 

by formalizing the accumulated experience of control engineers and providing standardized domain-

specific templates for PLC programs and recipe books. These templates consist of rules to enrich or adapt 

prototypes (or examples) of predefined code. A summary of the methodology is given below and the details 

can be found in (Coupat et al., 2018; Coupat, 2014).  

Step 1: Reverse engineering of existing PLC programs and recipe books coming from previous projects to 

 
6 http://nusmv.fbk.eu/  
7 www.prosyst.fr  
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understand their structure. This is a process of analyzing a system to obtain a representation at a high level 

of abstraction (Chikofsky and Cross, 1990) to allow the engineers to standardize the programming 

principles and to ensure that the existing PLC code is not erroneous.  

Step 2: Standardization of deliverables to make them uniform. For example, a PLC program dedicated to 

control a circuit breaker of a Transformer Group (type 25kV AC) should always have the same structure, 

whereas several types of programs have been used so far by engineers to achieve the same function.  

Step 3: Applying structural analysis to decompose PSEEL, control systems, and deliverables by using meta-

models that are defined through DSM.  

Step 4: Formalization and definition of a set of templates necessary for automatic generation of deliverables. 

The templates are pieces of code specific for each PSEEL’s sub-system.  

Step 5: Integration of the templates into the data structure of ODIL software to generate the deliverables 

(PSEEL and recipe book models, Uppaal models, Functional and Safety requirements, PLC programs) to 

be used during the second phase of verification and validation.  

 

 

Figure 6. Adaptation of ODIL solution for automatic generation of PSEEL’s deliverables 

 

3.2 Automatic generation of PSEEL’s deliverables with ODIL 

The resulting adaptation of ODIL to PSEEL can now be used for the automatic generation of PLC programs 

and recipe book during an automation project (phase 1 of the new workflow in Fig. 3) as indicated in Figure 

7.  
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Figure 7. Automatic generation of deliverables 

 

The first step of automatic generation of the deliverable consists in using the developed ODIL PSEEL 

interface to describe the input data of the project according to functional and safety requirements. These 

data correspond to the single-line diagram of the target PSEEL, the inputs/outputs and parameters of the 

control system. The engineer selects, configures, and assembles the different electric subsystems predefined 

in ODIL (Transformer Group, Track Feeder, High Voltage part...) in order to reconstruct the PSEEL (Figure 

8). Then, according to specifications, he/she defines and parameterizes the control system’s structure 

(number of PLCs, inputs/outputs...) before connecting its inputs/outputs to the PSEEL represented in 

ODIL’s interface. Further to the description of the project, the software automatically generates the 

deliverables if the input data satisfy a set of consistency rules defined in a data structure integrated into 

ODIL. Some examples of consistency rules are the following: 

o A PSEEL should contain at least one Transformer group and one Track feeder; 

o A Track feeder should always be connected to at least one catenary; 

o Each electric subsystem should be connected to one or more PLC. 

In the case of inconsistency of input data, ODIL’s interface provides information about the number and type 

of errors to help the engineer correct the errors. If the input data are consistent, ODIL automatically 

generates: 1) the target PLC programs dedicated to PSEEL’s control system; and 2) the recipe books, 

traditionally used by engineers, for V&V of control systems in the factory. 

In certain cases, concerning about 10% of PSEELs, the deliverables cannot be fully generated by ODIL, 

because of their particularities which cannot be standardized. In these cases, the engineers should manually 

complete the partially generated deliverables. 

One of the strengths of this methodology is to translate the systems engineer’s know-how into templates 

which correspond to their current working methods. The automatic generation avoids multiple entry of the 

same information in different deliverables, thus relieving the development engineers from these monotonous 

tasks. Then with the unique data entering, the systems engineers can optimize their mental workload and 

focus their attention on cognitive tasks (Coupat, 2014). Thanks to automatic generation, the design phase of 



12 
 

deliverables can be achieved by SNCF’s engineers with 115 hours less than with the traditional manual 

approach requiring about 290 hours for each new PSEEL project (Coupat et al., 2018). However, this 

approach does not guarantee that generated PLC code is correct with respect to the safety and functional 

requirements. Consequently, V&V phases are still necessary. 

 
Figure 8. View of Project’s description (single-line diagram) in ODIL’s interface 

 

4   FORMAL VERIFICATION AND AUTOMATIC VALIDATION OF CONTROL SYSTEM 

As mentioned in Section 2.2, the most used approaches in industry for V&V of control systems are testing, 

virtual commissioning and formal methods. Each of these techniques has benefits and disadvantages, but 

they can complement each other (Fernandez et al., 2013; Constant, 2007; Rusu et al., 2004; Tretmans, 

1999). The second phase of the new workflow (Figure 3) is based on the combination of these approaches 

to obtain a methodological approach adapted to SNCF’s engineers for an efficient and reliable V&V of 

PSEEL’s control systems. This V&V phase is presented in Figure 9. It is based on: 

o Phase 2-a: formal verification of safety and functional requirements of PLC programs. This step 

consists of using a model checker to execute the test cases of the recipe books on the PLC programs 

to verify the functional requirements and help the automation engineer to correct the PLC programs 

in case these requirements are not satisfied. The safety requirements are verified by checking that no 

dangerous situations are reached for all possible inputs of the controlled plant. If the safety 

requirements are not satisfied, a safety-filter is introduced to synthesize a PLC program that avoids 

the dangerous situations. The safety and the functional requirements of the synthesized program 

including the filter are verified again. If the required properties are not satisfied, the filter is corrected 

again, and the verifications are reiterated. The use of formal verification prior to the validation phase 

makes it possible to detect and to correct the PLC programs as early as possible. As a result, the 

duration of the validation phase is reduced because any problems encountered during this phase will 

more likely be related to wiring errors. 
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Figure 9. Formal verification of PLC programs and automatic validation of control systems 
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o Phase 2-b: automatic validation of PLC programs through SILS and, then, of electric cabinets in 

factory through HILS. The test cases are executed automatically on a virtual or real plant. PLC 

programs are validated by using SILS virtual commissioning. Once the control program is validated, 

it is transferred to the PLC based control system in the factory. The PLCs are then connected to the 

HILS Virtual Commissioning software through a physical interface for automatic validation of 

electric cabinets. 

4.1 Formal verification of functional and safety requirements of PLC programs 

From the various known verification techniques presented in Section 2.2.3, we focus on model checking. 

In this view, we have chosen to use the model checker Uppaal (Larsen et al., 1997). This tool offers a 

compact description language, a simulation module and a model-checker. The graphical representation of 

models and counter examples (or witnesses) returned after verification of properties facilitate the process 

of errors detection in PLC programs. In Uppaal, a system is represented by a collection of Timed Automata 

(TA). For each automaton, a given location represents a particular configuration of the model. A timed 

automaton can communicate with another one through binary synchronizations (or channels). 

To formally verify the functional and safety requirements of PLC programs, the following models are 

required: 

o Model of PLC scan cycle (formalized in TA); 

o Model of the target PSEEL (in TA); 

o Model of the recipe book (in TA and Boolean expressions) for formal verification of functional 

requirements; 

o The safety requirements (representing dangerous states of the PSEEL) for formal verification of 

safety requirements. Boolean expressions are used to formalize these requirements; 

o The target PLC programs to be verified, translated into Uppaal language (algebraic equations). 

To avoid human errors during modeling, some of the above models are automatically generated by ODIL. 

For this, the data structure of ODIL has been extended to generate not only the traditional deliverables (PLC 

programs and recipe books, see Figure 7), but also the models of PSEEL electrical equipment (switch, 

circuit breaker…), the PLC scan cycle model and the recipe book formalized in TA (Figure 9). These 

models are then imported and grouped together in Uppaal to obtain the global model to be checked. 

Verification of PLC programs through model checking requires the use of a behavioral model of the 

PSEEL’s control system that matches the program execution on the target PLC. The different models 

indicated above are synchronized as described in Figure 10. The initialization step is executed only during 

the first PLC cycle to initialize the control (SFC) programs and the PSEEL state, through a function named 

"initialisation()”. Following the initialization, the evolution of the models iterates a cycle comprising the 

following steps: 

1- Inputs reading: all inputs of the PSEEL (sensors) are read by the PLC controlling the PSEEL. The 

signal "reading!" is sent by the PLC cycle’s model 

2- Commands reading: the PLC reads also the orders sent by operators to the PSEEL through signal 

"command!"; 
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3- Timers evolution: the control programs use timing operations. This step is used to synchronize the 

evolution of all timers used in the PLC programs. The signal "TON!" is sent to all the models of timers 

(such as the one in Figure 16) so that they run in parallel with the control programs;     

4- Main program execution and outputs computation using a function named "computing()". 

“computing()” is a stateless function which emulates the execution of PLC program by using internal 

variables, without interfering with the other Uppaal models; 

5- Evolution of the PSEEL’s state according to the new output values of the control programs through the 

signal "PO!" which is sent to the PSEEL elements (such as the one in Figure 15); 

6- Recipe book execution through signal "end!". The test cases contained in the recipe book are 

sequentially executed on the controlled PSEEL for verification of functional requirements. The state of 

recipe book’s execution is updated during each cycle. 

 
Figure 10. Main PLC – PSEEL Uppaal model 

 

To synchronize the execution of the 6 tasks as depicted in Figure 10, the main Uppaal model, corresponding 

to the PLC scan cycle, is connected (binary synchronized by communicating channel) to the other models 

through sending messages that trigger their execution at the required time in the cycle. The structures of 

different models will be illustrated through the example in Section 5. 

Once the cyclic evolution of the models is programmed in the model checker, we can verify the functional 

and safety requirements of the control programs (phase 2-a of Figure 9). The Verification of functional 

requirements consists in automatically executing a set of test cases of the recipe books on the PLC programs, 

and comparing the results with the expected ones to determine the satisfaction of each test case (Figure 11). 

A test case provides an initial condition and a set of sequential instruction to be executed by the operator as 

well as a set of expected results for each instruction. An illustration will be given in figure 19.  
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Figure 11. Principle of verification of functional requirements 

 

The test cases of the recipe books define how the controlled plant should behave if the control programs are 

well designed. Therefore, the functional requirements are satisfied by the control programs only if, after test 

cases execution, the obtained results correspond to the expected ones. A timed automaton, synchronized 

with the main Uppaal model, is used to apply the test cases on the controlled plant. This timed automaton 

executes all the test cases sequentially, and checks that each of them is satisfied by the control programs. 

Otherwise, manual corrections are applied to the control programs. An example of model of recipe book 

will be presented in Section 5 (Figure 21). 

The long-cumulated experience of SNCF engineers in the design of PSEEL control systems and the design 

improvement due to first phase of our methodology have shown to result in a high-quality PLC programs 

and recipe books. Furthermore, it has been noticed that most of the safety issues that may arise, are already 

implicitly taken into consideration by the engineers when they develop test cases of the recipe books. 

Therefore, the control errors that are not detected by a recipe book correspond to exceptional unsafe 

situations with minimal probability of occurrence. To avoid these residual unsafe situations, safety 

requirements are formulated and formally verified, without using the recipe book. Safety requirements 

correspond to a set of dangerous states that the controlled plant should never reach for fear of damaging the 

system. The verification of safety requirements consists in checking that these dangerous states are never 

reached for all possible inputs of the controlled plant. An additional timed automaton (see Figure 22) that 

generates arbitrary values of the PLC inputs (sensors, orders...) during any PLC scan cycle is therefore used 

to browse the whole state space of the controlled plant during the verification using Uppaal. Then, for each 

browsed state (characterized by a specific input/output vector), the model checker verifies whether the 

safety requirements, expressed as queries, are violated or not by the control program.  

If a safety requirement is not satisfied, the automation engineers are not entitled to exploit the verification 

results to directly modify the control programs. This is due to the industrial certification constraints at 

SNCF, which considers that a PSEEL’s control system is valid if and only if it satisfies all the testing 

procedures of the recipe book. Consequently, the modification of standardized PLC code, that is generated 

with ODIL and used by all engineers throughout the different running projects of SNCF, requires lengthy 

certification procedures.  

Therefore, given the time constraints of the automation projects, when safety requirements are not satisfied 

by the control programs, a safety filter (Pichard et al., 2019) is applied to guarantee the safety of the 

installation (Figure 9). This safety filter is represented in the form of a code introduced at the end of the 

PLC programs, to correct (force) the PLC outputs in conformance with the safety requirements expressed 

as logical constraints. During each PLC cycle and before the outputs writing (evolution of the PSEEL’s 

state in Figure 10), the filter checks whether the outputs computed by the existing control program violate 

the logical constraints (safety requirements) defined in the filter, and corrects the corresponding outputs. 

However, knowing that the safety filter can force the PLC outputs to correct them if needed, the expected 
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functional behavior of a PLC program may change after the implementation of the safety filter (Marangé 

et al., 2009 ; Göbe et al., 2016). Therefore, it is not only necessary to verify that the safety requirements are 

met after the safety filter implementation, but also to check if the functional requirements (initially satisfied 

by the control program) are still met by the new control program including the robust filter. If these 

requirements are not met, the safety filter should be corrected until all requirements are satisfied by the 

control program (Figure 9). The correction of the safety filter may consist in modifying the priority order 

of the logical constraints (expressing the safety requirements) and their resolution (Pichard et al., 2019).  

This iteration of the safety filter design can theoretically be non-terminating in case it is impossible to find 

a safety filter which is compatible with the functional requirements – for example, if the safety filter blocks 

outputs which are needed for the progress of the system. However, the experience conducted so far has 

shown that the quality of resulting PLC programs from the first design phase, when associated with a well-

designed filter, should guarantee the detection and the correction of these errors in compliance with 

functional requirements.  

The verification of the functional requirements is not subject to combinatory explosion because it is 

scenario-driven, through the consecutive execution of the test cases of a recipe book. Furthermore, the model 

of the PSEEL plant is taken into account during these executions, which limits the combinations of input 

values of the PSEEL sensors that are read by the PLC program. On the other hand, the verification of the 

safety properties requires checking the whole state space and has shown to converge in 80% of the 

verifications that have been conducted so far, with less than 300 seconds execution time on a “core i5” 

windows machine with 4Gb RAM. In the 20% remaining cases, where the safety verification does not 

converge, the safety property is considered to be unsatisfied. In this case, the safety filter is introduced and 

results in limiting the state space to browse during the subsequent iterations of the formal verification of the 

safety requirements. 

4.2 Automatic validation of control system (PLC programs and electric cabinets) 

After formal verification of PLC programs (phase 2-a), the next step (step i of phase 2-b, Figure 9) consists 

of automatic validation of PLC programs through SILS (Figure 5). For this, the verified (and corrected) 

PLC programs are transferred in SoftPLCs (communicating through shared memory protocol), connected 

to a Virtual Commissioning software (Figure 12) whose input models are automatically generated by ODIL. 

This Virtual Commissioning software is dedicated to validation of PSEEL’s control system at SNCF. The 

specifications of the software have therefore been established to satisfy the requirements of SNCF 

engineers. 
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The principle of automatic validation of PLC programs is based on automatic execution of test cases on the 

Virtual plant, controlled by softPLCs running the target PLC programs. For this, the generated input models 

for Virtual Commissioning should include not only the virtual model of the target PSEEL, but also all 

required tests cases contained in the recipe book. These test cases are the same as those used in the formal 

verification phase.  

When the connection between softPLCs and the Virtual Commissioning software is established, the 

engineer can start the SILS for automatic validation of PLC programs. As in the case of formal verification 

with Uppaal Model Checker (phase 2-a), the validation phase stops when there exists a blocking instruction 

in the recipe book. Otherwise, the PLC programs are considered to be valid and ready for real 

commissioning. At the end of the validation phase, a report is generated with a trace of the test cases that 

are executed successfully and the blocking test cases. 

In addition to automatic execution of tests cases on virtual plant, the engineer can manually control the 

plant by playing specific scenarios, different from tests cases included in the recipe book. In this way, he/she 

can, for example, verify that the dangerous scenarios – previously identified by the model checker (during 

formal verification of safety requirements) – cannot occur anymore further to the introduction of the safety 

filter. 

The final step of the methodology (step ii of phase 2-b, Figure 9) is related to the automatic validation of 

electric cabinets, using the same Virtual Commissioning software. Once the control program is validated, 

it is transferred to the PLC based control system in the factory. The PLCs involved are then connected to 

the Virtual Commissioning software through a physical interface that is embedded in specialized 

computers, called cases. The architecture of the resulting HILS for automatic validation of electric cabinets 

is presented in Figure 13. The physical interface is composed of: 

 

 
 

Figure 12. SILS architecture for automatic validation of PLC programs  
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Figure 13. HILS architecture for automatic validation of cabinets 

o The main case comprising a PLC and a switch. The PLC is used to collect the inputs and outputs of 

the control system – through remote inputs/outputs modules connected in series – and transfer them 

to the Virtual Commissioning software.  

o An injection case used to simulate faults in the system, during the execution of tests cases. 

o A gateway case used to verify the connection of the control system with the centralized supervision 

system, which controls remotely all PSEEL located in the same area. 

The principle of the validation of electric cabinets is the same as for the SILS validation of PLC programs, 

through automatic execution of test cases on control system. 

 

5  APPLICATION OF FORMAL VERIFICATION TO A TRANSFORMER GROUP 

This section presents an example of application of the formal verification methodology to the Transformer 

Group N°1, which is controlled by one PLC and presented in Figure 1. The PLC programs are designed 

with STRATON software (www.copalp.com) and the programming languages used (IEC 61131-3, 2013) 

are Ladder Diagram (LD) and Sequential Function Chart (SFC). The objective is to formally verify these 

PLC programs generated by ODIL and dedicated to control the electric subsystem. The required models 

are presented below. To synchronize the execution of the models and tasks, the Uppaal model presented in 
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Figure 10 is used. This main model is represented by a timed automaton structured as a loop, which includes 

a clock "x" to measure the PLC scan cycle time (equal to 20 time units here). As the duration of inputs 

reading and outputs writing is negligible in the target PLC execution, six among the seven locations of the 

model are declared as "committed (C)" so that time can elapse only during the execution of PLC programs. 

Committed locations freeze time and are useful for creating atomic sequences and for encoding 

synchronization between multiple components. 

 

5.1 Model of the Transformer Group 

In order to verify the PLC program and its integration into the plant it has to control, a model of the 

Transformer Group is required. This implies a thorough knowledge of the plant, particularly the behavior 

of each plant element and its reaction time. In a PSEEL, there exist about 20 types of devices (switches and 

circuits breakers), but according to their structure and behavior (inputs/outputs), these devices can be 

classified in 4 generic categories. To facilitate the automatic generation of PSEEL’s models, the four generic 

devices are modeled as discrete event systems and integrated into ODIL’s data structure. For a given 

installation, ODIL selects and generates all required models to compose the global model of the plant. 

The Transformer Group, as shown in Fig. 1, is composed of a switch "sect1", a circuit breaker "DJ1", and 

a transformer "Tr1". The switch "Sect1" and the circuit breaker "DJ1" belong respectively to the first and 

third category of generic devices. Figure 14 shows the inputs/outputs and parameters of these two devices 

represented as black boxes. The inputs "open" and "close" correspond respectively to the opening and 

closing orders of the device. These orders are sent by the corresponding PLC program, and each device is 

controlled by its own program. The outputs "so" and "sf" correspond respectively to the states "opened" 

and "closed" of the corresponding device. These outputs are fed back to the PLC programs. The 

parameters "TimeOP" and "TimeCL" correspond respectively to the opening and closing times of the 

device. Finally, "Tmin" and "Tmax" represent temporal parameters of the device. 

 
Figure 14. Structures of devices "Sect1" and "DJ1" 

 

Though the transformer "Tr1" has a continuous behavior, it is modeled as a structure of Boolean variables 

representing internal faults, because these faults (overcurrent, short circuit, overheating...) are the only 

information that the program needs. These faults are modelled as an arbitrary fault generator (figure 22).  

The above structural analysis of the Transformer Group is followed by its functional analysis to understand 

the behavior of the devices in order to model them in the model checker Uppaal. For example, the behavior 

of the switch "sect1" (device category 1) is modelled with the Uppaal timed automata presented in figure 
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15. The switch is initially opened, but it starts closing once it receives closing order (input "close") from its 

PLC program. Then, after a certain duration (TimeCL) it becomes fully closed if the order was still 

maintained, otherwise it returns to the initial state if the closing order was released or if opening order was 

activated. When the device is closed, a rising edge of input "open" is sufficient to open the device after a 

certain duration (TimeOP). The Uppaal model of the switch "sect1" (Figure 15) is synchronized with the 

signal "PO!" sent by the model of the PLC scan cycle (Figure 10). The signal "PO?" is present on each 

transition. The variable "x" represents the internal clock of the model, and the Boolean variable "flag" is an 

observer indicating the states "opening" or "closing" of the switch. Details and explanation about models 

of the switch, circuit breaker and transformer are presented in (Niang, 2018). 

 
 

Figure 15. Uppaal model of the switch "Sect1" 
 

5.2  Models of timers 

The PLC program, mainly the SFC programs, contains timing operations described by functional blocks 

called TON (Timer On-delay). These TON functional blocks are described in IEC 61131-3 standard (IEC 

61131-3, 2013). A TON block has: 

o two input variables: 1) Boolean variable "in" to start or stop counting time; 2) time parameter "PT" 

indicating the timing delay (defined in Figure 18). 

o and two output variables: 1) Boolean variable "Q" which equals 1 if the delay has expired; 2) time 

variable "x" which gives the time elapsed from the last rising edge of the input "in". 

The timers are modeled in Uppaal as timed automata that run in parallel with the control programs. During 

the instantiation of timers, the above input/output variables are set for each instance of the timer, which is 

synchronized with the PLC cycle’s model through the signal "TON!" (Figure 16). Details about this model 

are presented in (Niang, 2018). 

 

Figure 16. Uppaal model of a Timer TON 

5.3  Translation of PLC programs into algebraic equations 

The PLC program of the Transformer Group is translated and embedded in the model of the PLC cycle. 

The main program of the Transformer Group, which is executed during each PLC cycle ("computing()" 
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function in Figure 10), contains: 

o a program controlling the switch "sect1" (in SFC language), 

o a program controlling the circuit breaker "DJ1" (in SFC language), 

o a program for the Transformer (in LD language).  

These control programs communicate with each other through shared variables. For formal verification, the 

Model-Checker Uppaal does not accept Ladder Diagram or SFC language but only textual equations or 

representation by automata. For programs coded into Ladder Diagram (LD), the translation into algebraic 

equations is trivial and consists in interpreting several simple logic functions (Seabra et al. 2007). On the 

other hand, the SFC programs are translated into algebraic equations that are sequentially executed by 

computing: 1) the clearing conditions of the transitions, 2) the values of the step variables, and 3) the actions 

(Machado et al.). 

Figure 17 presents the SFC program of the switch "sect1". The translated program, written in algebraic 

equations, is depicted in Figure 18. The function of a transition, ft, is given by a conjunction of the state of 

the previous steps and the logical condition associated with the transition. A step is activated if the function 

of one of its input transitions is true. It remains active as long as the function of one of its output transitions 

is false. The actions associated with a step are active when the step is active. A tool has been developed for 

automatic translation of SFC and LD control programs into algebraic equations in Uppaal. This tool is 

based on the structured methodology proposed in (Machado et al., 2006). Figure 18 corresponds to the 

translation (into Boolean equations) of the SFC control program of a switch. As in a real control system, 

this control program aims to calculate the outputs (or orders) “open” and “close”, before sending them to 

the model of the switch (Fig. 15). So the only variables of Figure 18, used by the Uppaal model, are the 

outputs “open” and “close” dedicated to open and close the switch. 

Each output is maintained for a minimal time to guarantee its execution and the reception of the signal 

indicating the state (open or closed) of the component involved. For example, the “close” order associated 

with step x2 of the SFC of figure 17 is activated during 80ms. This time is expressed by a Boolean 

information Qtmp which is updated by the timers’ evolution in steps x2, x4, and x101 in figure 18 (PT=(x2: 

?80:PT) …). 

After the translation of the control programs, they are instantiated into the main program "computing()" 

which executed during any PLC cycle. 
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Figure 17. Control program for switch "Sect1" in SFC 

 

 
Figure 18. Control program for switch "Sect1" translated into algebraic equations 
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5.4  Formalization and verification of functional requirements (testing procedures) 

The verification of functional requirements consists in verifying that the PLC program satisfies a set of test 

cases defined in the recipe book. These test cases are not exhaustive enough to formally guarantee the 

safety of the installation. 

For the Transformer Group defined in Figure 1, ten test cases are required to validate its functional 

requirements. Figure 19 presents the first test case, entitled "Circuit breaker’s reaction after overcurrent". 

It consists in verifying that if an overcurrent fault appears in the Transformer Group, the circuit breaker 

"DJ1" remains open as long as the fault has not disappeared. 

To verify with Uppaal if the control program satisfies this test case, the latter should be formalized in the 

model checker. A test case is, somehow, similar to a SFC program, because it is mainly composed of: 1) 

initial condition, actions (instructions), and 2) transitions (Expected results). Thus, the formalization of a 

test case consists in translating it into a SFC program, and then into algebraic equations as we did for the 

SFC control program of the switch "sect1". The method of self-holding programming is also used to 

translate SFC program into algebraic equations. The translation of the test case of Figure 19 is depicted in 

Figure 20. This translation should be applied to each test case. 

 
Figure 19. First test case of recipe book 
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Figure 20.  Translation of the first test case into SFC and then into algebraic equations 

 

A timed automaton is then used to automatically execute the test cases of the recipe book. The recipe book 

for the controlled Transformer Group is represented by the timed automaton of Figure 21. Each location of 

the automaton (except the initial location entitled "begin" and last one "end") corresponds to one of the 10 

consecutive test cases of the recipe book. A test case is synchronized with the model of the PLC cycle 

through the signal "end!" (Recipe book execution step in Figure 10) in such a way that the recipe book’s 

evolution state is updated at the end of each PLC cycle. The label “ok” is a guard which signals whether 

the running test case has been satisfied or not. This label is updated by the last algebraic equation of the test 

case (Figure 20), which corresponds to the successful execution of the final transition of the corresponding 

SFC (transition “ft3” of Figure 20). Therefore, a test case of the timed automata representing the recipe 

book (Figure 21) is executed only if the previous one (if it exists) is satisfied by the control program.  

 
Figure 21. Timed automaton of a recipe book 

 

To verify if the PLC program of the Transformer Group satisfies all testing procedures, it is enough to check 

if there exist at least one blocking instruction in the recipe book. An instruction is blocking if, after its 

execution on the controlled Transformer Group, the corresponding expected result is not obtained after a 
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certain duration. This property can be easily checked in Uppaal by to the following "query" which checks 

whether or not the timeout of the "RecipeBook" timer is signaled: 

E <> RecipeBook.timeout 

The "RecipeBook" timer counts, for each instruction of recipe book, the elapsed time between the execution 

of the instruction and the obtainment of the corresponding expected result. The timeout represents an elapsed 

time which cannot be attained if the program is valid. If the timeout is attained, the program presents an 

error because this means that the output transition of the current active step of the corresponding SFC 

program cannot be fired. The delay of the timeout is quantified by the upper threshold of the test case that 

has the longest execution time. The satisfaction of this query will therefore mean that there exists at least 

one blocking instruction. Then, the model checker Uppaal provides the path – a witness – (a witness in this 

case) leading to the blocking instruction and the corresponding testing procedure. 

The verification of functional requirements of the Transformer Group’s control program were performed on 

a “core i5” windows machine with 4Gb RAM. It takes at most 70 milliseconds for the model checker to 

return a blocking instruction if the program contains errors. In this case, the path returned by the model 

checker Uppaal helps the engineers to diagnose and correct the corresponding error of the PLC programs. 

The modeling and verification procedures of functional requirements are further detailed in (Niang, 2018). 

 

5.5  Formalization and verification of safety requirements 

Two examples of safety requirements of the Transformer Group (named property 1 and property 2) are 

defined below:  

o property 1: never attempt to open the circuit breaker "DJ1" in charge, i.e., when the switch 

"sect1" is closed, expressed by the following query: E<>cycle.end and tempoDef.timeout 

and  APP2.sf 

o property 2: any fault that appears in the Transformer Group must be eliminated by the circuit 

breaker "DJ1" within 300 milliseconds, expressed by the following query: E<>cycle.end 

and tempoDef.timeout and  DJ1.sf 

Some of the 10 testing procedures dedicated to the Transformer Group (Figure 21) are intended to verify 

that the dangerous states (corresponding to properties 1 and 2) are unreachable. For example, the second 

test case in Figure 21 (named “SGT( )”) consists in putting the Transformer Group in an initial state, then 

executing the  predefined scenario and verifying if the circuit breaker "DJ1" can be opened in charge. 

However, even if this testing procedure is satisfied by the control program, it does not imply that property 

1 will always be satisfied, because there may exist other scenarios of the control program that violate this 

property. A more exhaustive approach for formal verification of safety requirements is therefore needed. 

For this, the dangerous states should be expressed as queries in Uppaal. Then, the models in Figure 22 are 

used to generate arbitrary values of the system’s inputs for exhaustive verification (as has been explained in 

Section 4.1).  
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Figure 22. Arbitrary generator of input values 

 

The left-hand side model of Figure 22 is synchronized with the PLC cycle’s model through the signal 

"reading?" (inputs reading step of Figure 10), whereas the right-hand side model is synchronized through 

the signal "command?" (“commands reading” step of Figure 10). During any PLC cycle, the first model 

generates arbitrary values for one Boolean input (a sensor, a fault...), while the second model generates 

arbitrary command sent by the operator, such as the opening or closing of a switch or a circuit-breaker. 

These models are instantiated several times in the global model, depending on the number of inputs and 

devices of the plant. To limit the state space during formal verification of safety requirements, only faults 

or sensor inputs relative to the given test case are generated. Guards are therefore associated with the 

transitions of these models. For example, the guard "flag" of the first model of Figure 22 is a Boolean 

variable which allows the activation of the fault "b" only if it will make the control program evolve during 

the current PLC cycle. "flagCO" and "flagCF" are used in a similar way for the second model of Figure 22.  

The formal verification of safety requirements consists in verifying in Uppaal (through a query) "if there 

exists a scenario (or inputs vector) that can occur in the system and leads it to violate the safety 

requirements". When the properties are violated, the model checker returns the scenario(s) leading to the 

dangerous state(s) to help the engineer correct the errors. Formal verification results showed that the 

safety requirements are not formally satisfied by the control program of the given example. In fact we 

have proved that, even if their occurrence is rare, there exist some scenarios that can lead the control 

program to violate the safety requirements, and the corresponding errors must be corrected. Due to the 

requirement to search the whole state space, the verification of safety properties requires much more 

computer time (about 30 seconds for our example using a “core i5” windows machine with 4Gb RAM) 

than that required for the verification of functional properties.  

While this formal technique allows engineers to detect errors in PLC programs, it does not allow them to correct 

the program to ensure it never violates the safety requirements. For this purpose, we implement a safety filter 

in the PLC, as proposed by (Pichard et al., 2019) as a piece of ST code placed at the end of the program (Figure 

23) to formally guarantee the safety of installation. For example, let’s consider that the designed control 

program has violated the property 1 (opening "DJ1" in charge). When the operator needs to open the circuit 

breaker, the safety filter checks first (thanks to logical constraints) if the request corresponds to an opening 

order in charge. In this case, the opening request is filtered and not sent to the circuit breaker.  

 

 

Figure 23. Principe of the safety filter 

 

The filter is therefore used to complement (or refine) the existing control program to obtain the final and 

safe control program. In this way, the engineer is not required to modify the PLC program in order to 

guarantee its safe execution. The design method of the safety filter is presented in (Pichard et al., 2019). 

To formally verify that the safety filter guarantees the safety of installation as expected, it was implemented in the 
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model of the PLC program controlling the Transformer Group. Then we formally verify if the safety 

requirements have been met. The design of the safety filter is based on algebraic equations. Therefore its 

implementation in the model of the main program "computing()" (Figure 10) does not need any translation. 

As expected, the safety requirements are no longer violated by the control program thanks to the safety 

filter, while the functional requirements are still satisfied in our example. 

 

6.  CONCLUSION 

The aim of the methodological approach presented in this paper is to bridge the gap between formal 

approaches in academia and industrial applications by proposing an original workflow for automation 

study. This workflow focuses on the improvement of the traditional workflow of SNCF engineers, which 

involves a design and a V&V phases of PSEEL’s control systems, without modifying the way they are 

used to program PLC. The traditional design phase is replaced by an automatic generation process of 

deliverables, and the manual testing approach for V&V of control system is replaced by a methodological 

approach that encompasses formal verification of PLC programs, automatic validation of PLC programs 

(through SIL), and automatic validation of electric cabinets (through HIL). The recipe book, which is 

traditionally used to perform the tests, is automatically generated and used as the requirement specification 

model for formal verification of functional properties.  

Formal verification compensates the lack of exhaustiveness of the traditional testing approach, and the 

implementation of the safety filter guarantees that the control system satisfies the safety requirements 

without modifying the initial PLC code. The Virtual Commissioning technique allows the engineers to 

automate the Validation procedure of the control system, and to provide interactive traceability for critical 

and faulty situations. This technique is also useful for training new operators. 

The new workflow has been implemented by SNCF and has improved the working conditions of SNCF 

engineers during automation projects while guaranteeing the safety of installation. Thanks to automatic 

generation of deliverables, the repetitive tasks are avoided, and human errors are reduced during the design 

phase. 
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