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Abstract Global soil erosion redistributes a large amount of soil organic carbon (SOC) and is potential to
significantly change the terrestrial carbon budget. However, there are large uncertainties in the
redistribution of SOCwithin the terrestrial and aquatic ecosystems. Based on two national survey data sets on
soil erosion and sediment measurements from hydrological stations, this study estimated the redistribution
of sediment and SOC in the nine river basins of China during 1995–1996 and 2010–2012. Over these two
periods, 3.55–4.50 Pg of soil and 68.42–77.32 Tg C of SOC were eroded each year. For the SOC budget, on
average 57% and 47% of the eroded SOC was deposited over land, 25% and 44% was deposited in the channel,
and 18% and 8%was delivered into the sea during 1995–1996 and 2010–2012, respectively. Compared with the
corresponding magnitudes during 1995–1996, the eroded SOC, the SOC deposited over land, and the SOC
discharged into the sea decreased during 2010–2012, and only the SOC deposited into the river channel
increased (from 19.5 to 30.1 Tg C yr−1). The changes in SOC deposition in the channel of the Yangtze River
and the Yellow River basins demonstrate that the influence of human activities is extensive. Our results
show that the erosion‐induced redistribution of SOC alters the carbon budget of China.

1. Introduction

As the largest terrestrial organic carbon pool, soil organic carbon (SOC) plays an important role in regulating
the global carbon cycle (Amundson, 2001). Global soils contain 1,417 Pg C in the top 1 m (Hiederer & Köchy,
2011), approximately 50% of the terrestrial carbon pool and twice the atmospheric carbon pool (Houghton,
2007). Numerous studies have focused on the vertical carbon exchange between land and the atmosphere
resulting from SOC decomposition (Bahn et al., 2010; Bond‐Lamberty et al., 2004; Raich et al., 2002;
Yuan et al., 2011), but the impacts of the lateral movement of SOC induced by soil erosion on the
terrestrial carbon budget have been largely overlooked (Gebrehiwot et al., 2018; Lal, 2003; Quinton et al.,
2010; Van Oost et al., 2007; Yue et al., 2016). A recent study found that there is 0.3–1.0 Pg C of lateral
movement of SOC, which will result in a change in the carbon source or sink of 17%–26% for global terrestrial
ecosystems (Chappell et al., 2016). Therefore, the fate of SOC induced by soil erosion is of key importance for
the missing sink in the global carbon cycle.

In general, the eroded SOC is redistributed between the land, the aquatic continuum, and the ocean (Regnier
et al., 2013). Previous studies have shown that the different mineralization processes at erosional and deposi-
tional sites are caused by the different environmental conditions (Jastrow et al., 2007; Kirkels et al., 2014; Ma
et al., 2016; Ran et al., 2015; Sobek et al., 2009). For example, Zhang et al. (2016) found that increased soil
moisture and compaction at decomposition sites can constrain carbon mineralization by limiting the oxygen
availability of SOC and can isolate substrate carbon from heterotrophic microorganisms. In addition, there is
growing evidence that the burial of SOC in the aquatic environment should be given more attention in the
global carbon cycle (Battin et al., 2009; Cole et al., 2007; Downing et al., 2008; Julian et al., 2017; Lundin
et al., 2015; Regnier et al., 2013; Stallard, 1998; Wang, Hoffmann, et al., 2017; Worrall et al., 2016). The
organic carbon that enters aquatic systems usually experiences low decomposition and high carbon
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sequestration (Stallard, 1998). Furthermore, carbon dioxide (CO2) emission rates differ substantially
between different lakes, reservoirs, and rivers (Ran et al., 2017; Wen et al., 2017).

Many studies have been conducted to evaluate the global magnitude and spatial variation of eroded SOC, but
to date, the different methods are inconclusive (Berhe et al., 2007; Jacinthe & Lal, 2001; Lal, 2003; Smith
et al., 2001; Stallard, 1998). Berhe et al. (2007) estimated the global SOC erosion rate as 1.1–3.7 Pg C yr−1

based on soil erosion estimates by Pimentel et al. (1995), which is approximately half of the estimate (3–6
Pg C yr−1) reported by Jacinthe and Lal (2001). The carbon accumulated in inland water sediments has been
estimated to range from 0.2 to 1.4 Pg C yr−1 (Battin et al., 2009; Cole et al., 2007; Dean & Gorham, 1998;
Regnier et al., 2013; Stallard, 1998), and there is a sevenfold difference between the maximum andminimum
estimates. Some estimates have suggested that global rivers export 0.4–0.6 Pg C of SOC every year (Dai et al.,
2012; Galy et al., 2007; Holeman, 1968; Lal, 2003; Li et al., 2017; Ludwig et al., 1996; Mayorga et al., 2010;
Schlesinger & Melack, 1981; Walling & Webb, 1996).

China is one of the countries that experience themost severe soil erosion, which varies from 5.3 to 18.2 Pg yr−1,
and is approximately one tenth of the global soil erosion (Li & Liu, 2006; Yang et al., 2003; Zhang, Liu, et al.,
2014). There are still large uncertainties in the estimates of lateral movement of SOC induced by soil erosion.
For example, Zhang, Liu, et al. (2014) estimated that 0.64–1.04 Pg C yr−1 of SOC is redistributed laterally in
China based on a process‐based soil erosion model. However, Yue et al. (2016) estimated that much less SOC
was eroded (0.18 Pg C yr−1). Some research has estimated the redistribution of eroded SOC between land,
rivers, and the sea. Several studies have reported that 49.5% of eroded SOC is buried within the Yellow
River basin and 23.5% is delivered into the ocean (Ran et al., 2014). However, to our knowledge, no study
has attempted to systematically assess the sediment and organic carbon budget of other basins in China, tak-
ing into account both inland waters and the oceans.

In this study, we combined the national survey data sets of soil erosion over two periods (1995–1996
and 2010–2012) and sediment measurements from hydrological stations and quantified the redistribu-
tion of erosion‐induced sediment and SOC across the nine river basins of China. The objectives were
to estimate the redistribution of sediment and SOC between the land, river networks, and oceans over
the nine major basins and compare the changes in the redistribution proportions between the two study
periods of 1995–1996 and 2010–2012. The results provide the spatial and temporal patterns of the
redistribution of eroded SOC, which are important to quantify the impacts of soil erosion on the
carbon cycle.

2. Material and Methods
2.1. Study Area

The nine main river basins in China, which locate within 70°6′E–136°32′E and 21°22′N–54°14′N, are cho-
sen in this study to investigate the impacts of soil erosion on land carbon cycle (Figure 1). The areas of the
nine river basin range from 7.8 × 104 (the Southeast River basin) to 168.5 × 104 (the Yangtze River basin)
km2, and they totally occupy approximately 45% (4.3 × 106 km2) of the whole land area of China. The nine
river basins are the Yellow, Yangtze, Hai, Huai, Liao, Songhua, Pearl, Southeast, and Inland rivers, which
contain 80 subbasins. Additional information of these subbasins is summarized in the supporting informa-
tion (Table S1). Except for the Inland River basin, the other eight are all exterior river basins, and the total
drainage area of the eight river basins makes up approximately 80% of the total external drainage in China.
In addition, the hydrological stations in the main channels of the Yellow River and the Yangtze River Basins
are included below to describe the results (Figure 2).

2.2. Data Sets

Annual sediment measurements at 80 hydrological stations from 1960 to 2014 were extracted from the
Chinese River Sediment Bulletin (Ministry of Water Resources of PRC, 2000). There are 14 estuary hydro-
logical stations and 66 nonestuary stations. The magnitude and areas of soil erosion were derived from
two national soil erosion survey data sets accomplished in 1995–1996 and 2010–2012 (http://cese.pku.
edu.cn/chinaerosion/). The two national soil erosion surveys were generated by comprehensively using
satellite‐based images, field measurements, and Chinese Soil Loss equation (Yue et al., 2016). More
method details were described in Yue et al. (2016). The magnitude of soil erosion was divided into six

10.1029/2018JG004781Journal of Geophysical Research: Biogeosciences

WANG ET AL. 1019

http://cese.pku.edu.cn/chinaerosion/
http://cese.pku.edu.cn/chinaerosion/


grades according to the Classification and Ranking Standards for Soil and Water Loss in China (Table 1).
The two national soil erosion survey data sets provide the areas of six erosion grades at the county level.
In addition, soil organic carbon content data with a spatial resolution of 0.0083° latitude × 0.0083° long-
itude was used to estimate the eroded SOC. This data set was generated by field survey of 8980 soil pro-
files from various regional and national soil databases (http://globalchange.bnu.edu.cn/research/soil2;
Shangguan et al., 2013).

The Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) data set with a spatial reso-
lution of 90 m was downloaded from http://srtm.csi.cgiar.org. Based on the station coordinates and DEM,
the river basin boundaries were generated using the Hydrology Watershed Method in ArcGIS 10.1
(Environmental Systems Research Institute).

2.3. Methods

The national survey soil erosion data sets define six areas of erosion‐grade erosion modulus at the county
level. Therefore, the county‐level soil erosion rates (Es, t·km

−2·yr−1) and soil erosion in each river basin
(E, t·yr−1) can be calculated as

Es jð Þ ¼ ∑6
i¼1Am i;jð Þ×Em ið Þ

� �
=As jð Þ (1)

E ¼ ∑N
j¼1Es jð Þ×Ac jð Þ (2)

where Es(j) is soil erosion per unit area of the jth county (t·km−2·yr−1), Am(i,j) is the erosion area of the ith
degree in jth county (km2), Em(i) is the erosion modulus of the ith degree (t·km−2·yr−1) and is the averaged
value of the interval value, minimum or maximum, unless the sixth degree is the minimum value of the

Figure 1. Spatial distribution of the nine river basins investigated in this study. Outlet: The estuary hydrological stations.
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interval value (Table 1), As(j) is the area of the jth county (km2), N is the number of the county included in the
basin, and Ac(j) is the area of the jth county included in the basin (km2).

The sediment delivery ratio (SDR) is the ratio of sediment transport into the river to the total amount of soil
erosion. SDR in the range 0.1–1 is positively correlated with the degree of erosion (Table 1; Yue et al., 2016).
We used the SDR to partition the eroded soil into deposition over the land (D, t·yr−1) and transportation into
rivers (T, t·yr−1) over each river basin, respectively:

Ds jð Þ ¼ ∑6
i¼1 1−SDR ið Þ

� �
×Am i;jð Þ×Em ið Þ

� �
=As jð Þ (3)

Ts jð Þ ¼ ∑6
i¼1SDR ið Þ×Am i;jð Þ×Em ið Þ

� �
=As jð Þ (4)

D ¼ ∑N
j¼1Ds jð Þ×Ac jð Þ (5)

T ¼ ∑N
j¼1Ts jð Þ×Ac jð Þ (6)

where Ds(j) is the weighted mean values of deposition over the land in the
jth county (t·km−2·yr−1), SDR(i) is the SDR of the ith degree and is the
averaged value of the interval value, minimum or maximum (Table 1),
and Ts(j) is the weighted mean values of transportation into the river in
the jth county (t·km−2·yr−1).

Figure 2. Spatial distribution of the main hydrological stations in the Yellow River and Yangtze River basins.

Table 1
Erosion Modulus and Sediment Delivery Ratio (SDR) for the Six
Erosion Grades

Erosion grade

Erosion modulus
SDR
grade(t km−2 yr−1)

Slight <1,000 0
Light 1,000–2,500 0.1–0.3
Moderate 2,500–5,000 0.3–0.5
Intense 5,000–8,000 0.5–0.7
Extremely intense 8,000–15,000 0.7–0.9
Severe >15,000 0.9–1.0

10.1029/2018JG004781Journal of Geophysical Research: Biogeosciences

WANG ET AL. 1021



We calculated the amount of SOC erosion, transportation, and deposition over the river basins as

Ec ¼ ∑N
j¼1Es jð Þ×Ac jð Þ×Sc jð Þ×ER (7)

Dc ¼ ∑N
j¼1Ds jð Þ×Ac jð Þ×Sc jð Þ×ER (8)

Tc ¼ ∑N
j¼1Ts jð Þ×Ac jð Þ×Sc jð Þ×ER (9)

where Ec, Tc, and Dc are SOC erosion, transportation, or deposition, respectively, over each river basin
(t·yr−1), Sc(j) is the SOC content of the jth county in the 0–4 .5cm soil layer (%), and ER is the enrichment
ratio defined as the ratio of the SOC content in the eroded soil to that of the in‐situ soil (Schiettecatte
et al., 2008). Most studies have found that the enrichment ratio is greater than 1, because the SOC was of
relatively low density and was removed preferentially (Lal, 2003; Polyakov & Lal, 2004). In addition, the soil
layer of SOC content used in other research was thicker than that in this study (0–4 .5cm; Lal, 2003; Zhang,
Liu, et al., 2014), which therefore has a lower carbon content than that in our study. However, there were few
available data to parameterize this value for the nine river basins. Therefore, our study assumed that ER is
equal to 1 (Yue et al., 2016).

The sediment discharge method was used to calculate the difference between the sediment input and output
as river channel erosion and deposition, according to the law of material conservation (Shu & Tan, 2009).
The sediment deposited in the channel (Cs, t·yr

−1) between the upstream and downstream hydrological sta-
tions (as ZJS or TLZ channel) was given by (Figure 3):

Cs ¼ Qs uð Þ þ T dð Þ−T uð Þ
� �

−Qs dð Þ (10)

Figure 3. A schematic diagram of the method for calculating the channel deposition. Tangnaihai basin is included in the Lanzhou basin.
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where Qs(u) is the sediment measurements at the outlet of the upstream basin (Tangnaihai or no basin;
t·yr−1), Qs(d) is the sediment measurements at the outlet for the downstream basin (Lanzhou or
Zhangjiashan basins; t·yr−1), T(u) is the transportation from the upstream basin (Tangnaihai or no basin;
t·yr−1), and T(d) is the transportation from the downstream basin (Lanzhou or Zhangjiashan basins;
t·yr−1). If there is no upstream basin, Qs(u) and T(u) are equal to zero.

In the same way, the amount of SOC in the channel (Cc, t·yr
−1) between the upstream and downstream

hydrological stations was calculated using the SOC content of the SOC transportation (Tc/T):

Cc ¼ Qs uð Þ×
Tc uð Þ
T uð Þ

þ Tc dð Þ−Tc uð Þ
� �

−Qs dð Þ×
Tc dð Þ
T dð Þ

(11)

where Tc(u) is the SOC transportation from the upstream basin and Tc(d) is the SOC transportation from the
downstream basin. If there is no upstream basin, Qs(u) and Tc(u) are equal to zero.

In addition, the sediment delivered (Ps, t·yr
−1) into the sea was equal to the sediment measured at the estu-

ary hydrological station (Linjin station in Figure 2). The SOC delivered into the sea (Pc, t·yr
−1) was calcu-

lated as the sediment delivered into the sea multiplied by the SOC content of the SOC transportation in
the corresponding river basin:

Pc ¼ Ps×
Tc

T
(12)

3. Results
3.1. Spatial and Temporal Patterns of SOC Erosion and Deposition

Combining the national soil erosion surveys and SOC content data sets, we estimated the magnitude of
eroded soil and SOC in the nine river basins. The largest soil erosion rates were found in the Toudaoguai
to Tongguan interval of the Yellow River with an erosion rate of more than 2,995.82 t·km−2·yr−1

(Figure 4a). However, due to the low soil carbon content, the largest amount of eroded SOC did not occur
in this region. The most intensively eroded SOC region was located in the upper Yangtze River basin from
Zhimenda to Yichang with an erosion rate of 418.11 t C·km−2·yr−1, and total eroded SOC measuring 0.05
Pg C·yr−1 over the entire river interval (Figure 4c). The highest eroded SOC was measured in the Yangtze
River basin, with 31.2–44.1 Tg C·yr−1 produced by lateral movement (Table 3).

Both eroded soil and SOC showed substantial changes between the two study periods of 1995–1996 and
2010–2012. In over 63% of the area, the eroded soil decreased in 2010–2012 compared with 1995–1996
(Figure 4b). Over the Yellow River basin in particular, the erosion rate decreased from 2,399.05 to
1,160.14 t·km−2·yr−1. The spatial distribution of the SOC erosion changes showed a similar spatial pattern
with soil erosion in the two national surveys (Figures 4b and 4d). The larger deceases in soil and SOC erosion
occurred in the Yellow River and Yangtze River basins (Tables 2 and 3). In contrast, there were substantial
increases in the erosion rates of soil and SOC over the Songhua River and Pearl River basins.

The soil and SOC deposition over land showed fairly similar spatial patterns with erosion. High deposition of
eroded soil occurred in the Toudaoguai to Tongguan interval of the Yellow River and the Pingshan to
Yichang interval of the Yangtze River (Figure 5a). The SOC deposition rates were higher in the upper
Yangtze River basin from Zhimenda to Yichang (a mean rate of 214.21 t C·km−2·yr−1 and total SOC removal
of 0.03 Pg C·yr−1) and in the Songhua River basin (a mean rate of 96.63 t C·km−2·y−1 and total SOC removal
of 0.01 Pg C·yr−1; Figure 5c). As shown in Figures 5b and 5d, soil and SOC deposition in more than 70% of
the regions was reduced by 238.51 t·km−2·yr−1 and 8.43 t C·km−2·yr−1, respectively. In particular, the
deposition rates were reduced markedly on the Loess Plateau and in the upper Yangtze River basin.

3.2. SOC Erosion Into the River and Ocean

Large fractions of SOC are deposited in the river channels and ocean after removal from the land. Substantial
amounts of soil sediment were found in the main channel from Pingshan to Yichang in the Yangtze River
basin and from Longmen to Gaocun in the Yellow River basin (0.38 and 0.22 Pg yr−1, respectively;
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Figure 4. Spatial distributions of the magnitude and changes in the erosion rate of soil and soil organic carbon (SOC). (a) and (c) indicate the averaged soil and SOC
erosion rate for 1995–1996 and 2010–2012, respectively, and (b) and (d) show changes in the soil and SOC erosion rate between the two periods of 1995–1996 and
2010–2012.

Table 2
Soil Erosion (E), Deposition (D), Channel Sediment (CS), and Sediment Discharge Into the Sea (STS) for the Nine River Basins During the Period Between 1995–1996
(a) and 2010–2012 (b)

River
basin

E (Tg/yr) D (Tg/yr) CS (Tg/yr) STS (Tg/yr) D/E CS/E STS/E

A B A B A B A B A B A B A B

Yellow 1,771 856 663 407 603 301 505 148 0.37 0.48 0.34 0.35 0.29 0.17
Yangtze 1,809 1,420 1,011 649 460 632 338 139 0.56 0.46 0.25 0.44 0.19 0.10
Songhua 278 426 188 204 81 211 9 11 0.68 0.48 0.29 0.50 0.03 0.03
Liao 130 112 85 57 40 52 5 3 0.65 0.51 0.31 0.47 0.04 0.03
Hai 214 186 136 100 78 86 1E−2 2E−3 0.64 0.54 0.36 0.46 0.00 0.00
Huai 56 57 32 27 19 27 4 3 0.58 0.48 0.34 0.47 0.07 0.05
Pearl 126 382 80 169 –21 192 67 20 0.64 0.44 −0.17 0.50 0.53 0.05
Southeast 9 25 6 13 −3 2 5 9 0.65 0.52 −0.28 0.09 0.58 0.37
Northwest 112 90 75 55 17 10 – – 0.67 0.61 0.15 0.11 – –

Total 4,504 3,555 2,275 1,682 1,296 1,539 933 333 0.51 0.47 0.29 0.43 0.21 0.09

Note. D/E: Deposition as a proportion of erosion; CS/E: Channel sediment as a proportion of erosion; STS/E: Sediment discharge into the sea as a proportion of
erosion.
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Figure 5. Spatial distributions of the magnitude and changes in the deposition rate of soil and SOC. (a) and (c) show the average soil and SOC deposition rate for
1995–1996 and 2010–2012, respectively. (b) and (d) indicate the changes in the soil and SOC deposition rate between 1995–1996 and 2010–2012.

Table 3
Soil Organic Carbon Erosion (SOCE), Deposition (SOCD), Channel SOC (SOCCS), and SOC Discharge Into the Sea (SOCSTS) for the Nine River Basins During the
Periods 1995–1996 (a) and 2010–2012 (b)

River
basin

SOCE (Tg/yr) SOCD (Tg/yr) SOCCS (Tg/yr) SOCSTS (Tg/yr) SOC(D/E) SOC (CS/E) SOC (STS/E)

A B A B A B A B A B A B A B

Yellow 15.3 10.0 7.3 5.0 4.4 3.4 3.9 1.7 0.48 0.50 0.28 0.34 0.25 0.17
Yangtze 44.1 31.2 24.8 14.5 11.1 13.7 8.2 3.0 0.56 0.47 0.25 0.44 0.19 0.10
Songhua 9.0 13.9 6.0 6.5 2.6 7.0 0.3 0.4 0.67 0.47 0.29 0.51 0.03 0.03
Liao 1.8 1.7 1.2 0.8 0.5 0.8 0.1 0.4E‐1 0.66 0.49 0.30 0.48 0.04 0.03
Hai 2.3 2.0 1.5 1.1 0.9 0.9 0.1E‐3 0.2E‐4 0.64 0.54 0.36 0.46 0.00 0.00
Huai 0.6 0.7 0.4 0.3 0.2 0.3 0.1 0.4E‐1 0.59 0.48 0.33 0.47 0.08 0.05
Pearl 2.6 7.2 1.6 3.2 −0.4 3.6 1.4 0.4 0.63 0.44 −0.17 0.50 0.53 0.05
Southeast 0.1 0.4 0.1 0.2 0.0 0.0 0.1 0.2 0.63 0.52 −0.32 0.09 0.66 0.39
Northwest 1.4 1.3 0.9 0.7 0.3 0.3 – – 0.65 0.58 0.20 0.22 – –

Total 77.3 68.4 43.9 32.4 19.5 30.1 13.9 5.7 0.57 0.47 0.25 0.44 0.18 0.08

Note. SOC(D/E): SOC deposition as a proportion of SOC erosion; SOC (CS/E): Channel SOC as a proportion of SOC erosion; SOC (STS/E): SOC discharge into the
sea as a proportion of SOC erosion.
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Figure 6a). Similarly, SOC was deposited in the main channel from Pingshan to Yichang in the Yangtze
River basin and from Tongguan to Gaocun in the Yellow River basin (3.72 and 10.26 Tg C yr−1, respectively;
Figure 6a). Approximately 75% of the river basins had net sediment and SOC deposition (Figures 6a and 6c).
Furthermore, channel deposition of sediment and SOC in more than 62% of the region increased by 482.92
and 16.98 t C·km−2·yr−1, respectively (Figures 5b and 5d). The increases in the channel deposition occurred
mostly in the main channel from Pingshan to Yichang in the Yangtze River basin and from Toudaoguai to
Longmen in the Yellow River basin.

Based on the measurements during 2010–2012, 5.7 Tg C yr−1 of SOC was discharged into the sea and 30.1 Tg
C yr−1 of SOC was buried into river channels (Table 3). On average, 57% and 47% of the eroded SOC was
deposited on land during the two study periods (1995–1996 and 2010–2012), respectively; 25% and 44%
SOC was deposited in the channel; and 18% and 8% was discharged into the sea (Table 3). As illustrated
in Tables 2 and 3, compared with 1995–1996, the soil and SOC erosion was reduced by 949 and 8.9 Tg
C·yr−1, respectively, in 2010–2012. Furthermore, the proportions of sediment and SOC deposited over land
and delivered into the sea were reduced, whereas the amount deposited in river channels increased. Only the
sediment and SOC deposited in the Yellow River and Northwest River basin channels reduced, whereas they
increased in the other basins. Nearly all the river basins showed a decreasing trend of sediment and SOC dis-
charge into the sea, except for the Songhua and Southeast River basins. In addition, we analyzed the trends
of sediment transport into the sea in China from 1960 to 2014, which showed a decreasing trend in most

Figure 6. Spatial distributions of the magnitude and changes in channel sediment and SOC. (a) and (c) show the average channel sediment and SOC over 1995–
1996 and 2010–2012, respectively. (b) and (d) indicate the changes in the channel sediment and SOC between the periods of 1995–1996 and 2010–2012.
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exterior river basins, with increasing trends observed only in the Songhua
River basin and at Lanxi hydrological station in the Southeast River basin
(Table 4).

4. Discussion

The redistribution of erosion‐induced SOC has a profound effect on the
carbon cycle (Berhe et al., 2007; Lal, 2003; Regnier et al., 2013; Stallard,
1998; Smith et al., 2001; Wang, Hoffmann, et al., 2017). Numerous studies
have highlighted the importance of the fate of eroded SOC between land,
the rivers, and the ocean, which has a substantial impact on the global car-
bon cycle (Battin et al., 2009; Bauer et al., 2013; Butman et al., 2016; Marx
et al., 2017; Ran et al., 2017; Regnier et al., 2013; Worrall et al., 2016). This
study estimated the redistribution of eroded SOC in nine river basins in
China using soil erosion inventory data and sediment measurements.
We found that on average 47%–57%, 25%–44%, and 8%–18% of eroded
SOC was distributed among the land, rivers, and the ocean, respectively
(Table 3). Previous studies have quantified the impacts of the SOC depos-
ited on land for the terrestrial carbon sink (Yue et al., 2016), but the fate of
the remaining 45.8% of SOC transported into the aquatic ecosystems has
not been investigated. The SOC exported into the sea was estimated as
5.7–13.9 Tg C yr−1 in this study, which is comparable to the 7.7 Tg C yr−1

estimated by previous research (Table 5; Ran et al., 2013; Shi et al., 2016; Sun et al., 2017; Wang et al.,
2012; Xia & Zhang, 2011; Zhang et al., 2013; Zhu et al., 2012).

We compared the redistribution proportion of eroded SOC in this study with estimates of previous studies
(Lal, 2003; Ran et al., 2014; Regnier et al., 2013; Smith et al., 2001, 2005; Van Oost et al., 2007; Table 6). In
general, there are relatively consistent and highly confident estimates on the proportion of eroded SOC
exported into the ocean because they were estimated by using sediment observations at the estuary
hydrological stations. Over the Yellow River basin, the proportion of eroded SOC exported into the sea
(17%–25%) in this study is comparable in magnitude to the estimate in Ran et al. (2014; 24%). Similarly,
the amount of eroded SOC exported into the ocean from the nine river basins in China (8%–18%) was quite
close to the proportion estimated in the United States (20%) and global scale (10% or 29%; Lal, 2003; Smith
et al., 2001). By contrast, there are large uncertainties on the redistribution of deposited SOC between land
and river channel (Table 6). For example, our estimates showed 48%–50% SOC deposited on land in the
Yellow River basin and which was much higher compared with previous work (25%; Ran et al., 2014).

The changes in the redistribution of eroded soil and SOC were possible to influence by human activities, such
as land use changes and reservoir construction (Liu et al., 2014; Wang et al., 2015; Wang, Wu, et al., 2017;
Zhao et al., 2017). Compared with the erosion during 1995–1996, there was significant reduction in erosion
in the upper reach of the Yangtze River and the Yellow River during 2010–2012 (Figure 3b). It is possible
because the Natural Forest Protection Program safeguarded 98 million ha of forest during 1998–2006 and
the Conversion of Farmland to Forest Program was implemented on the Loess plateau regions in 1999 (Liu

et al., 2014; Wang et al., 2007; Yuan et al., 2014). The channel deposition
from Pingshan to Yichang stations in the Yangtze River basin increased
markedly (Figure 5b) probably because of the implementation of the
Sanxia Dam in 2003 (Chen et al., 2015). The sediment and SOC deposition
in the Yellow River basin channel decreased (Tables 2 and 3) due to the
contribution of soil and water conservation measures in the central
Yellow River basin during 1997–2006 (Ran et al., 2012). In addition, the
Xiaolangdi Dam was completed in 1999 and a water‐sediment regulation
scheme was initiated in 2002, which mitigated deposition in the down-
stream river channel of the Yellow River (Wang, Wu, et al., 2017).

The estimates of the redistribution of eroded SOC strongly depend on the
accuracy of the SDR. This study used the positive correlation between

Table 4
Changes in the Sediment Discharge Trends Into the Sea for Eight Exterior
River Basins During 1960–2014

River basin Hydrological station Rate of change

Yellow Lijin −2194.71 **
Yangtze Datong −765.86 **
Songhua Jiamusi 4.87
Liao Liujianfang −26.52 **
Hai Haihezha −0.54 *
Huai Linyi −7.76 **

Bengbu −20.90 **
Sum −28.65 **

Zhu Gaoyao −101.85 **
Shijiao −2.18
Boluo −4.08 **
Sum −108.11 **

Southeast Zhuji −0.28 **
Lanxi 2.07
Zhuqi −14.74 **
Yongtai −0.39
Sum −25.94 **

Note. Single and double asterisks indicate significance levels at p < 0.05
and p < 0.01, respectively.
Sum: Sum of multiple outlets in the same river basins.

Table 5
Particulate Organic Carbon (POC) and Dissolved Organic Carbon (DOC)
Fluxes for Seven Major Rivers in China

River DOC (Tg/yr) POC (Tg/yr) Reference

Yellow 0.06 0.41 Ran et al. (2013)
Yangtze 1.58 1.52 Wang et al. (2012)
Songhua 0.15 0.06 Sun et al. (2017)
Liao 0.02 0.05 Xia and Zhang (2011)
Hai 0.04 0.04 Xia and Zhang (2011)
Huai – 0.15 Zhu et al. (2012)
Pearl 1.13 2.50 Zhang et al. (2013)
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SDR and erosion severity to determine the proportion of SOC transported into the river network. Numerous
studies have confirmed this correlation (Duraes et al., 2016; Jing et al., 2005; Kang, 2015; Li & Liu, 2006; Xie
& Tianhong, 2012), and observed SDR values collected from literature verify this relationship (Yue et al.,
2016). Previous work has also indicated the large impacts of topography, vegetation cover, and rainfall
intensity on the SDR (Genson, 2006; Kang, 2015; Li et al., 2010; Saygin et al., 2014). However, there are
no applicable models and methods to generate global or regional SDRs (Wu et al., 2018; Xie & Tianhong,
2012; Zhang, Cao, et al., 2014). Therefore, future improvements of SDR estimates will benefit the
estimates of the redistribution of eroded SOC.

In addition, there are some uncertainties of the estimation in this study. First, sediment measurements at
hydrological stations also included a part of windblown sand transportation, which have impacts on estima-
tion in the channel and into the sea (Gebel et al., 2014). The windblown sand entering the channel is 24
Tg·yr–1 in the Yellow River basin (Ta et al., 2008), which is about 3% of soil transportation due to water ero-
sion. However, the windblown sand transportation generally occurs in the Northwest China (Peng, 2004),
and it is very difficult to estimate due to small magnitude. Second, the soil erosion or deposition in the chan-
nel did not consider the influence of sand mining engineering. For example, the amount of sand mining
reached 24.5 Tg·yr–1 in the main channel of the lower Yellow River in 2010–2012 (Ministry of Water
Resources of PRC, 2000), which was equal to 4% of channel sediment in Yellow River basin. The difficulty
to assess the influence of sand mining over the nine river basins is due to lack of statistical data. Third,
the uncertainties of the SOC budget is not only from the sediment budget but also determined by the carbon
content of sediment. Few measurements have been conducted for carbon content of sediment in the river
and other aquatic systems. However, the SOC will decompose during the transport processes, and theoreti-
cally, the carbon content is lower at sediment in the river than the land (Ran et al., 2014). However, our esti-
mates used the soil carbon content in the terrestrial ecosystems, which will overestimate the SOC
budget partly.

5. Conclusions

In summary, our results show that soil erosion induced 68.42–77.32 Tg C yr−1 of SOC to be redistributed
between land (47%–57%), rivers (25%–44%), and the ocean (8%–18%) between the nine river basins in
China over the two study periods (1995–1996 and 2010–2012). Approximately half of the eroded SOC was
deposited in the channel and delivered into the sea, which highlights the importance of the SOC that is redis-
tributed in the aquatic ecosystems for assessing the terrestrial carbon balance. Compared with 1995–1996,
the SOC deposited in the river channel increased from 19.5 to 30.1 Tg C yr−1 during 2010–2012, despite a
decrease in eroded SOC. Furthermore, the changes in the SOC deposition in the channels of the Yangtze
River and the Yellow River basins showed the extensive influence of human activities. The magnitude of

Table 6
Estimates of Eroded Carbon Redistribution From Previous Studies

Region CE (Tg/yr)

Deposition (Tg/yr)
CSTS
(Tg/yr)

Flux
(Tg/yr)

Deposition
CSTS/
CE Flux/CE ReferenceCD CCS CD/CE CCS/CE

Mississippi Basin 23.7 21.3 4.8 −2.4 90% 20% −10% Smith et al. (2005)
Yellow River
basin

15.08–20 −1.19–5.35 3.98–9.26 −1.85–6.37 −0.08‐9.56 25% 24% 24% 27% Ran et al. (2014)

Yellow River
basin

8.95–16.45 4.9–6.7 7–15.5 1.6–3.6 – 48%–50% 28–34% 17%–25% – This study

Nine river basins
in China

51.4–95.55 30–42.15 10.35–43.55 5.7–13.7 – 47%–57% 25–44% 8%–18% – This study

United States 50 40 10 – 80% 20% – Smith et al. (2001)
Global agriculture
land

470–610 249.1–579.5 – 60–270 53%–95% – 12%–44% Van Oost
et al. (2007)

Global 1,400 1,000 400 – 71% 29% – Smith et al. (2001)
Global 4,000–6,000 2,800–4,200 400–600 800–1,200 70% 10% 20% Lal (2003)

Note. CE: carbon erosion; CD: deposition of carbon on land; CCS: deposition of carbon in the channel; Flux: carbon flux from the land to the atmosphere.
CSTS: carbon delivered into the sea; CD/CE: deposition of carbon on land as a proportion of CE; CCS/CE: deposition of carbon in the channel as a proportion of
CE; CSTS/CE: carbon delivered into the sea as a proportion of CE; Flux/CE: carbon flux from the land to the atmosphere as a proportion of CE.
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eroded SOC exported into the sea in 2010–2012 was 40% of that in 1995–1996. There was a decrease in the
amount of sediment delivered into the sea from exterior river basins from 1960 to 2014, except for the
Songhua River basin, where the amount of eroded SOC exported into sea remained the same. Estimates
of the integrated eroded SOC redistributions are significant to the global carbon budget and a useful refer-
ence to quantify the impacts of soil erosion on the carbon cycle budget.
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