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ON THE WEAK MAXIMIZING PROPERTIES

LUIS C. GARCÍA-LIROLA AND COLIN PETITJEAN

Abstract. Quite recently, a new property related to norm-attaining operators
has been introduced: the weak maximizing property (WMP). In this note, we
define a generalised version of it considering other topologies than the weak

one (mainly the weak∗ topology). We provide new sufficient conditions, based
on the moduli of asymptotic uniform smoothness and convexity, which imply
that a pair (X,Y ) enjoys a certain maximizing property. This approach not

only allows us to (re)obtain as a direct consequence that the pair (`p, `q) has
the WMP, but also provides many more natural examples of pairs having a
given maximizing property.

1. Introduction

Let X,Y be two real Banach spaces and let T : X → Y be a bounded linear
operator (we will write T ∈ L(X,Y )). A maximizing sequence for T is a sequence
(xn)n ⊂ X with ‖xn‖ = 1 for every n ∈ N and such that lim

n→∞
‖Txn‖Y = ‖T‖. Next,

we say as usual that T : X → Y attains its norm whenever there exists a vector
x ∈ X of norm 1 such that ‖Tx‖Y = ‖T‖. Now following [5], a pair of Banach spaces
(X,Y ) is said to have the weak maximizing property (WMP) if for any bounded
linear operator T : X → Y , the existence of a non-weakly null maximizing sequence
for T implies that T attains its norm. For instance, it is proved in [28, Theorem 1]
that the pair (`p, `q) has the WMP whenever 1 < p < ∞ and 1 ≤ q < ∞. That
result was extended in [5, Proposition 2.2] to the pair (`p(Γ1), `q(Γ2)) where Γ1,Γ2

are arbitrary indices.
Needless to say that the theory of norm attaining operators finds many applica-

tions in both pure and applied mathematics. A motivation for the study of the WMP
is the following application which was noted in [5] (and extends a former result due
to J. Kover in the Hilbert case [22]): if (X,Y ) has the weak maximizing property,
T ∈ L(X,Y ) and K : X → Y is a compact operator such that ‖T‖ < ‖T + K‖,
then T +K is norm attaining. As a consequence, the authors could deduce that a
pair (X,Y ) has the weak maximizing property for some Y 6= {0} if and only if X is
reflexive.

In this note, we provide a new (possibly simpler) approach based on a comparison
between the modulus of asymptotic uniform convexity of X and the modulus
of asymptotic uniform smoothness of Y , and conversely (see Section 2 for precise
definitions). Moreover, we consider the following related and quite natural properties.

Definition 1.1. Let X and Y be Banach spaces. Let τX and τY be any topology
on X and Y respectively. We say that the pair:

• (X∗, Y ) has the weak∗ maximizing property (W∗MP) if for any bounded
linear operator T : X∗ → Y , the existence of a non-weak∗ null maximizing
sequence for T implies that T attains its norm.
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2 L. GARCÍA-LIROLA AND C. PETITJEAN

• (X,Y ) has the τX -to-τY maximizing property (τX -to-τY MP) if for any
bounded linear operator T : X → Y which is τX -to-τY continuous, the
existence of a non τX -null maximizing sequence for T implies that T attains
its norm.

In this note, τX and τY will mainly be the usual weak or weak∗ topologies. For
instance, the WMP corresponds to the weak-to-weakMP. Notice that if the pair
(X∗, Y ) has the WMP then it also has the W∗MP, and consequently the weak∗-
to-weakMP. Also, if X is reflexive, then a pair (X,Y ) has the WMP if and only if
(X,Y ) has the W∗MP if and only if (X,Y ) has the weak∗-to-weakMP. However, we
will prove that these three properties do not coincide in general.

Remark 1.2. The definition of the above properties can be stated in terms of nets
instead of sequences. Indeed, given an operator T : X → Y , the following properties
are equivalent:

i) There exists a non τX -null maximizing sequence for T .
ii) There exists a non τX -null maximizing net for T .

iii) There exists a net which is maximizing for T and does not admit 0 as a
τX -cluster point.

Clearly, i)⇒ii). To see that iii)⇒ i), let (xα)α ⊂ SX be a net such that 0 is not a τX -
cluster point and limα‖Txα‖ = ‖T‖. Pick inductively αn such that ‖Txαn

‖ ≥ 1− 1
n

and αn ≥ αm if n ≥ m. Then the sequence (xαn
)n is a subnet of (xα)α, so it is

not τX -null, and it is maximizing for T . Finally, assume that ii) holds and let’s
prove iii). Let (xα)α be a non τX -null net maximizing for T . Then 0 is not the only
τX -cluster point of (xα)α, otherwise, all the subnets of (xα)α would converge to 0,
a contradiction (see e.g. [4]). Thus, there is a subnet (yβ)β of (xα)α convergent to
y 6= 0, and (yβ)β is also maximizing for T .

Remark 1.3. Replacing the WMP by the weak∗-to-weak∗MP, one can follow the
lines of [5, Proposition 2.4] to obtain the following result:
Suppose that (X∗, Y ∗) has the weak∗-to-weak∗MP. Let T,K : X∗ → Y ∗ be weak∗-
to-weak∗ continuous linear operators such that K is compact. If ‖T‖ < ‖T +K‖
then T +K is norm attaining.

We now describe the main findings of this paper. Throughout the paper, X and
Y will denote real Banach spaces while X∗ denotes as usual the topological dual of

X. After recalling the definition of the modulus δ
∗
X∗(t) of weak∗ asymptotic uniform

convexity and of the modulus ρY (t) of asymptotic uniform smoothness in Section 2,
we prove our first theorem in Section 3.

Theorem 3.1. Let X,Y be Banach spaces. Assume that for every t > 0, δ
∗
X∗(t) ≥

ρY (t) and, for all t ≥ 1, either δ
∗
X∗(t) > ρY (t) or ρY (t) > t− 1. Then,

(1) the pair (X∗, Y ) has the weak∗-to-weakMP.
(2) If moreover Y ≡ Z∗ is a dual space, then the pair (X∗, Z∗) has the weak∗-

to-weak∗MP.
(3) If δ

∗
X∗(t) = t, then (X∗, Y ) has the W∗MP for any Banach space Y .

In particular, if X is reflexive then the pair (X∗, Y ) has the WMP.

Since for any infinite sets Γ1 and Γ2 and for 1 < p < q <∞, it is well known that

δ
∗
`p(Γ1)(t) = (1 + tp)1/p − 1 > (1 + tq)1/q − 1 = ρ`q(Γ2), our last theorem provides a

new proof of the fact that the pair (`p(Γ1), `q(Γ2)) has the WMP. Note that the
case p = q also follows from the last theorem. In both papers [5, 28], the proof for
the case 1 ≤ q < p < ∞ follows from Pitt’s theorem asserting that any bounded
operator T : `p → `q is compact and thus attains its norm. In fact, Pitt’s theorem
can also be generalised using the modulus ρX(t) of asymptotic uniform smoothness
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of X and the modulus δY (t) of asymptotic uniform convexity of Y . Namely, if there
exists t > 0 such that ρX(t) < δY (t), then every bounded linear operator from X to
Y is compact (see [17, Proposition 2.3], where this is stated only for 0 < t < 1, but
the proof works for any t > 0). We take advantage of this fact to deduce the next
result.

Theorem 3.8. Let X,Y be Banach spaces and | · | be an equivalent norm on X∗.
If there exists t > 0 such that ρ|·|(t) < δY (t), then

(1) the pair (X∗, Y ) has the weak∗-to-weakMP.
(2) If moreover Y ≡ Z∗ is a dual spaces, then (X∗, Z∗) has the weak∗-to-

weak∗MP.

In particular, if X is reflexive then (X∗, Y ) has the WMP.

In Section 4, we discuss the case of some classical Banach spaces and the connec-
tions between several weak maximizing properties. Notably, we show in Proposi-
tion 4.2 that if X is reflexive, Y has the Dunford–Pettis property and (X,Y ) has
the WMP then (Y ∗, X∗) has the weak∗-to-weak∗MP. Next, we prove that Schur
spaces such as `1 are the best range spaces for the WMP: the pair (X,Y ) has
the WMP for any reflexive space X and any Schur space Y (Proposition 4.7). It

follows from Theorem 3.1 (3) (and δ
∗
`1(t) = t) that `1 is also a very good domain

for the W∗MP (see Corollary 4.8) while this is not the case of every Schur space.
Indeed, in Example 4.9 (Example 4.10 respectively) we provide a dual Banach space
Z = X∗ with the Schur property and such that the pair (X∗,R) fails the W∗MP
(the pair (X∗, `1) fails the weak∗-to-weak∗MP respectively). We end the paper by
dealing with the classical James sequence spaces, Orlicz spaces and we also add
some comments about the pair (Lp([0, 1]), Lq([0, 1])).

2. Preliminaries: Asymptotic uniform smoothness and convexity

Consider a real Banach space (X, ‖·‖) and let SX be its unit sphere. For t > 0,
x ∈ SX we consider

δX(t, x) = sup
dim(X/Y )<∞

inf
y∈SY

‖x+ ty‖ − 1;

ρX(t, x) = inf
dim(X/Y )<∞

sup
y∈SY

‖x+ ty‖ − 1 .

The modulus of asymptotic uniform convexity of X is given by

δX(t) = inf
x∈SX

δX(t, x) ,

and modulus of asymptotic uniform smoothness of X is given by

ρX(t) = sup
x∈SX

ρX(t, x) .

The space (X, ‖·‖) is said to be asymptotically uniformly convex (AUC for short) if
δX(t) > 0 for each t > 0 and it is said to be asymptotically uniformly smooth (AUS
for short) if limt→0 t

−1ρX(t) = 0. If X is a dual space and we considered only weak∗

closed subspaces of X then the corresponding modulus is denoted by δ
∗
X(t). The

space X is said to be weak∗ asymptotically uniformly convex (AUC*) if δ
∗
X(t) > 0

for each t > 0. We refer the reader to [17] and the references therein for a detailed
study of these properties.

Let p, q ∈ [1,∞). We say that X is weak∗ p-asymptotic uniformly convex

(abbreviated by p-AUC∗) if there exists C > 0 so that δ
∗
X(t) ≥ Ctp for all t ∈ [0, 1].

Similarly, we say that X is q-asymptotic uniformly smooth (abbreviated by q-AUS)
if there exists C > 0 so that ρX(t) ≤ Ctq for all t ∈ [0, 1]. Let us highlight that the
following is proved in [12, Corollary 2.4].
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Proposition 2.1. Let X be a Banach space.

(i) Then ‖ ‖X is AUS if and and only if ‖ ‖X∗ is AUC∗.
(ii) If p ∈ (1,∞] and q ∈ [1,∞) are conjugate exponents, then ‖ ‖X is p-AUS if

and and only if ‖ ‖X∗ is q-AUC∗.

It is worth mentioning that if X ≡ Z∗ and the dual norm ‖ · ‖Z∗ is AUS, then X
must be reflexive (see for instance Proposition 2.6 in [9]). The following proposition
is elementary.

Proposition 2.2. Let X be a Banach space. For any t > 0, any weakly null net
(xα)α in X and any x ∈ X \ {0} we have:

lim sup
α
‖x+ xα‖ ≤ ‖x‖

(
1 + ρX

(
lim supα‖xα‖

‖x‖

))
.

For any weak∗-null net (x∗α)α ⊂ X∗ and for any x∗ ∈ X∗ \ {0} we have

lim inf
α
‖x∗ + x∗α‖ ≥ ‖x∗‖

(
1 + δ

∗
X

(
lim infα‖x∗α‖
‖x∗‖

))
.

Assume now that ϕ : [0,∞)→ [0,∞) is an Orlicz function which is 1-Lipschitz
and such that limt→∞ ϕ(t)/t = 1. Consider for (s, t) ∈ R2,

Nϕ
2 (s, t) =

{
|s|+ |s|ϕ(|t|/|s|) if s 6= 0,

|t| if s = 0.

The following is proved in [18] (see Lemma 4.3 and its preparation).

Lemma 2.3. The function Nϕ
2 is an absolute (or lattice) norm on R2, meaning

that Nϕ
2 (s1, s2) ≤ Nϕ

2 (t1, t2), whenever |si| ≤ |ti| for all i ≤ 2.

When X is a Banach space, it is easy to see that ρX is a 1-Lipschitz Orlicz

function such that limt→∞ ρX(t)/t = 1. Thus, one can consider the norm N
ρX
2 . We

will use in the sequel the following reformulation of Proposition 2.2 in terms of the

norm N
ρX
2 .

Lemma 2.4. Let X be a Banach space. If (xα)α ⊂ X is weakly-null and x ∈ X,
then

lim sup
α
‖x+ xα‖ ≤ NρX

2 (‖x‖, lim sup
α
‖xα‖).

Proof. If x = 0 there is nothing to do, so we may assume that x 6= 0. By application
of Proposition 2.2 we see that

lim sup
α
‖x+ xα‖ ≤ ‖x‖

(
1 + ρX

(
lim supα‖xα‖

‖x‖

))
= N

ρX
2 (‖x‖, lim sup

α
‖xα‖)

�

Example 2.5. Let us recall the asymptotic moduli for some classical spaces, mostly
taken from [26].

• Let 1 ≤ p < ∞. If X = (
∑∞
n=1En)p, where dim(En) < ∞, then δX(t) =

ρX(t) = (1 + tp)1/p − 1 for all t > 0.
• For any infinite set Γ and 1 ≤ p <∞, δ`p(Γ)(t) = ρ`p(Γ)(t) = (1 + tp)1/p − 1

for all t > 0.
• For any infinite set Γ, δc0(Γ)(t) = ρc0(Γ)(t) = max{0, t− 1} for all t > 0.

• Let J be the James space. Then δJ (t) = ρJ (t) = (1 + t2)1/2− 1 for all t > 0.
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• If X has a Schauder basis (en)∞n=1 which satisfies a lower (resp. upper)
`p-estimate with constant one, then δX(t) ≥ (1 + tp)1/p − 1 (resp. ρX(t) ≤
(1 + tp)1/p − 1). For instance, the p-convexified Tsirelson space T p (see [8])
and the Lorentz sequence space d(w, p) satisfy an upper `p-estimate with
constant 1 [24, p. 177]. Moreover, d(w, p) contains almost isometric copies
of `p so ρd(w,p)(t) = (1 + tp)1/p − 1 for all t > 0.

3. Proof of the main results

Let us begin with the proof of our main theorem.

Theorem 3.1. Let X,Y be Banach spaces. Assume that for every t > 0, δ
∗
X∗(t) ≥

ρY (t) and, for all t ≥ 1, either δ
∗
X∗(t) > ρY (t) or ρY (t) > t− 1. Then,

(1) the pair (X∗, Y ) has the weak∗-to-weakMP.
(2) If moreover Y ≡ Z∗ is a dual space, then the pair (X∗, Z∗) has the weak∗-

to-weak∗MP.
(3) If δ

∗
X∗(t) = t then (X∗, Y ) has the W∗MP for any Banach space Y .

In particular, if X is reflexive then the pair (X∗, Y ) has the WMP.

Proof. We will only prove the first assertion since the proof of the second and third
one are very similar (replacing the weak topology in Y by the weak∗ topology in Y ).

Let T : X∗ → Y be a bounded operator which is weak∗-to-weak continuous.
Without loss of generality, we may assume that T has norm 1. Let (xn) be a
normalized maximizing sequence in X∗ which is not weak∗-null. Let (xα) be a
subnet which is weak∗ convergent to x 6= 0. By extracting a subnet again, we may
assume that limα‖xα − x‖ and limα‖Tx− Txα‖ exists. Since T is weak∗-to-weak

continuous, we have that Txα
w−→ Tx. Using Lemma 2.4, we thus have the following

estimates:

1 = ‖T‖ = lim
α
‖Txα‖ = lim

α
‖Tx+ Txα − Tx‖

≤ N
ρY
2 (‖Tx‖, lim

α
‖Txα − Tx‖).

Now notice that (we use Lemma 2.3)

N
ρY
2 (‖Tx‖, lim

α
‖Txα − Tx‖) ≤ NρY

2 (‖x‖, lim
α
‖Txα − Tx‖)

≤ NρY
2 (‖x‖, lim

α
‖xα − x‖),

but also

N
ρY
2 (‖Tx‖, lim

α
‖Txα − Tx‖) ≤ NρY

2 (‖Tx‖, lim
α
‖xα − x‖)

≤ NρY
2 (‖x‖, lim

α
‖xα − x‖).

Since x 6= 0, we deduce from the definition of N
ρY
2 the following estimates:

N
ρY
2 (‖x‖, lim

α
‖xα − x‖) ≤ ‖x‖+ ‖x‖ρY

(
limα‖xα − x‖

‖x‖

)
≤ ‖x‖+ ‖x‖δ∗X∗

(
limα‖xα − x‖

‖x‖

)
≤ lim

α
‖x+ xα − x‖

= 1.

This implies that all the previous inequalities are in fact equalities, in particular

N
ρY
2 (‖Tx‖, lim

α
‖xα − x‖) = N

ρY
2 (‖x‖, lim

α
‖xα − x‖) = 1 = N

ρY
2 (0, 1).
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This means that the points (‖Tx‖, limα‖xα − x‖), (‖x‖, limα‖xα − x‖) and (0, 1)
are aligned in R2. If ‖Tx‖ = ‖x‖ or limα‖x− xα‖ = 0, then T attains its norm at
x and we are done. Otherwise, it follows that limα‖xα − x‖ = 1 and

1 = N
ρY
2 (‖x‖, 1) = ‖x‖+ ‖x‖ρY (1/‖x‖) = ‖x‖+ ‖x‖δ∗X∗(1/‖x‖).

That is, δX∗( 1
‖x‖ ) = ρY ( 1

‖x‖ ) = 1
‖x‖ − 1, which contradicts our assumptions. �

Remark 3.2. Take X = R⊕∞ `2 and Y = c0. Then δX(t) = max{0, t− 1} = ρY (t)
for all t > 0. However, the operator T : X → Y given by T ((0, en)) = n

n+1en and

T ((1, 0)) = 0 does not attain the norm and admits the non-weakly null maximizing
sequence (xn)∞n=1 given by xn = (1, en). Thus, the pair (X,Y ) fails the WMP.

Remark 3.3. Since ρY is 1-Lipschitz and ρY (t) ≤ max{0, t − 1}, the condition
ρY (1) = 0 is equivalent to ρY (t) = max{0, t − 1} for all t > 0. These spaces are
called metric weak∗ Kadec-Klee spaces. In the separable case, they are precisely
those spaces which are (1 + ε)-isomorphic to a subspace of c0, for every ε > 0 [15].

As a direct consequence we obtain that for a special class of Banach spaces,
namely the dual ones X∗ with Sz(X) = ω (where ω stands for the first countable
ordinal), one can find an equivalent norm | · | on X∗ and a Banach space Y such
that the pair

(
(X∗, | · |), Y

)
has the weak∗-to-weak∗MP. By Sz(X) we mean the

Szlenk index of X; we refer to [23] for its definition, basic properties as well as its
main applications to the geometry of Banach spaces.

Corollary 3.4. If X is separable with Sz(X) = ω, then there exists an equivalent
norm | · |X∗ on X∗ and q ≥ 1 such that the pair

(
(X∗, | · |X∗), `q

)
has the weak∗-to-

weak∗MP.
In particular if X ≡ Z∗ is a separable reflexive space with Sz(Z) ≤ ω, then there

exists an equivalent norm on X and there exists q ≥ 1 such that the pair (X, `q) has
the WMP.

Proof. Let us start by recalling the fundamental renorming result for spaces with
Szlenk index equal to ω. The result is due to H. Knaust, E. Odell and Th. Sch-
lumprecht [21, Corollary 5.3]: if X is a separable Banach space such that Sz(X) = ω,
then there exists p ∈ (1,∞) such that X∗ admits an equivalent p-AUC* norm | · |,
moreover δ

∗
|·|(t) ≥ (1 + tp)

1
p − 1. Let us consider q > p. As we already mentioned in

Example 2.5, ρ`q (t) = (1+tq)
1
q −1. Thus for every t > 0 we have that δ

∗
|·|(t) > ρ`q (t).

The result now readily follows from Theorem 3.1. �

The next result follows the idea of [28, Theorem 2], where the same is obtained
in the case X∗ = `p, Y = `q, p 6= q.

Corollary 3.5. Let X,Y be Banach spaces. Assume that X is separable and

δ
∗
X∗(t) > ρY (t) for all t > 0. Let T : X∗ → Y be a weak∗-to-weak continuous

operator. Then any non-weak∗ null maximizing sequence for T has a convergent
subsequence.

Proof. Let (xn)∞n=1 ⊂ SX∗ be a non-weak∗ null maximizing sequence for T . By
extracting a subsequence, we may assume that (xn) is weak∗ convergent to x 6= 0
and the limit limn‖xn − x‖ exists. The proof of Theorem 3.1 shows that T attains
its norm at x, and moreover

ρY

(
limn‖xn − x‖

‖x‖

)
= δ
∗
X∗

(
limn‖xn − x‖

‖x‖

)
.

Thus limn‖xn − x‖ = 0. �
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We will now turn to the case when the modulus of asymptotic uniform smoothness
of X is bounded above by the modulus of asymptotic uniform convexity of Y . To
this aim, we will need the following two lemmata.

Lemma 3.6 (Proposition 2.3 in [17]). Let X,Y be Banach spaces. If there exists
t > 0 such that ρX(t) < δY (t) then every linear operator from X to Y is compact.

The next one is classical and easy to prove.

Lemma 3.7. Let X,Y be Banach spaces and let τY be any Hausdorff topology on
Y which is coarser than the norm topology. If T : X∗ → Y is a compact operator
which is weak∗-to-τY continuous, then T attains its norm.

Proof. Let (x∗α) be a net in SX∗ such that limα‖Tx∗α‖ = ‖T‖, we may assume that
(x∗α) is weak∗-convergent to x∗ ∈ BX∗ . Then (Tx∗α) is τY -convergent to Tx∗. Since

the norm topology and τY agree on the norm-compact set T (BX∗), we have that
‖T‖ = limα‖Tx∗α‖ = ‖Tx∗‖. �

We are now ready to prove the desired theorem.

Theorem 3.8. Let X,Y be Banach spaces and | · | be an equivalent norm on X∗.
If there exists t > 0 such that ρ|·|(t) < δY (t), then

(1) the pair (X∗, Y ) has the weak∗-to-weakMP.
(2) If moreover Y ≡ Z∗ is a dual space, then (X∗, Z∗) has the weak∗-to-

weak∗MP.

In particular, if X is reflexive then (X∗, Y ) has the WMP.

Proof. We only prove the first assertion, the proof of the second one is similar and
the last statement is quite obvious. Thanks to Lemma 3.6, we know that every
bounded linear operator from (X∗, | · |) to Y is compact. Since | · | is an equivalent
norm on X∗, this readily implies that every bounded linear operator from X∗ to Y is
compact. According to Lemma 3.7, we deduce that every weak∗-to-weak continuous
operator from X∗ to Y attains its norm. �

We highlight some consequences of the previous theorems for particular spaces.
In all the cases the proof follows from Theorem 3.1 or Theorem 3.8 and Example 2.5.

Corollary 3.9. Any of the following conditions ensues that the pair (X,Y ) has the
WMP:

a) X is a reflexive AUS space (e.g. X = `p, T p, or d(w, p), 1 < p <∞), and
Y = `1.

b) X is a reflexive AUC space (e.g. X = `p) and Y = c0.
c) X = `p, and either Y = `q, 1 < p, q <∞, or Y = J , the James space.
d) X = `p and either Y = T q or Y = d(w, q) where 1 < p ≤ q <∞.

4. Application to some classical Banach spaces

4.1. Dunford–Pettis spaces. We recall that a Banach space Y has the Dunford–
Pettis property if and only if for every sequence (yn)n in Y converging weakly to
0 and every sequence (y∗n)n in Y ∗ converging weakly to 0, the sequence of scalars
(y∗n(yn))n converges to 0. In particular, Schur spaces have it. Classical spaces with
the Dunford–Pettis property include as c0, C(K) spaces (where K is a compact
Hausdorff space) and L1(µ) (where µ is a σ-finite measure), see e.g. [11]. However
reflexive spaces never have it.

Lemma 4.1. Assume that X is reflexive and that Y has the Dunford–Pettis property.
Let T : X → Y be a bounded operator. Then the following are equivalent:

(i) There exists a non-weakly null maximizing sequence for T .
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(ii) There exists a non-weakly null maximizing sequence for T ∗.

Proof. First of all, if (xn)n ⊂ X is a maximizing sequence for T , we define (y∗n)n ⊂
SY ∗ so that y∗n(Txn) > ‖Txn‖ − 1

n . It is easy to see that

‖T ∗y∗n‖ ≥ |y∗n(Txn)| > ‖Txn‖ −
1

n
,

and taking the limit n → ∞ we obtain lim
n→∞

‖T ∗y∗n‖ ≥ ‖T‖. Since ‖T ∗‖ = ‖T‖
we deduce that (y∗n)n is a maximizing sequence for T ∗. We use the exact same
argument to build a maximizing sequence for T starting from one for T ∗.

Now let T : X → Y be an operator and let (xn)n be a non-weakly null maximizing
sequence for T . By weak-compactness, we may extract a subsequence (still denoted
the same way) which weakly converges to some x. Now as T is weakly continuous,
we have that (Txn) weakly converges to Tx. Let (y∗n)n be the sequence constructed
above. We claim that (y∗n)n is not weakly null. Indeed, aiming for a contradiction,
assume that (y∗n)n is weakly null. As Y has the Dunford–Pettis property, we have
that lim

n→∞
y∗n(Txn) = lim

n→∞
y∗n(Txn − Tx) = 0, which contradicts our definition of

(y∗n)n.
The converse is proved in the same way. �

Proposition 4.2. Let X be a reflexive space and let Y be a Banach space with the
Dunford–Pettis property. If (X,Y ) has the WMP then any dual operator T ∗ : Y ∗ →
X∗ which admits a non-weakly null maximizing sequence attains its norm. In
particular the pair (Y ∗, X∗) has the weak∗-to-weak∗MP.

Proof. let T ∗ : Y ∗ → X∗ be the dual operator of a bounded operator T : X → Y .
Let (y∗n)n be a non-weakly null maximizing sequence for T . According to Lemma 4.1,
T admits a non-weakly null maximizing sequence. Since (X,Y ) has the WMP, T
attains its norm at some x. Now using Hahn-Banach theorem, we may pick y∗ ∈ Y ∗
such that y∗(Tx) = ‖Tx‖ = ‖T‖. It is readily seen that the operator T ∗ attains its
norm at y∗. �

Note that the hypothesis “X is reflexive” in the previous proposition is actually
superfluous as the assumption “(X,Y ) has the WMP” already implies that X must
be reflexive [5].

We do not know whether the hypothesis on the Dunford–Pettis property is
actually needed in the previous result. More precisely:

Question 4.3. Assume that (X,Y ) has the WMP. Does it follow that (Y ∗, X∗)
has the weak∗-to-weak∗MP?

On the other hand, there are spaces X,Y so that (Y ∗, X∗) has the WMP but
(X,Y ) fails the WMP: just take Y = R and X any non-reflexive space. We do not
know if it is possible to construct such an example in the reflexive case, that is:

Question 4.4. Let X,Y be reflexive spaces so that (Y ∗, X∗) has the WMP. Does
it follow that (X,Y ) has the WMP?

Notice that, under the same conditions as in Proposition 4.2, (X,Y ) having the
WMP does not imply that (X∗∗, Y ∗∗) has the weak∗-to-weak∗MP (while (Y ∗, X∗)
does so). Indeed, the next example shows that (`2, c0) has the WMP but (`2, `∞)
fails the weak∗-to-weak∗MP. It was also suggested to us by R. Aron to consider the
following variation of the WMP:

Definition 4.5. We say that a pair (X,Y ) has the bidual WMP if for every operator
T : X → Y , the existence of a non weakly-null maximizing sequence for T implies
that T ∗∗ : X∗∗ → Y ∗∗ attains its norm.
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It is obvious from the definitions that if (X∗∗, Y ∗∗) has the weak∗-to-weak∗MP
then (X,Y ) has the bidual WMP. However, the next example shows in particular
that the converse does not hold in general.

Example 4.6. First of all, notice that (`2, c0) has the WMP thanks to Corol-
lary 3.9 b), thus it also has the bidual WMP. Moreover, `2 is reflexive and c0 has
the Dunford-Pettis property so that Proposition 4.2 implies that (`1, `2) has the
weak∗-to-weak∗MP (even the W∗MP, see Corollary 4.8). Next, we will prove that
(`2, `∞) fails the weak∗-to-weak∗MP (and consequently also fails the WMP and the
W∗MP).

Let T : `2 → `∞ defined for every x = (xn)n ∈ `2 by

Tx =

(
x1 , x1 +

(
1− 1

2

)
x2 , x1 +

(
1− 1

3

)
x3 , . . . , x1 +

(
1− 1

n

)
xn , . . .

)
.

In other words, Te1 = 1 (the constant equal to 1 sequence) and Ten = (1− 1
n )en.

Our claim follows from the items bellow:

• ‖T‖ =
√

2. Indeed,

‖Tx‖∞ = sup
{
|x1 + (1− 1/n)xn| : n ≥ 1

}
≤ sup

{
(|x1|2 + |xn|2)1/2(1 + (1− 1/n)2)1/2 : n ≥ 2

}
≤
√

2‖x‖2.
Moreover, ∥∥∥T( 1√

2
(e1 + en)

)∥∥∥→ √2,

so ‖T‖ =
√

2 the sequence
(

1√
2
(e1 + en)

)
n

is a normalized maximizing

sequence which is not weakly∗ null (it weakly∗ converges to 1√
2
e1).

• T is weak*-to-weak*-continuous: one can easily chech that T = S∗ where
S : `1 → `2 is given by Sx = (

∑∞
n=1 xn)e1 +

∑∞
n=1(1− 1/n)xnen.

• T does not attain its norm: if ‖Tx‖∞ =
√

2 for some x with ‖x‖2 = 1,
then the above estimation implies that lim supn(|x1|2 + |xn|2)1/2 = 1. Thus
|x1| = 1, which implies that x = ±e1, a contradiction.

4.2. The case of `1 and Schur spaces. Recall that a Banach space Y is said to
have the Schur property if every weakly convergent sequence is also norm-convergent.
First of all, let us point out that Schur spaces are the best range spaces for the
WMP as this is shown by the next result.

Proposition 4.7. If X is reflexive and Y is Schur, then (X,Y ) has the WMP.

Proof. Let T : X → Y be an operator and let (xn)n be a non-weakly null maximizing
sequence for T . By weak-compactness, we may extract a subsequence (still denoted
the same way) which weakly converges to some x ∈ BX . Since T is weakly continuous,
(Txn)n weakly converges to Tx. Since Y has the Schur property, (Txn)n actually
converges to Tx in the norm topology. The fact that lim

n→∞
‖Txn‖ = ‖T‖ readily

implies that ‖Tx‖ = ‖T‖. �

It is well known that `1 ≡ c∗0 is weak∗ asymptotically uniformly convex with

modulus δ
∗
`1(t) = t, and the same is true for Z∗ instead of `1 whenever Z is a

subspace of c0. Consequently, the next result is a direct consequence of Theorem 3.1.

Let us mention that if a dual Banach space X ≡ Z∗ has modulus δ
∗
X(t) = t, then

Z is asymptotically uniformly flat (that is there exists t0 > 0 such that for every
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t < t0, ρZ(t) = 0). This is actually equivalent to the fact that Z is isomorphic to a
subspace of c0 (see [17, Theorem 2.9]).

Corollary 4.8. If Z is a closed subspace of c0, then the pair (Z∗, Y ) has the W∗MP
for every Banach space Y .
In particular (`1, Y ) has the W∗MP for every Banach space Y .

However, the previous result is not true anymore if one replaces `1 by any dual
space with the Schur property as this is shown by the following example. It also
shows that the W∗MP is not an isomorphic property.

Example 4.9. There exists a dual space Z = X∗ with the Schur property such that
the pair (X∗,R) fails the W∗MP. In fact Z is going to be the Lipschitz-free space
F(M) where M = {0} ∪ {xn : n ∈ N} ⊂ c0 is the pointed metric space given by
x1 = 2e1, and xn = e1 + (1 + 1

n )en for n ≥ 2, where (en) is the canonical basis of c0.
Then it is known [19] that F(M) has the Schur property as M is uniformly discrete
and bounded (it is actually isomorphic to `1) and it is also known [14, Example 5.6]
that F(M) ≡ X∗ where

X = {f ∈ Lip0(M) : lim
n→∞

f(xn) =
1

2
f(x1)}.

It is readily seen that the sequence ((1+ 1
n )−1δ(xn))n weak∗ converges to 1

2δ(x1) 6= 0.
Now let f : M → R be the Lipschitz map defined by f(0) = f(x1) = 0 and f(xn) = 1

for every n ≥ 2. It is obvious that ‖f‖L = lim
n→∞

f(xn)−f(0)
d(xn,0) = 1. Now using

the linearization property of free spaces, we may consider the bounded operator
f : F(M) → R such that f(δ(xn)) = f(xn). Observe that ((1 + 1

n )−1δ(xn))n is a
maximizing sequence which is not weak∗-null. To finish, we just need to show that
f does not attain its norm. Assume that f(µ) = 1 for µ =

∑∞
n=1 anδ(xn) ∈ SF(M).

First note that

1 = f(µ) =

∞∑
n=2

an.

Let A = {n ≥ 2 : an > 0} and consider the one-Lipschitz function g : M → R
given by g(xn) = 1 if n ∈ A and g(xn) = 0 otherwise. By evaluating the linear
extension of g to F(M) at µ we get

∑
n∈A an ≤ 1. It follows that an ≥ 0 for all

n ≥ 2. Similarly, by evaluating at the one-Lipschitz function h : M → R given by
h(x1) = 2 and h(xn) = 1 we get that −1 ≤ a1 ≤ 0. Now, we have that

µ =

∞∑
n=1

anδ(xn) =

∞∑
n=2

an|a1|(δ(xn)− δ(x1)) +

∞∑
n=1

(1− |a1|)anδ(xn).

Finally, consider the one-Lipschitz function j : M → R given by j(0) = j(x1) = 0
and j(xn) = 1 + 1/n. Then,

1 = ‖µ‖ ≥ 〈j, µ〉 =

∞∑
n=2

an|a1|
(

1 +
1

n

)
+

∞∑
n=2

(1− |a1|)an
(

1 +
1

n

)

=

∞∑
n=2

an

(
1 +

1

n

)
= 1 +

∞∑
n=2

an
n
.

Thus, an = 0 for all n ≥ 2. Then f(µ) = 0, a contradiction.

Notice that the Banach space F(M) in the previous example is not weak∗-AUC:
1
2δ(x1) is an extreme point of BF(M) [3] but not a preserved extreme point [2], in
particular it does not belong to slices of small diameter.

The following example shows that the weak∗-to-weak∗MP is not stable by iso-
morphisms.
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Example 4.10. There exists a space X isomorphic to c0 such that (X∗, `1) fails
the weak∗-to-weak∗MP. Indeed, let M be the metric space given by M = N ∪ {0}
where d(n, 0) = d(n, 1) = 1 + 1/n and d(n,m) = 2 + 1/n + 1/m for all n,m ≥ 2 .
The same argument as [14, Example 5.6] gives that F(M) ≡ X∗, where

X = {f ∈ Lip0(M) : lim
n→∞

f(xn) =
1

2
f(x1)}.

It is easy to check that the map T : c0 → X given by Tx(1) = x1 and Tx(n) = 1
2 (x1 +

xn) for n ≥ 2 satisfies that ‖T‖ ≤ 1. Moreover, T is an isomorphism with inverse
R : X → c0 given by Rf = f(1)e1 +

∑
n≥2(2f(n)− f(1))en. Consider the weak∗-to-

weak∗-continuous operator T ∗ : F(M)→ `1. First note that T ∗(δ(n)) = 1
2 (e1 + en)

for n ≥ 2. Thus, ‖T ∗‖ = 1 and the sequence ((1 + 1
n )−1δ(n))n is a maximizing

sequence for T ∗ which weak∗-converges to 1
2δ(1) 6= 0. To finish, we need to check

that T ∗ does not attain its norm. Assume that there is µ =
∑∞
n=1 anδ(xn) ∈ SF(M)

is so that ‖T ∗µ‖1 = 1. Consider the 1-Lipschitz function f : M → R given by
f(0) = f(1) = 0 and f(n) = (1 + 1

n ) sign(an) for n ≥ 2. Then

1 = ‖µ‖ ≥ 〈f, µ〉 =
∑
n≥2

|an|(1 +
1

n
).

Now, consider the 1-Lipschitz function g : M → R given by g(0) = 0, g(1) = 2 and
g(n) = 1 for n ≥ 2. Then

1 = ‖µ‖ ≥ |〈f, µ〉| = |2a1 +
∑
n≥2

an|.

Note that

T ∗µ =

a1 +
1

2

∑
n≥2

an

 e1 +
1

2
anen

and so

1 = ‖T ∗µ‖1 = |a1 +
1

2

∑
n≥2

an|+
1

2

∑
n≥2

|an| ≤ 1.

It follows that
∑
n≥2 |an| = 1 ≥

∑
n≥2 |an|(1 + 1

n ), a contradiction.

4.3. The case of the James sequence spaces. Let p ∈ (1,∞). We now recall
the definition and some basic properties of the James space Jp. We refer the reader
to [1, Section 3.4] and references therein for more details on the classical case p = 2.
The James space Jp is the real Banach space of all sequences x = (x(n))n∈N of real
numbers with finite p-variation and satisfying limn→∞ x(n) = 0. The space Jp is
endowed with the following norm

‖x‖Jp
= sup

{( k−1∑
i=1

|x(pi+1)− x(pi)|p
)1/p

: 1 ≤ p1 < p2 < . . . < pk

}
.

This is the historical example, constructed for p = 2 by R. C. James, of a quasi-
reflexive Banach space which is isomorphic to its bidual. In fact J ∗∗p can be seen
as the space of all sequences x = (x(n))n∈N of real numbers with finite p-variation,
which is Jp ⊕ R1, where 1 denotes the constant sequence equal to 1.

The standard unit vector basis (en)∞n=1 (en(i) = 1 if i = n and en(i) = 0 otherwise)
is a monotone shrinking basis for Jp. Hence, the sequence (e∗n)∞n=1 of the associated
coordinate functionals is a basis of its dual J ∗p . Then the weak topology σ(Jp,J ∗p ) is
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easy to describe: a sequence (xn)∞n=1 in Jp converges to 0 in the σ(Jp,J ∗p ) topology
if and only if it is bounded and limn→∞ xn(i) = 0 for every i ∈ N.

For x ∈ Jp, we define suppx = {i ∈ N : x(i) 6= 0}. For x, y ∈ Jp, we denote:
x ≺ y whenever max suppx < min supp y.

The detailed proof of the following proposition can be found in [27, Corollary 2.4].
This a consequence of the following fact: there exists C ≥ 1 such that ‖

∑n
i=1 xi‖

p
Jp
≤

C
∑n
i=1 ‖xi‖

p
Jp

, for all x1 ≺ . . . ≺ xn in Jp.

Proposition 4.11. There exists an equivalent norm | · | on Jp such that it has the
following property: for any x, y ∈ Jp such that x ≺ y, we have that

|x+ y|p ≤ |x|p + |y|p.

In particular, the modulus of asymptotic uniform smoothness of J̃p := (Jp, | · |) is

ρJ̃p
(t) ≤ (1 + tp)

1
p − 1 for all t ≥ 0.

There is also a natural weak∗ topology on Jp. Indeed, the summing basis (sn)∞n=1

(sn(i) = 1 if i ≤ n and sn(i) = 0 otherwise) is a monotone and boundedly complete
basis for Jp. Thus, Jp is naturally isometric to a dual Banach space: Jp = X∗ with
X being the closed linear span of the biorthogonal functionals (e∗n − e∗n+1)∞n=1 in
J ∗p associated with (sn)∞n=1. Note that X = {x∗ ∈ J ∗p ,

∑∞
n=1 x

∗(n) = 0}. Thus, a
sequence (xn)∞n=1 in Jp converges to 0 in the σ(Jp, X) topology if and only if it is
bounded and limn→∞

(
xn(i)− xn(j)

)
= 0 for every i 6= j ∈ N.

The next lemma is classical, we include its proof for completeness.

Lemma 4.12. Let (xn)∞n=1 be a weak∗-null sequence in Jp. Then, for every x ∈ Jp,
we have

lim sup
n→∞

‖x+ xn‖p ≥ ‖x‖p + lim sup
n→∞

‖xn‖p.

Consequently, the modulus of weak∗ asymptotic uniform convexity of Jp is given by

δ
∗
Jp

(t) ≥ (1 + tp)
1
p − 1.

Proof. Let x = (x(n))n ∈ Jp, (xn)∞n=1 be a weak∗-null sequence and ε > 0 be fixed.
Without loss of generality, we may and do assume that ‖x‖ = 1. Let (pi)

N
i=1 ⊂ N be

an increasing family such that

1− ε ≤
(N−1∑
i=1

|x(pi+1)− x(pi)|p
)1/p

.

Then there exists N1 > pN such that for any increasing finite sequence (qi)
k
i=1 with

q1 ≥ N1, ( k−1∑
i=1

|x(qi+1)− x(qi)|p
)1/p ≤ η,

where 0 < η < ε will be precisely chosen at the end of the proof. Now, since (xn)∞n=1

is a weak∗-null sequence, it is bounded by some M > 0 and there exists N2 ∈ N
large enough so that for every n ≥ N2 and for any increasing finite sequence (ri)

l
i=1

with rl < N1:

l−1∑
i=1

|xn(ri+1)− xn(ri)|p ≤
η

3
and |xn(rl)− xn(N1)|p ≤ η′,

where η′ is chosen so that ||x| − |y||p ≥ |x|p − η
3 for every x ∈ [0,M ] and y ∈ [0, η′]

(the map f(x, y) = |x− y|p is Lipschitz on [0,M ]× [0,M ], so η′ = min{ η
3 Lip(f) ,M}
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does the work). Note also that in such a case one also has

|xn(r)− xn(N1)|p ≥ ||xn(r)− xn(rl)| − |xn(rl)− xn(N1)||p

≥ |xn(r)− xn(rl)|p −
η

3
,

for any r ≥ N1.
Now, let n ≥ N2. It follows from the above estimates that we may find a fixed

increasing sequence (qi)
k
i=1 with q1 ≥ N1 and

k−1∑
i=1

|xn(qi+1)− xn(qi)|p ≥ ‖xn‖p − η.

Note that pN < N1 ≤ q1 by construction so that

(?) ‖x+ xn‖p ≥
N−1∑
i=1

|x(pi+1)− x(pi) + xn(pi+1)− xn(pi)|p

+

k−1∑
i=1

|x(qi+1)− x(qi) + xn(qi+1)− xn(qi)|p.

But(N−1∑
i=1

|x(pi+1)− x(pi) + xn(pi+1)− xn(pi)|p
) 1

p ≥
(N−1∑
i=1

|x(pi+1)− x(pi)|)p
) 1

p − ε

≥ 1− 2ε,

which implies that
∑N−1
i=1 |x(pi+1)− x(pi) + xn(pi+1)− xn(pi)|p ≥ 1− 2pε.

Similarly, we obtain that

N−1∑
i=1

|x(qi+1)− x(qi) + xn(qi+1)− xn(qi)|p ≥ ‖xn‖p − 2pMη.

Finally, if we chose η < min(ε, εM ), we obtain from (?) the following last estimate

‖x+ xn‖p ≥ 1 + ‖xn‖p − 4pε.

�

As an application of Theorem 3.1 and the two previous lemmata, we obtain the
following corollary.

Corollary 4.13. If 1 < p ≤ q <∞ then (Jp, J̃q) has the weak∗-to-weak∗MP.

We now turn to an application of Lemma 3.6 and Theorem 3.8.

Corollary 4.14. If 1 < q < p <∞ then every bounded operator from Jp to Jq is
compact. In particular, the pair (Jp,Jq) has the weak∗-to-weak∗MP.

Proof. Since ρJ̃p
(t) ≤ (1 + tp)1/p − 1, δ

∗
Jq

(t) ≥ (1 + tq)1/q − 1 and δJq
(t) ≥ δ∗Jq

(t),

we obtain from Lemma 3.6 that every bounded operator from J̃p to Jq is compact.

Since J̃p and Jp are isomorphic, this yields the same conclusion for every bounded
operator from Jp to Jq. To conclude, Theorem 3.8 (2) provides the fact that the
pair (Jp,Jq) has the weak∗-to-weak∗MP. �

Having in mind the previous corollaries, it is quite natural to wonder the following:

Question 4.15. Does the pair (Jp,Jq) has the weak∗-to-weak∗MP for 1 < p ≤
q <∞?
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Remark 4.16. Quite surprisingly, the pair (J2,R) fails the W∗MP (but has the
weak∗-to-normMP thanks to Corollary 4.13). Indeed, consider T : J2 → R be the
linear operator given by

∀x =
(
x(j)

)∞
j=1
∈ J2, Tx :=

−x(1)

2
+

∞∑
j=2

x(j)

j2
.

That is, T = (−1
2 ,

1
22 ,

1
32 , . . .) ∈ J ∗2 . Note that T is not weak∗ continuous since

T (sn) 6→ 0 while the summing basis (sn) is weak∗-null. Since the standard unit
vector basis (en)∞n=1 is monotone and shrinking, it follows that for every x∗∗ ∈ J ∗∗2 ,
‖x∗∗‖J ∗∗

2
= supn ‖(x∗∗(e∗1), x∗∗(e∗2), . . . , x∗∗(e∗n), 0, . . .)‖J2 (see e.g. Proposition 4.14

in [13]. Thus, it not hard to prove that any norming functional x∗∗ for T is of the
form x∗∗ = 1√

(t2−t1)2+t22
(t1, t2, t2, . . .). Consequently, in order to maximize T (x∗∗)

it suffices to maximize the function

g(t1, t2) =
−t1

2 + t2(π
2

6 − 1)√
(t2 − t1)2 + t22

=
−1
2
t1
t2

+ (π
2

6 − 1)√
(1− t1

t2
)2 + ( t1t2 )2

.

We set t = t1
t2

and we are now looking for the maximum of the following one variable
map:

f(t) =
−1
2 t+ (π

2

6 − 1)√
(1− t)2 + t2

.

A basic study of the map f shows that it attains its maximum at tmax = π2−9
2π2−15

(and f(tmax) ' 0.66). To conclude, fix t1, t2 ∈ R such that t1
t2

= tmax and√
(t2 − t1)2 + t22 = 1. Now for every n ∈ N let xn ∈ J2 be such that xn(1) = t1,

xn(2) = . . . = xn(n) = t2 and xn(j) = 0 whenever j > n (that is, xn =
(t1, t2, . . . , t2, 0, . . .)). Then (xn)∞n=1 is a normalized maximizing sequence for T
which is not weak∗-null. However, it is easy to see that T does not attains its norm
(as every element in J2 is a sequence that converges to 0).

4.4. Orlicz spaces. Given an Orlicz function ϕ : [0,+∞)→ [0,+∞) (that is, ϕ is
a continuous convex unbounded function with ϕ(0) = 0), the Orlicz sequence space
`ϕ is the space of all real sequences x = (xn)∞n=1 such that

∑∞
n=1 ϕ(|xn|/λ) <∞. It

is a Banach space when equipped with the Luxemburg norm:

‖x‖ϕ = inf{λ > 0 :

∞∑
n=1

ϕ(|xn|/λ) ≤ 1}.

The closed linear span of {en : n ∈ N} in `ϕ is denoted hϕ. The space hϕ coincides
with `ϕ precisely if ϕ satisfies the ∆2 condition at zero, i.e. lim supt→0 ϕ(2t)/ϕ(t) <
∞. The space hϕ (or `ϕ) is reflexive if and only if both ϕ and ϕ∗ satisfy the ∆2

condition at zero, where ϕ ∗ (t) = sup{st− ϕ(s)} is the convex conjugate of ϕ. The
Boyd indices of an Orlicz function ϕ are defined as follows:

αϕ = sup{p > 0 : sup
0<u,t≤1

ϕ(tu)

ϕ(u)tp
<∞}, βϕ = inf{p > 0 : inf

0<u,t≤1

ϕ(tu)

ϕ(u)tp
> 0}.

It is known that βϕ < ∞ precisely if ϕ satisfies the ∆2 condition at 0. The
asymptotic moduli of the space hϕ is linked to the Boyd indices: hϕ is AUS (resp.
AUC) if and only if αϕ > 1 (resp. βϕ < ∞). Indeed, hϕ is AUS if and only if
αϕ > 1, and αϕ is the supremum of the numbers α such that ρhϕ

has power type α
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[16]. In addition, βϕ is the infimum of the numbers β such that δhϕ
has power type

β [7].
In order to apply Theorem 3.1 to the case of Orlicz spaces we need an estimation

of ρhϕ
(t) and δhϕ(t) for all t > 0. To this end, consider the following indices:

pϕ = sup{p > 0 : u−pϕ(u) is non-decreasing for all 0 < u ≤ ϕ−1(1)}
qϕ = inf{p > 0 : u−pϕ(u) is non-increasing for all 0 < u ≤ ϕ−1(1)}.

Clearly 1 ≤ pϕ ≤ qϕ ≤ ∞. Moreover, ϕ (resp. ϕ∗) satisfies ∆2 condition at 0 if
and only if qϕ < ∞ (resp. pϕ > 1), see [25] or [10]. Delphech [10] showed that if
qϕ <∞ then

(1 + tqϕ)1/qϕ − 1 ≤ δhϕ(t)

for all t ∈ (0, 1], but actually the proof works for all t > 0. Analogously, one can
show that

ρhϕ
(t) ≤ (1 + tpϕ)1/pϕ − 1

for all t > 0.

Remark 4.17. In general [αϕ, βϕ] ⊂ [pϕ, qϕ], but the inclusion may be strict [25].
Thus the previous inequalities are not tight. Also, recall that, given any p ∈ [αϕ, βϕ],

the space hϕ contains almost isometric copies of `p. Thus δ`ϕ(t) ≤ (1 + tαϕ)1/αϕ − 1

and ρ`ϕ(t) ≥ (1 + tβϕ)1/βϕ − 1 for all t > 0.

Corollary 4.18. Let ϕ,ψ be Orlicz functions. Assume that hϕ, hψ are reflexive
and qϕ ≤ pψ. Then the pair (hϕ, hψ) has the WMP.

Remark 4.19. Given Orlicz functions ϕ,ψ, if αϕ > βψ, then every operator from hϕ
to hϕ = `ψ is compact [6], and so (hϕ, hψ) has the WMP.

4.5. Remarks about the pair (Lp, Lq). In what follows, Lp stands for Lp([0, 1])
with 1 < p <∞. It is known (see [26] at page 117 for instance) that if X = Lp then
there exist constants C1(p), C2(p) such that for 1 < p < 2 we have

C1(p)t2 ≤ δX(t) ≤ (p− 1)t2

1

p
tp ≤ ρX(t) ≤ 2

p
tp

and for 2 < p <∞ we have that

C1(p)tp ≤ δX(t) ≤ 1

p
tp

(p− 1)t2 ≤ ρX(t) ≤ C2(p)t2.

Consequently, for 1 < p < q < ∞, we cannot apply Theorem 3.1 to prove that
the pair (Lp, Lq) has the WMP. Nevertheless, replacing the weak topology by the
topology τm of convergence in measure, we can apply similar techniques to prove
the following related results.

Proposition 4.20. Let 1 < p < q <∞ an let T : Lp → Lq be a bounded operator
which is τm-to-τm continuous. If there exists a maximizing sequence (xn)n ⊂ Lp for
T which τm-converges to some x 6= 0, then T attains its norm at x.

Proof. The proof follows the same lines as in Theorem 3.1. In fact, Lp has the
following property (see [20] e.g.): if (xn)n ⊂ Lp converges to 0 in measure, then for
every x ∈ Lp

(?) lim sup
n
‖x+ xn‖ =

(
‖x‖p + lim sup

n
‖xn‖p

)1/p
.
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Let T : Lp → Lq be a bounded operator which is τm-to-τm continuous and let
(xn)n ⊂ Lp be a maximizing sequence for T which τm-converges to some x 6= 0.
Without loss of generality, we may assume that T has norm 1. Since T is τm-to-τm
continuous, we have that Txn

τm−→
n

Tx. Using (?), we thus have the following

estimates:

1 = ‖T‖ = lim
n
‖Txn‖ = lim

n
‖Tx+ Txn − Tx‖

=
(
‖Tx‖q + lim

n
‖Txn − Tx‖q

) 1
q

≤
(
‖Tx‖q + lim

n
‖xn − x‖q

) 1
q

≤
(
‖Tx‖p + lim

n
‖xn − x‖p

) 1
p

=
(
‖Tx‖p + 1− ‖x‖p

) 1
p

Therefore, we deduce that ‖Tx‖ ≥ ‖x‖, which finishes the proof. �

Now the lack of τm-compactness of the unit ball of Lp forces us to consider
pairs (X,Lq) where X is a subspace of Lp whose unit ball BX is τm-compact. For
instance, it is proved in [20] that X embeds almost isometrically into `p if and only
if BX is compact for the topology inherited by the L1-norm; for those X, BX is in
particular τm-compact. To the best of our knowledge, such subspaces haven’t been
characterized.

Corollary 4.21. Let 1 < p < q < ∞. If X is a subspace of Lp such that BX is
τm-compact, then the pair (X,Lq) has the τm-to-τmMP.

Let us briefly discuss the case when 1 < q < p < ∞. For the pair (`p, `q), this
was handled by Pitts Theorem (or more generally by Theorem 3.8) saying that
every operator from `p to `q is compact. This approach fails for (Lp, Lq). Indeed,
H. P. Rosenthal characterized in [29, Theorem A.2] when every operator from Lp(µ)
to Lq(ν) is compact. That is never the case for Lp[0, 1] and Lq[0, 1]. However, if
q < p, 1 ≤ q < 2, then every operator from Lp[0, 1] to `q is compact, and if q < p
and 2 < p then every operator from `p to Lq is compact.
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