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We show that the class of Lipschitz-free spaces over closed subsets of any complete metric space M is closed under arbitrary intersections, improving upon the previously known finite-diameter case. This allows us to formulate a general and natural definition of supports for elements in a Lipschitz-free space F (M ). We then use this concept to study the extremal structure of F (M ). We prove in particular that (δ(x) -δ(y))/d(x, y) is an exposed point of the unit ball of F (M ) whenever the metric segment [x, y] is trivial, and that any extreme point which can be expressed as a finitely supported perturbation of a positive element must be finitely supported itself. We also characterise the extreme points of the positive unit ball: they are precisely the normalized evaluation functionals on points of M .

Introduction

The canonical preduals of Banach spaces of real-valued Lipschitz functions on metric spaces are known by a host of different names (Arens-Eells spaces [START_REF] Weaver | Lipschitz algebras[END_REF], transportation cost spaces [START_REF] Ostrovska | Generalized transportation cost spaces[END_REF]). In the Banach space geometer community, they are commonly referred to as Lipschitz-free spaces after Godefroy and Kalton coined the term in [START_REF] Godefroy | Lipschitz-free Banach spaces[END_REF]. Their most important application to non-linear geometry is likely their universal extension property: any vector-valued Lipschitz map defined on a given metric space extends uniquely as a bounded linear operator defined on the corresponding Lipschitz-free space (This result appears in disguise in the works of Kadets [START_REF] Kadets | Lipschitz mappings of metric spaces[END_REF]Corollary 2] and Pestov [16, Theorem 1] and was first explicitly stated by Weaver [START_REF] Weaver | Lipschitz algebras[END_REF]Theorem 3.6], each with a different construction of the free space. For a short proof see [4, Section 2].) This allows us to turn a complicated (Lipschitz) mapping into a simple (linear) one at the expense of turning the metric domain into its more complex Lipschitz-free counterpart. But this effort is only worthwhile if our knowledge of the structure of the Lipschitz-free spaces is deep enough. And indeed, although their definition looks simple, the current understanding of their structure is still quite limited. To name just a couple of open questions, it is not known whether the Lipschitz-free spaces over R n are isomorphic for different values of n [START_REF] Cúth | Isometric representation of Lipschitz-free spaces over convex domains in finite-dimensional spaces[END_REF], or whether all Lipschitz-free spaces over subsets of R n have a Schauder basis [START_REF] Hájek | On Schauder bases in Lipschitz-free spaces[END_REF]; see Chapter 5 of [START_REF] Guirao | Open problems in the geometry and analysis of Banach spaces[END_REF] for other related open problems.

It is easy to deduce from the universal property that if M is a metric space and N is any subset containing the base point, then the Lipschitz-free space over N is canonically identified with a subspace of the Lipschitz-free space over M . In a previous paper [START_REF] Aliaga | Supports and extreme points in Lipschitz-free spaces[END_REF] the first two authors showed that, when M has finite diameter, the intersection of any family of such free spaces over closed subsets K i of M is just the free space over the intersection of the sets K i . This result seems quite intuitive, but its proof is rather nontrivial and depends on somewhat deep results by Weaver on the structure of algebraic ideals in the space of Lipschitz functions on M (see Chapter 7 of [START_REF] Weaver | Lipschitz algebras[END_REF]).

In this note, we extend the result from [START_REF] Aliaga | Supports and extreme points in Lipschitz-free spaces[END_REF] to any complete metric space, thus showing that this natural property holds in general. The proof is not simpler; on the contrary, we reduce the general case to the known bounded case. To do this, we introduce a weighting operation on elements of the Lipschitz-free space using Lipschitz functions of bounded support.

In [START_REF] Aliaga | Supports and extreme points in Lipschitz-free spaces[END_REF], a natural definition of support of an arbitrary element of a Lipschitz-free space was also proposed, and it was shown that such supports existed on any space that satisfied the intersection theorem. Thus, our first main result implies that the definition of support is valid in general. We develop its basic properties and obtain some equivalent characterizations of the concept.

Several applications of supports and weighted elements to the study of the extremal structure of Lipschitz-free spaces are also provided, adding to a number of other recent contributions [START_REF] Aliaga | On the preserved extremal structure of Lipschitz-free spaces[END_REF][START_REF] Aliaga | Supports and extreme points in Lipschitz-free spaces[END_REF][START_REF] Aliaga | Embeddings of Lipschitz-free spaces into 1[END_REF][START_REF] García-Lirola | Extremal structure and duality of Lipschitz free spaces[END_REF][START_REF] García-Lirola | A characterisation of the Daugavet property in spaces of Lipschitz functions[END_REF]. We start by showing that any elementary molecule (δ(x) -δ(y))/d(x, y) such that the metric segment [x, y] is trivial must be an exposed point of the unit ball of the Lipschitz-free space. This improves the main result in [START_REF] Aliaga | Supports and extreme points in Lipschitz-free spaces[END_REF], which states that such an element must be an extreme point, and moreover provides a much shorter proof. We also prove that the extreme points of the positive unit ball are exactly the normalized evaluation functionals, i.e. 0 and the elements δ(x)/d(x, 0), and that they are all preserved. Finally, we prove that any extreme point of the form λ + µ, where λ is positive and µ has finite support, must be finitely supported. This provides some progress towards solving the conjecture that all extreme points of the ball of a Lipschitz-free space must be finitely supported.

1.1. Notation. Let us begin by introducing the notation that will be used throughout this paper. We will write B X for the closed unit ball of a Banach space X and B O

X for its open unit ball. Next M will denote a complete pointed metric space with metric d and base point 0, B(p, r) will stand for the closed ball of radius r around p ∈ M , and we will use the notation

d(p, A) = inf {d(x, p) : x ∈ A} rad(A) = sup {d(x, 0) : x ∈ A}
for p ∈ M and A ⊂ M . These quantities will be called the distance from p to A and the radius of A, respectively.

Then Lip(M ) will be the space of all real-valued Lipschitz functions on M , and Lip 0 (M ) will consist of all f ∈ Lip(M ) such that f (0) = 0. For f ∈ Lip(M ) we will denote its Lipschitz constant by f L . Recall that f L is a norm on Lip 0 (M ) that turns it into a dual Banach space. For any x ∈ M , we will use the notation δ(x) for the evaluation functional f → f (x). Note that δ is a (non-linear) isometric embedding of M into Lip 0 (M ) * , and in fact F(M ) = span δ(M ) is the canonical predual of Lip 0 (M ), which we will call the Lipschitz-free space over M . The weak * topology induced by F(M ) on Lip 0 (M ) coincides with the topology of pointwise convergence on norm-bounded subsets of Lip 0 (M ). In what follows the weak * topology will always be denoted w * .

We will say that f ∈ Lip(M ) is positive if f ≥ 0, i.e. if f (x) ≥ 0 for all x ∈ M . Recall that the pointwise order is a partial order in Lip 0 (M ), and that a functional φ ∈ F(M ) (or Lip 0 (M ) * ) is positive if φ(f ) ≥ 0 for any positive f ∈ Lip 0 (M ). In that case, we will write φ ≥ 0; more generally, we will write φ ≥ ψ whenever φ(f ) ≥ ψ(f ) for all positive f . Given a subset K of M , we will also consider the subspace F M (K) = span δ(K) of F(M ) and the subspace I M (K) of Lip 0 (M ) defined by

I M (K) = {f ∈ Lip 0 (M ) : f (x) = 0 for all x ∈ K} .
In the above, if M = ∅, we adopt the the convention that span ∅ = {0}. Thus F M (K) = F M (K ∪ {0}) and I M (K) = I M (K ∪ {0}) for all K ⊂ M , and F M (K) can be identified with the Lipschitz-free space F(K ∪ {0}). Let us also recall that F M (K) ⊥ = I M (K) and I M (K) ⊥ = F M (K). We refer to the monograph [START_REF] Weaver | Lipschitz algebras[END_REF] by Weaver for proofs of these and other basic facts and for further reference.

The intersection theorem and supports

Our first main result is the following: Theorem 2.1. Let M be a complete pointed metric space and let {K i : i ∈ I} be a family of closed subsets of M . Then

i∈I F M (K i ) = F M i∈I K i .
Our proof will consist of reducing the problem to the case where M is bounded, which was proved in [START_REF] Aliaga | Supports and extreme points in Lipschitz-free spaces[END_REF]Theorem 3.3]. In order to do this, we will analyze the role of Lipschitz functions on M with bounded support. Let us start by highlighting the following simple fact: Lemma 2.2. If M is a pointed metric space, then the Lipschitz functions with bounded support are w * -dense in Lip 0 (M ) and in I M (K) for any K ⊂ M . Proof. For r > 0, let Λ r ∈ Lip(M ) be the function defined by

Λ r (x) =      d(x, 0) if d(x, 0) ≤ r 2r -d(x, 0) if r ≤ d(x, 0) ≤ 2r 0 if 2r ≤ d(x, 0)
. This function is positive, has bounded support and satisfies Λ r L ≤ 1. Moreover, for any f ∈ Lip 0 (M ) we have |f (x)| ≤ f L • Λ r (x) for any x ∈ B(0, r). Thus, if we denote

f r (x) = max {min {f (x), f L • Λ r (x)} , -f L • Λ r (x)} for x ∈ M , then f r ∈ Lip 0 (M ) has bounded support, f r L ≤ f L , and f r (x) = f (x) for all x ∈ B(0, r). It follows that f r w * -→ f as r → ∞.
Moreover, notice that f r (x) = 0 whenever f (x) = 0, hence if f ∈ I M (K) then f r ∈ I M (K). It follows that the Lipschitz functions with bounded support are w * -dense in I M (K). In particular (taking K = {0}) they are w * -dense in Lip 0 (M ).

Next, we show that pointwise multiplication with a Lipschitz function of bounded support always results in a Lipschitz function and, in fact, defines a continuous operator between Lipschitz spaces: Lemma 2.3. Let M be a pointed metric space and let h ∈ Lip(M ) have bounded support. Let K ⊂ M contain the base point and the support of h. For f ∈ Lip 0 (K), let T h (f ) be the function given by

(1) T h (f )(x) = f (x)h(x) if x ∈ K 0 if x / ∈ K .
Then T h defines a w * -w * -continuous linear operator from Lip 0 (K) into Lip 0 (M ), and

T h ≤ h ∞ + rad(supp(h)) h L . Proof. Let S = supp(h). First, we show that T h (f ) ∈ Lip 0 (M ) for any f ∈ Lip 0 (K). Clearly T h (f )(0) = 0. If x, y ∈ S, then |T h (f )(x) -T h (f )(y)| d(x, y) = |f (x)h(x) -f (y)h(y)| d(x, y) ≤ |f (x)h(x) -f (x)h(y)| d(x, y) + |f (x)h(y) -f (y)h(y)| d(x, y) ≤ sup S |f | • h L + h ∞ • f L ≤ (rad(S) h L + h ∞ ) f L , and if x ∈ S and y ∈ M \ S then |T h (f )(x) -T h (f )(y)| d(x, y) = |f (x)h(x) -f (x)h(y)| d(x, y) ≤ sup S |f | • h L ≤ rad(S) h L f L .
Therefore the function T h (f ) is Lipschitz and

T h (f ) L ≤ (rad(S) h L + h ∞ ) • f L .
Hence, T h is a well defined and bounded operator from Lip 0 (K) into Lip 0 (M ). Linearity is obvious.

Finally, we prove that T h is w * -w * -continuous. By the Banach-Dieudonné theorem, it suffices to show that it is w * -w * -continuous on bounded subsets of Lip 0 (K). Since w * -convergence agrees with pointwise convergence on bounded subsets of Lipschitz spaces, it is enough to verify that

T h (f γ ) → T h (f ) pointwise whenever f γ → f pointwise in B Lip 0 (K) , which is immediate from the definition of T h .
Let us make a few observations. Trivially T h (f )(x) = 0 whenever x ∈ K is such that f (x) = 0, hence T h maps I K (L) into I M (L) for any L ⊂ K. Moreover the function T h (f ) does not depend on the choice of K, as long as it contains the support of h. Thus the requirement that 0 ∈ K is not really a restriction, as one may always use the set K ∪ {0} instead.

Since T h is w * -w * -continuous, there is an associated bounded linear operator

W h : F(M ) → F(K) such that W h * = T h .
Thus we get the following consequence, which restricts to [2, Lemma 3.1] in the case where K = M has finite diameter and h(0) = 0: Proposition 2.4. Let M be a pointed metric space, let h ∈ Lip(M ) have bounded support and let K ⊂ M contain the base point and the support of h. Then for any

µ ∈ F(M ) we have µ • T h ∈ F(K) and µ • T h ≤ ( h ∞ + rad(supp(h)) h L ) • µ . Moreover, if h ≥ 0 and µ ≥ 0 then µ • T h ≥ 0. Proof. Simply notice that W h (µ) = µ • T h acts as a functional on Lip 0 (K), since W h (µ), f = µ, T h (f ) for any f ∈ Lip 0 (K).
The inequality is immediate from Lemma 2.3. If h ≥ 0 then T h takes positive functions into positive functions and the second statement follows.

We now have all the tools we need to prove the main result of the section:

Proof of Theorem 2.1. Let Y = span {I M (K i ) : i ∈ I}. We will show that Y w * = I M (K) where K = i K i .
This is enough, as the annihilator relations imply then that i∈I

F M (K i ) = i∈I I M (K i ) ⊥ = i∈I I M (K i ) ⊥ = Y ⊥ = Y w * ⊥ = I M (K) ⊥ = F M (K) . The inclusion Y w * ⊂ I M (K) is clear. For the reverse inclusion, take f ∈ I M (K) and let U be a w * -neighborhood of f in Lip 0 (M ); it suffices to show that U intersects Y .
We may assume that f has bounded support by Lemma 2.2. So let S = supp(f ), define h ∈ Lip(M ) by h(x) = max {1 -d(x, S), 0} for x ∈ M , and let A = supp(h) ∪ {0}. Thus 0 ≤ h ≤ 1, h S = 1 and h = 0 outside of the bounded set A.

Let T h : Lip 0 (A) → Lip 0 (M ) be as in [START_REF] Aliaga | On the preserved extremal structure of Lipschitz-free spaces[END_REF] and

let f = f A ∈ Lip 0 (A). Note that T h ( f ) = f . Let V be a w * -neighborhood of f such that T h (V ) ⊂ U . Since A is bounded, we may apply [2, Theorem 3.3] to get i∈I F A (K i ∩ A) = F A (K ∩ A),
and it follows that:

I A (K ∩ A) = i∈I F A (K i ∩ A) ⊥ = i∈I I A (K i ∩ A) ⊥ ⊥ = span w * {I A (K i ∩ A) : i ∈ I} . Now f ∈ I A (K ∩ A), so there must exist g ∈ V of the form g = g 1 + . . . + g n where g k ∈ I A (K i k ∩ A), i k ∈ I for k = 1, . . . , n.
To complete the proof, note that T h (g k ) ∈ I M (K i k ) for every k = 1, . . . , n by the definition of T h and the comments below Lemma 2.3. Hence T h (g) ∈ U ∩ Y .

It was shown in [2, Proposition 3.5] that it was possible to define supports for elements of any Lipschitz-free space F(M ) that satisfied the property in Theorem 2.1. We may therefore now state this definition in general: Definition 2.5. Let M be a pointed metric space and µ ∈ F(M ). The support of µ, denoted supp(µ), is the intersection of all closed subsets K of M such that µ ∈ F M (K).

Let us mention some elementary properties of supports. To begin with, letting {K i } be as in Theorem 2.1 the family of all closed subsets of M such that µ ∈ F M (K i ), we get [START_REF] Aliaga | Supports and extreme points in Lipschitz-free spaces[END_REF] µ ∈ F M (supp(µ)).

In fact, ( 2) is an equivalent statement of Theorem 2.1 (see [2, Proposition 3.5]).

One observation is that the base point cannot be an isolated point of supp(µ), as that would imply µ ∈ F M (K) where K = supp(µ) \ {0} is closed. In particular, note that supp(0) = ∅. This shows that supports are not completely stable under changes of base point, as e.g. supp(δ(p)) = {p} for p = 0 but changing the base point to p converts δ(p) into 0, with empty support. However, the discrepancy is limited to the new base point and only in the case where this point is isolated in the support. Note also that if µ = n µ n where µ n ∈ F(M ), then it follows directly from the definition that supp(µ) ⊂ n supp(µ n ). The same happens if µ = lim n µ n . In particular, by taking finitely supported µ n it follows that supp(µ) is always a closed separable subset of M .

We now describe several equivalent characterizations of supports:

Proposition 2.6. Let M be a complete pointed metric space, K a closed subset of M , and µ ∈ F(M ). Then the following are equivalent:

(i) supp(µ) ⊂ K, (ii) µ ∈ F M (K), (iii) µ, f = µ, g for any f, g ∈ Lip 0 (M ) such that f K = g K .
Proof. (i)⇒(ii): This is an immediate consequence of (2). (ii)⇒(i): This follows trivially from the definition.

(ii)⇔(iii): Notice that (iii) is equivalent to µ, f -g = 0 whenever f -g vanishes in K, that is, to µ ∈ I M (K) ⊥ .

The equivalence (i)⇔(iii) shows that, in particular

(3) supp(µ • T h ) ⊂ supp(µ) ∩ supp(h)
for any µ ∈ F(M ) and h ∈ Lip(M ) with bounded support. Indeed, if f, g ∈ Lip 0 (M ) coincide on supp(µ) ∩ supp(h) then T h (f ) and T h (g) coincide on supp(µ) and thus

µ • T h , f = µ, T h (f ) = µ, T h (g) = µ • T h , g .
The inclusion in (3) may be strict. For instance, if supp(µ) intersects supp(h) only at its boundary then µ • T h = 0.

The following characterization of the support will also be used often:

Proposition 2.7. Let M be a complete pointed metric space and µ ∈ F(M ). Then p ∈ M lies in the support of µ if and only if for every neighbourhood U of p there exists a function f ∈ Lip 0 (M ) whose support is contained in U and such that µ, f = 0. Moreover, in that case we may take f ≥ 0.

Proof. Let p ∈ M . Assume that there exists a neighbourhood U of p such that for any function f ∈ Lip 0 (M ) with supp(f ) ⊂ U we have µ, f = 0. Take an open neighbourhood V of p for which

V ⊂ U . Then µ ∈ I M (M \ V ) ⊥ because every f ∈ I M (M \ V ) satisfies supp(f ) ⊂ V ⊂ U . Hence µ ∈ F M (M \ V ), so supp(µ) ⊂ M \
V by the definition of supp(µ) and p / ∈ supp(µ). On the other hand, suppose that p / ∈ supp(µ) and let U = M \ supp(µ). Then every f ∈ Lip 0 (M ) whose support is contained in U obviously belongs to

I M (supp(µ)) = F M (supp(µ)) ⊥ . Therefore µ, f = 0.
For the last statement, notice that µ, f = 0 implies that either µ, f + = 0 or µ, f -= 0.

We finish this section by collecting some useful facts about positive elements of F(M ) and their supports: Proposition 2.8. Let M be a complete pointed metric space and let µ and µ n , for n ∈ N, be positive elements of F(M ).

(a) µ = µ, ρ where ρ

(x) = d(x, 0). (b) ∞ n=1 µ n = ∞ n=1 µ n whenever the last sum is finite. (c) If f ∈ Lip 0 (M ), f ≥ 0 and µ, f = 0, then f = 0 on supp(µ). (d) If f ∈ B Lip 0 (M ) and µ, f = µ , then f = ρ on supp(µ). Proof. (a) We have ρ ∈ B Lip 0 (M ) and any f ∈ B Lip 0 (M ) satisfies f ≤ ρ, hence µ, f ≤ µ, ρ .
(b) Evaluate n µ n on ρ and apply (a). (c) Suppose f (p) > 0 for some p ∈ supp(µ), so there are c > 0 and r > 0 such that f ≥ c in B(p, r). By Proposition 2.7 there exists h ∈ Lip 0 (M ) such that supp(h) ⊂ B(p, r), h ≥ 0 and µ, h > 0. Scale h by a constant factor so that h ≤ c. Then f -h ≥ 0 but µ, f -h < 0, a contradiction.

(d) Apply (c) to the function ρ -f . Proposition 2.9. Let M be a complete pointed metric space and let µ, λ be positive elements of F(M ). If µ ≤ λ then supp(µ) ⊂ supp(λ).

Proof. Let p ∈ supp(µ) and U be a neighborhood of p. By Proposition 2.7 there exists f ∈ Lip 0 (M ) such that supp(f ) ⊂ U , f ≥ 0 and µ, f > 0. But then λ, f ≥ µ, f > 0, so p ∈ supp(λ) applying Proposition 2.7 again.

Applications to extremal structure

In this section, we develop some techniques based on supports and weighted elements to obtain new results related to the extremal structure of F(M ), in particular to analyze the extreme points of its unit ball and its positive unit ball. First, let us recall the definition of the extremal elements we will be considering: Definition 3.1. Let C be a convex subset of a Banach space X and x ∈ C. We will say that x is:

• an extreme point of C if it cannot be written as x = 1 2 (y + z) with y, z ∈ C \ {x}, • an exposed point of C if there is x * ∈ X * such that x, x * > y, x * for any

y ∈ C \ {x}, • a preserved extreme point of C if it is an extreme point of C w * in X * * .
Observe that exposed points and preserved extreme points are always extreme points. We will be considering the cases C = B F (M ) and C = B + F (M ) , the positive unit ball i.e. the set of positive elements of B F (M ) .

3.1. Exposed molecules. In the study of the extremal structure of Lipschitz-free spaces, a special role is played by the elements of the form

m pq = δ(p) -δ(q) d(p, q)
for p = q ∈ M ; note that m pq = 1. These elements are called elementary molecules, sometimes just molecules. One of the reasons for their relevance is the fact that any preserved extreme point of B F (M ) must be a molecule [ It is simply a matter of writing down the corresponding convex combination to see that m pq can only be an extreme point of B F (M ) if the metric segment [p, q] = {x ∈ M : d(p, x) + d(x, q) = d(p, q)} only contains the points p and q. The main result in [START_REF] Aliaga | Supports and extreme points in Lipschitz-free spaces[END_REF] states that this necessary condition is also sufficient. Here, we improve that result and show that any molecule satisfying this condition is actually an exposed point of B F (M ) . This also provides a significantly shorter proof of [2, Theorem 1.1]. Theorem 3.2. Let M be a complete pointed metric space and p = q ∈ M . Then the following are equivalent:

(i) m pq is an extreme point of B F (M ) , (ii) m pq is an exposed point of B F (M ) , (iii) [p, q] = {p, q}.
It is only necessary to prove the implication (iii)⇒(ii). In our argument we will use the following fact. It can be found already in the proof of Theorem 2.37 in [START_REF] Weaver | Lipschitz algebras[END_REF]; see also page 89 therein. We include a short direct proof for the sake of completeness.

Lemma 3.3. Let M be a metric space and

M = (M × M ) \ {(x, x) : x ∈ M } .
Let us define Q : 1 ( M ) → F(M ) by e (x,y) → m xy and extend it linearly on span e (x,y) . Then Q extends to an onto norm-one mapping which satisfies µ = inf { a 1 : Qa = µ} for every µ ∈ F(M ), i.e. Q is a quotient map.

Proof. The fact that Q = 1 is clear so we can extend Q to the whole space with the same norm. Let us call the extension Q again. We will prove that

B O F (M ) ⊂ Q(B O 1 ( M ) )
. For this it is enough to use [7, Lemma 2.23], i.e. we need to check that

B O F (M ) ⊂ Q(B O 1 ( M )
). But we have

B O F (M ) ⊂ B F (M ) = conv(V ) ⊂ Q(B 1( M ) ) = Q(B O 1( M )
),

where V = m xy : (x, y) ∈ M is the set of molecules of F(M ); note that B F (M ) = conv(V ) follows from the fact that V = -V is norming for Lip 0 (M ).

Remark 3.4. We remark that if µ is an extreme point of B F (M ) such that µ = Qa for some a ∈ B 1( M ) , then µ must be a molecule. Indeed, suppose that µ = ∞ n=1 a n m xnyn where ∞ n=1 |a n | = 1 = µ ; without loss of generality, assume that each a n ≥ 0 and that a 1 > 0. If a 1 = 1 then clearly µ = m x1y1 . Otherwise a 1 ∈ (0, 1) and we have

µ = a 1 m x1y1 + (1 -a 1 ) ∞ n=2 a n 1 -a 1 m xnyn
where the series on the right-hand side is in B F (M ) since the sum of the coefficients is 1, so extremality implies µ = m x1y1 again.

The main idea behind the proof of Theorem 3.2 is that if some f ∈ B Lip 0 (M ) exposes m pq in B F (M ) , then f exposes m pq in particular among the molecules. Such a candidate for the exposing functional is well known: it is the function f pq defined by

f pq (x) = d(p, q) 2 d(x, q) -d(x, p) d(x, q) + d(x, p) + C
for x ∈ M , where the constant C is chosen so that f pq (0) = 0. This function was introduced and studied in [START_REF] Ivakhno | The Daugavet property for spaces of Lipschitz functions[END_REF], where the following properties were proved: Lemma 3.5. Let M be a complete metric space and let p = q ∈ M . We have (1) f pq is Lipschitz, f pq L = 1 and m pq , f pq = 1.

(

) If u = v ∈ M and ε ≥ 0 are such that m uv , f pq ≥ 1 -ε, then u, v ∈ [p, q] ε where [p, q] ε = x ∈ M : d(p, x) + d(x, q) ≤ 1 1 -ε d(p, q) . 2 
(

) If u = v ∈ M and fpq(u)-fpq(v) d(u,v) = 1, then u, v ∈ [p, q]. 3 
Let us remark at this point that if [p, q] = {p, q} then f pq exposes m pq among molecules (immediate from Lemma 3.5 (3)) and also among those µ ∈ B F (M ) with finite support (or more generally such that µ = a 1 in the representation coming from Lemma 3.3).

Using the concept of support, we can now prove the next strengthening of Lemma 3.5 (3). Lemma 3.6. Let M be a complete pointed metric space and p = q ∈ M . If

µ ∈ B F (M ) is such that µ, f pq = 1, then supp(µ) ⊂ [p, q].
Proof. Let δ, ε > 0. It follows from Lemma 3.3 that we may find an expression

µ = ∞ n=1 a n m xnyn where x n = y n ∈ M for n ∈ N and n |a n | < 1 + δε. Let I = {n ∈ N : | m xnyn , f pq | ≥ 1 -ε}. Then 1 = µ, f pq = ∞ n=1 a n m xnyn , f pq = n∈I a n m xnyn , f pq + n∈N\I a n m xnyn , f pq ≤ n∈I |a n | + (1 -ε) n∈N\I |a n | < 1 + δε -ε n∈N\I |a n | .
Hence n∈N\I |a n | < δ, and it follows that

µ - n∈I a n m xnyn = n∈N\I a n m xnyn ≤ n∈N\I |a n | < δ. Notice that x n , y n ∈ [p, q] ε if n ∈ I, by Lemma 3.5 (2). Thus µ ∈ F M ([p, q] ε ) + δB F (M ) . Since δ was arbitrary, this shows that µ ∈ F M ([p, q] ε ). But ε > 0 was also arbitrary, so supp(µ) ⊂ ε>0 [p, q] ε = [p, q].
Proof of Theorem 3.2. Assume (iii). We can assume without loss of generality that 0 = q. Indeed, a change of the base point in M induces a linear isometry between the corresponding Lipschitz-free spaces which preserves the molecules. We will prove that m pq is exposed by f pq . Assume that µ ∈ B F (M ) is such that µ, f pq = 1. By Lemma 3.6, µ must be supported on [p, q] = {p, q}, hence on {p}. Thus µ = ±m pq but only the choice of the plus sign is reasonable. This proves (ii).

Extreme points of the positive ball. Let us now consider the extreme points of B +

F (M ) . We will characterize them and show that all of them are actually preserved. To achieve the latter, we require the following general fact about positive functionals on Lip 0 (M ): Lemma 3.7. Let M be a pointed metric space and let µ, λ

∈ Lip 0 (M ) * be such that 0 ≤ µ ≤ λ. If λ ∈ F(M ), then µ ∈ F(M ).
For the proof, let us recall that an element φ of Lip 0 (M )

* is normal if it is such that f i , φ → f, φ for any bounded net (f i ) in Lip 0 (M ) that converges to f pointwise and monotonically. Equivalently, φ is normal if f i , φ → 0 whenever f i ∈ B Lip 0 (M ) and f i (x) decreases to 0 for each x ∈ M . It is clear that every w *continuous element of Lip 0 (M ) * is normal. Whether the converse holds is an open problem, but it was solved in the affirmative by Weaver for positive functionals [START_REF] Weaver | Lipschitz algebras[END_REF]Theorem 3.22].

Proof of Lemma 3.7. Let (f i ) be a net such as stated above. Then we have 0 ≤ f i , µ ≤ f i , λ for each i. Since λ is normal, f i , λ → 0 and so f i , µ → 0 too. Hence µ is normal, and [START_REF] Weaver | Lipschitz algebras[END_REF]Theorem 3.22] shows that it is w * -continuous. Theorem 3.8. Let M be a complete pointed metric space. The extreme points of B + F (M ) are precisely the normalized evaluation functionals, i.e. 0 and δ(x)/d(x, 0) for x ∈ M \ {0}. Moreover, all of them are preserved.

Proof. First we show that all extreme points are normalized evaluation functionals, or equivalently, their support does not contain more than one point. Let µ ∈ B + F (M ) with µ = 1 be such that supp(µ) contains at least two points a and b; we will show that µ is not an extreme point of B + F (M ) . We may assume a, b = 0, since 0 ∈ supp(µ) implies that it is an accumulation point, hence supp(µ) is infinite. 

µ • T h + µ -µ • T h = µ • T h + (µ -µ • T h ) = µ = 1 by Proposition 2.8(b). But then µ = µ • T h µ • T h µ • T h + µ -µ • T h µ -µ • T h µ -µ • T h
is a nontrivial convex combination of elements of B + F (M ) , as was to be shown. Now let x ∈ M and µ = δ(x)/d(x, 0) if x = 0 or µ = 0 if x = 0; we will show that µ is really a preserved extreme point of B + F (M ) . Suppose that µ = 1 2 (λ + ν) where λ, ν ∈ B + F (M ) w * are positive elements of B Lip 0 (M ) * . Then 0 ≤ 1 2 λ ≤ µ, so λ ∈ F(M ) by Lemma 3.7. Moreover, Proposition 2.9 implies that supp(λ) ⊂ {x}. This is enough to conclude that λ = ν = µ, which finishes the proof.

The fact that the normalized evaluation functionals are preserved extreme points of B + F (M ) appears already in [START_REF] Weaver | Lipschitz algebras[END_REF]Corollary 7.36], although the result is stated only for bounded M . The reverse implication is new to the best of our knowledge.

Finally, let us note that 0 is always an exposed point of B + F (M ) , but m x0 = δ(x)/d(x, 0) is exposed if and only if [0, x] = {0, x}. Indeed, one implication is immediate from Theorem 3.2. The other follows from the fact that f ∈ B Lip 0 (M ) norms m x0 if and only if f (x) = d(x, 0), but then f (y) = d(y, 0) for any y ∈ [0, x] so f norms m y0 too.

3.3. Extreme points which are almost positive. As a final application, let us analyze the extreme points of B F (M ) that may be expressed as a finitely supported perturbation of a positive element of F(M ). We will prove that these extreme points must have finite support and hence be elementary molecules.

Let S be a non-empty subset of M . For f ∈ Lip(S) with f L ≤ 1 and x ∈ M we denote [START_REF] Cúth | On the structure of Lipschitz-free spaces[END_REF] f I (x) := inf q∈S (f (q) + d(q, x)).

Then f I is an extension of f to M such that f I L ≤ 1. In fact, it is the largest 1-Lipschitz extension in the following sense: for every x ∈ M \ S, (f I ) S∪{x} is the largest 1-Lipschitz extension of f to S ∪ {x}. In other words, if g is an extension of f to M such that g L ≤ 1 then g ≤ f I . We require the following simple observation: Lemma 3.9. Let M be a complete pointed metric space and µ, λ ∈ F(M ) such that λ ≥ 0. Let S = supp(µ) ∪ {0} and define

N (f ) = µ + λ, f I for f ∈ B Lip 0 (S)
, where f I is defined by (4). Then N is a concave function that attains its maximum on B Lip 0 (S) , and

max f ∈B Lip 0 (S) N (f ) = µ + λ . Proof. It is obvious that N (f ) ≤ µ + λ for any f ∈ B Lip 0 (S)
. By the Hahn-Banach theorem, there is g ∈ B Lip 0 (M ) such that µ + λ = µ + λ, g . Let f = g S , then f ∈ B Lip 0 (S) and f I ≥ g, so λ, f I ≥ λ, g . Moreover, (f I ) S = g S and hence µ, f I = µ, g by Proposition 2.6. It follows that

N (f ) = µ, f I + λ, f I ≥ µ, g + λ, g = µ + λ .
To show that N is concave, note that this is equivalent to the map f → λ, f I being concave, i.e. to λ, (cf + (1 -c)g) I ≥ c λ, f I + (1 -c) λ, g I for any f, g ∈ B Lip 0 (S) and c ∈ (0, 1). Since λ ≥ 0, it suffices to show that

(cf + (1 -c)g) I ≥ cf I + (1 -c)g I pointwise, that is inf q∈S cf (q) + (1 -c)g(q) + d(x, q) ≥ c • inf q∈S f (q) + d(x, q) + (1 -c) • inf q∈S g(q) + d(x, q)
for every x ∈ M . But this is obvious. Theorem 3.10. Let M be a complete pointed metric space and λ, µ ∈ F(M ) such that λ ≥ 0 and µ has finite support. If λ + µ is an extreme point of B F (M ) , then it has finite support.

Proof. Let S = supp(µ)∪{0}, and consider the function N : F(M ) + ×B Lip 0 (S) → R given by N (λ, f ) = λ + µ, f I . Denote also N λ (f ) = N (λ, f ). By Lemma 3.9, λ + µ is the maximum of N λ (f ) for f ∈ B Lip 0 (S) , and N λ is a concave function for fixed λ. Moreover, it is easy to verify directly that N λ is continuous using the boundedness of S. It follows from concavity that N λ (f ) = λ + µ if and only if f is a local maximum of N λ , i.e. if and only if

λ, (f + g) I -f I ≤ µ, f I -(f + g) I = -µ, g
for all g ∈ Lip 0 (S) in a neighborhood of 0 such that f + g ∈ B Lip 0 (S) .

Suppose now that λ has infinite support, and let f ∈ B Lip 0 (S) be such that λ + µ = N λ (f ). We will show that there is a nonzero v ∈ F(M ) such that λ±v ≥ 0, v, f I = 0, and v, (f + g) I -f I = 0 for all g ∈ Lip 0 (S) in a neighborhood of 0. The argument above will then imply that λ ± v + µ = N (λ ± v, f ) = N (λ, f ) ± v, f I = N (λ, f ) = λ + µ so λ + µ cannot be an extreme point of B F (M ) . Thus, if λ + µ is extreme then it must be finitely supported.

For every non-empty subset K ⊂ S, define the set A K = {x ∈ M : f I (x) = f (q) + d(x, q) if and only if q ∈ K} .

That is, A K contains those points x ∈ M where the infimum in the definition of f I (x) is attained exactly for all q ∈ K and nowhere else. Since S is finite, the sets A K form a finite partition of M . Choose K of the smallest possible cardinality such that supp(λ) ∩ A K contains at least three points p 1 , p 2 , p 3 . Let ε = 1 4 min f (q ) + d(p i , q ) -f (q) + d(p i , q) : q ∈ K, q ∈ S \ K, i = 1, 2, 3 and choose r ∈ (0, ε) such that the balls B(p i , r) are disjoint, do not contain the base point, and do not intersect the finite sets supp(λ) ∩ A L for any L K. By Proposition 2.7, for i = 1, 2, 3 there exist non-negative functions h i ∈ Lip 0 (M ) supported on B(p i , r) such that λ, h i > 0. Now choose real constants c 1 , c 2 , c 3 , not all of them equal to zero, such that

c 1 λ, h 1 + c 2 λ, h 2 + c 3 λ, h 3 = 0 c 1 λ, h 1 • f I + c 2 λ, h 2 • f I + c 3 λ, h 3 • f I = 0 and |c i | ≤ 1/ h i ∞ . Let h = c 1 h 1 + c 2 h 2 + c 3 h 3 and v = λ • T h .
Let us check that v satisfies the required conditions. By construction, we have λ, h = 0 and v, f I = λ, h • f I = 0. Also, λ ± v, g = λ, g ± T h (g) = λ, g • (1 ± h) for any g ∈ Lip 0 (M ). By the choice of c i we have 1 ± h ≥ 0 and so λ ± v, g ≥ 0 whenever g ≥ 0, that is, λ ± v ≥ 0. Also, choose i ∈ {1, 2, 3} such that c i = 0, then there is ϕ ∈ Lip 0 (M ) such that ϕ = 1 on B(p i , r) and ϕ = 0 on supp(h) \ B(p i , r), hence v, ϕ = c i λ, h i = 0. This shows that v = 0.

Finally, let x ∈ supp(v). Then x ∈ supp(λ) ∩ supp(h) by (3), so there is i ∈ {1, 2, 3} such that x ∈ B(p i , r). Therefore, if q ∈ K, q ∈ S \ K then f (q ) + d(x, q ) ≥ f (q ) + d(p i , q ) -d(x, p i ) ≥ f (q) + d(p i , q) + 4ε -d(x, p i ) ≥ f (q) + d(x, q) + 4ε -2d(x, p i ) ≥ f (q) + d(x, q) + 2ε and so x ∈ A L for some L ⊂ K, hence x ∈ A K by construction. If we now take any g ∈ Lip 0 (S) such that g ∞ < ε and f + g L ≤ 1, then f (q ) + g(q ) + d(x, q ) > f (q) + g(q) + d(x, q) for any q ∈ K, q ∈ S \ K, and it follows that (f + g) I (x) = f I (x) + γ where γ = min q∈K g(q). Thus we get v, (f + g) I -f I = λ, h • γ = γ • λ, h = 0. This completes the proof.

  Denote r = d(a, b)/3. Let h ∈ Lip(M ) be defined byh(x) = max 1 -d(x, B(a, r)) r , 0 so that 0 ≤ h ≤ 1, h B(a,r) = 1, h B(b,r) = 0, and supp(h) is bounded. Notice that µ • T h = 0. Indeed, let f ∈ Lip 0 (M ) such that f ≥ 0, f (a) = 1 and supp(f ) ⊂ B(a, r), then µ • T h , f = µ, f > 0 by (3) and Proposition 2.8(c) because a ∈ supp(µ). A similar argument using a function supported on B(b, r) shows that µ • T h = µ. Since h and 1 -h are both positive, so are µ • T h and µ -µ • T h and thus
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