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ON EXPOSED POINTS OF LIPSCHITZ FREE SPACES

COLIN PETITJEAN AND ANTONÍN PROCHÁZKA

Abstract. In this note we prove that a molecule d(x, y)−1(δ(x) − δ(y)) is an exposed point
of the unit ball of a Lispchitz free space F(M) if and only if the metric segment [x, y] = {z ∈
M : d(x, y) = d(z, x) + d(z, y)} is reduced to {x, y}. This is based on a recent result due to
Aliaga and Pernecká which states that the class of Lipschitz free spaces over closed subsets of
M is closed under arbitrary intersections when M has finite diameter.

1. Introduction

For a metric space (M, d) with a distinguished point 0 ∈ M , we let Lip0(M) be the real
Banach space of Lipschitz maps from M to R which vanish at 0. We recall that the norm of
f ∈ Lip0(M), denoted ‖f‖L, is the best Lipschitz constant of f , i.e.

‖f‖L = sup
x 6=y∈M

|f(x)− f(y)|

d(x, y)
.

Next, for x ∈ M , we let δ(x) ∈ Lip0(M)∗ be Dirac measure, i.e. 〈δ(x), f〉 = f(x). We then
define the Lipschitz free space over M to be the following closed subspace of Lip0(M)∗:

F(M) := span{δ(x) : x ∈ M}.

It follows from the fundamental linearisation property of Lipschitz free spaces that F(M) is a
canonical predual of Lip0(M) (see [7] for more details).

In this note we are interested in extreme points and exposed points of the unit ball of Lipschitz
free spaces. If BX denotes the unit ball of a Banach space X , we recall that x ∈ BX is an
extreme point of BX whenever x 6∈ conv(BX \ {x}). Next, x is an exposed point of BX if there
exists a linear functional f ∈ X∗ such that f(x) > f(z) for every z ∈ BX \ {x}. In what
follows, ext(BX) denotes the set of extreme points of BX while exp(BX) denotes the set of
exposed points of BX . Is is readily seen that exp(BX) ⊂ ext(BX).

The extremal structure of Lipschitz free spaces has already been investigated in a number
of articles [1, 2, 5, 6, 9]. In any such study a special attention is dedicated to the elements of

F(M) of the form mxy = δ(x)−δ(y)
d(x,y)

which we call molecules (and which are called elementary

molecules in [2]). It is simply a matter of writing down the corresponding convex combination
to see that mxy ∈ ext(BF(M)) implies that [x, y] = {x, y}. However, it is only recently that
Aliaga and Pernecká [2] managed to prove that, for a complete M , the reverse implication is
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also valid. Here, using one of the ingredients of their proof, we show the following stronger
result.

Theorem 1. Let M be a complete metric space and p 6= q ∈ M satisfy [p, q] = {p, q}. Then

mpq is an exposed point of BF(M). It is exposed by the magic function

fpq(t) :=
d(x, y)

2

(
d(t, q)− d(t, p)

d(t, q) + d(t, p)
−

d(0, q)− d(0, p)

d(0, q) + d(0, p)

)
.

2. Proof of the main result

The authors of [2] had the following important insight which is likely to have many more
applications in analysis of Lipschitz free spaces.

Proposition 2 (Aliaga and Pernecká [2]). Let M be a bounded complete metric space. Let

{Mα ⊂ M : α ∈ A} be a collection of closed subsets of M containing 0. Then
⋂

α∈A

F(Mα) = F
( ⋂

α∈A

Mα

)
.

For the proof of Theorem 1 we will need further some notation and few lemmas. Given a

metric space M we will set M̃ := M ×M \ {(x, x) : x ∈ M} and V =
{
mxy : (x, y) ∈ M̃

}
the

set of molecules in F(M). The following folklore fact is also stated in disguise as Lemma 2.1
in [2]. The proof here is different from the one in [2].

Lemma 3. Let M be a metric space. Let us define Q : ℓ1(M̃) → F(M) by e(x,y) 7→ mxy and

linearly on span
{
e(x,y)

}
. Then Q extends to an onto norm-one mapping.

Proof. The fact that ‖Q‖ = 1 is clear so we can extend Q to the whole space with the same
norm. Let us call the extension Q again. We will prove that BO

F(M) ⊂ Q(BO
ℓ1
), where BO

X denotes

the open unit ball of a Banach space X . For this it is enough to use Lemma 2.23 in [4], i.e. we

need to check that BO
F(M) ⊂ Q(BO

ℓ1
). But we have BO

F(M) ⊂ conv(V ) ⊂ Q(Bℓ1) = Q(BO
ℓ1
). �

The next lemma is standard.

Lemma 4. Let a ∈ Sℓ1 and b ∈ Bℓ∞. Assume that 1 − αε ≤ 〈a, b〉 for some 0 < α, ε < 1.
Denote B = {n ∈ N : |bn| ≤ (1− α)}. Then

∑
n∈B |an| ≤ ε.

Proof. We denote G := N \B. We have

1− εα ≤

∞∑

n=1

anbn ≤
∑

n∈G

|anbn|+
∑

n∈B

|anbn|

≤
∑

n∈G

|an|+ (1− α)
∑

n∈B

|an|

≤
∑

n∈N

|an| − α
∑

n∈B

|an| = 1− α
∑

n∈B

|an| .

It follows that
∑

n∈B |an| ≤ ε. �
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For a metric space M , points p, q ∈ M and ε > 0 we will denote

[p, q]ε :=

{
x ∈ M : d(p, x) + d(x, q) ≤

1

1− ε
d(p, q)

}
.

The properties of the magic function collected in the following lemma have been proved already
in [8].

Lemma 5. Let (p, q) ∈ M̃ . We have

(1) fpq is Lipschitz and ‖fpq‖L ≤ 1.

(2) Let u 6= v ∈ M and ε > 0 be such that
fpq(u)−fpq(v)

d(u,v)
> 1− ε. Then both u, v ∈ [p, q]ε.

(3) If (u, v) ∈ M̃ and
fpq(u)−fpq(v)

d(u,v)
= 1, then both u, v ∈ [x, y].

Let us remark at this point that if [p, q] = {p, q}, then fpq exposes mpq among molecules
(immediate from Lemma 5 (3)) and also among those µ ∈ BF(M) which have finite support (or
more generally such that ‖µ‖ = ‖a‖1 in the representation coming from Lemma 3). The next
lemma prepares the ground for the remaining cases.

Lemma 6. Let M be a metric space with the base point 0 = q and let p 6= q ∈ M be such that

[p, q] = {p, q}. Assume that µ ∈ BF(M) satisfies 〈µ, fpq〉 = 1. Then for every ε, α ∈ (0, 1
2
) we

have µ ∈ F([p, q]α) + 2εBF(M).

Proof. Let us observe right away that by the hypothesis ‖µ‖ = 1. Let ε, α ∈ (0, 1
2
) be fixed.

By Lemma 3 there exist a = (ai) ∈ ℓ1 and (pi), (qi) ⊂ M such that µ =
∑∞

i=1 aimpiqi and
‖a‖1 ≤ ‖µ‖+ εα

1−εα
. We have

1− εα ≤
1

‖a‖1
=

〈
µ

‖a‖1
, fpq

〉
=

∞∑

i=1

ai

‖a‖1
〈mpiqi, fpq〉 .

Now if we denote B = {i ∈ N : |〈mpiqi, fpq〉| ≤ (1− α)}, then Lemma 4 yields that
∑

i∈B

∣∣∣ ai
‖a‖

1

∣∣∣ ≤
ε and so

∑
i∈B |ai| ≤ 2ε. It follows from Lemma 5 (2) that for every i ∈ N \ B we have

pi, qi ∈ [p, q]α. The conclusion is now immediate. �

Proof of Theorem 1. We can assume without loss of generality that 0 = q. Indeed, a change
of the base point in M induces a linear isometry between the corresponding Lipschitz free
spaces which preserves the molecules. Lemma 6 shows that if µ ∈ BF(M) satisfies 〈µ, fpq〉 = 1
then µ ∈

⋂
α>0F([p, q]α). Since [p, q]1 is bounded, Proposition 2 yields that µ ∈ F([p, q]) =

F({p, q}). This is a 1-dimensional vector space so µ = ±mpq but only the choice of the plus
sign is reasonable. �

Remark 7. Apart from the obvious fact that Theorem 1 strengthens and generalizes some of
the results in [5] let us also point out that one of the proofs of the main result in [3] (i.e. the
characterization of M such that F(M) = ℓ1(Γ)) becomes now much simpler.
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sending them their preprint.
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