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In this note we prove that a molecule d(x, y) -1 (δ(x)δ(y)) is an exposed point of the unit ball of a Lispchitz free space F (M ) if and only if the metric segment [x, y] = {z ∈ M : d(x, y) = d(z, x) + d(z, y)} is reduced to {x, y}. This is based on a recent result due to Aliaga and Pernecká which states that the class of Lipschitz free spaces over closed subsets of M is closed under arbitrary intersections when M has finite diameter.

Introduction

For a metric space (M, d) with a distinguished point 0 ∈ M, we let Lip 0 (M) be the real Banach space of Lipschitz maps from M to R which vanish at 0. We recall that the norm of f ∈ Lip 0 (M), denoted f L , is the best Lipschitz constant of f , i.e.

f L = sup x =y∈M |f (x) -f (y)| d(x, y) .
Next, for x ∈ M, we let δ(x) ∈ Lip 0 (M) * be Dirac measure, i.e. δ(x), f = f (x). We then define the Lipschitz free space over M to be the following closed subspace of Lip 0 (M) * :

F (M) := span{δ(x) : x ∈ M}.
It follows from the fundamental linearisation property of Lipschitz free spaces that F (M) is a canonical predual of Lip 0 (M) (see [START_REF] Godefroy | Lipschitz-free Banach spaces[END_REF] for more details).

In this note we are interested in extreme points and exposed points of the unit ball of Lipschitz free spaces. If B X denotes the unit ball of a Banach space X, we recall that x ∈ B X is an extreme point of B X whenever x ∈ conv(B X \ {x}). Next, x is an exposed point of B X if there exists a linear functional f ∈ X * such that f (x) > f (z) for every z ∈ B X \ {x}. In what follows, ext(B X ) denotes the set of extreme points of B X while exp(B X ) denotes the set of exposed points of B X . Is is readily seen that exp(B X ) ⊂ ext(B X ).

The extremal structure of Lipschitz free spaces has already been investigated in a number of articles [START_REF] Aliaga | On the preserved extremal structure of Lipschitz-free spaces[END_REF][START_REF] Aliaga | Supports and extreme points in Lipschitz-free spaces[END_REF][START_REF] García-Lirola | Extremal structure and duality of Lipschitz free spaces[END_REF][START_REF] García-Lirola | A characterisation of the Daugavet property in spaces of Lipschitz functions[END_REF][START_REF] Weaver | Lipschitz Algebras[END_REF]. In any such study a special attention is dedicated to the elements of F (M) of the form m xy = δ(x)-δ(y) d(x,y) which we call molecules (and which are called elementary molecules in [START_REF] Aliaga | Supports and extreme points in Lipschitz-free spaces[END_REF]). It is simply a matter of writing down the corresponding convex combination to see that m xy ∈ ext(B F (M ) ) implies that [x, y] = {x, y}. However, it is only recently that Aliaga and Pernecká [START_REF] Aliaga | Supports and extreme points in Lipschitz-free spaces[END_REF] managed to prove that, for a complete M, the reverse implication is also valid. Here, using one of the ingredients of their proof, we show the following stronger result.

Theorem 1. Let M be a complete metric space and p = q ∈ M satisfy [p, q] = {p, q}. Then m pq is an exposed point of B F (M ) . It is exposed by the magic function

f pq (t) := d(x, y) 2 d(t, q) -d(t, p) d(t, q) + d(t, p) - d(0, q) -d(0, p) d(0, q) + d(0, p) .

Proof of the main result

The authors of [START_REF] Aliaga | Supports and extreme points in Lipschitz-free spaces[END_REF] had the following important insight which is likely to have many more applications in analysis of Lipschitz free spaces.

Proposition 2 (Aliaga and Pernecká [START_REF] Aliaga | Supports and extreme points in Lipschitz-free spaces[END_REF]). Let M be a bounded complete metric space. Let {M α ⊂ M : α ∈ A} be a collection of closed subsets of M containing 0.

Then α∈A F (M α ) = F α∈A M α .
For the proof of Theorem 1 we will need further some notation and few lemmas. Given a metric space M we will set M := M × M \ {(x, x) : x ∈ M} and V = m xy : (x, y) ∈ M the set of molecules in F (M). The following folklore fact is also stated in disguise as Lemma 2.1 in [START_REF] Aliaga | Supports and extreme points in Lipschitz-free spaces[END_REF]. The proof here is different from the one in [START_REF] Aliaga | Supports and extreme points in Lipschitz-free spaces[END_REF]. Lemma 3. Let M be a metric space. Let us define Q : ℓ 1 ( M) → F (M) by e (x,y) → m xy and linearly on span e (x,y) . Then Q extends to an onto norm-one mapping.

Proof. The fact that Q = 1 is clear so we can extend Q to the whole space with the same norm. Let us call the extension Q again. We will prove that

B O F (M ) ⊂ Q(B O ℓ 1 )
, where B O X denotes the open unit ball of a Banach space X. For this it is enough to use Lemma 2.23 in [START_REF] Fabian | Functional analysis and infinite-dimensional geometry[END_REF], i.e. we need to check that

B O F (M ) ⊂ Q(B O ℓ 1 ). But we have B O F (M ) ⊂ conv(V ) ⊂ Q(B ℓ 1 ) = Q(B O ℓ 1 ). The next lemma is standard. Lemma 4. Let a ∈ S ℓ 1 and b ∈ B ℓ∞ . Assume that 1 -αε ≤ a, b for some 0 < α, ε < 1. Denote B = {n ∈ N : |b n | ≤ (1 -α)}. Then n∈B |a n | ≤ ε. Proof. We denote G := N \ B. We have 1 -εα ≤ ∞ n=1 a n b n ≤ n∈G |a n b n | + n∈B |a n b n | ≤ n∈G |a n | + (1 -α) n∈B |a n | ≤ n∈N |a n | -α n∈B |a n | = 1 -α n∈B |a n | . It follows that n∈B |a n | ≤ ε.
For a metric space M, points p, q ∈ M and ε > 0 we will denote

[p, q] ε := x ∈ M : d(p, x) + d(x, q) ≤ 1 1 -ε d(p, q) .
The properties of the magic function collected in the following lemma have been proved already in [START_REF] Ivakhno | Corrigendum to: The Daugavet property for spaces of Lipschitz functions[END_REF].

Lemma 5. Let (p, q) ∈ M. We have (1) f pq is Lipschitz and

f pq L ≤ 1. ( 2 
) Let u = v ∈ M and ε > 0 be such that fpq(u)-fpq(v) d(u,v) > 1 -ε. Then both u, v ∈ [p, q] ε . (3) If (u, v) ∈ M and fpq(u)-fpq(v) d(u,v) = 1, then both u, v ∈ [x, y].
Let us remark at this point that if [p, q] = {p, q}, then f pq exposes m pq among molecules (immediate from Lemma 5 (3)) and also among those µ ∈ B F (M ) which have finite support (or more generally such that µ = a 1 in the representation coming from Lemma 3). The next lemma prepares the ground for the remaining cases. Lemma 6. Let M be a metric space with the base point 0 = q and let p = q ∈ M be such that [p, q] = {p, q}. Assume that µ ∈ B F (M ) satisfies µ, f pq = 1. Then for every ε, α ∈ (0, 1 2 ) we have µ ∈ F ([p, q] α ) + 2εB F (M ) .

Proof. Let us observe right away that by the hypothesis µ = 1. Let ε, α ∈ (0, 1 2 ) be fixed. By Lemma 3 there exist a = (a i ) ∈ ℓ 1 and (p i ), (q i ) ⊂ M such that µ = ∞ i=1 a i m p i q i and a 1 ≤ µ + εα 1-εα . We have

1 -εα ≤ 1 a 1 = µ a 1 , f pq = ∞ i=1 a i a 1 m p i q i , f pq . Now if we denote B = {i ∈ N : | m p i q i , f pq | ≤ (1 -α)}, then Lemma 4 yields that i∈B a i a 1
≤ ε and so i∈B |a i | ≤ 2ε. It follows from Lemma 5 (2) that for every i ∈ N \ B we have p i , q i ∈ [p, q] α . The conclusion is now immediate.

Proof of Theorem 1. We can assume without loss of generality that 0 = q. Indeed, a change of the base point in M induces a linear isometry between the corresponding Lipschitz free spaces which preserves the molecules. Lemma 6 shows that if µ ∈ B F (M ) satisfies µ, f pq = 1 then µ ∈ α>0 F ([p, q] α ). Since [p, q] 1 is bounded, Proposition 2 yields that µ ∈ F ([p, q]) = F ({p, q}). This is a 1-dimensional vector space so µ = ±m pq but only the choice of the plus sign is reasonable.

Remark 7. Apart from the obvious fact that Theorem 1 strengthens and generalizes some of the results in [START_REF] García-Lirola | Extremal structure and duality of Lipschitz free spaces[END_REF] let us also point out that one of the proofs of the main result in [START_REF] Dalet | Characterization of metric spaces whose free space is isometric to ℓ 1[END_REF] (i.e. the characterization of M such that F (M) = ℓ 1 (Γ)) becomes now much simpler.
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