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Abstract

Electric vehicles offer a pathway to more sustainable transportation, but their adoption entails
new challenges not faced by their petroleum-based counterparts. A difficult task in vehicle routing
problems addressing these challenges is determining how to make good charging decisions for an
electric vehicle traveling a given route. This is known as the fixed route vehicle charging problem.
An exact and efficient algorithm for this task exists, but its implementation is sufficiently complex
to deter researchers from adopting it. In this work we introduce frvcpy, an open-source Python
package implementing this algorithm. Our aim with the package is to make it easier for researchers
to solve electric vehicle routing problems, facilitating the development of optimization tools that may
ultimately enable the mass adoption of electric vehicles.

1 Introduction

Governmental regulations as well as a growing population of environmentally conscious consumers have
led to increased pressure for firms to act sustainably. This pressure is particularly high in the logistics
domain, which accounts for about one third of emissions in the United States (Office of Transportation
and Air Quality 2019). Electric vehicles (EVs) offer a means to more sustainable transportation; however,
they present technical challenges to which their conventional (i.e., internal-combustion engine) vehicle
(CV) counterparts are immune. For example, because the distance EVs can travel on a single charge is
often less than the distance an equivalent CV can travel on a tank of gas, EVs may demand more frequent
recharging operations. This difficulty is compounded by the sparseness of EV recharging infrastructure
relative to the network of refueling stations available to CVs, potentially forcing EVs to perform longer
detours to recharge their batteries. Further, despite recent improvements to battery and charging station
(CS) technology, recharging an EV still requires orders of magnitude more time than refueling a CV. The
time required to recharge is also nonlinear with respect to the EV’s state of charge (SoC), the relative
amount of energy left in its battery, posing yet another challenge not applicable to CVs (Uhrig et al.
2015). Companies choosing to adopt EVs require optimization tools capable of handling these additional
challenges.

The development of such optimization tools for conventional vehicles has commanded significant
attention from the operations research (OR) community in the study of vehicle routing problems (VRPs).
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The incorporation of additional constraints that address the challenges posed by EVs has marked a new
family of problems within VRPs known as electric vehicle routing problems (E-VRPs). One of the
primary tasks in solving E-VRPs is making good charging decisions – namely, where to recharge and
how long to do so. This is the crux of the fixed route vehicle charging problem (FRVCP), in which
charging operations must be inserted into a fixed sequence of customers being visited by an EV so as to
minimize the time for the EV to reach the end of the sequence in an energy-feasible manner. The FRVCP
naturally arises as a subproblem in many E-VRPs, since its solution is required in order to determine
the true duration or cost of a given route. Having a capable solution method for the FRVCP is thus
crucial to the advancement of E-VRP research.

While FRVCP solution methods exist, they tend to suffer from one or more of the following issues:
inexactness (e.g., heuristic methods that provide suboptimal solutions), inefficiency (e.g., mixed-integer
programs (MIPs) whose solutions require significant run time), or a lack of robustness (e.g., exact algo-
rithms that are limited to simplified versions of the FRVCP). With this work, we offer an implementation
of a solution method that suffers from none of these issues. It is based on the labeling algorithm proposed
in Froger et al. (2019), which, though capable, is notoriously difficult to implement.

In an attempt to remove the burden of implementation for future E-VRP researchers, we offer our
implementation in an open-source Python package, frvcpy (a portmanteau of FRVCP and Python;
Kullman et al. 2020a). frvcpy is designed to be easily embedded in more complex solution schemes
for E-VRPs (such as in a (meta)heuristic or Benders decomposition): it requires minimal dependencies
and inputs, can be accessed either via the command line or a Python API, and includes a translator
to generate the required inputs from a common instance format in the VRP community (VRP-REP
(Mendoza et al. 2014)). Our aim with frvcpy is to make it easier to solve E-VRPs, thereby stimulating
additional research in this field which promises to bring about more sustainable practices in logistics.

The remainder of the paper is organized as follows. We first define the FRVCP in §2, then discuss
some of the previous work on FRVCPs in §3. In §4 we give an overview of the algorithm implemented
in frvcpy, then describe the package itself in §5. We conclude with brief comments in §6.

2 Defining the FRVCP

We consider an EV with a fixed route Π = (π1, . . . , πR) that begins at some node π1 (usually the depot),
has a sequence of stops at other nodes (πi)R−1

i=2 (customers to visit), and terminates at some node πR (also
usually the depot). The vehicle begins at π1 with its battery at some initial energy level q0, often taken
to be equal to its maximum battery capacity Q. Let the set of nodes in the route be I = {π1, . . . , πR}.
We also consider a set of charging stations C at which the EV may recharge between stops in Π. Each
CS c ∈ C has some charging type (e.g., fast, slow) associated with a strictly increasing piecewise-linear
concave charging function Φc(t) specifying, for an empty battery, the resulting energy after charging for
time t at CS c (see Figure 3). We denote its inverse by Φ−1

c (q), equal to the time required to charge from
empty to energy level q, and we define the related function ūc(q1, q2) = Φ−1

c (q2)−Φ−1
c (q1) to be the time

required to charge from q1 to q2 at CS c. Let the set of breakpoints defining the charging function of
CS c be Bc, where a breakpoint bi ∈ Bc is a (time, charge) pair: (bt

i, b
q
i ). When the EV travels between

nodes i, j ∈ I ∪ C, it incurs some known travel time tij and energy consumption eij (we assume the
triangle inequality holds for both). At stops in Π, the EV may also incur some processing time (e.g.,
waiting). The objective of the FRVCP is to determine charging decisions – how much to recharge, at
which CSs, between which stops in Π – that minimize the total time for the EV to traverse the route,
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subject to the constraint that its energy level be always non-negative.

3 Related Literature

FRVCPs fall under the category of EV routing problems, which are themselves part of a larger body of
research on VRPs. We focus our review here solely on FRVCPs. For an overview of E-VRPs we refer
the reader to Pelletier et al. (2016), and similarly to Braekers et al. (2016) for an overview of VRPs.

Montoya et al. (2016) encounter an FRVCP in their work on a green vehicle routing problem. The
FRVCP they consider assumes that vehicles may only visit one CS between stops, that they always
fully restore their energy when recharging (that is, they follow a “full recharging strategy”), and that
doing so requires constant time. To solve this FRVCP, they offer an exact algorithm. Roberti and Wen
(2016) address an FRVCP in their work on the E-VRP with time windows (E-VRP-TW) and also offer
an algorithm that solves this FRVCP exactly. Their solution accommodates a partial recharging policy,
assuming that the time required to recharge is linear with the amount of energy. However, unlike in
Montoya et al. (2016), they assume that the network of CSs is homogeneous; that is, that all CSs have the
same charging technology. The FRVCP again arises in related works by Hiermann et al. (2016), Schiffer
and Walther (2017), and Hiermann et al. (2019). These studies offer exact algorithms for the FRVCP
under the assumption that at most one CS may be visited between stops, that the CSs are homogeneous,
and that recharging requires linear time. Hiermann et al. (2016) additionally assume a full recharging
strategy while Schiffer and Walther (2017) and Hiermann et al. (2019) allow partial recharging.

Montoya et al. (2017) then consider the first FRVCP that accommodates realistic (nonlinear) recharg-
ing times. In the study, they also demonstrate that the assumption of linear recharging times can lead
to infeasible or suboptimal solutions. Their FRVCP allows for partial recharging and heterogeneous CSs
but assumes that at most one CS may be inserted between stops. To solve their FRVCP, Montoya et al.
offer both a heuristic and a MIP formulation. Koç et al. (2019) adopt the heuristic and MIP formulations
from Montoya et al. (2017) to solve a similar FRVCP that arises in their work on the E-VRP with shared
CSs and nonlinear charging. Baum et al. (2019) then offer a labeling algorithm to solve an FRVCP on
real road networks that also accommodates realistic recharging times and allows for multiple CS inser-
tions, although it is restricted to the special case where the route length is two (an origin-destination
(OD) pair).

Finally, Froger et al. (2019) propose an exact labeling algorithm to solve the FRVCP from Montoya
et al. (2017). Their algorithm is not restricted to OD pairs, and it additionally allows the EV to visit
multiple CSs between stops in the route, making theirs the richest of the aforementioned FRVCP variants.
Over a testbed of nearly 30,000 instances, they compare their labeling algorithm against a heuristic and a
commercial solver for a MIP formulation. They find that the labeling algorithm matches the optimality
of the MIP with a runtime comparable to the heuristic. The algorithm is thus state of the art for
solving FRVCPs. However, the authors note that its performance is not without cost. They state that
E-VRP researchers may ultimately prefer to adopt the heuristic solution, despite its inferior performance,
given the complexity of implementing the labeling algorithm. Here, we offer an implementation of the
algorithm in frvcpy in an attempt to ensure that its complexity does not prevent its adoption.

The algorithm from Froger et al. (2019) has also been adapted to accommodate FRVCPs with addi-
tional constraints. For example, in work on a stochastic E-VRP with public CSs, Kullman et al. (2019)
adapt the algorithm to accommodate an FRVCP with discrete charging decisions and time-dependent
waiting times at CSs. Similarly, Kullman et al. (2020b) adapt an early version of frvcpy to accommo-
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Figure 1: Instance excerpt depicting a fixed route in the original problem graph (left) and the modified
problem graph for the FRVCP (Inset 1), which includes dummy nodes for CS insertions.

date an FRVCP with customer time windows. In both cases, the algorithm’s speed and exactness were
required as it was called repeatedly to solve a subproblem in a Benders-based branch-and-cut procedure.

4 Overview of Labeling Algorithm from Froger et al. (2019)

Given the algorithm’s complexity, we provide here a cursory overview and refer the reader to Froger et al.
(2019) for additional details (see, in particular, their discussion of Algorithm 3 in §5.3 and Appendix E).

To find the optimal charging decisions for a given route Π, the FRVCP is reformulated as a resource-
constrained shortest path problem. The algorithm then works by setting labels at nodes on a modified
graph reflecting the vehicle’s possible movements along Π (Figure 1, Inset 1). Labels are defined by SoC
functions — piecewise-linear functions comprised of supporting points z = (zt, zq) that describe a state
of departure from a node in terms of time zt and charge (SoC) zq.

During the algorithm’s execution, labels are extended along nodes in the graph. When a label is
extended to a CS node c, we create new supporting points for each breakpoint in Bc to which we could
charge (that is, breakpoints with a higher energy than that with which we arrived). Consider Figure 2,
which depicts this process when extending a label along the edge from customer 33 to CS 48. When it
arrives at CS 48, its SoC function has only one supporting point z1 (assuming the EV has not yet stopped
to recharge) depicted by the black square in the right graph of Figure 2. Then for each breakpoint in
the CS’s charging function to which the EV could recharge (b2, b3, b4), we add a supporting point to the
label’s SoC function (z2, z3, z4) whose time and charge reflect the decision to charge to that breakpoint.
Figure 2 shows this explicitly for the new supporting point z4, corresponding to the decision to recharge
to the breakpoint b4 (more specifically, to bq

4).
We continue to extend labels along nodes in the graph until the destination node πR is reached,

whereat the algorithm returns the time of the first supporting point in the label’s SoC function. Bounds
on energy and time are established in pre-processing and are used alongside dominance rules during the
algorithm’s execution to improve its efficiency.
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Figure 2: Depicting the creation of new supporting points at CS nodes for the case of CS 48 between
customers 33 and 38 in Figure 1. Right shows the SoC function of the label extended to CS 48, with
a black square for the initial supporting point (zt

1, z
q
1). We create additional supporting points (z2, z3,

z4) for each breakpoint to which we could charge, shown by circles b2, b3, and b4 in the CS’s charging
function (left). Axis labels for new supporting point z4 (right) detail its creation from the decision to
recharge to breakpoint b4.

5 The frvcpy Package

frvcpy is an open-source Python-based implementation of the labeling algorithm from Froger et al.
(2019) for solving the FRVCP. In this section we give an overview of its structure (§5.1), demonstrate its
usage (§5.2), and briefly comment on its performance (§5.3). The code accompanying this section can
be found at Kullman et al. (2020a).

5.1 Structure

frvcpy is a small package (approximately 1000 lines of code) built in the Python 3 programming lan-
guage; it is available on the Python Package Index and can be installed via “pip install frvcpy.” It is
comprised of three primary modules: core.py, solver.py, and algorithm.py. The core.py module consists
of class definitions for ancillary objects required in the algorithm’s execution such as nodes, labels, and
the FRVCP problem instance. Module solver.py defines the user-facing Solver class which is responsi-
ble for pre-processing, calling the algorithm, and writing solutions to file. The algorithm itself and its
accompanying functions are contained in algorithm.py. Additionally, the package contains the module
translator.py, which provides an instance translator that allows for interoperability between frvcpy and
VRP-REP instances. VRP-REP is a community-driven repository for vehicle routing problem data files;
see Mendoza et al. (2014) for more details.

Input/output. Users can interact with frvcpy using a Python API or via the command-line interface
(CLI). As input, frvcpy requires a compatible instance, the fixed route for the EV to travel, and the
EV’s initial energy. Compatible instances are JSON files (or equivalent Python dictionaries) following
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the schema available in Kullman et al. (2020a). After execution, the algorithm returns the optimal
energy-feasible route and its duration. The returned route is a list of tuples indicating stops’ node IDs
and the amount of energy to be recharged there (the latter given by the keyword ‘None’ for non-CS
nodes; see Listing 1, Line 24).

Testing the installation. frvcpy provides simple testing to determine if its installation was successful.
From the command line, users can execute the command frvcpy-test to run a suite of tests that
performs an instance translation and solves 134 FRVCPs from the Froger et al. (2019) testbed. The
same test suite can also be run in Python via

import frvcpy.test

frvcpy.test.runAll()

5.2 Example Usage

We provide an example demonstrating the use of frvcpy through the Python API. Consider a user with
the VRP-REP-compliant instance “vrprep-instance.xml,” depicted in Figure 4. The instance contains
“fast,” “normal,” and “slow” CSs whose charging functions are shown in Figure 3. An EV, which begins
at the depot with full battery, has been assigned the fixed route Π = (0, 40, 12, 33, 38, 16, 0), depicted
by the gray arrows in Figure 4. Because the EV does not have sufficient energy to traverse Π without
recharging, we solve an FRVCP to determine the optimal insertion of charging operations. We can do
this using frvcpy as follows:

Listing 1: Example frvcpy usage with Python API
1 from frvcpy.translator import translate

2 from frvcpy.solver import Solver

3

4 # translate the VRP-REP instance

5 frvcp_instance = translate("instances/vrprep-instance.xml")

6

7 route = [0,40,12,33,38,16,0] # route to make energy feasible

8 q_init = frvcp_instance["max_q"] # EV begins with max battery capacity

9

10 # initialize solver with the instance, route, and initial charge

11 frvcp_solver = Solver(frvcp_instance, route, q_init)

12

13 # run the algorithm

14 duration, feas_route = frvcp_solver.solve()

15

16 # write a VRP-REP compliant solution file

17 frvcp_solver.write_solution("my-solution.xml", instance_name="frvcpy-instance")

18

19 print(f"Duration: {duration:.4}")

20 # Duration: 7.339

21

22 print(f"Energy-feasible route:\n{feas_route}")

23 # Energy-feasible route:
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24 # [(0, None), (40, None), (12, None), (33, None), (48, 6673.379615520617), (38, None), (16,

None), (0, None)]

Fast Normal Slow

Energy
(kWh)

Time	(hr)

16.0

13.6

2.00.5 1.0 1.50

Figure 3: Piecewise linear charging functions for example instance “vrprep-instance.xml.”

The solution to the FRVCP instructs the EV to recharge at CS 48 between customers 33 and 38, as
depicted by the black arrows in Figure 4 and the printed output on line 24 in Listing 1. This results in a
total route duration of about 7.34 hours. We note that detouring to CS 48 actually requires more travel
time than detouring to CS 41; however, given that CS 48 offers a faster charging speed, it is ultimately
preferred over CS 41 (recharging at CS 41 instead of 48 results in an objective of 7.44 hrs).

The above example would be accomplished with the CLI via

Listing 2: Example frvcpy usage with CLI
# translate existing VRP-REP instance, write it to file

frvcpy-translate ./instances/vrprep-instance.xml new-frvcp-instance.json

frvcpy --instance=new-frvcp-instance.json --route=0,40,12,33,38,16,0 --qinit=16000

--output=my-solution.xml

# Duration: 7.339

# Energy-feasible route:

# [(0, None), (40, None), (12, None), (33, None), (48, 6673.379615520617), (38, None), (16,

None), (0, None)]

5.3 Performance

We test the performance of frvcpy over the nearly 30,000 instances comprising the testbed from Froger
et al. (2019). These instances have a median route length of 10 stops and a median of 18 CSs that may
be inserted. Over the tests, the algorithm has an average run time of 5.6 ms. In addition, in the same
tests we find that our translator can translate instances from VRP-REP format in an average of 0.1 s.
These results suggest that frvcpy requires sufficiently low runtime so as to be included in larger solution
schemes for E-VRPs.
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Figure 4: Depiction of example instance “vrprep-instance.xml.” We consider an EV given the route
shown by the gray arrows. The solution to the FRVCP for this route instructs the EV to recharge at CS
48 between customers 33 and 38 (black arrows).

6 Conclusion

We introduced frvcpy, a Python-based open-source implementation of the labeling algorithm from
Froger et al. (2019) for the fixed route vehicle charging problem. The algorithm and our implementation
are flexible, able to accommodate realistic problem features such as non-linear recharging times, partial
charging decisions, and heterogeneous charging station technologies. Because FRVCPs are often encoun-
tered as subproblems of more general EV routing problems, we designed frvcpy to be easily embedded
in larger solution schemes. To that end, the package offers two modes of interaction, has minimal re-
quirements, and is computationally efficient. Our hope is that frvcpy facilitates the solution of E-VRPs,
lowering the barrier to entry in this field, and ultimately helping bring about a faster transition to more
sustainable transportation practices.
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d’Amérique. This research was also partly funded by the French Agence Nationale de la Recherche
through project e-VRO (ANR-15-CE22-0005-01). Justin Goodson wishes to express appreciation for the
support from the Center for Supply Chain Excellence at the Richard A. Chaifetz School of Business.

8



References
Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias Zündorf. Shortest feasible paths

with charging stops for battery electric vehicles. Transportation Science, 53(6):1627–1655, 2019.

Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. The vehicle routing problem: State of the art
classification and review. Computers & Industrial Engineering, 99:300–313, 2016.
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