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Abstract

Future developments of lighter, more compact and powerful motors – driven by environmental and
sustainability considerations in the transportation industry – involve higher stresses, currents and electro-
magnetic fields. Strong couplings between mechanical, thermal and electromagnetic effects will consequently
arise and a consistent multiphysics modeling approach is required for the motors’ design. Typical simulations
– the bulk of which are presented in the electrical engineering literature – involve a stepwise process, where
the resolution of Maxwell’s equations provides the Lorentz and magnetic forces which are subsequently used
as the external body forces for the resolution of Newton’s equations of motion.

The work presented here proposes a multiphysics setting for the boundary value problem of electric
motors. Using the direct approach of continuum mechanics, a general framework that couples the electro-
magnetic, thermal and mechanical fields is derived using the basic principles of thermodynamics. Particular
attention is paid to the derivation of the coupled constitutive equations for isotropic materials under small
strain but arbitrary magnetization. As a first application, the theory is employed for the analytical mod-
eling of an idealized asynchronous motor for which we calculate the electric current, magnetic, stress and
temperature fields as a function of the applied current and slip parameter. The different components of the
stress tensor and body force vector are compared to their purely mechanical counterparts due to inertia,
quantifying the significant influence of electromagnetic phenomena.
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1. Introduction

The increasing importance and market share of hybrid and purely electric vehicles, in the quest to reduce
their carbon footprint, urges the electric motor industry to develop higher performance products with reduced
manufacturing costs. New goals are set by various government agencies and industrial associations (López
et al., 2019) in terms of efficiency, reliability, power losses, power density, higher rotation velocity and
reduced weight. Novel electric motor designs are needed to overcome these technological challenges in order
to comply with the aforementioned technical objectives and appropriate modeling tools must be developed.

Modeling of electric motors has in the past been a topic studied predominantly by the electrical engi-
neering community. The focus has been on the calculation of the magnetic field and resulting torque and
iron losses for different motor designs using both analytical, (e.g. see: Boules (1984); Zhu et al. (1993);
Lubin et al. (2011)) and numerical (e.g. see: Chari and Silvester (1971); Silvester et al. (1973); Abdel-Razek
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et al. (1982); Arkkio (1987); Huppunen et al. (2004)) methods. A particular class of analytical methods,
termed “subdomain methods” (e.g. see: Devillers et al. (2016)) constitute an approximate but efficient tool
for evaluating the magnetic characteristics of motor concepts at the preliminary design stage.

In the late 90s, stress calculations in electric motors have appeared as a result of noise and vibrations
concerns. As pointed out by Reyne et al. (1987), the first difficulty encountered was the evaluation of the
electromagnetic body forces, for which various authors gave different expressions, due to the absence of a
consistent continuum electrodynamics framework. The multiplicity of the different formulations, direct as
well as variational, for the thermomechanical-electromagnetic continuum, is a source of confusion. Different
(albeit equivalent) expressions for the Maxwell stress and electromagnetic body forces can be obtained and
are thus responsible for the difficulty in the correct modeling of stresses in electric motors. For further
discussion on this issue, the interested reader is referred to the article by Kankanala and Triantafyllidis
(2004) and book by Hutter et al. (2007). The first FEM computations for stresses in electric motors used
a stepwise, uncoupled, approach: electric currents and magnetic fields where calculated using a purely
electromagnetic model; the electromagnetic body force vector was then introduced as the external body
force in a purely mechanical model to calculate the resulting stress state (e.g. see: Reyne et al. (1988);
Javadi et al. (1995)).

The above-described approximate methods are inadequate to deal with the true multiphysics nature of
the electric motor problem. The magnetic fields and currents generate the body forces driving the motor.
These become even more important in the ferrous materials with high magnetic susceptibility that are used
to enhance and channel the magnetic flux for improved motor performance. Moreover, these materials have
intrinsic strongly coupled magnetic and mechanical behavior, with the material magnetization influencing
the stress state via the “magnetostriction” phenomenon and the stress state of the material also impacting
its magnetization via “inverse magnetostriction (Daniel et al., 2020). Moreover, strong currents influence
temperature due to ohmic effects and so on. Recognizing these issues, recent work by Fonteyn et al. (2010);
Fonteyn et al. (2010a,b) takes into account magnetoelastic coupling effects for the numerical stress calculation
in electric motors. However several approximations are used (e.g. a small strain approximation involving
non frame-indifferent invariants and the angular momentum balance principle is not imposed), thermal fields
are not considered and resulting stresses are not compared to inertial terms, motivating the present study.

The goal of this work is a thermodynamically consistent formulation that couples the electromagnetic,
thermal and mechanical effects for the boundary value problem of electric motors. On the theoretical
side, general continuum mechanics theories coupling thermomechanical and electromagnetic effects in solids
started back in the 1950s and 1960s. Although a literature review is beyond the scope of this study, a few
comments are helpful to put in perspective the present work. As in Fonteyn et al. (2010a,b), the modeling
approach followed here is the “direct” method1 which uses conservation laws of continuum mechanics and
the thermodynamics procedure introduced by Coleman and Noll (1963) to obtain the problem’s governing
equations and constitutive laws; a very readable account is presented in the book by Kovetz (2000). For
the electric motor applications of interest2 the “eddy current” simplification of the problem is adopted (see
Hiptmair and Ostrowski (2005) for a justification in linear materials) that neglects electric polarization
and displacement currents for low frequency electric fields. This theory is subsequently used to obtain
the analytical solution of an idealized asynchronous motor for which we calculate the electric current,
magnetic, stress and temperature fields. The stress tensor and body force vector are compared to their purely
mechanical counterparts due to inertia, quantifying the significant influence of electromagnetic phenomena,
a novelty in this area to the best of the author’s knowledge.

The presentation is organized as follows: following this introduction in Section 1, the general formulation
for the boundary value problem for electric motors is given in Section 2, where particular attention is paid to
the derivation of the coupled constitutive equations for isotropic materials under small strain but arbitrary
magnetization. The analytical model of an idealized asynchronous motor is presented in Section 3, where

1Also applied to the modeling of other electromagnetic problems such as Magneto-Rheological-Elastomers (e.g. see
Kankanala and Triantafyllidis (2004); Dorfmann and Ogden (2003)) or Electro-Magnetic Forming processes (e.g. see Thomas
and Triantafyllidis (2009)).

2Other applications use this approximation, such as “Electromagnetic Forming”; e.g. see Thomas and Triantafyllidis (2009).
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we calculate the magnetic field for the rotor and airgap in addition to the temperature field, the magnetic,
total and elastic stresses in the rotor and the torque as a function of the applied current and the slip
parameter (equivalent to the mechanical torque). The results for three different rotor materials (electric
steel, copper and aluminum) using realistic geometric and operational regime values and material parameters
are presented in Section 4 and the work is concluded with a critical review and suggestions for future work
in Section 5. The detailed derivations of the constitutive laws for isotropic materials under small strain
but arbitrary magnetization are given in Appendix A, detailed expressions for some elastic stress solution
components are given in Appendix B while the determination of the magnetostrictive coefficient is presented
in Appendix C.

2. Boundary value problem for electric motors

The general formulation of the coupled electromagnetic-thermomechanical boundary value problem for
electric motors is presented in this section. Coordinate-free (dyadic) continuum mechanics notation is used
with bold scripts referring to tensors, regular scripts to scalars. Eulerian fields are written using lowercase

letters, while capital letters are used for their Lagrangian counterparts. A superposed dot
.

f denotes the total
time derivative of field f . The method adopted is the current configuration, direct approach of continuum
mechanics and tacitly assumes adequate smoothness of the fields involved. Unless stated otherwise, all
field quantities are functions of the current position x and time t. Although the governing equations for
electromagnetic continua are known (see Kovetz (2000)), for self-sufficiency and clarity of the work a brief
presentation is given in this section.

2.1. General governing equations

The general equations of the problem can be distinguished in three groups, as presented in the subsec-
tions below: electromagnetics (Gauss and Ampère), mechanics (conservation of mass, balance of linear and
angular momenta) and thermodynamics (conservation of energy and entropy inequality). In the applica-
tions considered the interfaces encountered are not moving with respect to matter, since they are either a
free surface boundary or an interface between two different materials and hence in the sequel the interface
velocity is the material velocity at the interface: vs =

.
x.

2.1.1. Electromagnetics

Maxwell-Gauss law relates the electric displacement d to the free electric charge density q. The differ-
ential equation and the associated interface condition (in the absence of surface charges) are

∇·d = q ; n·JdK = 0 , (2.1)

where JfK denotes the jump of field f across a boundary/interface surface with an outward normal n.
Maxwell-Ampère law links the h-field (sometimes also called the magnetic field) h to the time-rate of

the electric displacement d and the free total current density j. The differential equation and the associated
interface condition are

∇×h =
∂d

∂t
+ j ; n×JhK + (vs ·n) JdK = κ , (2.2)

where vs is the velocity of the interface and κ the corresponding surface current density. The current density
j consists of the conduction current density j augmented by the convection of free electric charges q

.
x, i.e.

j = j + q
.
x.

Maxwell-Faraday law relates the electric field e to the time-rate of the magnetic field (sometimes also
called the magnetic flux ) b. The differential equation and the associated interface condition are

∇×e = −∂b
∂t

; n×JeK− (vs ·n) JbK = 0 . (2.3)
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No magnetic monopole law confirms the absence of signed magnetic charges (monopoles) – hence the
zero in its right-hand side, as compared to the Maxwell-Gauss law in (2.1). The corresponding differential
equation and the associated interface condition are

∇·b = 0 ; n·JbK = 0 . (2.4)

It should be mentioned here that the first set of two equations – Maxwell-Gauss and Maxwell-Ampère –
result in the charge conservation principle (∇·j + ∂q/∂t = 0) which thus need not be additionally enforced.

Aether frame principle connects the fields (d,h) to (e, b). For the electric motor applications of interest,
the polarization of the material is assumed negligible, in contrast to its magnetization (electric motors
include magnets and high permeability materials). The corresponding relations are

d = ε0e, h =
1

µ0
b−m , (2.5)

where m is the magnetization (per unit volume) of the material and ε0 and µ0 are respectively the electric
permittivity and the magnetic permeability of free space.

2.1.2. Mechanics

Mass conservation is described by the following differential equation

ρ0 = ρJ =⇒ .
ρ+ ρ(∇· .

x) = 0 , (2.6)

where ρ0 and ρ are respectively the reference and current mass densities and J ≡ det(∂x/∂X) the vol-
ume change. In the absence of a discontinuity propagating in the continuum the corresponding inter-
face/boundary condition gives no additional information.

Linear momentum balance requires the introduction of the generalized electromagnetic-mechanical mo-
mentum density g (e.g. Kovetz (2000)) – instead of

.
x for the purely mechanical problems – to be determined

subsequently and gives the following differential equation and boundary/interface condition in the absence
of mechanical surface tractions

ρ
.
g = ∇·σ + ρf , n·JσK = 0 . (2.7)

The body force per unit mass f contains only external, purely mechanical body forces, typically gravity.
Electromagnetic forces are embedded in the total Cauchy stress σ and in g.

Angular momentum balance The non-reciprocity of actions/reactions in an electromagnetic - thermome-
chanical continuum implies an asymmetric stress tensor, thus requiring the introduction of the generalized
momentum g, resulting in the following relation for the asymmetric total stress σ3

ρ
.
x ∧ g = σ − σT . (2.8)

As a check we note that for a purely mechanical theory where g =
.
x, the Cauchy stress tensor is symmetric.

2.1.3. Thermodynamics

Thus far the form of Maxwell laws and mechanics laws have the same expressions as in their corresponding
purely electromagnetic and purely thermomechanical counterparts; no electromagnetic body forces or body
torques have been postulated. The coupling comes through the energy balance by adding an electromagnetic
energy flux to the mechanical and thermal contributions, which allows us to find the missing constitutive
information involving the electromagnetic - thermomechanical coupling terms. We denote by ε the total
specific energy of the continuum (i.e. mechanical, electromagnetic and thermal) and by η the specific entropy
of the continuum, each defined at a point x and time t.

3The wedge product of two vectors a and b is an antisymmetric rank two tensor, defined by a ∧ b ≡ ab− ba.
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Energy conservation for the generalized electromagnetic-thermomechanical continuum in local form and
its associated boundary condition give

ρ
.
ε = ∇·

(
σ· .
x− q − e×h

)
+ ρ(f · .

x+ r) ; n·Jσ· .
x− q − e×hK = 0 , (2.9)

where r is the internal heat source per unit mass, q is the heat flux and e×h – also termed the Poynting
vector – is the electromagnetic energy flux, both fluxes leaving the continuum (hence their minus signs).
The Poynting vector is the cross product of the electromotive force e by the magnetotomotive force h

e ≡ e+
.
x×b, h ≡ h− .

x×d . (2.10)

Let η denote the specific entropy of the continuum at a point x and time t.
Entropy production inequality, written here in terms of the continuum’s dissipation D in local form and

the associated boundary condition are

D ≡ ρT .
η − ρr + T∇·

( q
T

)
≥ 0 ; n·

r q
T

z
≥ 0 , (2.11)

where T denotes the continuum’s absolute temperature field. Note that the adiabatic entropy source and
the adiabatic entropy flux have the same expressions as for the classical thermomechanics model: ρr/T and
−(n·q)/T but η and q may now also depend on the electric and magnetic fields (e, b).

The stage is now set to exploit the requirement of a positive dissipation by applying the method of
Coleman and Noll (Coleman and Noll, 1963) in order to obtain the problem’s constitutive relations.

2.2. Constitutive relations

Instead of working with the total specific energy of the continuum ε, following Kovetz (2000) we introduce
the specific free energy of the solid ψ,4 a function of the thermodynamic state variables:

.
x, F ≡ ∂x/∂X

the solid’s deformation gradient, b, e, T , ∇T and following Thomas and Triantafyllidis (2009) ξ, a set of
internal variables associated with the mechanical and magnetic dissipative processes in the solid

ψ(
.
x,F , b,e, T,∇T, ξ) ≡ ε− Tη − g· .

x+
1

2

.
x· .
x− 1

ρ

[
ε0
2
e·e+

1

2µ0
b·b− ε0(e×b)· .

x

]
. (2.12)

Using the Coleman and Noll procedure, constitutive relations are deduced for η, m, q, j, g, σ and ξ̇, in
terms of the thermodynamic state variables. These relations are distinguished in two categories: necessary
constitutive relations (equalities) obtained from reversible restrictions – involving terms multiplying the rates
or gradients of the state variables that can assume arbitrary values – and sufficient constitutive relations
(inequalities) deduced from non-reversible restrictions, and more specifically from the dissipation inequality,
once its reversible terms are removed.

Constitutive equalities give the following results (in addition to ∂ψ/∂e = ∂ψ/∂(∇T ) = ∂ψ/∂
.
x = 0)

σ = ρF ·
(
∂ψ

∂F

)T
+ ε0

(
ee− 1

2
(e·e)I

)
+

1

µ0

(
bb− 1

2
(b·b)I

)
−
(
bm− (b·m)I

)
+

.
xε0(e×b) ,

m = −ρ∂ψ
∂b

, g =
.
x+

1

ρ
ε0(e×b) , η = −∂ψ

∂T
.

(2.13)

Using the above results, in combination with (2.9) and (2.12), the dissipation inequality (2.11) yields

D = −ρ∂ψ
∂ξ

·
.

ξ + j·e− q
T
·(∇T ) ≥ 0 . (2.14)

4Note that in the absence of electromagnetic fields, g reduces to
.
x and ψ to the Helmholtz specific free energy ψ = u− Tη,

with u = ε− 1/2(
.
x· .
x) the internal energy of the system, as expected from classical thermo-mechanics.
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Constitutive inequalities At this point no further details can be given about a generalized Ohm’s law for
the conduction current density j and a generalized Fourier’s law for the heat flux q, on how they depend
on the thermodynamic state variables, other than (2.14) has to be satisfied by

j = ĵ(F , b, T,∇T, ξ,e) , q = q̂(F , b, T,∇T, ξ,e) , (2.15)

where it is assumed for simplicity that these vector fields are independent on
.
x.5 The well known forms

of these relations require further assumptions about linearity and decoupling between different physical
mechanisms and will be discussed in Subsection 2.5.

Using the above-obtained constitutive results from (2.13), we are now in a position to give a more concise
than in (2.12) expression for the solid’s free energy

ρψ(F , b, T, ξ) = ρε− ρTη − ρ

2

.
x· .
x−

[
ε0
2
e·e+

1

2µ0
b·b
]
. (2.16)

The above expression has a clear physical interpretation: the solid’s free energy density (per unit current
volume) ρψ is obtained from the corresponding total energy density ρε of the continuum by subtracting the
thermal contribution, the kinetic energy of the solid and the energy of the electromagnetic field.

One final restriction must be recalled, that of material frame indifference which dictates the objectivity
of ψ, i.e. its invariance under all translations and rigid body rotations of its arguments, dictating that

ψ = ψ̂(C,B, T, ξ) ; B ≡ b·F , C ≡ F T ·F , (2.17)

where C the right Cauchy-Green deformation tensor. As it turns out, the use of ψ̂ is the most convenient
for expressing the stress tensor and its subsequent simplification for small strains.

2.3. Potential formulation

An alternative formulation of the two last Maxwell laws, (2.3) and (2.4), involves the introduction of an
electric scalar potential φ and a magnetic vector potential a

e = −∇φ− ∂a

∂t
; b = ∇×a . (2.18)

As defined, the two potentials φ and a are not unique and a gauge condition needs to be additionally
enforced, such as the Coulomb gauge: ∇·a = 0. For the problem at hand, the potential formulation leads
to a lower number of unknowns, thus justifying its introduction in (2.18).

2.4. Eddy current approximation

A convenient approximation for certain applications of electromagnetism (electric motors, electromag-
netic forming etc.) is the eddy current approximation, which consists of ignoring the electric energy of the
problem as compared to its magnetic counterpart (e.g. Thomas and Triantafyllidis (2009)). This assumption
neglects the free electric charges (and hence Gauss’ equation (2.1)) and results in ignoring the displacement
current ∂d/∂t and the convection of electric charges q

.
x, and hence j = j, in Maxwell-Ampère’s law (2.2).

The simplified Maxwell-Ampère’s law and boundary condition, recalling also (2.15)1, reduce to

∇×h = j ; n×JhK = κ . (2.19)

Note that the approximate charge conservation is ∇·j = 0, which is automatically satisfied given (2.19)1.
For the mechanical governing equations, the eddy current approximation implies that electric field terms

can be ignored compared to their magnetic counterparts in the expression for the stress tensor in (2.13)1 and
in the linear momentum density in (2.13)3, which now reduces to the classical mechanics condition g =

.
x.

5No further assumption is made here about the constitutive equation for the internal variables.
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As a consequence, the angular momentum balance (2.1.2) now requires a symmetric total stress σ, as found
in (2.21). Note that other related works (see Fonteyn et al. (2010); Fonteyn et al. (2010a,b)) do not have a
symmetric total stress.

Taking into account (2.19), the simplified version of the linear momentum law (2.7) is rewritten as

ρ
..
x = ∇·

(
2ρF · ∂ψ̂

∂C
·F T

)
+ j×b+m×(∇×b) + (∇·m)b+ ρf ; n·JσK = 0 , (2.20)

where j×b are the Lorentz body forces, followed by the magnetic and the mechanical body forces.
The constitutive equalities under the eddy current approximation, written in terms of the specific free

energy density ψ̂ in (2.17) take the form

σ = 2ρF · ∂ψ̂
∂C

·F T +
1

µ0

(
bb− 1

2
(b·b)I

)
−
(
mb+ bm− (b·m)I

)
, m = −ρF · ∂ψ̂

∂B
. (2.21)

The remaining constitutive relations, i.e. Ohm’s and Fourier’s laws (2.15), the entropy constitutive equality
in (2.13)4 and the dissipation inequality in (2.14) remain unaltered.

One more simplification is made possible by the eddy current approximation, consistent with ignoring
the electric energy of the system (and hence Gauss’s law), which allows the potential formulation for the
electric field e to be expressed only in terms of the magnetic potential vector a

e = eapp −
∂a

∂t
, (2.22)

where eapp is an externally applied electric field (typically to the coil that drives the system, e.g. see Thomas
and Triantafyllidis (2009)). The magnetic field is still given by b = ∇×a as in (2.18) and the electromotive
force remains e = e+

.
x×b, as defined in (2.10).

2.5. Materials considered

The eddy current boundary value problem formulated thus far is general, for it accounts for nonlinear
magnetic and mechanical material response, both constitutive and kinematic (finite strains), as well as
dissipative phenomena, i.e. plasticity, magnetic hysteresis etc., to be described by the evolution laws for
the internal variables ξ. We assume that a typical electric motor in its steady-state regime experiences only
small strains while it can also sustain large magnetizations, often up to saturation level. The implications of
these restrictions on the selected specific free energy and the resulting expressions for the constitutive laws
are given progressively below, as more assumptions are introduced from one step to the next.

Absence of mechanical and magnetic dissipation We consider material behavior that does not include
plasticity or magnetic hysteresis, so internal variables ξ are not required for material description. As a
result, the specific free energy is a function of strain, magnetic field and temperature: ψ̂(C,B, T ).

Material isotropy Isotropy of the material response implies that its specific free energy is a function of

six invariants (and temperature), i.e. ψ̂(C,B, T ) = ψ̂(I1, I2, I3, J1, J2, J3, T ), where Ii are the invariants of
the right Cauchy-Green tensor C and Ji are the coupled magneto-mechanical invariants of C and B.

Decoupling of physical phenomena It is assumed that thermo-mechanical, thermo-magnetic couplings

can be neglected, resulting in a separate thermal contribution ψ̂th constructed under the assumption of a
constant specific heat coefficient cε. It is further assumed that, in the absence of magnetic fields, the free
energy of the solid is ψ̂e(I1, I2, I3) and that the magneto-mechanical coupling is described by the magnetic

interaction energy ψ̂m(J1, J2, J3).

ψ̂(C,B, T ) = ψ̂e(I1, I2, I3) + ψ̂m(J1, J2, J3) + ψ̂th ; ψ̂th = −cεT [ln (T/T0)− 1] ,

I1 = tr(C) , I2 = 1
2 (tr(C)2 − tr(C ·C)) , I3 = det(C) ,

J1 = B ·C−1 ·B , J2 = B ·B , J3 = B ·C ·B ,

(2.23)
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where T0 is a reference temperature.
The implication of isotropy and decoupling on the generalized Ohm and Fourier laws in (2.15) is discussed

next. We assume that the conduction current density j depends solely on the electromotive force e and
that the heat flux q is only a function of the temperature gradient ∇T

j = γ(‖e‖)e ; q = −k(‖∇T‖)∇T , (2.24)

where the scalar electrical conductivity γ(‖e‖) > 0 and the scalar thermal conductivity k(‖∇T‖) > 0, as
dictated by the dissipation inequality (2.14). The norm-dependence of these two scalar quantities is due to
material isotropy.

Small strain approximation For the electric motor applications of interest here, we adopt the small strain
approximation, i.e. ‖ε‖ � 1, where ε ≡ (1/2)(∇u + u∇). Using Taylor series expansions in ε about the
reference configuration of the quantities involved up to first order in ε and neglecting terms of order ε b6,

we obtain a total stress σ as the sum of a purely elastic part
e
σ(ε)7 and a purely magnetic part

m
σ(b)

σ =
e
σ +

m
σ ;

e
σ ≡ λtr(ε)I + 2Gε ,

m
σ ≡ 1

µ0

[
bb− 1

2
(b·b)I

]
− χ(‖b‖)
µ(‖b‖)

[bb− (b·b)I] +
Λ(‖b‖)
µ(‖b‖)

bb ,

m =
χ(‖b‖)
µ(‖b‖)

b ;
χ(‖b‖)
µ(‖b‖)

= −2ρ0

[
∂ψ̂m
∂J1

+
∂ψ̂m
∂J2

+
∂ψ̂m
∂J3

]
C=I

,
Λ(‖b‖)
µ(‖b‖)

= 2ρ0

[
∂ψ̂m
∂J2

+ 2
∂ψ̂m
∂J3

]
C=I

,

(2.25)

where χ(‖b‖) is the material’s magnetic susceptibility, µ(‖b‖) = µ0[1+χ(‖b‖)] its magnetic permeability and
Λ(‖b‖) a magneto mechanical coupling coefficient8. It is important to note that at this stage our isotropic
material model is valid for small strains but arbitrary magnetization – the typical case of interest in magnetic
motors – and that the corresponding magnetic susceptibility, magnetic permeability and magnetomechanical
coupling coefficient are functions of the norm of the magnetic field b (due to isotropy). We should also
mention another consequence of small strain: the density equals its reference counterpart, i.e. ρ = ρ0,
thus justifying its appearance (2.25). A remark is in order at this point about the expressions presented in
(2.25); they differ from similar expressions presented by other authors (e.g. Aydin et al. (2017); Fonteyn
et al. (2010)) in view of our use of the objective invariants Jk in our linearization procedure instead of their
simplified, non-objective counterparts. The interested reader can find the details of these lengthy derivations
in Appendix A.

3. Application to an idealized asynchronous electric motor

This section pertains to the steady-state regime solution of an idealized, asynchronous electric motor,
consisting of a cylindrical rotor and stator, as an application of the theory developed in Subsection 2.4.
The solid cylindrical rotor geometry adopted here for the sake of the analytical treatment of the boundary
value problem, although uncommon in typical induction motors that have slots for conducting wires, is
used for high frequency applications (see Gieras and Saari (2012)). The novelty here lies in the analytical
computation of the different body forces, stresses and temperature fields, performed using classical methods
of elasticity. The results obtained show how the analytical magnetic field computations presented by the
electrical engineering community (e.g. Lubin et al. (2011); Gieras and Saari (2012), can be complemented by
mechanics. An added advantage of this simplified analytical model is its use as a benchmark for verification
in numerical codes.

6The small strain constitutive expressions that include terms order ε b and the justification for the omission of these terms in
(2.25) are given in Appendix A. In the completely analogous – e→ b, p→m, ε0 → µ−1

0 – electroelastic problems neglecting
the coupling terms is justified by assuming the small strain is of the same order as the square of the moderate electric fields,
e.g. see Tian et al. (2012); Lefevre and Lopez-Pamies (2017).

7The elastic part of the free energy ψ̂e is independent of the magnetic field; upon linearization at C = I one obtains the
classical Lame constants λ and G appearing in (2.25).

8This coefficient gives the curvature of the strain vs magnetic field in a stress-free uniaxial magnetostriction experiment.

9



To allow for an analytical solution, the motor geometry and the material behavior are considerably sim-
plified using a 2D, plane strain framework and a homogeneous, linearized material response. The magnetic
susceptibility χ and permeability µ, the magneto mechanical coupling coefficient Λ, the electrical conductiv-
ity γ, the thermal conductivity k, the Lamé constants λ, G and the mass density ρ0 are all given constants.
Details for the setting of the corresponding boundary value problem are given below, where the unknown
fields to be determined are the scalar magnetic potential a (a = aez) in the rotor and the airgap, the rotor’s

temperature field T and the Airy stress potential φ9 of the elastic stress field
e
σ.

3.1. Problem description

Figure 1: Cross-section of the simplified electric motor, indicating rotor, airgap and stator domains and corresponding frames.

The cross-section of the simplified induction motor is shown in Figure 1; the motor is considered in-
finitely long in the normal to the plane and under plane strain conditions. It is composed of a cylindri-
cal ferromagnetic rotor (domain D1 : 0 ≤ r ≤ R1), surrounded by a cylindrical tubular stator (domain
D3 : R2 ≤ r ≤ R3), separated by an airgap (domain D2 : R1 ≤ r ≤ R2). Two different polar coordinate
systems are used: the stator’s fixed reference frame S(r, θs, z) and the rotor’s moving frame R(r, θ, z), where
θ ≡ θs − Ωt, with Ω the clockwise angular velocity of the rotor, as shown in Figure 1.

Following Lubin et al. (2011), the motor is loaded by a current sheet of surface density κ perpendicular
to the plane located on the internal radius of the stator. This current sheet models typical stator coils or
windings supplied by a poly-phased (usually three-phased) alternating electric current of angular frequency
ω. The coils or windings are organized in p pairs per phase and the applied surface current density is10

κ = κ0 cos(pθs − ωt)ez , (3.1)

with κ0 the oscillation’s amplitude in A/m. This current sheet rotates around the z-axis at the angular
frequency ω/p. It creates a rotating magnetic field of the same angular frequency, which triggers induced
currents at the rotor. The interaction of the induced currents in the rotor with the magnetic field create
Lorentz forces that result in the rotor spinning at an angular frequency Ω. Given that the phenomenon
relies on induction, an angular frequency differential exists between the stator field and the rotor: Ω < ω/p.
We thus define the relative angular frequency ωr together with the slip parameter s

ωr = ω − pΩ ; s ≡ ωr
ω
, (3.2)

9Not to be confused with the electric potential, which is no longer needed.
10For simplicity only the fundamental time harmonic of the current supply is considered here.
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where the angular velocities ω and Ω are constants, since the steady-state response of the motor is modeled.
Some additional assumptions are necessary to solve the problem.
i) Infinite permeability, rigid stator It is assumed that the stator’s strains are negligible – thus guaran-

teeing a constant radius current sheet – and that it has an infinite permeability, i.e. µ3 −→∞, resulting in
a negligible stator h-field

r > R2 : h3 = (∇×a3)/µ3 ≈ 0 . (3.3)

ii) Constant temperature airgap The air in the airgap is assumed to be maintained at a constant tem-
perature Ta by forced ventilation. Due to ohmic losses the rotor temperature rises, but a convective heat
exchange discharges its excess heat in the airgap. The corresponding radiation condition is

r = R1 : q·er = −k(∇T )·er = hc(T (R1)− Ta) , (3.4)

where hc is the convection coefficient and T is the rotor temperature field.11

iii) No external mechanical body forces No purely mechanical body forces, introduced in (2.7) are consid-
ered, i.e. f = 0, since gravity effects are assumed negligible compared to inertia and magnetic contributions.

iv) Constant velocity and acceleration Assuming a small slip s (ωr � Ω) and a small vibration amplitude,

we can ignore the rates of the displacement
.
u and

..
u in the velocity and acceleration terms, by keeping only

their Ω-dependent contributions, thus considerably simplifying the resulting algebra

.
x ≈ rΩeθ ,

..
x ≈ −rΩ2er . (3.5)

One consequence is a constant inertia term −ρ0rΩ
2er in the linear moment balance (2.20). The other

consequence of (3.5)1 are the simpler expressions of the electromotive intensity e defined in (2.10) and the
material time derivative Ṫ , when expressed in the moving rotor frame (recall θ ≡ θs − Ωt)

e =

[
−∂a
∂t

+
.
x×b

]
S

= −
[
∂a

∂t
+ Ω

∂a

∂θs

]
S

= −∂a
∂t

∣∣∣∣
R

,

Ṫ =

[
∂T

∂t
+

.
x·(∇T )

]
S

=

[
∂T

∂t
+ Ω

∂T

∂θs

]
S

=
∂T

∂t

∣∣∣∣
R

.

(3.6)

Henceforth all equations are written in the rotor frame R and all field quantities are functions of (r, θ, t).
These governing equations and boundary conditions for the idealized, 2D motor are summarized below.

(r, θ) ∈ D1 : ∇×b = µγe ; (R1, θ) : er×JhK = 0 , er ·JbK = 0 ,

(r, θ) ∈ D2 : ∇×b = 0 ; (R2, θ) : er×h = κ , κ = κ0 cos(pθ − ωrt)ez ,

(r, θ) ∈ D1 : ρ0cε
∂T

∂t
− k∇2T = γe·e ; (R1, θ) : er ·[k(∇T )] = −hc(T − Ta) ,

(r, θ) ∈ D1 : ∇·( eσ +
m
σ) = −ρ0rΩ

2er ; (R1, θ) : er ·(
e
σ +

r
m
σ

z
) = 0 ,

(r, θ) ∈ D1 ∪D2 : a = a(r, θ, t)ez , e = −∂a
∂t

, b = ∇×a =
1

r

∂a

∂θ
er −

∂a

∂r
eθ .

(3.7)

In the boundary condition for the equilibrium equation (3.7)4 there is no elastic stress field in the airgap
e
σ = 012, in contrast to the magnetic stress field

m
σ that exists in both the rotor and the airgap.

11The temperature field is only defined for the rotor, the T1 notation is not used and the subscript 1 is left out as superfluous.
12The elastic stress field is only defined in the rotor, the

e
σ1 notation is not used as unnecessary.
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v) External torque applied at rotor’s center To balance the moment produced by the shear stresses, it
is assumed that an external mechanical torque is applied at the center line of the rotor (r = 0) along the
z-axis. The resulting torque per unit rotor length Tez is

T = r2

∫ 2π

0

σrθ(r, θ)dθ , (3.8)

and will be shown to be a constant, function of the relative angular frequency T(ωr) with T(0) = 0.

3.2. Dimensionless boundary value problem

To guide the physical interpretation of the results, the following dimensionless variables and parameters
of the problem are introduced

r

R1
→ r, ωrt→ t,

a

µ0κ0R1
→ a,

k(T − Ta)

γω2
r(µ0κ0)2R4

1

→ T,
σ

ρ0R2
1Ω2

→ σ, ζ ≡ (R2−R1)/R1 . (3.9)

Henceforth, for simplicity the dimensionless variables and field quantities of the problem, r, t, a, T, σ are
denoted by the same symbol as their dimensioned counterparts.

The governing equations and the associated interface and boundary conditions (in the rotor frame) are
given below,13 starting with the magnetic potential a

∇2a1 = α2 ∂a1

∂t
, α2 ≡ µγωrR2

1 ; 0 ≤ r ≤ 1 ,

∂a1

∂r
= (1 + χ)

∂a2

∂r
,

∂a1

∂θ
=
∂a2

∂θ
; r = 1 ,

∇2a2 = 0 ; 1 ≤ r ≤ 1 + ζ ,

∂a2

∂r
= cos(pθ − t) ; r = 1 + ζ .

(3.10)

The governing equation and boundary condition for the rotor’s temperature field T are

F−1 ∂T

∂t
−∇2T =

(
∂a1

∂t

)2

, F ≡ k

ρ0cεωrR2
1

; 0 ≤ r ≤ 1 ,

B
∂T

∂r
+ T = 0 , B ≡ k

R1hc
; r = 1 ,

(3.11)

with F and B the “Fourier” and “Biot” dimensionless coefficients respectively.

Finally, the governing equations and boundary conditions for the rotor’s elastic stress field
e
σ are14

∇· eσ = f , f ≡ sjα2 ∂a1

∂t
×(∇×a1)− sm∇

(
‖∇×a1‖2

)
− rer ; 0 ≤ r ≤ 1 ,

sj ≡ s0
1 + Λ

1 + χ
, sm ≡

s0

2

χ+ Λ

1 + χ
, s0 ≡

µ0κ
2
0

ρ0R2
1Ω2

.

e
σrr =

s0

2

[(
∂a2

∂θ

)2

−
(
∂a2

∂r

)2
]
− (

sj
2

+ sm)

(
∂a1

∂θ

)2

+ (
sj
2
− sm)

(
∂a1

∂r

)2

; r = 1 ,

e
σrθ = −s0

∂a2

∂θ

∂a2

∂r
+ sj

∂a1

∂θ

∂a1

∂r
; r = 1 .

(3.12)

13Only the radius of each domain of validity is recorded, since in all domains the angle θ ∈ [0, 2π) and the time t ∈ R+.
14Henceforth the rotor’s body force is denoted by f , taking the symbol used in (2.7) for the purely mechanical body force.
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s0 is an equivalent of the “Stuart” number for magnetic fluids and gives the ratio of Maxwell over inertia
stress magnitudes. The dimensionless coefficients sj and sm appearing in the expressions for the total stress

in the rotor σ1 (sum of the elastic
e
σ and the magnetic

m
σ components respectively) depend on its magnetic

properties while the total stress tensor in the airgap σ2 (Maxwell stress in vacuum) depends only on s0.
The corresponding expressions for the magnetic field and the total stress in each domain are given by

σ1 =
e
σ +

m
σ ,

m
σ = sjb1b1 + (sm −

sj
2

)(b1 ·b1)I , b1 = ∇×a1 ; 0 ≤ r ≤ 1 ,

σ2 =
m
σ = s0[b2b2 −

1

2
(b2 ·b2)I] , b2 = ∇×a2 ; 1 ≤ r ≤ 1 + ζ .

(3.13)

We first solve (3.10) to find the magnetic potential a, thus obtaining the ohmic dissipation for the heat
equation (3.11), which is then used to determine the rotor’s temperature field T . The magnetic potential

gives the body forces for the linear momentum balance in (3.12), thus providing the rotor’s elastic field
e
σ.

3.3. Magnetic Potential

Solving the linear problem in (3.10) subject to the harmonic loading in (3.1), is more efficiently done in
the complex domain, where the magnetic potential ak(r, θ, t) takes the form

ak(r,Θ) = <{āk(r) exp(−iΘ)} = Ak(r) cos Θ +Bk(r) sin Θ , k = 1, 2 ; Θ ≡ pθ − t , (3.14)

where āk(r) = Ak(r) + iBk(r) is the complex15 magnetic potential amplitude that depends only on r.
In the rotor domain, (3.10) results in a Bessel differential equation for the complex amplitude ā1(r)

r2 d2ā1

dr2
+ r

dā1

dr
+ (ᾱ2r2 − p2)ā1 = 0 =⇒ ā1(r) = ĀJp(ᾱr) ; ᾱ2 ≡ −iα2 , (3.15)

where the constant α2 is defined in (3.10) and Jp denotes a Bessel function of the first kind. The above
expression for ā1 accounts for the fact that there is no singularity in r = 0, and hence explains the absence
of a Bessel function of the second kind in the general solution.

In the airgap domain, (3.10) gives a Laplace equation for the complex amplitude ā2(r)

r2 d2ā2

dr2
+ r

dā2

dr
− p2ā2 = 0 =⇒ ā2(r) = B̄rp + C̄r−p . (3.16)

The complex-valued constants Ā, B̄ and C̄ appearing in (3.15) and (3.16) are determined using the interface
and boundary conditions in (3.10), and are found to be

Ā =
2h

Jp(ᾱ) + ḡ
,

B̄ = h

[
1− 2ḡ

[Jp(ᾱ) + ḡ][1 + (1 + ζ)−2p]

]
,

C̄ = h

[
1− 2ḡ

[Jp(ᾱ) + ḡ][1 + (1 + ζ)2p]

]
,

ḡ ≡
[
Jp(ᾱ)− ᾱ

p
Jp+1(ᾱ)

] [
(1 + ζ)p + (1 + ζ)−p

(1 + ζ)p − (1 + ζ)−p

]
1

1 + χ
, h ≡ (1 + ζ)

p[(1 + ζ)p − (1 + ζ)−p]
.

(3.17)

Using (3.17), the sought real amplitudes Ak(r) and Bk(r) in (3.14) are given in terms of their complex
counterparts found in (3.15) and (3.16), i.e. Ak(r) = <{āk(r)} , Bk(r) = ={āk(r)} ; k = 1, 2.

15Complex quantities are henceforth denoted by an overbar (̄ ).
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3.4. Rotor temperature

From the linearity of the governing equations for the temperature field in (3.11) and the magnetic
potential solution in the rotor in (3.15), the forcing term in the conduction equation is found to be:
(∂a1/∂t)

2 = 0.5[(B1(r))2 + (A1(r))2] + 0.5[(B1(r))2 − (A1(r))2] cos(2Θ) − A1(r)B1(r) sin(2Θ). The use
of superposition and complex formulation lead to the following rotor temperature field T (r, θ, t)

T (r,Θ) = T0(r) + <
{
T̄ (r) exp(−i2Θ)

}
; Θ ≡ pθ − t , (3.18)

where the function T0(r) is real and T̄ (r) is complex. The real function T0(r) is found from (3.11) to be

d2T0

dr2
+

1

r

dT0

dr
= −B1

2(r) +A1
2(r)

2
=⇒ T0(r) = c0 −

1

2

∫ r

0

(
1

r

∫ r

0

[B2
1 +A2

1]rdr

)
dr , (3.19)

with the unknown constant c0 to be determined from the boundary condition.
Solving for the complex function T̄ (r) is reduced to solving a Bessel differential equation with a forcing

term through the superposition of a homogeneous and a particular solution T̄p(r), as follows

r2 d2T̄

dr2
+ r

dT̄

dr
+
(
β̄2r2 − (2p)2

)
T̄ = r2 ā

2
1

2
=⇒ T̄ (r) = c̄J2p(β̄r) + T̄p(r) ; β̄2 ≡ − 2i

F
,

T̄p(r) =
π

4

[
−J2p(β̄r)

∫ r

0

Y2p(β̄r)ā
2
1rdr + Y2p(β̄r)

∫ r

0

J2p(β̄r)ā
2
1rdr

]
,

(3.20)

where the unknown constant c̄ in the homogeneous part of the solution will be specified from the boundary
condition. In solving (3.20) we made use of the fact that the solution is bounded at r = 0, and hence there
is no contribution from the Bessel function of the second kind Y2p to the homogeneous part of the solution.
However, Y2p does enter under the integrals in the expressions for the particular solution T̄p(r) as seen above.

Finally, the boundary condition at r = 1 in (3.11) splits into two boundary conditions: one for T0(r)
that gives c0 and the other for T̄ (r) that provides c̄

c0 =
1

2

[∫ 1

0

(
1

r

∫ r

0

[(B1(r))2 + (A1(r))2]rdr

)
dr + B

∫ 1

0

[(B1(r))2 + (A1(r))2]rdr

]
,

c̄ =
π

4

[∫ 1

0

Y2p(β̄r)ā
2
1(r)rdr −

Y2p(β̄) + Bβ̄Y ′2p(β̄)

J2p(β̄) + Bβ̄J ′2p(β̄)

∫ 1

0

J2p(β̄r)ā
2
1(r)rdr

]
,

(3.21)

where J ′2p and Y ′2p denote the derivatives of the first and second kind Bessel functions of order 2p with
respect to their argument.

Having determined T0(r) and T̄ (r), one can find from (3.18) the rotor temperature field T (r,Θ).

3.5. Rotor stresses

The principle of superposition is used again for determining the rotor’s elastic stress field
e
σ. Recalling

the definitions for f in (3.12) and the solution for the magnetic potential a1 in (3.14) and (3.15), the body
forces can be expressed as f(r,Θ) = N(r) + ∇V (r,Θ)16, where N(r) is not derivable from a potential

16Given the electromagnetic part of the forcing
m
f = −∇·mσ in (3.12), it is tempting to choose

e
σ = −mσ as a particular solution

to the electromagnetic forcing
m
f . However, this particular solution is ineligible as it does not satisfy the compatibility condition

(see Barber (2009)), thus leading to the proposed approach.
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(non-conservative part of the force field), while the remaining terms are derivable from a potential V (r,Θ).

f = N +∇V ;

N = −sjα
2

2

p

r
(A2

1 +B2
1)eθ ; V (r,Θ) = V0(r) + Vcs(r,Θ) , Vcs = Vs(r) sin(2Θ) + Vc(r) cos(2Θ) ,

V0(r) = −r
2

2
+
sjα

2

2

∫ r

0

(A1B
′
1 −A′1B1)dr − sm

2

(
p2

r2
(A2

1 +B2
1) + (A′21 +B′21 )

)
,

Vc(r) = −sjα
2

2
A1B1 −

sm
2

(
p2

r2
(B2

1 −A2
1) + (A′21 −B′21 )

)
,

Vs(r) =
sjα

2

2

(A2
1 −B2

1)

2
− sm

(
p2

r2
A1B1 +A′1B

′
1

)
.

(3.22)

Consequently, the rotor’s elastic stress field
e
σ is decomposed as follows

e
σ(r,Θ) =

e
σ
N

(r) +
e
σ
V

(r,Θ) +
e
σ
h

(r,Θ) ,


∇· eσ

N

= N ,

∇· eσ
V

= ∇V ,

∇· eσ
h

= 0 ,

(3.23)

where each one of the constituent fields
e
σ
N

,
e
σ
V

,
e
σ
h

corresponds, in view of (2.25), to a compatible elastic
strain field, i.e. derivable from a displacement field. By abuse of terminology we call these elastic stress
fields elastically compatible.

Using the expression for N(r) from (3.22), an elastically compatible particular solution for
e
σ
N

(r) is
found17 by solving the tangential equilibrium ODE,

d
e
σ
N

rθ

dr
+

2

r

e
σ
N

rθ = −sjα
2

2

p

r
(A2

1 +B2
1) =⇒ e

σ
N

rθ = −sjα
2

2

p

r2

∫ r

0

r(A2
1 +B2

1)dr . (3.24)

An elastically compatible particular solution for the elastic stress field
e
σ
V

is found using the Airy stress

function method in polar coordinates (see Barber (2009)). The components of
e
σ
V

can be expressed in terms
of a stress potential φ

V
as follows

e
σ
V

rr =
1

r

∂φ
V

∂r
+

1

r2

∂2φ
V

∂Θ2
+V ,

e
σ
V

θθ =
∂2φ

V

∂r2
+V ,

e
σ
V

rθ = − ∂

∂r

(
1

r

∂φ
V

∂Θ

)
; ∇2φ

V
= −1− 2ν

1− ν
V . (3.25)

The stress potential φ
V

is found (see footnote 17), by solving the Laplacian in (3.25) with the help of (3.22)

φ
V

(r,Θ) = −1− 2ν

1− ν

(∫ r

0

1

r

∫ r

0

V0rdr dr +
r2p

4p

∫ r

0

Vcsr
−2p+1dr − r−2p

4p

∫ r

0

Vcsr
2p+1dr

)
. (3.26)

The components of the elastically compatible homogeneous solution stress field
e
σ
h

are expressed in terms
of the potential φh

e
σ
h

rr =
1

r

∂φ
h

∂r
+

1

r2

∂2φ
h

∂Θ2
,
e
σ
h

θθ =
∂2φ

h

∂r2
,
e
σ
V

rθ = − ∂

∂r

(
1

r

∂φ
V

∂Θ

)
; ∇4φ

h
= 0 . (3.27)

17Because we look for a particular solution only, integration constants are discarded.
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Solving the biharmonic equation for φ
h

in (3.27) we obtain18

φh(r,Θ) = Φ01
r2

2
+ Φ02θ +

(
Φc1r

2p + Φc2r
2p+2

)
cos(2Θ) +

(
Φs1r

2p + Φs2r
2p+2

)
sin(2Θ) . (3.28)

The final expressions for
e
σ
h

,
e
σ
V

are obtained from (3.27) and (3.27). The six constants Φ01,Φ02,Φc1,Φc2,Φs1,Φs2
are determined by the r = 1 boundary conditions in (3.12)

e
σ
V

rr(1) +
e
σ
h

rr(1) =
s0

2

[(
∂a2

∂θ

)2

−
(
∂a2

∂r

)2
]
− (

sj
2

+ sm)

(
∂a1

∂θ

)2

+ (
sj
2
− sm)

(
∂a1

∂r

)2

,

e
σ
N

rθ(1) +
e
σ
V

rθ(1) +
e
σ
h

rθ(1) = −s0
∂a2

∂θ

∂a2

∂r
+ sj

∂a1

∂θ

∂a1

∂r
.

(3.29)

From the decomposition in radial, cosine and sine terms (see footnote 18), result three equations for the
normal and three equations for the tangential boundary conditions, thus uniquely determining the sought
constants. The full expressions for the stress at the rotor (elastic and magnetic components) can be then

determined from (3.13) and (3.23) but are too cumbersome to be recorded here; the components of
e
σ
V

and
e
σ
h

are given in Appendix B.

3.6. Rotor torque

We are now in a position to give the expression for the torque/unit length T. Recalling (3.8) and using
the results for the stress field obtained above, one has

T = 4πρ0Ω2R4
1s0p

(
h

‖Jp(ᾱ) + ḡ‖

)2

={Jp(ᾱ)ᾱ∗Jp+1(ᾱ)∗} , (3.30)

where ( )∗ denotes complex conjugation. This result gives the torque in terms of geometry, applied current
(poles, amplitude and frequency), magnetic and electric properties and density of the rotor. Remarkably,
T is independent of the mechanical properties of the rotor, i.e. its shear modulus G and Poisson ratio ν.

As the torque is a function of slip velocity ωr, it is instructive to find from (3.30) the initial slope of the
T(ωr) curve. Using asymptotics of the Bessel functions with respect to ᾱ for ‖ᾱ‖2 = α2 = ωrµγR

2
1 << 1,

one obtains

T ≈ ωr
2πγ

p(1 + p)

[
µ0κ0(1 + χ)(1 + ζ)R1

(1 + ζ)p + (1 + ζ)−p + (1 + χ)[(1 + ζ)p − (1 + ζ)−p]

]2

+O(ωr)
2 . (3.31)

One should keep in mind that the above expression gives only the initial slope of the T(ωr) curve, but
depending on the problem, the range of validity of this linear approximation can be very small.

4. Results and discussion

Although we solve an idealized motor, the results presented here correspond to materials, geometries and
operating parameters found in the electrical engineering literature. The dimensionless quantities introduced
in (3.9) allow a direct comparison of the results to related physically meaningful quantities.

18The solution is extracted from the general Michell (1899) solution. Given the form of the body forces and boundary

conditions, only those terms consistent with a solution of the form
e
σ =

e
σ0(r) +

e
σc(r) cos(2Θ) +

e
σs(r) sin(2Θ) are kept. Also,

all terms leading to stress singularities in r = 0 are excluded except for the Φ02θ term required for the torque at r = 0.
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4.1. Material, geometry and operating parameters

The motor geometry and operating parameters used in the calculations are shown in Table 1. The study
covers three materials typically found in electric motors: electrical steel, copper and aluminum. Despite the
different motor architecture, the same values as in Lubin et al. (2011) are used whenever possible. The peak
value of the current sheet is presently reduced to 1.3×104A/m – from 8×104A/m in Lubin et al. (2011) – in
order to keep the maximum value of the magnetic field in the steel rotor below saturation,19 phenomenon
not accounted for here.

Unfortunately, not all needed parameters can be found for a particular electric steel, thus requiring the
use of experimental data from the open literature for comparable materials. The value for the magneto-
mechanical coupling coefficient Λ is fitted from Aydin et al. (2017), for the no-prestressed case, as detailed
in Appendix C. A typical value for the magnetic susceptibility χ = 4000 for electric steel is adopted, while
the elastic constants ν and E are taken from Belahcen et al. (2006). The rest of the material parameters –
not given in Belahcen et al. (2006) and Aydin et al. (2017) – are taken from the open literature, as it is also
done for the case of copper and aluminum, where we assume negligible magnetic effects (χ = Λ = 0).

The base case motor, which serves as a benchmark, is made of electric steel, has an airgap parameter
ζ = 0.05 and a slip parameter s = 0.02. The rest of the geometric and operating parameters are kept fixed,
independently of the rotor material, as shown below in Table 1.

Geometry

Rotor radius R1 6 cm

Airgap parameter ζ = (R2 −R1)/R1 0.05 (base case)

Number of pole pairs p 2

Operating parameters

Peak value of current sheet κ0 1.3×104 A/m

Angular velocity of current supply ω 100π rad/s

Slip s = ωr/ω 2% (base case)

External temperature Ta 20◦C

Convection coefficient hc 40 W/m2/K

Material properties Electrical steel Copper Aluminum

Electric conductivity γ 2.67×106 S/m 5.96×107 S/m 3.5×107 S/m

Magnetic susceptibility χ 4, 000 ≈ 0 ≈ 0

Magneto-mechanical coupling Λ −1, 800 ≈ 0 ≈ 0

Mass density ρ0 7, 650 kg/m
3

8, 940 kg/m
3

2, 700 kg/m
3

Young’s modulus E 183×109 Pa 117×109 Pa 69×109 Pa

Poisson ratio ν 0.34 0.33 0.32

Specific heat capacity cε 480 J/kg/K 385 J/kg/K 921 J/kg/K

Thermal conductivity k 45 W/m/K 397 W/m/K 225 W/m/K

Table 1: Motor geometry, operating parameters and rotor material properties

As discussed in Subsection 3.1, the equations are solved in the rotor frame R and all field quantities are
functions of (r,Θ), where Θ = pθ− t and p the motor pole number (here taken p = 2). The results here are

19The chosen current sheet amplitude results in a maximum magnetic field of about 1.3T for the base case motor (steel
rotor), roughly corresponding to the onset of magnetic field saturation for typical electrical steels (e.g. M400-50A), see Rekik
et al. (2014).
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a snapshot of these rotating fields at t = 0 and are presented by plotting the corresponding field quantity
at (r, θ).

4.2. Magnetic field in rotor and airgap

Magnetic field calculations for realistic geometries are routine for the electrical engineering community.
The results for the current simple motor geometry are presented here solely for the purpose of explaining
the resulting force and strain fields.

The magnetic field plots in Figures 2 and 3 show the contours of the dimensionless (normalized by µ0κ0)
magnetic field ‖b‖ = (b2r + b2θ)

1/2 for three different values of the slip parameter s = 0.02, 0.05, 0.10 in the
case of a steel rotor with an airgap parameter ζ = 0.05. Notice that the magnetic field increases away from
the center and peaks in a localized zone near the rotor periphery. As the slip s (equivalently the relative
velocity ωr) increases, the localized high magnetization zone narrows, (e.g. see Jackson (1999) that the skin
depth δ = (2/γωrµ)1/2). The four localized magnetic field zones are a result of the number of poles (p = 2).

The high permeability of the rotor material (χ = 4000 for electric steel) drastically increases its magnetic
field, thus masking the variations of the considerably smaller – by one order of magnitude – strength of the
magnetic field in the airgap in Figures 2. To remedy this, Figure 3 shows only the airgap magnetic field
(hiding the rotor magnetic field) for the s = 0.02 slip motor of Figure 2(a).

(a) ‖b‖ for s = 0.02 (b) ‖b‖ for s = 0.05 (c) ‖b‖ for s = 0.10

Figure 2: Magnetic field norm ‖b‖ for a steel rotor (normalized by µ0κ0), for different values of the slip parameter s.

Figure 3: Magnetic field norm ‖b‖ in the airgap region (normalized by µ0κ0) for the base case motor in Figure 2(a).

The influence of changing motor geometry is presented in Figure 4 for three different airgap parameters
ζ = 0, 02, 0.05, 0.10 in a steel rotor and a slip value s = 0.02. As expected, Reducing the airgap size does
not affect the distribution of the magnetic field, but increases drastically the maximum strength of the field.
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(a) ‖b‖ for ζ = 0.02 (b) ‖b‖ for ζ = 0.05 (c) ‖b‖ for ζ = 0.10

Figure 4: Magnetic field norm ‖b‖ for a steel rotor (normalized by µ0κ0), for different values of the airgap parameter ζ.

Comparison of the magnetic fields for different rotor materials is presented in Figure 5, where the results
for the high magnetic susceptibility steel are contrasted to the non-magnetic copper and aluminum rotors.
The slip and airgap parameters are kept at their default value s = 0.02, ζ = 0.05.

(a) ‖b‖ – steel (b) ‖b‖ – copper (c) ‖b‖ – aluminum

Figure 5: Magnetic field norm ‖b‖ (normalized by µ0κ0), for different rotor materials in motors with s = 0.02, ζ = 0.05.

Notice that for both the copper and aluminum rotors the maximum value of the magnetic field is two
orders of magnitude less than in steel. One can also observe that the normalized magnetic field for aluminum
and copper reaches its maximum value at the rotor boundary, given the absence of magnetization in these
materials. The slightly larger extent for the maximum magnetic field zone for the copper rotor, is attributed
to its higher electrical conductivity which results in higher induced currents than in aluminum.

4.3. Rotor temperature field

The full-field dimensionless temperature20 (T−Ta)/Ta → T (r,Θ) for the base case steel rotor is presented
in Figure 6; the normalization with respect to the reference temperature T a adopted here as a more physically
meaningful choice. Since the mean field dominates, the Θ-dependent variations are completely masked by
the scale used to plot Figure 6(a). The Θ-dependent variation <

{
T̄ (r) exp(−i2Θ)

}
, whose amplitude is four

orders of magnitude lower than the mean, is plotted by itself in Figure 6(b). According to the values given
in Table 1 for the thermal characteristics of the idealized motor, the almost uniform temperature increase of
the rotor is a mere 0.086◦C from an ambient airgap temperature of 20◦C, with the maximum temperature
occurring at the center.

20Here T denotes absolute temperature in ◦K and not its normalized counterpart defined in (3.9).
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(a) Full temperature field T (r,Θ) (b) Θ-variation <
{
T̄ (r) exp(−i2Θ)

}
Figure 6: Normalized temperature increase for the steel rotor (base case); (a) full field and (b) angular variation.

The influence of the rotor material on the dimensionless temperature increase T (r,Θ) in the base case
motor is presented next in Figure 7. In comparing the results for steel in (a), copper in (b) and aluminum
in (c), we notice that the temperature increase is almost uniform over the rotor, with the highest increase
0.086◦C occurring in steel, 0.062◦C for copper and 0.037◦C for aluminum.

(a) T (r,Θ) – steel (b) T (r,Θ) – copper (c) T (r,Θ) – aluminum

Figure 7: Normalized temperature increase T for the base case motor: (a) steel, (b) copper and (c) aluminum rotors.

Ohmic dissipation is the sole dissipation mechanism considered, as discussed in the first remark of
Subsection 2.5 and depends on the relative frequency ωr. The relatively low frequency used (about 1Hz,
we consider ωr at 2% slip) explains the very low temperature increase found here.

4.4. Rotor current density, Lorentz and magnetic body forces

Current density The dimensionless current density field j = jz = −γ(∂a/∂t), (normalized by κ0/R1)
for the base case motor is presented in Figure 8 for steel (a), copper (b) and aluminum (c) rotors, respec-
tively. The currents for steel are forming thin plumes near the rotor surface because of the high magnetic
permeability that concentrates the magnetic field at the rotor-airgap interface – see Figure 5(a) – limiting
its penetration into the rotor. The current distribution for copper and aluminum rotors is very similar,
given the absence of magnetization. Notice in Figure 8 that the maximum current values for steel are the
lowest while the corresponding ones for copper are the highest, as expected by the different rotor material
conductivities according to Table 1.
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(a) j(r,Θ) - steel (b) j(r,Θ) - copper (c) j(r,Θ) - aluminum

Figure 8: Current density j (normalized by κ0/R1), for the base case motor: (a) steel, (b) copper and (c) aluminum rotors.

Lorentz, magnetization and magnetostricive body forces The different components of the magnetic body

force
m

f , defined as the divergence of the magnetic stress
m
σ in (2.25), are

m

f ≡ ∇·mσ = j×b+m·(b∇) +
Λ

µ
b·(∇b) ; m =

χ

µ
b , (4.1)

where µ = µ0(1 + χ). The three different magnetic body force components in (4.1) are: the Lorentz body
force: j×b, a magnetization body force: m·(b∇) and a magnetostriction force: (Λ/µ)b·(∇b). The last two
components are absent in non-magnetic copper and aluminum (χ ≈ Λ ≈ 0).

Figure 9 shows the amplitude of the three different components of the electromagnetic force, (normalized
by the amplitude of the centrifugal force density ρ0R1Ω2), for the base case motor with a steel rotor case.
The first important observation is that the Lorentz forces are negligible, with their maximum value of the
order of 1% of the inertial forces. A straightforward dimensional analysis indicates ‖j‖ ≈ ‖b‖/(µR1), giving
‖j×b‖ ≈ ‖b‖2/(µR1) for the Lorentz component of the body force, compared to the magnetic χ‖b‖2/(µR1)
and magnetostrictive Λ‖b‖2/(µR1) components.

(a) Lorentz ‖j×b‖ (b) Magnetization ‖m·(b∇)‖ (c) Magnetostriction ‖(Λ/µ)b·(∇b)‖

Figure 9: Comparison of the different magnetic body forces (normalized by ρ0R1Ω2) for the base case motor with a steel rotor.

Observe that the magnetization force is larger than its inertial counterpart – up to approximately forty
times at the rotor’s edge due to the highest magnetic field gradients there, according to Figure 5(b) –
pointing to the importance of accounting for magnetization body forces in electric motor models. The
magnetostrictive forces are not negligible and peak at about 160% of their inertial counterpart (or about
5% of the maximum magnetization forces), a somewhat surprising result in view of the same order χ and Λ
coefficients from Table 1 but explained by the different expressions for the corresponding forces in (4.1).
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(a) ‖
m

f ‖ – steel (b) ‖
m

f ‖ = ‖j×b‖ – copper (c) ‖
m

f ‖ = ‖j×b‖ – aluminum

Figure 10: Comparison of the total magnetic body force ‖
m
f ‖ (normalized by ρ0R1Ω2) for the base case motor with steel,

copper and aluminum rotors. Notice that the magnetic body force is the Lorentz force j×b for the two non-magnetic materials.

The results in Figure 10 compare the magnetic body force (normalized by ρ0R1Ω2) of the base motor
for the different rotor materials. Recall that the magnetic body force is just the Lorentz force for the
copper and aluminum rotors, in view of their negligible magnetic properties. We emphasize again the orders
of magnitude difference in the magnetic body force between the magnetic (steel) and the non-magnetic
(copper, aluminum) materials. The Lorentz forces for the copper and aluminum rotor cases are comparable,
given their close electric conductivity (see Table Table 1). Notice however that although the maximum
current density is higher in the better conducting copper, the corresponding maximum Lorentz force is
higher for the aluminum rotor.

4.5. Total and elastic stresses

In order to better assess the influence of the electromagnetic effects on the total σ and elastic
e
σ stresses,

we propose to compare them to the purely mechanical (only inertial body forces applied), plane strain elastic

stress solution
i
σ for the spinning rotor of the base case motor under angular velocity Ω, a straightforward

linear elasticity calculation resulting in the following stress field

i
σrr =

ρ0R
2
1Ω2

8

(
3− 2ν

1− ν
− 3− 2ν

1− ν
r2

)
,

i
σrθ = 0 ,

i
σθθ =

ρ0R
2
1Ω2

8

(
3− 2ν

1− ν
− 1 + 2ν

1− ν
r2

)
. (4.2)

The maximum value for
i
σrr and

i
σθθ is [ρ0(3− 2ν)/8(1− ν)](R1Ω)2 and occurs at the rotor’s center r = 0.

For a more meaningful comparison to the purely mechanical stresses due to inertial effects, all future stress
results are normalized by this maximum value, instead of ρ0(R1Ω)2 used thus far.
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(a) σrr(r,Θ) (b) σrθ(r,Θ) (c) σθθ(r,Θ)

Figure 11: Dimensionless total stresses in rotor and airgap (normalized by the maximum inertial stress): (a) normal, (b) shear
and (c) hoop, for the base case steel motor.

The normalized total stress components for the base case motor with the steel rotor are presented in
Figure 11, – with the stress fields shown both in the rotor and the airgap – where one can see the continuity
of the normal σrr and shear σrθ components at the rotor-airgap interface.

The total normal stress σrr is always positive, never exceeding the maximum, purely inertial value, as
seen in Figure 11(a). It monotonically increases away from the rotor’s edge and reaches its maximum at
the center, region where the electromagnetic effects are negligible, in contrast to the rotor’s edge. The total
shear stress σrθ varies symmetrically between approximately ±5% of the maximum (normal) inertial stress21,
following the angular pattern imposed by the cos(2Θ) and sin(2Θ) terms. Also notice in Figure 11(b) the
singularity in r = 0 – truncated in the figure – due to the external torque applied there. The total hoop
stress σθθ is positive in most of the central domain, where inertial effects dominate, with the same maximum
value as for the purely inertial case. The influence of the magnetic field is however evident on the rotor’s
edge, where a compressive stress of the same absolute value as the maximum inertial stress does appear.

(a)
e
σrr(r,Θ) (b)

e
σrθ(r,Θ) (c)

e
σθθ(r,Θ)

Figure 12: Dimensionless elastic stresses in rotor (normalized by the maximum inertial stress): (a) normal, (b) shear and (c)
hoop, for the base case steel motor.

The normalized elastic stress
e
σ components in the rotor are given in Figure 12 and differ significantly

from their total stress counterparts σ, as a simple comparison between Figure 11 and Figure 12 shows. The

elastic stress components are approximately their inertial counterparts
i
σ, given by (4.2), due to the weak

21The rotor has no shear stresses for the purely inertial loading; plotting the shear stress over the maximum value of the
inertial stress (which corresponds to the radial and hoop stresses) allows the comparison of its magnitude with respect to the
normal stresses.
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magnetic fields at the center of the rotor. However, due to the strong magnetic fields at the rotor boundary,
boundary layers develop near its edge resulting in strong compressive components, up to 250% times for
the normal and 125% for the hoop components respectively, higher than the corresponding maximal inertial
stress. For the shear stress component, a comparison between Figure 11(b) and Figure 12(b) shows larger
elastic shear stresses, in particular near the rotor’s edge, due to the mechanical torque produced.

4.6. Rotor torque

Figure 13: Dimensionless torque T (normalized by πρ0R4
1Ω2s0) vs slip coefficient s = ωr/ω for the base case motor with three

different rotor materials.

The torque T, normalized22 by πρ0R
4
1Ω2s0, is plotted in Figure 13 as a function of the slip coefficient

s. For low κ0 values (where the magnetic field remains below the saturation level for steel for all slip values
considered23) the steel rotor shows higher torque than its copper and aluminum counterparts across almost
all the slip range, only slightly dominated by the copper rotor in a region around 5− 10% slip.

For high κ0 values, the monotonic increase of the torque as a function of slip for steel – due to its linear
magnetic response – is misleading, as saturation may occur, which is not accounted for in the model. In the
base case motor, the magnetic field for the steel rotor is already close to saturation for κ0 = 1.3×104, s = 2%
with a value of 1.3T (see Figure 2(a)). In this case, it is expected that due to magnetic saturation, the
steel torque-slip curve above s = 2% should be reaching a maximum torque, as is the case for the copper
and aluminum rotors. For s = 5% or higher, the copper motor would produce a larger torque than its steel
counterpart.

5. Conclusion

Using the direct approach of continuum mechanics, based on Kovetz (2000), a general framework that
couples the electromagnetic, thermal and mechanical effects is derived and subsequently applied to formulate
the boundary value problem for electric motors. Particular attention is paid to the derivation of the coupled
constitutive equations for isotropic materials under small strain but arbitrary magnetization. As a first
application, the theory is employed for the analytical modeling of an idealized asynchronous motor for
which we calculate the magnetic, thermal, stress fields and its torque. To better assess the influence of
magnetization on stresses, three different rotor materials are examined: electric steel, copper and aluminum

22The normalization quantity is the product of the rotor’s area πR2
1 by the electromagnetic stress term ρ0R2

1Ω2s0 = µ0κ20.
23As shown in (4.2), the peak value of the magnetic field increases with slip.
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and different airgap and slip parameters are considered using realistic geometric and operational regime
values (see Lubin et al. (2011)) and material parameters (see Aydin et al. (2017)). Given the linearized
magnetic constitutive model adopted for the sake of an analytical solution, the applied current amplitude
is chosen to produce magnetic fields below saturation levels.

Magnetic field results show, as expected, the presence of a boundary layer at the rotor’s edge for the
steel case and more diffuse patterns for the non-magnetic materials; about two order of magnitude difference
is observed in the maximum magnetic field between the magnetic and non-magnetic materials. Comparing
the Lorentz, magnetization and the magnetostrictive forces in the steel rotor case we find that the first
are negligible (more than three orders of magnitude less for the first compared to the last two). Moreover,
magnetostrictive body forces – resulting from the constitutive coupling between stress and magnetization
effects – although smaller that their magnetic counterparts, are considerably higher than the Lorentz. This
is an important finding of our calculations, since the former are usually neglected in the electric motor
calculations available in the literature. As expected the magnetic body forces found in the steel rotor are
concentrated along a boundary layer and significantly higher than their counterparts for the non-magnetic
materials that are more diffusely distributed, thus explaining the importance of magnetic rotors for the
production of a much higher torque for a given current amplitude, as long as the magnetic field remains
below saturation levels.

Due to the realistic thermal parameters used in the calculations, the temperature increase in the rotor is
negligible with the temperature maximum appearing in the rotor’s center. Significant differences are found
in the current density distribution between the magnetic and non-magnetic materials, with a boundary layer
appearing in the first and diffuse patterns in the second case.

The analytical solution of the model allows the comparison of the different parts of the stress tensor
(elastic and total) to the purely mechanical stresses due to inertia, revealing the significant influence of
electromagnetic phenomena on the resulting stress state. Although the maximum value of total stress’ normal
components never exceed their purely inertial counterparts, the corresponding elastic stress components do
so by developing a stress concentration boundary layer where compressive radial and hoop stresses can be
up to three times higher than the maximum inertial value. Moreover, elastic shear stresses are considerably
higher than the total stress and concentrated on a boundary layer about the rotor’s edge.

In spite of its limitations, the proposed analytical model shows clearly the importance of correctly
accounting for the coupled magneto-mechanical effects for the accurate calculation of the stress fields. The
proposed methodology for solving general boundary value problems is applicable to more complicated motor
geometries and nonlinear constitutive responses that include moderate strains, magnetic saturation and
dissipative effects. For these problems, a numerical approach based on coupled variational principles is
necessary (e.g. see Thomas and Triantafyllidis (2009)) as well as special numerical techniques for the time-
dependent aspects of the problem; further research is planned in this direction.
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Appendix A. Isotropic, small strain, arbitrary magnetization constitutive laws

The derivation of the constitutive laws for an isotropic magnetoelastic material for small strain ε, but ar-
bitrary magnetic field b, although straightforward requires lengthy calculations. Although such calculations
have been presented in the literature a long time ago by Pao and Yeh (1973), following the early works on
magnetoelasticity by Brown (1966), a direct comparison with our results is not possible due to the different
formulations adopted (e.g. different independent variables of the free energy densities, different definitions
of total stress etc.). Moreover, such derivations are not always done consistently in the available literature; a
linearized version of the invariants is often considered, thus violating the objective nature of the free energy
since the small strain tensor ε is not objective.

Derivations are presented here for two different scenarios: the first assumes the most general form of
Helmholtz free energy ψ̂(Ik, Jk, T ) and the second is based on the decoupled form ψ̂ = ψ̂e(Ik) + ψ̂m(Jk) +

ψ̂th(T ) proposed in (2.23). In both cases terms in ε b are kept, providing a more general result than the one
presented in (2.25).

i) General form of free energy ψ = ψ̂(I1, I2, I3, J1, J2, J3, T ) Recall that the current configuration expres-
sions for the magnetization and total stress in (2.21) are found by differentiating the Helmoltz free energy

ψ̂(C,B, T ). In the case of an isotropic material ψ̂(C,B, T ) = ψ̂(I1, I2, I3, J1, J2, J3, T ) whose invariants are
expressed in terms of the right Cauchy-Green tensor C ≡ F T ·F and B ≡ b·F according to (2.23).

Applying the chain rule of differentiation to the expressions in (2.21), one obtains

m = −2
ρ0√
I3

(
∂ψ̂

∂J1
I +

∂ψ̂

∂J2
c+

∂ψ̂

∂J3
c2

)
·b ,

σ = 2
ρ0√
I3

[
∂ψ̂

∂I1
c+

∂ψ̂

∂I2
(tr(c)c− c2) +

∂ψ̂

∂I3
det(c)I − ∂ψ̂

∂J1
bb+

∂ψ̂

∂J3
(c·b)(c·b)

]
+

+
1

µ0

(
bb− 1

2
(b·b)I

)
−
(
mb+ bm− (b·m)I

)
,

(A.1)

where the left Cauchy-Green tensor c ≡ F ·F T appears naturally in the constitutive relations (A.1). The
subsequent algebra of small strain linearization is considerably simplified by noting that the invariants
involved can be alternatively expressed in terms of c and b as follows

I1 = tr(c), I2 =
1

2
(tr(c)2 − tr(c·c)), I3 = det(c) ; c ≡ F ·F T ,

J1 = b·b = ‖b‖2, J2 = b·c·b, J3 = b·c2 ·b .
(A.2)

Expanding the expressions in (A.1) about c = I up to the first order in the small strain tensor
ε ≡ (1/2)(∇u+ u∇), for ‖ε‖ � 1, we obtain up to O(‖ε‖2)

m ≈m(c = I, b, T ) +
∂m

∂c

∣∣∣
c=I

: 2ε, σ ≈ σ(c = I, b, T ) +
∂σ

∂c

∣∣∣
c=I

: 2ε ; c− I ≈ 2ε . (A.3)
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After lengthy algebraic manipulations of (A.1) and (A.3), the following expression for the magnetization
m is found involving the scalar quantities ζi(‖b‖) , i = 1, · · · , 4 24

m = ζ1b+ ζ2tr(ε)b+ ζ3(b·ε·b)b+ ζ4ε·b ;

ζ1(‖b‖) ≡ −2ρ0

[
∂ψ̂

∂J1
+
∂ψ̂

∂J2
+
∂ψ̂

∂J3

]
c=I

,

ζ2(‖b‖) ≡ −ζ1(‖b‖)− 4ρ0

[
∂

∂I1
+ 2

∂

∂I2
+

∂

∂I3

] [
∂ψ̂

∂J1
+
∂ψ̂

∂J2
+
∂ψ̂

∂J3

]
c=I

,

ζ3(‖b‖) ≡ −4ρ0

[
∂

∂J2
+ 2

∂

∂J3

] [
∂ψ̂

∂J1
+
∂ψ̂

∂J2
+
∂ψ̂

∂J3

]
c=I

,

ζ4(‖b‖) ≡ −4ρ0

[
∂ψ̂

∂J2
+ 2

∂ψ̂

∂J3

]
c=I

.

(A.4)

The corresponding small strain linearization expressions yield a total stress σ as the sum of an elastic
e
σ, a magnetic

m
σ and a magnetostrictive

ms
σ (involving terms of the order ε b) component

σ =
e
σ +

m
σ +

ms
σ ;

e
σ ≡ λtr(ε)I + 2Gε ,

m
σ ≡ 1

µ0

[
bb− 1

2
(b·b)I

]
− ζ1 [bb− (b·b)I]− ζ4

2
bb ,

ms
σ ≡ Σ0I + [Σ1bb+ ζ2(b·b)I]tr(ε) + [Σ2I + Σ4bb+ ζ3(b·b)I](b·ε·b) + Σ3[(b·ε)b+ b(ε·b)] ,

λ(‖b‖) ≡ 2ρ0

[
∂ψ̂

∂I3
− ∂ψ̂

∂I1

]
c=I
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∂
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)(
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+
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∂I3
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,
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[
∂ψ̂

∂I1
+
∂ψ̂

∂I2

]
c=I

,
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∂I1
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∂ψ̂

∂I2
+
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∂I3

]
c=I
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Σ1(‖b‖) ≡ −ζ2(‖b‖)− 1

2
ζ4(‖b‖) + Σ2(‖b‖) ,

Σ2(‖b‖) = ζ4(‖b‖) + 4ρ0
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∂

∂J2
+ 2

∂

∂J3

)(
∂ψ̂

∂I1
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∂ψ̂

∂I2
+
∂ψ̂

∂I3
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c=I

,

Σ3(‖b‖) ≡ −ζ4(‖b‖) + 4ρ0

[
∂ψ̂

∂J3

]
c=I

,
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∂
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+ 2

∂

∂J3

)(
∂ψ̂

∂J2
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∂J3
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c=I

,

(A.5)

24A further simplification can be made for small strains in the expression of ζ2: since | − ζ1tr(ε)b| << | − ζ1b|, one has

ζ2 ≈ −4ρ0
[
∂
∂I1

+ 2 ∂
∂I2

+ ∂
∂I3

] [
∂ψ̂
∂J1

+ ∂ψ̂
∂J2

+ ∂ψ̂
∂J3

]
c=I

.
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and are expressed in terms of seven magnetic field-dependent coefficients: the two Lamé coefficients λ(‖b‖)
and G(‖b‖) plus five more scalars Σi(‖b‖) , i = 0, · · · , 425. This expansion proves that in a first order
approximation in ε, the coefficients in the expressions for m and σ depend solely on ||b||. The fact that λ
and G – and hence the Young’s modulus E – may depend on ||b|| is referred to as the ∆E effect (see e.g.
Daniel and Hubert (2009)).

ii) Decoupled form of the free energy ψ = ψ̂e(I1, I2, I3) + ψ̂m(, J1, J2, J3) + ψ̂th(T ) Under the additional
hypothesis of additive decomposition for the specific free energy in (2.23), one obtains the simplification
ζ2 = −ζ1 yielding from (A.4) the following expression for the magnetization m

m = ζ1[1− tr(ε)]b+ ζ3(b·ε·b)b+ ζ4ε·b ,

ζ1(‖b‖) = −2ρ0

[
∂ψ̂m
∂J1

+
∂ψ̂m
∂J2

+
∂ψ̂m
∂J3

]
c=I

,

ζ3(‖b‖) = −4ρ0

[
∂

∂J2
+ 2

∂

∂J3

] [
∂ψ̂m
∂J1

+
∂ψ̂m
∂J2

+
∂ψ̂m
∂J3

]
c=I

,

ζ4(‖b‖) = −4ρ0

[
∂ψ̂m
∂J2

+ 2
∂ψ̂m
∂J3

]
c=I

.

(A.6)

The corresponding expressions for the elastic
e
σ, magnetic

m
σ and magnetostrictive

ms
σ components of the

total stress σ simplify from their corresponding counterparts in (A.5) into

e
σ = λtr(ε)I + 2Gε ,

m
σ =

1

µ0

[
bb− 1

2
(b·b)I

]
− ζ1 [bb− (b·b)I]− ζ4

2
bb ,

ms
σ = [Σ4bb+ ζ3(b·b)I](b·ε·b) + Σ3 [(b·ε)b+ b(ε·b))] ,

(A.7)

where the scalars ζ1, ζ3, ζ4 are given in (A.6) and Σ3 and Σ4 given in (A.5) but with ψ̂ replaced by ψm. In
deriving (A.7) from (A.5) under the decoupling hypothesis, the pre-stress Σ0 and the corresponding Lamé
coefficients λ,G are now constants independent of the magnetic field b. It is further assumed that the elastic
prestress Σ0 = 0. Five functions of ‖b‖ are thus need to characterize the response of an isotropic, small
strain, decoupled-energy, magnetoelastic material: ζ1, ζ3, ζ4,Σ3,Σ4.

A final remark is in order here to connect the above results to the constitutive equation in (2.25) that

neglects the magnetostrictive stress component
ms
σ . The reason for this simplification is that for small strains

(‖ε‖ � 1) and assuming that the constants appearing in
m
σ and

ms
σ are of the same order of magnitude,

one deduces that ‖msσ ‖ � ‖mσ‖. In the field of dielectric elastomers – a completely analogous problem where
e → b, p → m, ε0 → µ−1

0 – similar results that neglect the coupled terms are justified under the typical
hypothesis of small strain and moderate electric field: ε = O(ζ), e = O(

√
ζ), where ζ a vanishingly small

parameter (e.g. see Tian et al. (2012); Lefevre and Lopez-Pamies (2017)). The two coefficients ζ1 and ζ4
needed for the determination of

m
σ are related to the magnetic susceptibility χ(‖b‖) and magnetostrictive

coefficient Λ(‖b‖) by: ζ1(‖b‖) = χ(‖b‖)/[µ0(1 + χ(‖b‖))] and ζ4(‖b‖) = −2Λ(‖b‖)/[µ0(1 + χ(‖b‖))].

25A further simplification is possible for small strains: since terms in ζ1εbb (respectively ζ4εbb) are negligible in front

of terms in ζ1bb (respectively ζ4bb), one obtains Σ1 ≈ −ζ2 + Σ2, Σ2 ≈ 4ρ0
[(

∂
∂J2

+ 2 ∂
∂J3

)(
∂ψ̂
∂I1

+ 2 ∂ψ̂
∂I2

+ ∂ψ̂
∂I3

)]
c=I

and

Σ3 ≈ 4ρ0
[
∂ψ̂
∂J3

]
c=I
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Appendix B. Particular and homogeneous solution elastic stress fields

From (3.25) and (3.26), the particular solution stress field
e
σ
V

components are

e
σ
V

rr = V − 1

2

1− 2ν

1− ν

(
2

r2

∫ r

0

rV0dr + (2p− 1)r
2p−2

∫ r

0

Vcs
r2p−1

dr − 2p+ 1

r2p+2

∫ r

0

r2p+1Vcsdr

)
e
σ
V

θθ =
νV

1− ν
+

1

2

1− 2ν

1− ν

(
2

r2

∫ r

0

rV0dr − (2p− 1)r2p−2

∫ r

0

Vcs
r2p−1

dr +
2p+ 1

r2p+2

∫ r

0

r2p+1Vcsdr

)
e
σ
V

rθ =
1

2

1− 2ν

1− ν

(
(2p− 1)r2p−2

∫ r

0

V ∗cs
r2p−1

dr +
2p+ 1

r2p+2

∫ r

0

r2p+1V ∗csdr

) (B.1)

where V ∗cs ≡ Vs cos(2Θ)− Vc sin(2Θ) and the V potential components are given by (3.22).

From (3.27) and (3.28), the homogeneous solution stress field
e
σ
h

components are

e
σ
h

rr = Φ01 +
(
(2p− 4p2)Φc1r

2p−2 + (2p+ 2− 4p2)Φc2r
2p
)

cos(2Θ)

+
(
(2p− 4p2)Φs1r

2p−2 + (2p+ 2− 4p2)Φs2r
2p
)

sin(2Θ)

e
σ
h

θθ = Φ01 +
(
2p(2p− 1)Φc1r

2p−2 + (2p+ 2)(2p+ 1)Φc2r
2p
)

cos(2Θ)

+
(
2p(2p− 1)Φs1r

2p−2 + (2p+ 2)(2p+ 1)Φs2r
2p
)

sin(2Θ)

e
σ
h

rθ =
Φ02

r2
−
(
2p(2p− 1)Φs1r

2p−2 + 2p(2p+ 1)Φs2r
2p
)

cos(2Θ)

+
(
2p(2p− 1)Φc1r

2p−2 + 2p(2p+ 1)Φc2r
2p
)

sin(2Θ)

(B.2)

Application of the stress boundary condition in (3.29) provides the six Φ constants of integration in (B.2).

Appendix C. Experimental determination of the magneto-mechanical coupling coefficient

Of all the material constants required for the constitutive model in (2.25) only the magneto-mechanical
coupling coefficient Λ in (2.25) is not readily available and needs to be found from experiments. Its determi-
nation is based here on results presented by Aydin et al. (2017) who provide analytical calculations as well
as experimental data from Rekik et al. (2014), for the uniaxial magnetostriction vs. the magnetic field for
electrical steel samples under different levels of mechanical prestress; a schematic of the setup is depicted in
Figure C.1 based on the description of the typical experimental setup from Belahcen et al. (2006).

Figure C.1: Schematics of the magnetostriction setup.
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A thin plate of electrical steel is subjected to an external magnetic field b0e1 along its axial direction,
resulting in an axial magnetic field b1 = (1 + χ)b0 (assumed uniform) inside the specimen, where χ is the
material’s magnetic susceptibility26. The plate is also subjected to an externally applied uniaxial stress
σexte1e1 and hence the total stress σ is the sum of the applied stress and the Maxwell stress in vacuum due
to the magnetic field b0

σ =
e
σ +

m
σ = σexte1e1 +

1

µ0

[
b0b0 −

1

2
(b0 ·b0)I

]
(C.1)

where the expressions for the elastic and magnetic part of the total stress are given by (2.25). The corre-
sponding strain and the stress fields in the plate are assumed uniform with edge effects near the corners and
edges of the plate neglected.

Consequently the resulting axial strain ε11 is made of an elastic component σext/E plus a component
proportional to the square of the magnetic field strength ζm(b1)2, where the curvature coefficient ζm de-
pends on the magnetic constants (susceptibility χ and magneto-mechanical coupling Λ). A straightforward
calculation from (C.1) and (2.25), considering that the specimen’s lateral strain is ε22 = ε33, gives two
independent equations

(λ+ 2G)ε11 + 2λε22 = σext +
(b0)2

2µ0

[
1− (1 + χ)2 − 2Λ(1 + χ)

]
, λε11 + 2(λ+G)ε22 = − (b0χ)2

2µ0
, (C.2)

where the Lamé constants are given in terms of Young’s modulus E and Poisson ratio ν by G = E/2(1 + ν)
and λ = νE/(1 + ν)(1 − 2ν). From (C.2) one obtains the sought relation between the axial strain, the
external stress and the magnetic field as well as the expression for the curvature coefficient ζm

ε11 =
σext
E

+ ζm(b1)2 ; ζm = ζmχ + ζmΛ , ζmχ ≡ −
( 1

2 − ν)χ2 + χ

Eµ0(1 + χ)2
, ζmΛ ≡

−Λ

Eµ0(1 + χ)
. (C.3)

In decomposing the curvature ζm into a magnetic susceptibility ζmχ and a magneto-mechanical ζmΛ com-
ponent we follow the approach of Daniel et al. (2003)27 , where the coefficients ζmχ and ζmΛ correspond
respectively to the magnetic susceptibility χ and the magneto-mechanical coupling Λ parts of the magnetic

stress
m
σ defined in (2.25).

For the no external stress case (σext = 0) the data from Aydin et al. (2017), which are based on
the approach adopted in Daniel et al. (2003), provide the same magneto-mechanical coupling curvature
ζmΛ = 2 10−6 T−2 for the two materials analyzed. Unfortunately, the values for ν associated to these
materials are not reported there. We assume typical values for steel: ν = 0.34, E = 183GPa and a magnetic
susceptibility χ = 4 103, resulting in Λ ≈ −1.8×103 which is used in our calculations, as seen in Table 1.

26The materials used for holding the plate have no magnetic properties.
27In Daniel et al. (2003) and subsequent work by this research group by “pure magnetostrictive” strains they refer to the

strains due to the magneto-mechanical coupling Λ.
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