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Electroacoustic transducers along with piezoelectric devices are the most widely used
methods for acoustic sound generation in gas and liquids. A mechanical movement of a
membrane induces fluid vibration thus creating an acoustic wave. The thermoacoustic
process on the other hand uses fast paces temperature variations in a sample to excite
the fluid (generally air). The rapidly changing temperature generate a compression
expansion of the air and thus creates an acoustical wave. Such materials are called
thermophones. They were discovered in the same time period as traditional electroacoustic
transducers but their limited efficiency coupled with the technological limits of fabrication
prevented scientific craze at the time. In 1999 a new thermophone was presented with a
significant improvement compared to the samples used a century prior. This article coupled
with the newly found ease of access to complex fabrication process of nanomaterials
rekindle the interest in thermoacoustic for audio purposes. In this work a thorough
literature review is presented and a novel multilayer model for thermoacoustic sound
generation is derived. This model was solved for plane wave, cylindrical wave and spherical
wave generation. Another model based on a two temperatures hypothesis for plane wave
generation is also solved to represent more accurately the generation of thick porous
thermophones. An extensive analysis of those models allowed for a detailed understanding
of the thermoacoustic sound generation: its strengths, weaknesses and differences with
traditional speakers. Lastly, experimental investigations of porous carbon foams in
partnership with CINTRA Singapore are presented. Validation of the models and insights
about the handling of such flexible and lightweighted but fragile samples are presented as
well at their potential applications for scientific or commercial purposes as broad band
Sensors.
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Thermoacoustis and Thermophones

Thermoacoustic prin

The thermoacoustic process uses fast
paces temperature variations in a
sample to excite the fluid (generally
air). The rapidly changing temperature
generate a compression expansion of
the air and thus creates an acoustical
wave. An electrical current or a laser
can be wused to generate such
temperature variations.
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 Thermoacoustics * Thermophones

Materials displaying thermoacoustics
capabilities posses a
capacity and a high thermal
conductivity and are
thermophones. Since no resonating
part are involved in the process the
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3D-C Fabrication and Acoustic Experiments

» In Partnership with CINTRA Singapore and Thales
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Schematic representation of the thermophone sound generation

Sample Fabrication in CINTRA

Carbon based foam (3D-C)

» Fabricated using TCVD

> Pristine Carbon quality

» High Specific Surface Area

» Lightweight
» Flexible Geometry

» Low Production Costs

a stack of single porous Ni sheets

Loeblein and al, Configurable 3D Boron
Nitride-Carbon Architecture...,
Small 2014

Acoustic Experiments

 Experimental set up and early conclusions
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Thermal Chemical Vapor Deposition (TCVD) method used for
nanomaterial fabrication

laser interferometry)

» Low and constant
s Impedance up to MHz
» Rapid Thermal Cooling

due to the porous structure

» Comparable results with
the literature (spectrums

normalised for 1W at 1m) Visual image
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Comparison of 3D-C with other
thermophones from the literature.

of 3D-C mounted in
set-up.

THEORETICAL MODELS AND ANALYSIS

Equations and Models
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