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Abstract—Working with a non-stationary stream of data re-
quires for the analysis system to evolve its model (the parameters
as well as the structure) over time. In particular, concept drifts
can occur, which makes it necessary to forget knowledge that
has become obsolete. However, the forgetting is subjected to
the stability-plasticity dilemma, that is, increasing forgetting
improve reactivity of adapting to the new data while reducing
the robustness of the system. Based on a set of inference rules,
Evolving Fuzzy Systems - EFS - have proven to be effective
in solving the data stream learning problem. However tackling
the stability-plasticity dilemma is still an open question. This
paper proposes a coherent method to integrate forgetting in
Evolving Fuzzy System, based on the recently introduced notion
of concept drift anticipation. The forgetting is applied with two
methods: an exponential forgetting of the premise part and a
deferred directional forgetting of the conclusion part of EFS
to preserve the coherence between both parts. The originality
of the approach consists in applying the forgetting only in the
anticipation module and in keeping the EFS (called principal
system) learned without any forgetting. Then, when a drift is
detected in the stream, a selection mechanism is proposed to
replace the obsolete parameters of the principal system with more
suitable parameters of the anticipation module. An evaluation
of the proposed methods is carried out on benchmark online
datasets, with a comparison with state-of-the-art online classifiers
(Learn++.NSE, PENsemble, pclass) as well as with the original
system using different forgetting strategies.

Index Terms—Evolving Fuzzy System EFS, Learning with
Forgetting, Non Stationary data stream, Anticipation.

I. INTRODUCTION

Data stream learning problem has become a new topic of
interest that breaks with classical batch learning model for
several reasons:
• The learning algorithm must process one instance at a

time without requiring access to previously seen data
(One-shot learning).

• The stream is potentially infinite, thus instances should
only be saved for a short time.

• Knowledge contained in the data stream can change over
time, that is called concept drift.

In addition, most of the application using data stream have
real-time constraints, requiring a fast processing (take for
example, the monitoring of network traffic and the credit fraud

identification [1], recommendation systems which take up the
new recent context to propose more interesting content [2]
or even a customized-command-gesture recognition system
[3]). To cope with theses new constraints, new incremental
learning algorithms have been designed, inspired by classic
batch approaches. For example, we can cite decision tree
(CVFDT [4], Hoeffding tree [5]), or the ensemble classifiers
(DWM [6], Learn++.NSE [7]) or the Evolving Fuzzy Systems
- EFS - (pclass [8], ANYA [9]).

For each of them, the adaptation of the model to the stream
implies the incremental adaptation of the model parameters
(such as the updating of sufficient statistics) and the evolution
of the structure (addition/replacement of subtrees, classifier or
fuzzy rules). Thus, the data stream learning problem can be
simplified in two cases if ... then ...:

• First case: If new data are close to the concepts already
seen Then update the model parameters on these new
data, perhaps using a forgetting factor in case of smooth
drift (called incremental drift).

• Second case: If new data comes from the appearance of
a new concept or a new class, Then update the model
structure, perhaps using a forgetting factor in case of
brutal drift.

The two main goals of a learning model are to guess in which
case the system is after receiving new data, and what is the
extent of the adaptation required. Evolving fuzzy systems are
suitable to address the data stream learning problem. They are
granular models composed of fuzzy rules which locally adapt
the distribution of points with a premise part, and discriminate
the classes in a conclusion part. In the recently introduced
ParaFIS [10], a new learning model for evolving fuzzy system
has been proposed. It considers two systems in parallel. The
principal system is updated assuming the first case, i.e. no drift.
But at the same time, the second system - the anticipation
module - presupposes the need for a structural update to
tackle the second case. Then, with a posteriori information,
the model can decide which assumption was the right one and
can update the principal system from the anticipation module
if a structural update is necessary to have the most suitable
structure.
However, questions still arise: when and how to forget



data. The first question concerns to the well-known stability-
plasticity dilemma, which says that if a forgetting factor is
applied continuously with a high magnitude, the system will
be reactive to drift at all times but will be less stable (i.e.
less efficient in the long run term). Conversely, if none or
a few forgetting factors are applied, then the system will be
more efficient in stationary phase because it learns on more
points, but it will be less reactive in the event of drift. The
second question concerns the ways of forgetting data, i.e.
what information, previously learned on a point, should be
forgotten. Two approaches are possible, either forgetting all the
past information whatever its relevance for the present (blind
adaptation [6]), or it is the learning model which selects the
information to forget.
This paper addresses these issues on two levels, from a
general perspective in data stream, to a specific application
in evolving fuzzy system. To the best of our knowledge, no
stable approach of forgetting in the conclusion part is proposed
in the state of the art. The main difficulty is the wind-up
problem [11] which leads to the collapse of the conclusion
part if a forgetting is applied continuously. To address this
problem, we propose to take advantage of the anticipation
module introduced in ParaFIS, to integrate forgetting in the
conclusion part of the EFS. The application of forgetting only
in the anticipation module makes it possible to respect the
trade-off between stability and reactivity. Indeed, as long as
the system does not detect any change in the data stream, no
forgetting is necessary and the principal system adapts better
to the stationary environment. But once a drift is detected, the
anticipation module learned with forgetting, will update the
principal system to be more reactive to the drift. In addition,
thanks to the granularity of the EFS, only the parameters
affected by the drift will be updated. The contributions of the
paper are as follows:

• Integration of forgetting in the conclusion part,
• Selection of conclusion parameters to update in case of

drift.

The paper is organized as follows. The section II recalls
the ParaFIS model with the concept of anticipation and its
current limits. The section III begins with a discussion of the
problem encountered with forgetting in conclusion part and
presents our contribution (forgetting in the conclusion part of
the anticipation module and method of selecting parameters
during an update of the principal system). Section IV presents
two experiments to evaluate the contribution step by step,
with, at the end, a comparison with state-of-the-art data stream
classifiers.

II. PARAFIS MODEL

Before detailing our contribution, this section recalls the
ParaFIS system [10] on which it is based. The subsection II-A
is a brief overview of related works in the evolving fuzzy
systems. The subsection II-B describes the architecture of a
Fuzzy Inference System (FIS), the subsection II-C presents the
learning step of such a system and the subsection II-D details

the anticipation module. Last, the advantages and problems
remaining in ParaFIS are discussed in subsection II-E.

A. Related works

Since two decades, many fuzzy inference systems have been
designed to be learned in an incremental manner, FlexFIS [12],
eTs [13], ANYA [9]. Most of them are based on the Takagy-
Sugeno fuzzy system composed of a set of fuzzy inference
rules R = {ri, 0 ≤ i ≤ N} with an antecedent part (also
called premise), and a conclusion part. The difference between
models lays in the choice of the structure and the choice of
the criteria used to evolve the structure. The premise can be
prototype with spherical shape [12], elliptical shape [14] or
cloud [9]. Conclusion can have multiple input single ouput
structure - MISO or multiple input multiple ouput structure -
MIMO [13]. The criteria used to add/remove new rule can be
a distance-based criteria [12], a split condition based on the
error and volume’s rule [15], or density-based condition [9].
ParaFIS system [10] is built from the generalized evolving
fuzzy system used in many papers such as in [16], [17]. The
model is described below.

B. Model Architecture

The architecture of ParaFIS is based on the Takagy-Sugeno
fuzzy system. The strength of such system is to combine the
adaptation of the data distribution in the antecedent part (a
generative model) with the discrimination of classes in the
conclusion part to better fit the decision boundaries. Each
rule’s antecedent is defined with a prototype that is set by
a cluster with a center µi and a covariance matrix Ai. The
rule’s conclusion is defined with c polynomial functions lji
(for rule i, class j), c being the number of classes. Finally, the
structure of a rule ri, is as follows:

IF x is close to µi THEN y1i = l1i (x) .. yci = lci (x) (1)

The degree of the polynomial function is set to 1 with πjik the
polynomial coefficients (see Eq. (2)).

yji = lji (x) = πji0 + πji1x1 + πji2x2 + ..+ πjinxn = Πj
ix (2)

The membership of x to a rule ri, denoted βi(x), is given by a
multivariate cauchy function of the mahalanobis distance from
x to µi (see Eq.(3)).

βi(x) =
1

(1 + (x− µi)A−1i (x− µi)T )
(3)

Finally, the predicted class for x is given by Eq. (4),(5).

class(x) = y = argmaxj y
j(x) (4)

yj(x) =

N∑
i=1

β̄i(x)yji (5)

β̄i(x) = βi(x)/

N∑
l=1

βl(x) (6)

The architecture of a FIS is illustrated in figure 1, block
(A).



Fig. 1: Architecture of ParaFIS [10]

C. Rule’s adaptation - Parameters adaptation

Each new incoming data xt is used to adapt the model
parameters. In the premise part, only the most activated
rule adapts its center and covariance matrix according to
Eq. (7),(8), in which, α = 1

t is the fading factor where
t = min(k, tmax) (see [14]), and with tmax, the threshold
defining the forgetting capacity, and k, the number of samples
that activated the rules the most.

µt = (1− α)µt−1 + αxt (7)

At = (1− α)At−1 + α(xt − µt)(xt − µt)T (8)

The conclusion part is learned using a Weighted Recursive
Least Square method (WRLS). In this optimisation problem,
the weight - here the membership functions β - are assumed
to be almost constant to converge to the optimal solution.
To reduce the computation time, the local learning of the
conclusion part is often preferred [18]. Thus, the rules are
assumed to be independent to apply a RLS optimization on
each one. The conclusion matrix Πi(t) = [Π1

i(t), ..,Π
c
i(t)] of

the rule ri at time t (i.e. after t data points) is recursively
computed according to:

Πi(t) = Πi(t−1) + Ci(t)βi(x)Cix(Yt − xΠi(t−1)) (9)

Where Ci(t) = Ci(t−1) −
βi(x)Ci(t−1)xxTCi

1 + βi(x)xTCix
(10)

With Ci a correlation matrix initialized by Ci(t=0) = ΩId
where Id is the identity matrix and Ω a constant often fixed
to 100 (see [19], [13]).

D. Anticipation Module

In ParaFIS, as shown in figure 1 - block (B), an anticipation
module (AM) is added to the fuzzy inference system (called in
this case principal system - PS). The goal of the anticipation
module is to foresee an occurrence of a drift near each rule
premise by anticipating the need of a structural update. Indeed,
if a drift occurs in the vicinity of a rule, the distribution of

point changes and a single rule is no longer sufficient to
model the data. The idea of the anticipation is to consider
for each rule i of the FIS, an anticipated system Si where
the rule i is represented by two sub-rules i.1, i.2 to model
the same distribution of points. In this ways, if a drift occurs,
the anticipated system will already be effective in adapting
to the drift before even detect it. To do this, the anticipation
module is learned in parallel with the principal system. Only
the anticipated system (Si) of the most activated rule i is
learned synchronously with the rule i.

In ParaFIS, the premise of the principal system does not
have forgetting (There is no tmax) while the premise of
the two sub-rules i.1, i.2 from (Si) have two different fading
factors α1,α2. One sub-rule is learned with a low forgetting
factor to capture information over a long period of time for
stability, while the other is learned with a high forgetting factor
to capture the most recent information in order to be reactive
in case of drift.

In addition, the detection of change in the distribution is
done also in the anticipation module. The ParaFIS system
detects that a rule i is no longer sufficient to model the data
(i.e. a drift has occurred) if the premises of the two sub-
rules i.1, i.2 in the anticipation system (Si) are sufficiently
separated according to a clustering separability criterion given
in eq. 11-12.

Condition 1 ||µi − µj || > ks(σi + σj)
(11)

Condition 2 ki > nmin (12)

Where σi (resp. σj) is the distance between µi (resp. µj)
and the hyper-ellipsoid’s envelope of the cluster i (resp. j),
along (µi, µj) axis. ks is a coefficient related to the separation
between cluster. When the conditions are met for the two
sub-rules i.1, i.2, the principal system is replaced by the
anticipated system (Si).

E. Discussion

The ParaFIS system has two main advantages. First of all,
the rule creation condition (i.e. the detector) is based on a
separability criterion between the clusters which is enough
robust to noise contrary to distance-based conditions. Second,
the anticipation of the premise part allows to maintain an
efficient and stable principal system in the absence of drift,
but still reactive and better fitted when a drift occurs, thanks to
the structural update carried out from the anticipation module.
However, in ParaFIS as in any fuzzy inference system, the
conclusion part has no forgetting capacity, which raises to
two concerns. First, the system could be more reactive and
more efficient after a drift if the conclusion were learned with
forgetting. Second, forget only the premise part but not the
conclusion part leads to an inconsistency in the system. Indeed,
they are learned with different information if forgetting is
applied differently, which could be damaging.



III. OUR CONTRIBUTION

The paper’s contribution is divided into three parts. The first
part is a discussion on the difficulty of introducing forgetting
in the conclusion part. The second part is our proposal to
integrate forgetting in the conclusion part of the anticipation
module. The third part proposes two strategies to replace
the conclusion of the principal system from the anticipation
module, when a drift is detected.

A. Discussion on forgetting and rules’ conclusion

The conclusion part of an evolving fuzzy system aims to
discriminate between classes. Its learning assumes that the
underlying distribution does not evolve over time. Typically,
the β(x) function is assumed constant over time, which is no
longer true when drifts occur. To maintain an efficient and
accurate discrimination between classes over time and main-
tain consistency between the premise part and the consequent
part, it is necessary to introduce the forgetting capacity in the
conclusion. The common approach is to exponentially weight
the data over time ( [20]). However, introduce forgetting in the
RLS learning method without introduce instability is still an
open question. Indeed, if old data are forgotten whatever their
significance, as in classical methods, then it causes the un-
bounded growth of the estimator (known as estimator blowup
or covariance windup problem) leading to noise sensitivity and
numerical difficulties [11]. Several ad-hoc approaches have
been proposed, mainly based on regularization method with
assumption or by introducing upper bound [11]. To the best
of our knowledge, these methods are still not used in evolving
fuzzy systems as they do not prevent collapse of the conclusion
matrix over a long time. Recently in [14], a new forgetting
method, called the differed directional forgetting (DDF), has
been proposed to forget the RLS parameters. The main idea
is based on the concept of ”directional forgetting”, i.e. to
limit the windup phenomenon by directing the forgetting in
the most excited dimensions in a sliding window. This offers
a good compromise between forgetting data and maintaining
the stability of the parameters. However, as discussed earlier,
the stability-plasticity dilemma tells us that it is damaging to
forget data when there is no change in the data distribution.

Starting from these problems, the next part introduces our
contribution with a strategy to anticipate the forgetting in
the conclusion part in order to maintain consistency with the
premise part and the current data stream in the ParaFIS model.

B. Anticipation principle and forgetting in conclusion part

To integrate forgetting in the conclusion part, we propose
to use the DDF method [14]. In DDF, the data point are saved
in a sequential sliding window of fixed size. Once the window
is full, the oldest data point is used to recursively decrement
the correlation matrix Ci(t). The correlation matrix represents
the directional forgetting matrix that is used to update the
RLS parameters in the conclusions matrix Π(t). In this way,
the correlation matrix is learned only on the data point from
time s to time t with t− s the window size. The decremental

Fig. 2: Illustration of the two replacements strategies in the
event that a drift is detected for rule 2. In the principal system,
the 3 rules are represented with their respective conclusion.
In the anticipation module, the 3 anticipated systems are
represented with their own conclusions matrices learned with
DDF. Replacement strategies are illustrated by the arrows.

equation is given in eq.13, where Ci(s→t) is the correlation
matrix of the rule i learned on the data points from s to t.
On the contrary, the conclusion matrix is not decremented to
preserve robustness of the consequent part and avoid windup
problems.

Ci(s+1→t) = Ci(s→t) +
βi(xs)Ci(s)xsxTs Ci(s)
1 + βi(xs)xTs Ci(s)xs

(13)

However, there are few pitfalls to avoid. Unlike to premise
part where the center and the covariance matrix are computed
for each rule independently of the other rules, the learning of
the conclusion matrix of a rule depends on the others through-
out the normalized β̄(x) function. Indeed, if a drift occurs
nearby the premise part of the rule i, then the conclusion part
of all rules in the system will be impacted throughout β̄(x).
As a result, the conclusion part of a rule cannot be anticipated
without taking into account the other rules.

To compute the normalized beta for the anticipated con-
clusions, it is necessary to virtually built the ”r” anticipated
systems Si as illustrated in Figure 1 - block (B), with r the
numbers of rules. The ”r” different assumptions lead to ”r”
different scalar fields of the normalized membership function
used to compute the RLS parameters which will lead to r
different conclusion matrices. As an example, let’s consider
the RLS update in the hypothesis where the local distribution
fitted by the premise of rule 1 has drifted (S1 system). In S1,
all conclusion matrices Πj , j ∈ [1, r] are updated using the
last sample xt according to eq. 9. The normalized membership
function β̄i(x) for the rule i is β̄i(x) = βi(x)∑

j βj(x)
with j ∈

1.1, 1.2, 2, 3, .., r. At end, each of the r anticipated systems



requires the update of (r+1)*C hyperplanes. Updating the
r*(r+1)*C hyperplanes on each point is time-consuming, so, it
does not satisfy the real-time constraint. The following section
presents two strategies to reduce the complexity of the system.

C. Strategies to update conclusion part from anticipation

To decrease the computation complexity, the naive idea
of considering only the conclusion matrices of the sub-rules
i.1, i.2 regardless the others can be explored. In this naive
approach, only the conclusions Πi.1,Πi.2 are computed for
the (Si) system (i ∈ [1, r]). Once a drift is detected for a rule
i, it is replaced by the two sub-rules ri.1, ri.2 without replacing
the conclusions matrices of the other rules. This naive strategy
is illustrated in Figure 2.

The naive approach assumes that a drift in the local area of
a rule will have no impact on the conclusions of the others.
However, all rules make a decision to classify a point for any
class. If a drift occurs for one class, then all rules’ conclusions
will be impacted.

An other assumption can be done. The hyperplanes Πj/(Sk)

of rules j 6= k in the virtually built ”k” anticipated system will
be assumed identical and equals to Πj.1/(Sj). In this ways, for
each of the anticipated system, all the conclusion matrices are
known. Then, once a drift is detected nearby the premise of the
rule i, the conclusion matrices of all rules are replaced by the
conclusions matrices of the anticipated system as illustrated
in Figure 2. In this assumption, the other rules have also been
learned with forgetting in the premise and conclusion part.
It assumes also that the second sub-rules in each anticipated
system will not impact too much the hyperplanes (i.e. consider
the rule j 6= i is the same as consider rule j.1 and rule j.2 ).

At end, the final system with the contribution can be illus-
trated with the figure 3. The block (A) is a classical FIS that
receives the data and gives the recognition label. The block (B)
contains ’r’ anticipated systems which are learned in parallel
with forgetting (premise part + conclusion part). The block (C)
is the drift detector based on a separability criteria applied on
the premise part of two sub-rules of each anticipated system.
Once a drift is detected in (Si), the principal system is replaced
by the anticipated one.

An important point is that the choice of evolving fuzzy
system used as principal system is free. The choice done in
the paper may not be the best one and for example an evolving
fuzzy system with anticipated cloud structure [9] as premise
could be better. But, the main suggestion is that using the
anticipation concept and forgetting in conclusion can help any
fuzzy system to be more reactive in case of drift while keeping
stability in the other case, as it is with our choice of fuzzy
system.

IV. EXPERIMENTS

Experiments are conducted to evaluate the advantages of
forgetting the conclusion part with anticipation. The first
and the second section introduce the benchmark dataset and
protocol taken from the recent paper [17]. The third section
compares both, the naive and the global strategies, to update

Fig. 3: Final system obtained from ParaFIS with the addition
of forgetting in the conclusion part of the anticipation module.

the conclusion part of the principal system after a drift. The
fourth section compares the different strategies to apply forget-
ting in the conclusion part between [No forgetting, forgetting
only in the anticipation module (Forget AM Naive/Global),
forgetting continuously in the principal system (Forget PS) ].
The last section compares our contribution with state-of-the-
art Evolving Fuzzy System and ensemble classifiers obtained
from [17] and shows improvements on 8 among 10 datasets
containing different kind of drifts. The final mean accuracy
scores are given in table I.

A. Evaluation protocol

Evaluate the performance of a streaming algorithm requires
different protocols from those used for evaluating classical
learning algorithms. Many of them are discussed in [21]. This
paper is only concerned with the classification performance
of a system. The simulation follows the periodic hold-out
process where the stream of data is generated chunk by chunk.
One chunk is used to train the system and then one chunk is
used to test the system in an online mode. Thus, the system
is evaluated every two chunks to built performance criteria
over time. The performance is measured using the mean
accuracy score and the standard deviation computed on all the
chunks. However, the existence of drift in the dataset naturally
induces important fluctuation of the score independently of the
classifier. To compensate for this, McNemar’s significance test
is also presented [22]. The McNemar test is used to compare
two classifiers evaluated only once over the same dataset [22]
as it is in our case. It consists in computing the statistic K
given equation 14 with n0,1 the examples misclassified by the
first classifier and not by the second and, n1,0 the examples
well-classified by the first classifier and not by the second.
The K distribution converges to a χ2 distribution of degree
1. The null hypothesis of getting non significant difference
between the two classifiers is rejected with a confidence score
α if K is greater than a given threshold. A statistic K that
rejects the null hypothesis with a confidence greater than



Model Electricity
Pricing

Hyperplane Iris+ Car 10dplane Weather Sea SinH Line Sin Mean

ParaFIS No Forget 77±15 91±03 82±14 8±11 68±34 78±03 94±04 67±09 85±15 85±13 81
Forget PS 77±15 93±02 85±12 79±12 63±16 78±03 97±01 71±07 93±06 94±06 83
Forget AM
Naive

77±15 93±02 82±14 82±09 70±31 79±03 96±03 70±07 92±10 93±09 83

Forget AM
Global

77±15 93±02 85±15 81±10 77±34 78±03 98±01 70±07 94±06 94±08 85

Learn++ CDE 69±08 90±00 85±14 68±30 71±13 73±02 93±02 75±50 89±14 80±13 79
Learn++ NSE 69±08 91±02 84±17 67±30 72±14 75±03 93±02 73±22 88±13 80±15 79
pENsemble AxisParallel 75±16 92±02 78±15 79±10 78±20 80±02 97±02 71±06 90±07 78±26 82
pENsemble Multivariate 75±16 92±02 75±17 79±10 80±20 78±02 97±02 71±06 90±07 78±30 82
pClass 68±10 91±02 73±18 77±10 63±26 68±04 89±10 71±09 91±07 72±20 76

TABLE I: Final Results - Mean Accuracy Score

99% (K > 6.63) is noted by a +, between [90%,99%] by
a ≈ and below 90% (K < 2.7) by a -. If the numbers of
contingent errors n1,0+n0,1 is below the recommended value
of 25 to converge toward a Chi-square distribution, a (x) is
added. The McNemar test is apply on the classifier using
the best strategy ”Forget AM Global” and the others strategy
to measure a significance difference between both strategies.
The proposed test can not be extended to the state-of-the-art
benchmark results get from [17] due to the unavailability of
the classifiers (the classification score over each data point get
from benchmark classifier is required).

K =
(n1,0 − n0,1)2

(n1,0 + n0,1)
(14)

B. Datasets

In order to evaluate the algorithm over different types of
drifts (incremental/brutal/gradual/recurrent), the datasets sin,
sinH, 10dplane, line, Car+, Iris+ have been chosen. They
are generated with simulated drifts often using mathematical
equation described in [23]. The SEA dataset [24], in its
extended version [25], proposes to mix several types of drift
with noise and imbalanced data. In addition, Weather dataset
from [26] with incremental drifts is studied. The Hyperplanes
obtained from supplemental material of paper [17], generated
from the MOA frameworks [27] and the real world dataset
Electricity pricing [28] are also investigated. Table II gives the
information on the datasets and presents the test parameters,
with in the columns: IA: Input Attributes, C: Classes, DP: Data
Points, TS: Time Stamps, TRS: Training Samples,TES: Test-
ing Samples. Thus, all of these datasets cover a wide variety
of data streams with different shapes of data distributions and
different drifts.

The paraFIS model contains 4 parameters to define:
• α1,α2: the forgetting factor of sub-rules i1, i2;
• ks: the separation measure between cluster;
• ws: the windows size for DDF.

The α1, α2 parameters will depend on the features space
dimensions. α1 is fixed to 200 and α2 to 10 or 30 (The best
score is chosen). The ks parameters depend not only on the
dimension space but also on the choice of α1, α2 and the data
distribution. There is no rule to define it, so several values
are tested between [0.4, 1] on a validation dataset (20% of

Data stream IA C DP TS TRS TES
SEA 3 2 100 000 200 250 250
Weather 4 2 18159 400 30 30
Line 2 2 2500 10 200 50
Sin 2 2 2500 10 200 50
Sinh 2 2 2500 10 200 50
10dplane 10 2 1200 10 100 20
Iris+ 4 4 450 10 34 11
Car 6 2 1728 10 130 42
Hyperplane 4 2 120K 96 1000 250
Electricity pricing 8 2 45312 199 150 77

TABLE II: Datasets description

the total dataset) and the value that created rules in a ”good”
proportion is chosen. The window size of the DDF method
depends on the dimensions of the space but also on the number
of classes. To set it, all window size values are tested over
a range of [10, 200] and the window with the best score is
chosen. The set of parameters of a dataset is the same for
all the configurations tested (No forget,Forget PS,Forget AM
naive,Forget AM global).

C. Comparison of Naive and Global update strategies

In the previous part, two updating strategies have been
proposed: the naive approach and the global replacement of
the conclusion matrix with assumption. These are two strate-
gies used to satisfy real-time constraints based on handcraft
assumptions. The first considers that it is more important
to maintain the stability of rules far from the drift even if
reactivity of adaptation of their hyperplanes is reduced. On the
contrary, the second assumes that damaging the stability of the
others rules is preferable to improve reactivity of hyperplanes
when a drift occurs. Both strategies are tested on all datasets,
and the results of the models [Forget AM naive, Forget AM
global] are presented in Table I. We can see that replacing all
conclusion parts of all rules from the anticipation module is
often a better solution. This means that the use of hyperplanes
learned with directional forgetting, just after a drift, makes it
possible to react better to the drift without damaging stability
of old knowledge too much. This can be explained by the
fact that the conclusion matrix is not decremented, only the
correlation matrix is, to guide the learning. Thus, the old
knowledge is still contained in the conclusion matrices and,
after the switch, the decremented directional matrices will help



(a) Sea (b) Hyperplane (c) 10dplane

Fig. 4: Example of holdout test with three datasets for the three strategies (No forget, forget in principal system PS, forget in
anticipation module AM). S is the mean score.

the system to react more quickly to the drift by directing the
conclusion learning on the new concept.

D. Different strategies to apply forgetting in the conclusion
part

In order to measure the interest to apply forgetting with
DDF only in the anticipation module, two others strategies
are tested: the ”No Forget” strategy and the ”Forget Principal
System” strategy (Forget PS). The first one is just the ParaFIS
system described in Sec. II where no forgetting capacity is
applied in the consequent part. In the second one, forgetting
is applied in the anticipation module as described in our
contribution (Sec. III). In addition, forgetting is also applied in
the principal system to get a system that continuously forgets.
When a drift is detected and the conclusions are replaced from
the anticipation module to the principal system, the windows
used in the anticipation module will also replace the one used
in the principal system. This keeps the consistency of the
memorized normalized activation in the DDF-windows with
the conclusions matrix learning. Results of the Hold-Out test
on all the datasets are presented in Table I in rows [ParaFIS
No Forget, Forget PS, Forget AM Global]. Examples of plots
of mean score by chunk are given in Figure 4 for the Sea,
Hyperplane and 10dplane datasets. By comparing the rows
”No Forget” and ”Forget PS”, we see that there is no dominant
strategy. Sometimes it is preferable to forget the conclusion,
sometimes not, depending on the stability-plasticity dilemma.
However our strategy ”Forget AM Global” allows a trade off
between the two strategies by forgetting just at the time of the
drift, which results in a better accuracy score on all datasets
except for sinH. To validate the significance of the results, a
McNemar test is carried out by comparing the best strategy
”Forget AM Global”, with all the other strategies. Results are
presented in the Table III. We can see that for Electricity
Pricing, Iris+, Car and SinH datasets, there is no difference
in the proportion of error. For most of these datasets, the
number of contingent errors is less than the recommended
value of 25 due to the small size of the dataset. For 10dplane,
SEA, and Line, where the difference in the mean accuracy

Strategies (compared to Forget AM Global)

Dataset No Forget Forget PS Forget
AM Naive

Electricity
Pricing

- - -

Hyperplane + ≈ ≈
Iris+ - (x) - (x) - (x)
Car - - - (x)
10dplane + (x) + + (x)
Weather + + +
Sea + + +
SinH ≈ (x) - (x) -
Line + - (x) +
Sin + (x) - (x) ≈

TABLE III: McNemar test between ”Forget AM Global” and
the other strategies - A statistic K that reject the null hypothesis
with a confident above 99% (K > 6.63) is noticed by a +,
between [90%,99%] by a ≈ and below 90% (K < 2.7) by a -.
If the number of contingency errors is below the recommended
value of 25, a (x) is added

score is the most important, there is a significant difference in
the proportions of errors. The strategy ”Forget AM Global” is
significantly better for most of the datasets where a difference
of mean accuracy score is observed in the Table I.

E. Comparison with state-of-the-art

Finally, to validate the proposed method, a comparison
with state-of-the-art streaming classifiers is carried out based
on the results published in [17]. Results are shown Table I.
The pclass classifier [29] is an evolving fuzzy system based
on a generalized TSK fuzzy inference system as ParaFIS,
with a rule creation process based on a recursive ”density”
function and with an online feature selection. Its ensemble
version, namely pENsemble [17], is an ensemble classifiers
using pclass as base learned. It is combined with an online drift
detection, ensemble pruning and online features scenarios.
Two other ensembles classifiers are compared: Learn++.NSE
[26], Learn++.CDE [25]. They are designed to deal with non
stationary streams thanks to a dynamic voting scenario which
reflects the current data streams. We can see in the results, that



for 6 among the 10 benchmark datasets, the ParaFIS system
outperforms state-of-the-art models. The average mean scores
over all datasets have reached 85% of accuracy score against
82% for pENsemble, the best from state-of-the-art.

V. CONCLUSION & OUTLOOKS

This paper introduced a new strategy to include forgetting
capacity in the conclusion part of an evolving fuzzy system,
based on the deferred directional forgetting. The strategy relies
on the anticipation concept recently introduced in the ParaFIS
system. The results of the paper highlight that the consequent
part of the EFS plays an important interdependent role in the
classification performance of such system. Consequently, it is
necessary to integrate forgetting to adapt the conclusion part to
non stationary stream. The proposed method consists to update
consequent part of all rules to the drift when it is detected.
The updates is based on the anticipation of the forgetting of
the conclusions part. It gives a convincing trade-off to the
plasticity-stability dilemma. The performances obtained by the
proposed approach, for a classification task, are superior to
those of the state-of-the-art approaches, this for most of the
tested datasets. However, these systems still have the thorny
problem of the parameters setting. Indeed, how to set the
parameters in a data stream context (with no data available) is
a important question to be resolved, in particular with ParaFIS
system which has 4 parameters. Future work will investigate
how to define or adapt these parameters with the data stream.
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