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Abstract

Variational auto-encoders (VAEs) have proven to be a well suited tool for performing
dimensionality reduction by extracting latent variables lying in a potentially much smaller
dimensional space than the data. Their ability to capture meaningful information from
the data can be easily apprehended when considering their capability to generate new
realistic samples or perform potentially meaningful interpolations in a much smaller space.
However, such generative models may perform poorly when trained on small data sets
which are abundant in many real-life fields such as medicine. This may, among others,
come from the lack of structure of the latent space, the geometry of which is often under-
considered. We thus propose in this paper to see the latent space as a Riemannian manifold
endowed with a parametrized metric learned at the same time as the encoder and decoder
networks. This metric is then used in what we called the Riemannian Hamiltonian VAE
which extends the Hamiltonian VAE introduced by Caterini et al. (2018) to better exploit
the underlying geometry of the latent space. We argue that such latent space modelling
provides useful information about its underlying structure leading to far more meaningful
interpolations, more realistic data-generation and more reliable clustering.

Keywords: Variational auto-encoders, Metric learning, Normalizing flows, Latent space
modelling.

1. Introduction

Driven by the apparent availability of always bigger data sets, deep generative models have
become more and more data greedy. Most of the time they need thousands of training
data samples to be able to generate faithfully new data-looking samples. Nonetheless,
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in many fields of application the number of data remains a key issue. For example, in
neuroscience, practitioners have to deal with high dimensional data combined with a very
small number of samples which can make classic methods hard to rely on (Button et al.,
2013; Turner et al., 2018). Recently, Szucs and Ioannidis (2020) studied the sample size
evolution (i.e. the number of participants) in neuroimaging studies of most cited papers
published between 1990 and 2012 representing 1038 contributions. They compared them
to 270 papers published in best-in-class neuroimaging journals between 2017 and 2018.
One of the key outcome of such a study is that 96% of most cited experimental functional
Magnetic Resonance (brain) Imaging (fMRI) studies were based on a median sample size
equals to 12, this number goes to 14.5 when one considers clinical studies and to 50 for
clinical structural analysis. We refer the reader to Table 3 of their paper highlighting the
number of participants in various studies. Their study concludes that the median sample
size slightly increases at a rate of 0.74 participant/year. These very small sample sizes make
conventional machine learning methods unreliable because they do not provide statistically
significant results and sufficient variability between subjects within a given study group. A
way to address this “missing” data issue would consist in trying to create synthetic samples
that could have been part of the “true” data set and use them in classic machine learning
methods. Such an approach can also be used to create synthetic data sets to overcome the
privacy issue of confidential data that cannot be used directly.

One of the tools one may think of are variational auto-encoders. First introduced by
Kingma and Welling (2013) and Rezende et al. (2014), they have proven to be well designed
to perform dimensionality reduction and be able to represent potentially very high dimen-
sional complex data within a much smaller space. Even more appealing is their ability
to generate new realistic data. These two aspects are of interest as ideally we could use
the VAE framework to 1) reduce data dimension which may be useful for performing the
analysis of high dimensional data such a fMRI; 2) be able to structure the latent space such
that interpolations between images of subjects correspond to meaningful deformations and
3) create synthetic data-looking points having the desired properties and use them to train
classic deep models.

Unfortunately, when small data sets are considered the generated samples are most of
the time very blurry and variational auto-encoders hardly perform well in terms of gener-
ation. To tackle such an issue Loaiza-Ganem and Cunningham (2019) proposed to use a
continuous Bernoulli distribution instead of the discrete one which is usually used. How-
ever, they only changed the decoding distribution in order to improve the Evidence Lower
BOund (ELBO) and did not pay attention to geometrical aspects. Moreover, their model
was only trained on large data sets (tens of thousands of samples) and it remains unclear if
it could perform well on much smaller data sets (e.g. hundreds of samples). Improving the
ELBO has been the subject of great interest in recent years and a central point in various
research papers (see Alemi et al., 2018; Burda et al., 2015; Cremer et al., 2018; Higgins
et al., 2017; Ruiz and Titsias, 2019; Zhang et al., 2018). As mentioned above, one way to
achieve a tighter lower bound would consist in changing the decoding and/or the encod-
ing distribution (i.e. the approximate posterior distribution). While, the first point was
explored in (Loaiza-Ganem and Cunningham, 2019), many works focused on tweaking the
approximate posterior distribution of the latent variables given the observations. For exam-
ple, Rezende and Mohamed (2015) used Normalizing Flows consisting in smooth invertible
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transformations applied to the latent variable and aiming at achieving richer approximate
distributions. Similarly, Salimans et al. (2015) proposed a method involving Markov Chain
Monte Carlo sampling steps targeting the true posterior distribution and using determin-
istic kernels based on Hamiltonian dynamics. This work was further extended by Caterini
et al. (2018) who introduced the Hamiltonian variational auto-encoder. Nonetheless, none
of these methods uses the underlying geometry of the latent space which we believe may
be of interest. Even though trying to improve the posterior distribution revealed to be a
good idea, Hoffman and Johnson (2016) proposed a new writing of the ELBO objective
highlighting that particular attention should be paid to the prior distribution as well. This
led Dilokthanakul et al. (2016) to use a Gaussian mixture as prior distribution for the latent
variables. Going further, Tomczak and Welling (2017) proposed to use a “VAriational Mix-
ture of Priors” (VAMP) resulting in better lower bound. By arguing that classic VAE fails
to apprehend data with a specific geometry, Davidson et al. (2018) used Von Mises-Fisher
distributions for the prior and posterior distributions paving the way to further investi-
gate geometrical aspects. Rey et al. (2019) proposed the diffusion variational auto-encoder
along with various latent space modellings. However, to the best of our knowledge such
an approach still requires a prior knowledge of the latent space structure which is not nec-
essary with the method we propose. While trying to bring some structuring to the latent
space, Arvanitidis et al. (2017) proposed to see it as a Riemannian manifold and so pro-
posed to endow this space with a Riemannian metric. This metric is given by the Jacobian
of the generator of the VAE. Their main objective was to use such a metric to perform
clustering tasks using a N -VAE. However, the Jacobian of the generator may be hard and
time-consuming to compute and it remains unclear if such a metric is well suited to other
models and different tasks such as generation and interpolations.

Although tweaking the variational approximate posterior distribution using either nor-
malizing flows or Markov Chain Monte Carlo sampling appears to be one of the most
promising ways to improve the model, exploiting the underlying geometry of the latent
space may provide useful information as well. We will introduce in this paper the Rie-
mannian Hamiltonian variational auto-encoder aiming at combining both approaches. This
model can be seen as a geometry-aware Hamiltonian VAE based on Riemannian Hamilto-
nian dynamics as discussed in (Girolami et al., 2009) and using a metric we propose to learn
directly form the data. We will see that such a model is able to provide an interesting latent
space structuring which reveals well suited for performing geodesic interpolation, generation
and clustering especially in the context of small size data sets.

2. Model Setting

Given a set of data x P X and a parametric model tPθ; θ P Θu, variational auto-encoders aim
at finding the parameter θ maximising the marginal likelihood of the data pθpxq. Assuming
that the data generation process involves a continuous latent variable z P Z living in a
smaller space, the marginal likelihood can be written as follows:

pθpxq “

ż

pθpx|zqqpriorpzqdz , (1)

where qpriorpzq is a prior distribution over the latent variables generally chosen as a standard
normal distribution. One way to compute pθpxq would consist in using both the joint
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distribution pθpx, zq and the posterior distribution pθpz|xq. However, the latter is most
of the time intractable. Hence, a variational approximation qφpz|xq of the true posterior
distribution is introduced and is often referred to as the encoder (Kingma and Welling,
2013). An unbiased estimate of the marginal likelihood then writes

p̂θpxq “
pθpx, zq

qφpz|xq
,

where z „ qφpz|xq. Applying Jensen’s inequality to the above expression, we obtain the
Evidence Lower BOund (ELBO) on the log-likelihood of the marginal distribution:

log pθpxq ě Ez„qφpz|xqrlog pθpx, zq ´ log qφpz|xqs “ ELBO . (2)

Using the reparametrization trick (Kingma and Welling, 2013) makes an estimate of the
ELBO differentiable with respect to φ and so gives access to an unbiased estimate of the
gradient of the ELBO . Recent works have been trying to tweak the variational posterior
approximation qφpz|xq to achieve a better estimate of the true posterior pθpz|xq which would
ideally make the inequality in Eq. (2) an equality. An approach was proposed by Salimans
et al. (2015) and consists in adding a fixed number of MCMC steps to the variational
posterior approximation targeting the true posterior distribution pθpz|xq as follows:

p̂θpxq “
pθpx, zT q

śT
t“1 rpzt´1|zt, xq

qφpz0|xq
śT
t“1 rpzt|zt´1, xq

,

where z0 „ qφpz|xq, rpzt|zt´1, xq is the transition kernel from which zt is sampled and
rpzt´1|zt, xq is the reverse kernel. This method requires forward and reverse transition
kernels that may have to be parametrized and learned as well. An other approach is to
consider smooth invertible parametrized mappings f called Normalizing flows (Rezende and
Mohamed, 2015). K transformations are then applied to a latent variable z0 drawn from an
initial distribution q (here q “ qφ) leading to a final random variable zK “ fKx ˝ ¨ ¨ ¨ ˝ f

1
xpz0q

whose density writes

qφpzK |xq “ qφpz0|xq
K
ź

k“1

| det Jfkx |
´1 , (3)

where Jfkx “
Bfkx
Bz . These mappings are essentially parametrized and learned during the

learning process. Caterini et al. (2018) proposed to use a method based on Hamiltonian
Monte Carlo dynamics and combining both approaches to produce an unbiased estimate of
pθpz|xq.

2.1 Hamiltonian Markov Chain Monte Carlo

The method proposed in (Caterini et al., 2018) is inspired by the Hamiltonian Monte Carlo
sampler (HMC) which has been studied in several papers (see Neal et al., 2011; Livingstone
et al., 2019; Durmus et al., 2017; Betancourt et al., 2017). In the HMC framework, a random
variable z is assumed to live in an Euclidean space and to follow a target density π deriving
from a potential U such that the distribution writes

πpzq “
e´Upzq

ş

e´Upszqdsz
, (4)
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where Upzq “ ´ log πpzq. Since it is most of the time impossible to sample directly from
π, an independent auxiliary random variable ρ P Rd is introduced and used to “sample” z.
This variable is often referred to as the momentum and is such that ρ „ N p0,Mq where M
is called the mass matrix. The idea behind the HMC is to work with the extended target
probability distribution πpz, ρq “ ppz|ρqppρq “ πpzqppρq whose density writes

πpz, ρq “
e´Hpz,ρq

ş

R2d e´Hpz,ρqdzdρ
,

where Hpz, ρq is called the Hamiltonian (Duane et al., 1987; Leimkuhler and Reich, 2004)
and corresponds to the negative log-density of the extended target distribution

Hpz, ρq “ ´ log πpz, ρq “ ´ log πpzq `
1

2
logpp2πqd|M|q ` ρJM´1ρ

“ Upzq ` κpρq .
(5)

In physics, the equation gives the total energy of a physical system having a position z
and a momentum ρ. U is referred to as the potential energy and κ is called the kinetic
energy. The evolution in time pzptq, ρptqq of such a system is given by Hamilton’s equations
as follows:

$

’

’

&

’

’

%

Bz

Bt
“
BH

Bρ
“ M´1ρ ,

Bρ

Bt
“ ´

BH

Bz
“ ∇z log πpzq .

(6)

The solution flow φt of the above PDE system has to:

(i) preserve the Hamiltonian i.e. Hpφtpz0, ρ0qq “ Hpz0, ρ0q.

(ii) be volume preserving |Jφt | “ 1.

(iii) be time-reversible.

Unfortunately, this system of PDE is most of the time intractable and a discretization
scheme is then needed to approximate the solution and is referred to as the Stormer-Verlet
integrator.

ρpt` ε{2q “ ρptq ´
ε

2
¨∇zHpzptq, ρptqq ,

zpt` εq “ zptq ` ε ¨∇ρpHpzptq, ρpt` ε{2qqq ,

ρpt` εq “ ρpt` ε{2q ´
ε

2
¨∇zHpzpt` εq, ρpt` ε{2qq ,

(7)

where ε is the leapfrog step size. Such a scheme is run nlf times to sample a proposal

psz, sρq which is accepted with probability min
´

1, exp
`

´Hpsz, sρq, Hpz, ρq
˘

¯

. It is easy to see

that negating ε on each step makes the integrator reversible (iii). In addition, the volume
preserving property (ii) is ensured since the Jacobian matrix of each transformation has a
unit determinant. The acceptation-rejection steps allows for the approximate preservation
of the energy (i) of the integrator. Finally, this procedure is applied several times and creates
an ergodic, time-reversible Markov Chain having π as stationary distribution (Duane et al.,
1987; Liu, 2008; Neal et al., 2011).
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2.2 HMC within the VAE

The idea first introduced in (Salimans et al., 2015) and further applied to the VAE frame-
work by Caterini et al. (2018) is to exploit the fact that the flow created by the integrator
is informed by the gradient of the target density through Eq. (6). In the VAE framework
the target density π is the true posterior distribution of the latent variables given an input
data point x (i.e. πx :“ pθpz|xq). Ideally, we would like to be able to sample directly from
this distribution. Unfortunately, pθpz|xq is most of the time intractable and so direct sam-
pling is made impossible. Thinking of the HMC sampler, we would then need to be able
to compute the gradient of the true posterior distribution so we can use it to sample from
pθpz|xq. One way to access to it is to consider the Bayesian framework. As is common one

may remark that for a datapoint x P X , pθpz|xq “
pθpx,zq
pθpxq

9 pθpx, zq since we only consider

the random variable z. Then, targeting pθpz|xq is strictly equivalent to targeting the joint
distribution pθpx, zq. Recall from Eq. (1) that the model’s joint distribution is such that
pθpx, zq “ pθpx|zqqpriorpzq where pθpx|zq is the decoding distribution and qpriorpzq the prior
distribution. Therefore, we can set the potential of Eq. (4) such that Uxpzq “ ´ log pθpx, zq
is defined for each x P X . Now that we have access to the gradient of the true posterior dis-
tribution trough the joint distribution which is tractable, we can use the HMC framework.
Including the independent auxiliary random variable ρ and writing the negative logarithm
of the extended joint distribution leads to the Hamiltonian

Hxpz, ρq “ ´ log pθpx, z, ρq “ Uxpzq `
1

2
logpp2πqd|M|q ` ρJM´1ρ .

Finally, K iterations of the integrator as described in Eq. (7) can then be used to sample

pzK , ρKq. We define the iterates tΦ
˝plq
ε,x : RdˆRd Ñ RdˆRd, l P N˚u where ε is the leapfrog

step size by induction as follows:

Φ˝pl`1q
ε,x “ Φ˝plqε,x ˝ Φ˝p1qε,x , Φ˝p0qε,x “ Id .

Caterini et al. (2018) used the Stormer-Verlet integrator combined with a tempering step
as proposed in (Neal, 2005) to create transition kernels used to sample pzK , ρKq. The
tempering steps consist in starting from an initial temperature β0 (which can be learned)
and decreasing the momentum ρ by a factor αk “

a

βk´1{βk after each leapfrog step k.
The temperature is then updated as follows:

a

βk “

˜˜

1´
1
?
β0

¸

k2

K2
`

1
?
β0

¸´1

.

The idea is to produce an effect similar to that of the Annealed Importance Sampling (Neal,
2001). The acceptance/rejection step is avoided as it is not amenable to the reparametriza-
tion trick (Salimans et al., 2015). This creates a smooth invertible transformation Hx “

gK ˝Φ
˝p1q
ε,x ˝ ¨ ¨ ¨ ˝ g0 ˝Φ

˝p1q
ε,x mapping (z0, ρ0q P Rd ˆRd to pzK , ρKq P Rd ˆRd with gk being

a tempering step. This transformation can be interpreted as a target-informed normalizing

flow since each integrator step Φ
˝p1q
ε,x is guided by the gradient of true posterior distribution

pθpz|xq. Since each transformation is smooth and differentiable, the whole scheme is also
amenable to the reparametrization trick so that we have access to an unbiased estimate of
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the gradient of the ELBO. Using the volume preservation property (i.e. | det J
Φ
˝p1q
ε,x
| “ 1)

and Eq. (3), we have

qφpzK , ρK |xq “ qφpz0|xqqpρ0q

K
ź

t“1

| det Jgk | “ qφpz0|xqqpρ0q

K
ź

k“1

´βk´1

βk

¯d{2

l jh n

β
d{2
0

.
(8)

In their work, the latent space had an Euclidean structure and they considered a fixed mass
matrix equals to Id. This choice was motivated by the fact that optimizing the leapfrog step
sizes is equivalent to optimizing the mass matrix itself (Neal et al., 2011) provided that this
matrix is diagonal. However, as a variant approach using a space-dependant mass matrix
and exploiting the manifold structure of probability densities could lead to far better and
faster samplings (Girolami et al., 2009), we do not see any apparent reason to restrict M
to be constant and the latent space to be euclidean. This is what led us to introduce the
Riemannian Hamiltonian VAE.

3. Proposed Method: Geometry-Aware Hamiltonian VAE

In this section we introduce the Riemannian Hamiltonian VAE and describe and motivate
the choice in the metric we use.

3.1 Riemannian Hamiltonian Markov Chain Monte Carlo

We will now assume that the latent variables z live in a Riemannian manifold Z endowed
with a Riemannian metric G. It has been shown that an extension to Riemannian manifolds
of the Hamiltonian Monte Carlo sampler is also possible (Girolami et al., 2009) and (Giro-
lami and Calderhead, 2011). In such a context, the momentum is such that ρ „ N p0,Gpzqq
and so is no longer independent from z. Keeping the same notation as before and writing
the negative logarithm of the extended joint distribution log pθpx, z, ρq, the (Riemannian)
Hamiltonian follows

HRiem
x pz, ρq “ Uxpzq `

1

2
logpp2πqD det Gpzqq `

1

2
ρJGpzq´1ρ ; (9)

such that the target distribution remains

πxpzq “

ż

πxpz, ρqdρ “

ş

e´Hxpz,ρqdρ
ş

e´Hxpz,ρqdρdz
“

e´Uxpzq

p2πqD{2
?
|Gpzq|

ş

e´
1
2
ρJGpzqρdρ

ş

e´Uxpzq

p2πqD{2
?
|Gpzq|

ş

e´
1
2
ρJGpzqρdρdz

“
e´Uxpzq

ş

e´Uxpzqdz

“
pθpx, zq

ş

pθpx, zqdz

“ pθpz|xq .
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Considering now that we have a position-specific metric tensor Gpzq defined on the manifold,
the kinetic energy of Eq. (5) writes

κpz, ρq “
1

2
logpp2πqD det Gpzqq `

1

2
ρJGpzq´1ρ .

Again differentiating Eq. (9) with respect to z and ρ leads to a system of PDE (Girolami
and Calderhead, 2011) known as Hamilton’s equations

$

’

’

’

&

’

’

’

%

dzi
dt
“
BHRiem

x

Bρi
“

`

G´1pzqρ
˘

i
,

dρi
dt
“ ´

BHRiem
x

Bzi
“
B log πxpzq

Bzi
´

1

2
tr

˜

G´1 BGpzq

Bzi

¸

`
1

2
ρJG´1pzq

BGpzq

Bzi
G´1pzqρ .

(10)
Unfortunately, the integrator proposed in Eq. (7) is no longer volume preserving since the
variable ρ is no longer independent from z. Hence, a new integration scheme with the
volume preserving and reversibility properties has been proposed and writes

ρpt` ε{2q “ ρptq ´
ε

2
∇zH

Riem
x

´

zptq, ρpt` ε{2q
¯

,

zpt` εq “ zptq `
ε

2

”

∇ρH
Riem
x

´

zptq, ρpt` ε{2q
¯

`∇ρH
Riem
x

´

zpt` εq, ρpt` ε{2q
¯ı

,

ρpt` εq “ ρpt` ε{2q ´
ε

2
∇zH

Riem
x

´

zpt` εq, ρpt` ε{2q
¯

.

(11)
This integrator is referred to as the generalized leapfrog integrator and ensures that the
target distribution is preserved by Hamiltonian dynamics. It has been shown by Hairer
et al. (2006) and Leimkuhler and Reich (2004) that this integrator is also volume preserving
and time reversible. Again, if the acceptation/rejection ratio is added, the Riemannian
Hamiltonian Monte Carlo sampler (RHMC) produces an ergodic, time-reversible Markov
Chain having πx as stationary distribution (Girolami and Calderhead, 2011; Duane et al.,
1987; Neal et al., 2011; Liu, 2008; Neal, 2012).

We propose an approach similar to the one discussed in (Caterini et al., 2018) but taking
into account the non-Euclidean structure of the latent space. In our method, Z is assumed
to be a Riemannian space whose metric is given by Gpzq. This makes us use the generalized
leapfrog integrator along with a tempering step to create a smooth mapping HRiemann

x that
takes pρ0, z0q P Rd ˆ Rd and returns pρK , zKq. Again this transformation HRiemann

x can
be seen as a specific kind of normalizing flow informed by the target through Eq. (10)
and by the latent space geometry thanks to the metric G. Our intuition is that using the
underlying geometry of the manifold in which the latent variables live would better guide
the approximate posterior distribution leading to better Log-Likelihood (LL) estimate and
will also structure this space. One may remark that the generalized leapfrog integrator is
no longer explicit and so requires the use of fixed point iterations to be solved. Fortunately,
only few iterations are needed to stabilize the scheme (we use 3 iterations). While these
fixed point iterations add some computation time to the training process when compared
to the Hamiltonian VAE, this is counter-balanced by the more efficient sampling achieved
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with the RHMC (Girolami et al., 2009) which basically requires a fewer number of leapfrog
iterations (3 vs. 10/15) to sample “accurately”. We refer the reader to Section 4.2.1 for
quantitative metrics comparison. Finally, using Eq. (3) and the volume preservation leads
to the same kind of equation as Eq. (8) that is

qφpzK , ρK |xq “ qφpz0|xqqpρ0|z0q

K
ź

t“1

|det Jgk | “ qφpz0|xqqpρ0|z0q

K
ź

k“1

´βk´1

βk

¯d{2
.

The major difference with the Hamiltonian variational auto-encoder is that we propose to
sample ρ using a position-specific distribution. Again, omitting the acceptation/rejection
step makes the flow HRiemann

x differentiable with respect to φ and so the reparametrization
trick can be used and gives access to an unbiased estimate of the gradient of the ELBO.

3.2 The Metric

Since the choice of the metric appears to be quite crucial, we first propose to discuss some
Riemannian metrics that have been exposed in the literature before introducing the one we
propose.

3.2.1 Metric Proposed in the Literature

A quite “natural” way to introduce a Riemannian structure in the latent space of deep
generative models is to consider a metric deriving from Taylor’s theorem. The idea is to
consider z P Z, ∆z a small variation around z and f : z P Z Ñ fpzq P X the generator
function. Taking the square norm between two decoded samples gives

‖fpz `∆zq ´ fpzq‖2 « ∆zJJJz Jz∆z ,

where Jz “
Bf
Bz . JJz Jz can now be seen as a Riemannian metric in the latent space. This

modelling has been a common point in many papers trying to bring geometry to the latent
space of deep generative models. While Chen et al. (2018) and Shao et al. (2018) directly
used the metric Mz “ JJz Jz, Arvanitidis et al. (2017); Yang et al. (2018) and Hauberg (2018)
went a bit further and considered a stochastic metric. In their papers, the authors considered
the N -VAE meaning that pθpx|zq is modeled by a Gaussian distributions N pµθpzq,Σθpzqq
where Σθ “ σθpzqID is diagonal. In such a context a data point xg can be generated using
the reparametrization trick as follows:

xg “ µθ ` σθ d ε, ε „ N p0, IDq ,

where d is the element-wise product. With that being said, the generator function is now
stochastic and so the authors demonstrated that if the mean function µθ and the variance
function σθ are twice differentiable, the expected value of the metric Mz “ JJz JJz writes

EεrMzs “

´

Jpµqz

¯J´

Jpµqz

¯

`

´

Jpσqz

¯J´

Jpσqz

¯

. (12)

They used this equation as an approximation of the “true” underlying metric Mz on the
ground that Var pMzq ÝÝÝÝÑ

DÑ8
0. An interesting aspect of Eq. (12) is that it involves
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directly the variance function. Intuitively, we would expect the metric to have high values
in locations with high uncertainty that is where no data is available. Hence, the geodesics
would stay close to the data. Unfortunately, arguing that neural networks interpolate
badly in uncertain regions, they paid particular attention to the modelling of the variance
function. Their idea consisted in proposing a variance function such that it achieves, as
expected, higher values far from the data impeding geodesic paths to explore these regions.
This led Arvanitidis et al. (2017) to consider the following modelling:

1

σ2
ψpzq

“Wvpzq ` ξ, with vkpzq “ expp´λk‖z ´ ck‖2q ,

where pckq1ďkďK are K centroids obtained using k-means algorithm on the encoded samples,
W is a matrix of weights and λk writes

λk “
1

2

˜

a
1

|Ck|
ÿ

zjPCk

‖zj ´ ck‖
¸´2

. (13)

The VAE is then trained in two times: 1) The mean µθ of the generator function along with
the mean µφ and variance Σφ functions of the inference networks are trained while keeping
σθ fixed; 2) The variance function σψ is trained with all other parameters fixed.

One drawback of the metrics involving the Jacobian of the generator function is that
they strongly constraint the model used which rigorously needs to be at least C2 since the
Riemannian metric must be smooth enough. This is made impossible if non-smooth acti-
vation functions such a ReLu are used. Moreover, most of the time there is no closed-form
expression of the Jacobian available and it needs to be approximated using finite differences
(see Shao et al., 2018) adding potentially large biases or with automatic differentiation
which can reveal very costly for deep networks.

3.2.2 Proposed Latent Space Modelling

As highlighted in Eq. (9), the choice of the metric tensor G is crucial since it defines the
topology of the latent space. While the previous section illustrated some candidate metrics,
we take a rather different approach as we decide to learn a parametrized metric directly
from the data using a neural network. The metric model we propose is a generalization
of the one exposed in (Louis, 2019). Note that, in that paper, the author assumes that
the data live in a Riemannian manifold and the latent space is Euclidean whereas we do
not make any assumption on the data space and assume a Riemannian structure of the
latent space. We parametrize the inverse of the metric tensor rather than the metric itself
since Hamiltonian dynamics only require the inverse of the metric tensor G´1pzq and its
determinant det Gpzq to be computed (see Eq. (9)). This implies that we do not have to
inverse the metric tensor at each leapfrog step in Eq. (11). Our parametrization writes

G´1pzq “
N
ÿ

i“1

LψiL
J
ψi

exp
´

´
‖z ´ ci‖2

2

T 2

¯

` λId , (14)

where Lψi are lower triangular matrices with positive diagonal coefficients. T is a temper-
ature to smooth the metric and λ a regularization factor. ci are referred to as the centroids

10
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and are such that ci “ µpxiq where µpxiq is the mean of the density distribution of the
latent variable zi „ N pµpxiq,Σpxiqq “ qφpzi|xiq associated to the data point xi. Lψi can
intuitively be seen as the triangular matrix in the Cholesky decomposition of G´1pciq up
to a regularization factor. The Lψi are learned using a neural network mψ mapping a data
point xi from the training set to a lower triangular matrix Lψi . The hyper-parameters T
and λ can be learned or kept fixed. The influence of each of these parameters is discussed
in Section 4.2.2. At the end, the centroids ci, the matrices Lψi along with the temperature
T and regularizing factor λ are fixed and stored.

We found this metric very interesting as it demonstrates very powerful properties. First,
the metric is smooth and even C8 which allows for an easier usage. Second, it is easy to
evaluate its value at any given point z of the latent space since it does not require the
computation of a potentially time-consuming function such as the Jacobian. The proposed
parametrization can be easily integrated in the learning process as described in Algorithm 1.
Even though by design the proposed metric scales in memory with the number of training
points and the dimension of the latent space one can easily reduce the number of centroids
by electing k clusters centers using k-means or k-medoids algorithm amongst the actual
centroids ci. These centers are then used as references points during training.

4. Experiments

In this section, we propose to empirically assess the proposed model’s enhancements in
terms of Log-Likelihood estimate, reconstruction error, samples interpolation, generation
and clustering.

4.1 Models Architectures

For each experiment we consider a B-VAE with the architectures as described in Table 1
unless stated otherwise. The metric used within the RHVAE is given by Eq. (14). We recall
that the B-VAE framework is as follows:

$

’

’

’

’

&

’

’

’

’

%

z „ N p0, Idq ,

x|z „ pθpx|zq “
D
ź

i“1

Bpxi|πθpzqiq ,

z|x „ qφpz|xq “ N pµφpxq,Σφpxqq .

4.2 Auto-Encoder

First of all, we test the auto-encoding ability of the proposed model and compare it to other
VAE architectures.

4.2.1 Comparison with Peers

Although enhancing the Log-Likelihood estimate is not our primary objective when adding
a Riemannian metric in the latent space, we nonetheless try to see if it does improve it
on relatively small size data sets extracted from two well-known databases. To do so,
the Log-Likelihood values along with the reconstruction errors obtained with a RHVAE
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Algorithm 1: RHVAE with metric learning

Initialize G ; // We put ci “ 0 and Lψi “ Id
while not converged do

LÐ 0 ;
for n “ 1 Ñ NB do

Collect a batch of data Xn “ px1, ¨ ¨ ¨ , xbsq;
ci Ð encodepxiq;
Lψi Ð mψpxiq;
Update the metric G according to Eq. (14);
z0 „ N pµpxq,Σpxqq, ρ0 „ N p0,Gpz0qq;
ρÐ ρ0{

?
β0;

for k “ 1 Ñ K do
ρ̄Ð ρk´1 ´

ε
2∇zHpx, zk´1, ρ̄q ; // fixed point it.

zk Ð zk´1 `
ε
2

´

∇ρHpx, zk´1, ρ̄q `∇ρHpx, zk, ρ̄q
¯

; // fixed point it.

ρ1 Ð ρ̄´ ε
2∇zHpx, zk, ρ̄q;

?
βk Ð

´´

1´ 1?
β0

¯

k2

K2 `
1?
β0

¯´1
;

ρk Ð

?
βk´1
?
βk

ρ1 ;

end
pÐ pθpx, zK , ρKq ;
q Ð qφpz0, ρ0|xq;
Lbatch Ð log p´ log q ;
L “ L` Lbatch{NB ;

end
Update θ, φ and ψ using gradient descent;

end

Networks Configurations

µϕ MLP - pD, 400, ReLuq˚ MLP - p400, d, Linearq
Σϕ MLP - pD, 400, ReLuq˚ MLP - p400, d, Linearq
πθ MLP - pd, 400, ReLuq MLP - p400, D, Sigmoidq

Lψ (diag) MLP - pD, 150, ReLuq˚˚ MLP - p150, d, Linearq

Lψ (lower) MLP - pD, 150, ReLuq˚˚ MLP - p150, dpd´1q
2 , Linearq

* Same layers, ** Same layers

Table 1: Inference and generator neural networks used for the VAE, HVAE and RHVAE
along with the neural network architecture used for metric learning.
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are compared to the ones of a vanilla VAE and several Hamiltonian VAEs trained with
different sets of parameters as proposed in (Caterini et al., 2018). We consider 2 data sets
respectively extracted from the MNIST (LeCun, 1998) and the FashionMNIST (Xiao et al.,
2017) data sets. To stick to the small data set framework, we decide to only select 50
random samples from each class of the group {“0”, “1”, “2”} (resp. {“T-shirt”, “Sandal”,
“Bag”}) of the MNIST (resp. FashionMNIST) data set. Then, the created sets are split
into a training set (80% of the data set) and a test set (20%) ensuring balanced classes.
For each model the latent space dimension is set to 10 and we employ an early-stopping
strategy consisting in stopping the training if the ELBO does not improve on the validation
set for 100 epochs. The Log-likelihood is evaluated using 200 importance samples from
the approximate posterior distribution qφpz|xq and is estimated 5 times. We present the
mean value across these 5 estimates along with the associated standard deviation between
parenthesis in Table 2. Interestingly, the model we propose is able to outperform both the
VAE and HVAE models on each data set. Although, a smaller number of leapfrog steps is
considered when compared to the best HVAE, the proposed model still achieves a slightly
better log-likelihood estimate than peers on the FashionMNIST data set (271.45 vs. 271.67).
This is even more sticking on the MNIST data set where the proposed RHVAE outperforms
competitors as well (110.60 vs. 112.28).

In addition to the Log-likelihood estimate, it is interesting to compute another metric
assessing the reconstruction faithfulness. Even though we acknowledge that assessing the
distance between images may reveal challenging we propose to use the L-2 norm to quantify
the quality of the reconstructed samples for each model. As any of the pixels of the image
is considered independent from the others, we believe that such a metric still provides a
fairly good assessment of how “far” the reconstructed distribution is from the target. To
ensure a fair comparison between models, we use the model achieving the best test ELBO
on the validation set. The models’ ability to reconstruct samples faithfully is then assessed
by computing the relative L-2 distance between the ground truth images of the test and
train sets and the reconstructed samples. The results are made available in Table 3. As
expected since it achieves a strongly better Log-likelihood estimate on the MNIST data
set, the RHVAE outperforms other models in terms of pure reconstruction on the test set.
Interestingly it also performs the “worst” on the training set which is a good indicator
that compared to other models it does not over-fit the training data. Although the Log-
likelihood estimate it achieves on the FashionMNIST data set only slightly outperforms both
the VAE and HVAEs, the proposed RHVAE strongly outperforms competitors in terms of
reconstruction on both the training and testing set. In Figure 1 reconstructed samples
extracted from the test set are also presented.

As to parameters setting, we use a batch size set to 60. The temperature β0 is learned
for HVAE and fixed to 0.3 for our RHVAE since we consider that the parameter β0 can be
“learned” directly within the metric which becomes now position-specific. For the MNIST
database, we learn the metric temperature and the leapfrog integrator step size εlf , the
regularization is set to 10´3 while we use a regularization of 10´2 along with a fixed εlf
set to 10´2 for the FashionMNIST data set. Hyper-parameters influence is discussed in the
following section.
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Models MNIST FashionMNIST
Name Parameters

nlf εlf log ppxq log ppxq

VAE - - ´113.48 p0.21q ´275.35 p0.63q

HVAE 1 learned ´113.44 p0.33q ´273.96 p0.52q
HVAE 3 learned ´115.05 p0.34q ´272.40 p0.30q
HVAE 5 learned ´113.78 p0.47q ´271.67 p0.35q
HVAE 10 learned ´112.97 p0.47q ´271.96 p0.28q
HVAE 15 learned ´112.07 p0.33q ´272.64 p0.20q
HVAE 10 10´4 ´113.40 p0.21q ´274.35 p0.19q
HVAE 10 10´3 ´112.43 p0.13q ´275.32 p0.44q
HVAE 10 10´2 ´112.28 p0.33q ´274.16 p0.26q

RHVAE 3 learned{10´2 ´110.60 p0.17q ´271.45 p0.32q

Table 2: Maximum Log-Likelihood estimate achieved by each model along with the main
parameters values. The models are trained on 2 small data sets extracted from
MNINST and FashionMNIST. The training set is created by randomly selecting
80% of a data set composed by 3 classes of 50 samples each and ensuring balanced
classes. Training is stopped if the ELBO does not improve on the validation set
(20% of the initial data set) for 100 epochs.

Model MNIST FashionMNIST
Train Test Train Test

VAE 9.35% 26.19% 18.81% 10.86%
HVAE 10.05% 25.41% 18.22% 10.14%

RHVAE 10.97% 24.88% 16.96% 9.66%

Table 3: Relative L-2 reconstruction error on the test and training sets for each model

(εerr “
ř

i‖xi´xreconstructedi ‖22
ř

i‖xi‖22
). To ensure a fair comparison only the models achiev-

ing the best test ELBO are considered.

Ground
truth

VAE

HVAE

RHVAE

Ground
truth

VAE

HVAE

RHVAE

Figure 1: Reconstruction of 2 samples per class extracted from the test set. To ensure a
fair comparison only the models achieving the best test ELBO are considered.
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4.2.2 Sensitivites

We acknowledge that the model we introduce comprises several hyper-parameters the in-
fluence of which is discussed in this section. We run our algorithm and compute several
sensitivities on the same data sets as those used in the previous section. In particular, the
RHVAE models are trained with different metric temperatures T either learned or set fixed
and ranging from 0.4 to 5, a fixed regularization factor λ ranging from 10´3 to 10, a fixed
number of leapfrog steps nlf ranging from 1 to 10 and different leapfrog step sizes either
learned or fixed and ranging from 10´2 to 10´4. We decide not to change the value of

?
β0

since we believe its value is already optimized within the learned position-specific metric.
The metrics (Log-likelihood and minimum ELBO) are reported for all the models and are
presented in Table 4. For the sake of readability, we also provide the training curves in
Appendix A presenting the moving average (10 epochs) of both metrics. The same early-
stopping as in Section 4.2.1 is employed. For all sensitivities, the latent space dimension is
set to 2.

Models MNIST FashionMNIST
Parameters

nlf εlf T λ log ppxq ELBO log ppxq ELBO

1 10´2 0.8 10´2 ´137.52 p0.26q 4277.19 ´292.89 p0.33q 9132.64
3 10´2 0.8 10´2 ´136.76 p0.30q 4236.07 ´289.65 p0.13q 9115.90
10 10´2 0.8 10´2 ´137.63 p0.07q 4263.47 ´294.79 p0.12q 9216.46

5 10´4 0.8 10´2 ´137.44 p0.12q 4246.53 ´288.96 p0.17q 8945.68
5 10´3 0.8 10´2 ´134.50 p0.17q 4115.16 ´285.53 p0.13q 8827.40
5 l.˚ 0.8 10´2 ´137.95 p0.23q 4250.48 ´291.84 p0.51q 9078.35

5 10´2 0.4 10´2 ´137.82 p0.15q 4284.54 ´288.17 p0.51q 8918.95
5 10´2 0.6 10´2 ´136.47 p0.09q 4239.84 ´288.39 p0.23q 8985.83
5 10´2 1 10´2 ´136.33 p0.24q 4326.44 ´287.93 p0.25q 8942.79
5 10´2 2 10´2 ´136.11 p0.24q 4246.98 ´285.77 p0.18q 8841.37
5 10´2 5 10´2 ´137.22 p0.14q 4230.40 ´285.47 p0.11q 8770.49
5 10´2 l.˚ 10´2 ´135.53 p0.10q 4160.34 ´283.84 p0.07q 8732.34

5 10´2 0.8 10´3 ´136.87 p0.25q 4228.59 ´285.68 p0.29q 8904.92
5 10´2 0.8 10´1 ´137.11 p0.14q 4234.00 ´286.53 p0.30q 8959.55
5 10´2 0.8 1 ´136.83 p0.13q 4252.50 ´285.90 p0.17q 8946.34
5 10´2 0.8 10 ´136.12 p0.09q 4172.34 ´287.47 p0.10q 8857.29

5 10´2 0.8 10´2 ´135.88 p0.07q 4246.90 ´287.49 p0.34q 9015.70

* learned

Table 4: Hyper-parameters sensitivities. Maximum Log-Likelihood and minimum ELBO
achieved by RHVAEs trained on two small data sets extracted from MNIST and
FashionMNIST with different sets of parameters. The latent space dimension is
set to 2. Training is stopped if the ELBO does not improve on the validation set
(20% of the initial data set) for 100 epochs.
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The first outcome of such a study is that the parameters which seem to have the greatest
impact on the overall model’s performance are those directly linked to the generalized
leapfrog integrator (i.e. nlf and εlf ). The Log-Likelihood can indeed jump from 287.49
(nlf “ 5) to 292.89 (nlf “ 1) on the FashionMNIST data set for example. The leapfrog
step size has a strong influence as well and interestingly trying to learn this parameter may
not always improve the model (e.g. 137.95 vs. 134.50 for εlf “ 10´3 on the MNIST data
set). This may be due to the fact that the metric is learned at the same time and so the
learning of the leapfrog step size might be somehow integrated within the metric learning
process. Secondly, the model seems to remain quite robust to metric’s hyper-parameters
change which is good news since it will allow us to model the latent space as desired
without completely degrading the model. Some findings are nevertheless interesting to
discuss. First, setting a small temperature does not reveal to improve the model and could
even induce instability in the training (for very small temperatures). Even though learning
the temperature results in improved metrics, this choice remains dependant on the usage
of the model. Actually, it may be of interest to fix the temperature to better apprehend
the proposed modelling. The regularization factor λ seems to have a weaker influence on
the model since the Log-likelihood ranges from 135.88 (λ “ 10´2) to 137.11 (λ “ 10´1) on
MNIST. Nonetheless, the value of this parameter may be of interest for interpolation or
clustering since it strongly influences geodesic distances as discussed in Section 4.3.1.

4.3 On Geometrical Aspects

In this section, the geometrical aspects of the proposed metric are discussed and illustrated
through various experiments.

4.3.1 Metric Computation

First of all, the shape and the influence of the metric temperature T is studied. To do so, we
train a RHVAE model with 3 classes of the MNIST data set. In order to stick to the small
data set framework, we only select 50 samples of each class and train the model on 80%
randomly chosen from the data set ensuring balanced classes. The regularization factor of
the metric is set to λ “ 10´2 for each experiment and we consider a fixed εlf “ 10´2 along
with nlf “ 5. The models are trained with 300 epochs with different temperatures T ranging
from T “ 0.6 to T “ 1. In Figure 2 (top row), we display the learned latent space for these
3 temperatures. The coloured dots represent the mean µpxiq of the distribution associated
to the latent variable zi „ N pµpxiq,Σpxiqq for each class while the log of the volume
element of the learned manifold

a

det Gpzq is displayed in the background. We also present
the eigenvalues and eigenvectors of the learned metric thanks to ellipses (bottom row).
Interestingly, even with the proposed metric, the model is apparently able to distinguish
the data points belonging to the same class and group them together. In addition, the
volume element

a

det Gpzq is far smaller where samples are located than where it is not. By
construction the regularization factor scales its value far from the data and so has a strong
impact on geodesic paths. This is interesting since the metric gives strong information
about the location of the data allowing for potentially better clustering, interpolation or
generation. In Figure 3, the distance maps to a given point in the latent space are presented
for the same learned metrics (top row) along with the metrics’ anisotropy (bottom row)
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Apzq “ λmaxpzq´λminpzq
λmaxpzq`λminpzq

where λmin (resp. λmax) is the minimum (resp. maximum) eigenvalue
of the metric tensor G. The distance maps are estimated using a latent space discretization
(200x200) and the Dijkstra algorithm (Dijkstra et al., 1959). We refer the reader to (Peyré
et al., 2010) for example. These maps show that the geodesic curves are designed to follow
the learned manifold and so stay close to the data which reveals very useful to perform
meaningful interpolation. We refer the reader to Section 4.3.2 for a more detailed analysis
on geodesic interpolation.
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Figure 2: Estimated metrics with 3 classes of 50 elements each. Top: The logarithm of
the volume element

a

detGpzq along with the means µpxiq of the distribution
associated to the latent variable zi „ N pµpxiq,Σpxiqq for each class and for models
trained with a fixed temperature of T “ 0.6 (left), T “ 0.8 (middle) and T “ 1
(right). Bottom: The metric’s eigenvalues and eigenvectors. Models are trained
on 80% of the data set randomly split and ensuring balanced classes with 300
epochs. We use nlf “ 5 and a fixed regularization factor set to λ “ 10´2.

4.3.2 Geodesics Path Computation

One good way to apprehend geometrical aspects provided by the learned metric is to com-
pute the geodesic curves. Recall that the length of a curve γ : r0, 1s Ñ M from z1 to z2

living in a Riemannian manifold M endowed with a metric G is given by

Lpγq “

1
ż

0

b

xγ1ptq, γ1ptqyγptqdt γp0q “ z1, γp1q “ z2 . (15)
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Figure 3: Top: Log-distance maps to a point in the latent space computed using Dijkstra
algorithm. Bottom: Metric’s anisotropy Apzq “ λmaxpzq´λminpzq

λmaxpzq`λminpzq
.

Computing geodesic paths consists in finding the curve γ minimizing Eq. (15) or equivalently
the curve’s energy (Carmo, 1992)

Epγq “

1
ż

0

xγ1ptq, γ1ptqyγptqdt γp0q “ z1, γp1q “ z2 .

Since these two optimization problems are rather hard to solve we decide to use a method
proposed by Chen et al. (2018) allowing for relatively “fast” geodesic computation. The
main idea of their method consists in discretizing the integral as such:

Lpγq «
1

n

n
ÿ

i“1

b

xγ1ptiq, γ1ptiqyγptiq

«
1

n

n
ÿ

i“1

b

γ1ptiqJGpγptiqqγ1ptiq ,

where n is the granularity of the curve. The curve γ is then parametrized using a neural
network of parameters ω. The authors also proposed to add a regularization factor which
according to them would “ensure that the geodesic remains close to the data” leading to
the following loss function:

Lgeo “ Lpγωq ` λ‖Gpγωq‖ .
This regularization was motivated by the fact that according to the author this method

can lead to local minimums. However, we do not see any apparent reason to set the
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regularization different from zero to compute the true geodesic paths and so we decide to
only consider the loss function with λ “ 0. The curve γω is then optimized using gradient
descent. We use a 3 layers MLP network ((1, 100, tanh), (100, 100, tanh), (100, d, Linear))
for γω. The result of these geodesic paths and their relevance will be assessed below.

4.3.3 Synthetic Data Set

In order to assess the usefulness of the proposed metric we first try to perform some geodesic
interpolations on a hand-made synthetic data set. The data set we consider consists in 200
binary images, 100 of which represent circles and the others rings. For each shape, we
consider different diameters and thicknesses. An extract of the training samples is available
in Appendix B. The interpolations are performed such that the starting and ending points
are the mean values of the distribution of two encoded samples from the training set i.e.
z1 “ µpx1q and z2 “ µpx2q where we recall zi „ N pµpxiq,Σpxiqq, i P t1, 2u. We compare
the resulting curves under the euclidean metric (i.e. affine interpolation) and the proposed
metric (i.e. geodesic interpolation) in Figure 4. Two interpolations are presented with the
logarithm of the volume element (top left and middle) along with the learned latent space
(top right). The affine and geodesic curves are then discretized in 100 time steps and we
present the decoded samples all along the curves with a granularity of 5 time steps (bottom).
Impressively, using the proposed metric allows for far more meaningful interpolations. On
the two first rows we try to interpolate between two points of the latent space corresponding
to circles of different diameters when decoded. While the affine interpolation fails to keep
the intrinsic topology of the data (see orange frames), the geodesic interpolation seems to
be able to constraint the curve so that it stays within the learned manifold and so each
point along the curve remains a circle the diameter of which is smoothly decreased. The
second row consists in the interpolation between latent variables leading to a small dot and
a larger ring when decoded. Again, the affine curve leaves the manifold and so is not able
to produce a meaningful interpolation since some samples along the curve do not even look
like either a ring or a circle (see orange frames) whereas the geodesic curve is again able
to do so. Interestingly, the latent space with the proposed metric seems to highlight an
underlying structure since the circles seem “grouped” together and ordered by size when
one considers geodesic distances. The clustering ability of the model will be discussed into
details in Section 4.5.

4.3.4 Real Data Sets

Implementation details: To asses the quality of the geodesic interpolations obtained with
the proposed metric, we also propose to perform a comparison between 1) a vanilla VAE, 2)
the metric proposed in (Arvanitidis et al., 2017), 3) the one exposed in (Chen et al., 2018)
and 4) a RHVAE using the metric as defined in Eq. (14) on two data sets created from
MNIST and FashionMNIST. An overview of the training samples is available in Appendix B.
Since we have to compute the Jacobian of the generator function and so need differentiable
generator functions for 2) and 3) we amend a little bit the model architectures used in
Table 1 as presented in Appendix C.1. K-means algorithm from (Pedregosa et al., 2011) is
used to find the centroids in Eq. (13) of the method proposed by Arvanitidis et al. (2017).
For each model, we propose to compare the affine interpolation method and the geodesic
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Figure 4: Top: The latent space along with the logarithm of the volume element and inter-
polation curves. Bottom: The decoded samples along the curves (granularity of
5 time steps). The model is trained on 80% of a synthetic data set composed by
100 circles and 100 rings with different diameters and thicknesses.

interpolation with respect to the metric associated to the model. The starting and ending
points are the mean values of two encoded samples from the training set i.e. z1 “ µpx1q

and z2 “ µpx2q where px1, x2q is rigorously the same for each model.

MNIST: First, we train the models on a small data set created from 50 samples of the
classes {“0”, “1”, “2”} of the MNIST data set. Again the train set is created by selecting
randomly 80% of the data ensuring balanced classes. To allow a fair comparison, each model
is trained with the same number of epochs set to 300. Since no clear procedure of training is
made available by the authors, model 2) is trained as follows: three quarters of the training
time is allocated to fit the inference network and the generator’s mean function µθ and the
remaining time is used to fit the variance function σψ. As to the parameter a of Eq. (13)
and the number of centroids, again no clear indication is stated and so we use the same
values as those they used in their paper (a “ 1 and K “ 32). The latent space learned by
the vanilla VAE can be observed in Figure 5 along with two affine interpolations (top). The
classic VAE seems to perform very poorly in terms of interpolation as the points along the
curve are only a superposition of digits (see orange frames). Ideally, we would expect the
starting point to progressively undergo deformation towards the ending point while looking
like a digit all along the path. The same experiment is conducted with the models and
metrics proposed by Arvanitidis et al. (2017) and Chen et al. (2018). Figure 6 and Figure 7
illustrate the affine and geodesic interpolation obtained with each model along with the
learned latent space (top) and the decoded samples along each of the paths (bottom).
Interestingly, using the metrics involving the Jacobian of the generator function of the VAE
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Figure 5: Affine interpolations with a classic VAE trained with 3 classes of 50 elements each.
The model is trained with 300 epochs on 80% of the data set randomly chosen.
Top: The latent space along with the encoded data points and interpolation
curves. Bottom: The decoded samples along the curves (granularity of 5 time
steps).

seems to conduct to geodesic paths that are very close to straight lines. This aspect was also
noted by Shao et al. (2018) who concluded that the learned manifold has a “surprisingly
small curvature” on the data sets they studied. Finally, we compare the former results
with those of a RHVAE trained on the same data and with the same number of epochs.
The metric temperature is set to T “ 1 and metric regularization to λ “ 10´2. Affine
and geodesic interpolations are compared in Figure 8. Impressively, the curves obtained by
geodesic interpolation and using the learned metric are far more meaningful. They clearly
remain into the learned manifold since each of the decoded samples can be interpreted as
a digit which is progressively distorted. Figure 8 (middle) clearly demonstrates that the
euclidean distance is not suited to perform such a task. This experiment underlines the
usefulness of the introduction of a meaningful metric in the latent space and justifies the
modelling of the latent space as a Riemannian manifold.

FashionMNIST: The same models are trained on a small data set created with 200 samples
from one class of the FashionMNIST data set ({“sandals”}) consisting in even more complex
shapes. In this experiment, the same number of epochs is used as well and set to 1000. The
RHVAE is trained with a temperature fixed to T “ 0.5, λ “ 10´1 and nlf “ 3. The geodesic
curves obtained using the vanilla VAE and metrics proposed by Arvanitidis et al. (2017)
and Chen et al. (2018) are available in Appendix C.3. Likewise the experiment conducted
on MNIST data set, the affine interpolations are not visually satisfying since they always
involve sharp transitions leading to samples not having the expected shape. Geodesic paths
computed using the metrics proposed by both Arvanitidis et al. (2017) and Chen et al.
(2018) are again close to straight lines.
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Figure 6: Affine and geodesic interpolations with a VAE trained as specified in (Arvanitidis
et al., 2017) with 3 classes of 50 elements each. The model is trained with 300
epochs on 80% of the data set randomly chosen. Top: The latent space along
with the logarithm of the volume element and interpolation curves. Bottom: The
decoded samples all along the curves (granularity of 5 time steps).
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Figure 7: Affine and geodesic interpolations with a VAE trained as specified in (Chen et al.,
2018) with 3 classes of 50 elements each. The model is trained with 300 epochs
on 80% of the data set randomly chosen. Top: The latent space along with the
logarithm of the volume element and interpolation curves. Bottom: The decoded
samples all along the curves (granularity of 5 time steps).
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Remark 1 It can also be noted that these models perform poorly in terms of reconstruction
on this data set as highlighted by the last decoded sample of the top row in Figure 21 and
Figure 22 for example. Recall that this decoded sample is obtained by decoding the mean µpxiq
of the distribution N pµpxiq,Σpxiqq associated to the data point xi extracted from the training
set. Hence, the decoded sample is expected to be close to xi likewise the vanilla VAE (see
Figure 20). We note that this is due to the slight change in the activation function. Recall
that the only change we made between the vanilla VAE and the one used to reproduce Chen
et al. (2018) model is to use the Softplus activation function for the generator function
instead of ReLu. Finally constraining the model architecture by imposing twice differentiable
functions may have a strong impact on the overall model quality as well.

Then, the interpolations obtained using the proposed RHVAE are presented in Figure 9.
Again, all along the geodesic path, the starting image is progressively distorted and impres-
sively even in a very small latent space dimension (2) each image looks like a shoe whereas
affine interpolations still perform poorly (see orange frames). Finally, the proposed latent
space modelling though the learned metric makes possible meaningful interpolations even
with quite complex shapes.

We also test the model on the Olivetti faces data set (Cambridge) and try to see if
geodesic interpolations between faces remain meaningful which is actually the case. Results
can be found in Appendix C.4.

OASIS Raw Images: Finally, we try to perform interpolations with the proposed model on
a complex database where the variability of shapes is difficult to understand. To do so,
we elect the OASIS data set (Marcus et al., 2007) and create a data set of 418 raw sagital
defaced MRI images. Each image is down-sampled from 256x256 to 100x100 using bi-linear
interpolation and fed to the RHVAE. An overview of the training samples is available in
Appendix B. This data set is quite challenging since it presents complex shapes which are
not always located in the middle of the image. Moreover, we decide not to apply any
further pre-processing step such as normalization so we can see how the proposed model
would behave with such data. The model is trained with a temperature T “ 0.8, λ “ 10´3,
εlf “ 10´3 and nlf “ 5. Again, we try to compute the affine and geodesic curves between
points in the latent space and display the results in Figure 10. As expected the affine
interpolation performs quite poorly since most of the decoded samples within the orange
frames are only a superposition of two brains and do not have any physiological meaning.
Surprisingly, geodesic interpolations are still able to provide us with satisfying interpolations
since each decoded sample along the curve does look like an image which could have been
part of the data set. Moreover, the orientation of the brain changes smoothly from an
image to another as highlighted in Figure 10. Even more appealing is the fact that we
can clearly distinguish the corpus callosum (indicated by the white arrows) on each of the
samples along the curves. Finding such a fine detail in the geodesic interpolants shows that
a structuring of the latent space is now made possible thanks to the proposed metric and
would allow us to produce more realistic samples.
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Figure 8: Affine and geodesic interpolation with the proposed RHVAE trained with 3 classes
of 50 elements each. The model is trained with 300 epochs on 80% of the data
set randomly chosen. Top: The latent space along with the logarithm volume
element and interpolation curves. Bottom: The decoded samples along the curves
(granularity of 5 time steps).
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Figure 9: Affine and geodesic interpolations with the proposed RHVAE trained with 160
samples of a single class extracted from the FashionMNIST data set and with 1000
epochs. Top: The latent space along with the volume element and interpolation
curves. Bottom: The decoded samples along the curves (granularity of 5 time
steps).
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Figure 10: Affine and geodesic interpolations with the proposed RHVAE trained with raw
brain sagital MRI images extracted from OASIS (Marcus et al., 2007) database.
Top: The latent space along with the logarithm volume element and interpola-
tion curves. Bottom: The decoded samples along the curves (granularity of 5
time steps).

4.4 Generation

In this section, we compare the generative capacity of the proposed method to a vanilla
VAE on several data sets. The parameters used are available in Appendix D.

MNIST: First, we consider a single class small data set extracted from the MNIST data set
and composed by 160 randomly selected training samples. An early stopping strategy is
employed for each model and consists in stopping the training is the loss does not improve
in 20 epochs. The batch size is set to 80 and we display the generated samples in Figure 11
(top). On the left are presented 30 training samples, in the middle samples generated by the
vanilla VAE along with samples generated by our model on the right. In this experiment,
the vanilla VAE is unable to generate realistic samples since most of them are most of the
time very blurry. This is due to the very small number of training samples. Impressively,
the RHVAE is still able to generate quite convincing different samples which do not seem
to be similar to the training data. This observation goes in the sense of the one done in
Section 4.2.1 where it was demonstrated that using a geometry-aware normalizing flow to
tweak the approximate posterior distribution indeed improves the model.

FashionMNIST: The same experiment is realized on a data set created from the Fashion-

25



Chadebec et al.

MNIST data set. It consists in selecting 50 samples of 3 classes {“T-shirt”, “Trouser”,
“Pullover”} from the FashionMNIST data set. We train the model on 80% of the data ran-
domly selected from the initial data set and ensuring balanced classes. Figure 11 (middle
row) highlights 30 training samples (left), 30 samples generated by the classic VAE and 30
samples generated from our model (right). At first sight, since the shape of the data re-
mains quite simple, the VAE is able to generate quite realistic samples so does the RHVAE.
However, as highlighted in the Figure 11 (left of middle row) there exists a wide range of
colours (shades of grey) and patterns in the training set. Unfortunately, the VAE is unable
to generate such details and finally the color of the samples remains quite similar across
the generated images. Interestingly, the RHVAE seems to be able to generate various range
of colours (see the last row for example) with different patterns matching better the true
essence of the training data. This is even more striking in the following experiment.

Olivetti Faces: Finally, we decide to compare the models on the Olivetti faces data set
composed by 400 images of faces. We select randomly 80% of the initial data set to create
the training set and fit the model until the ELBO does not improve for 50 epochs. Training
samples are down-sampled from 64x64 to 32x32 using bi-linear interpolation. Generated
samples can be observed in Figure 11 (bottom row). Likewise the previous experiment, the
VAE seems able to generate faces. However, it is not able to generate samples with different
skin colours, different lightning or diverse facial expressions as in the training set. Moreover,
finer details such as the mouth are most of the time blurry. Impressively, the RHVAE we
propose is able to generate sharper samples having a wide range of facial expressions (smiles,
anger...) and head orientations. Even more appealing, it is able to generate very different
images with various lightnings and skin colours.

4.5 Clustering

Finally, the clustering ability of the model is assessed on both synthetic and real data sets.

4.5.1 Synthetic Data

We first consider 3 hand-made synthetic data sets composed by 100 circles and 100 rings to
see if the clustering under the Riemannian metric would reveal more accurate. The model
is trained employing an early-stopping strategy (i.e. training is stopped if test loss does not
improve in 100 epochs) and we use the k-medoids algorithm with k set to the true number
of classes to compare the clustering accuracy under each distance (i.e. affine and geodesic).
Geodesic distances are approximated using Dijkstra algorithm. As highlighted in Table 5,
using geodesic distances strongly improves the clustering ability of the model which jumps
from 62.68 (affine) to 77.43 (geodesic) on average. An example of the obtained clustering
under each distance is available in Figure 12 and the distance maps to the 2 cluster centers
found using the geodesic k-medoids method are presented in Figure 13. The use of the
Riemannian metric allows us to really take into account the geometry of the latent space
since geodesic curves seem to follow the data and so deeply enhance clustering.
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Training samples VAE RHVAE (Ours)

Figure 11: Top row: Training samples from a data set created from the class {“5”} of
the MNIST data set and composed by 160 samples (left) along with samples
generated from a vanilla VAE (middle) and our model (right). Middle row :
Training samples from a data set created by randomly selecting 80% of 150
samples from the equally distributed classes {“T-shirt”, “Trouser”, “Pullover”}
of the FashionMNIST data set (left) along with samples generated from a vanilla
VAE (middle) and our model (right). Bottom row : Training samples from a
data set created by randomly selecting 80% of the Olivetti data set (left) along
with samples generated from a vanilla VAE (middle) and our model (right).
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Figure 12: Latent space of a RHVAE trained with a synthetic data set composed by 100
rings and 100 circles of different diameters and thicknesses along with the log of
the learned volume element (left). The clusters found by a k-medoids algorithm
using the euclidean metric (middle) and a k-medoids algorithm using our Rie-
mannian metric. The model is trained with nlf “ 3, εlf “ 10´2, λ “ 10´3 and
a metric temperature T “ 0.8.

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12
−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

−1

0

1

2

3

4

5

6

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12
−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

cluster center

0

1

2

3

4

5

6

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12
−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

cluster center

0

1

2

3

4

5

6

Figure 13: Latent space of a RHVAE trained with a synthetic data set composed by 100
rings and 100 circles of different diameters and thicknesses along with the log
of the learned volume element (left). The log distance maps from the clusters
centers found by a k-medoids algorithm using the Riemannian metric.

4.5.2 Real Data Set

To cross-validate its ability to cluster efficiently we also consider several data sets extracted
from the MNIST and FashionMNIST data sets and report all of the results in Table 5. We
create 3 groups respectively composed by the classes {“0”, “1”, “2”} (MNIST 1), {“3”,
“4”, “5”} (MNIST 2) and {“7”, “8”, “9”} (MNIST 3). We select 450 samples for each
class within each group and split each group into 3 subsets of 150 samples per class. We
perform the same processing to create the data sets extracted from FashionMNIST. We then
train the same RHVAE model on these 18 data sets and report the F1-scores in Table 5.
Interestingly, using geodesic distances improves the clustering ability of the model by 1 to
2% on average with these two databases. In Figure 14 we also provide an example of learned
latent space along with the induced metric. Again, the metric seems to provide very useful
information since we can clearly distinguish 3 clusters in Figure 14 (middle) corresponding to
the true clusters. The parameters used for the proposed model are available in Appendix E.
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We believe that further change on the metric shape like choosing an adaptive temperature
could lead to even more powerful clustering but this will be part of future work.

data set Model Subset 1 Subset 2 Subset 3 Mean

Synthetic data
linear 53.88 62.52 71.63 62.68

geodesic 71.41 81.39 79.49 77.43

MNIST 1
linear 89.73 93.11 91.80 91.55

geodesic 91.68 94.51 95.63 93.94

MNIST 2
linear 68.24 69.22 79.05 71.17

geodesic 70.35 71.34 79.64 73.78

MNIST 3
linear 75.55 75.76 81.70 77.67

geodesic 76.08 77.94 81.96 78.66

FashionMNIST 1
linear 90.47 91.63 86.78 89.63

geodesic 91.44 92.55 87.46 90.48

FashionMNIST 2
linear 92.20 91.26 93.30 92.25

geodesic 93.56 91.80 94.12 93.16

FashionMNIST 3
linear 72.46 79.58 83.16 78.40

geodesic 74.89 81.88 84.83 80.53

Table 5: F1-Scores. Clustering accuracy of a RHVAE model using either euclidean distances
or geodesic distances under the learned metric. The model is trained with nlf “ 10,
εlf “ 10´2, λ “ 10´3 and a metric temperature T “ 0.8.
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Figure 14: Latent space of a RHVAE trained with 3 classes of 200 elements each (left)
along with the logarithm of the learned volume element (middle). The model is
trained with nlf “ 5, εlf “ 10´2, λ “ 10´3 and a metric temperature T “ 0.8.

5. Conclusion

In this paper, we proposed to consider that the latent space learned by a variational auto-
encoder is a Riemannian manifold endowed with a Riemannian metric. Using this inter-
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esting property led us to introduce the Riemannian Hamiltonian variational auto-encoder
extending the concept of normalizing flows to Riemannian manifolds. Since this latent
space modelling requires a Riemannian metric to be defined, we also proposed to learn a
parametrized metric directly for the data, the learning of which can easily be intergrated
within the VAE learning process. This model revealed to outperform both vanilla VAE and
non geometry-aware Hamiltonian VAE in terms of reconstruction error and Log-Likelihood
estimate. Finally, this metric proved to provide very useful information on the underlying
latent space structure allowing for far more meaningful geodesic interpolations, better data
clustering along with a more diverse and realistic data generation. Future work would con-
sist in amending the proposed metric to perhaps enhance clustering and testing this metric
on other real-life data sets such as medical images.
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Appendix A.

In this appendix we provide the training curves corresponding to Table 4 which allow for
an easier reading than the table. Each plot presents either the value of the ELBO or
the Log-likelihood estimates computed on the test set and using importance sampling with
200 samples and cross-validated 5 times. To improve readability, we decide to display the
moving average on 10 values. We recall that an early-stopping strategy is adopted (i.e.
training is stopped if the test loss does not improve for 100 epochs).
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throughout training for different values of nleapfrog.
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Figure 16: Averaged log-Likelihood values computed on the test set and test ELBO values
throughout training for different leapfrog step sizes εleapfrog).
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Figure 17: Averaged log-Likelihood values computed on the test set and test ELBO values
throughout training for different metric temperatures T .
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Figure 18: Averaged log-Likelihood values computed on the test set and test ELBO values
throughout training for different metric regularization λ.
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Synthetic data MNIST FashionMNIST

Olivetti OASIS

Figure 19: Training samples used for geodesic computation of Section 4.3.3 and Section 4.3.4
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Appendix C.

C.1 VAE models architectures

Networks Configurations

µϕ MLP - pD, 400, ReLuq˚ MLP - p400, d, Linearq
Σϕ MLP - pD, 400, ReLuq˚ MLP - p400, d, Linearq
µθ MLP - pd, 400, Softplusq˚˚ MLP - p400, D, Sigmoidq
Σθ MLP - pd, 400, Softplusq˚˚ MLP - p400, D, tanhq

* Same layers, ** Same layers

Networks Configurations

µϕ MLP - pD, 400, ReLuq˚ MLP - p400, d, Linearq
Σϕ MLP - pD, 400, ReLuq˚ MLP - p400, d, Linearq
πθ MLP - pd, 400, Softplusq MLP - p400, D, Sigmoidq

* Same layers

Table 6: Inference and generator neural networks architectures. Top : Architecture used to
reproduce Arvanitidis et al. (2017)’s model with a N -VAE. Bottom : Architecture
used to reproduce Chen et al. (2018)’s model with a B-VAE. Noteworthy is the fact
that we only amend the activation function and not the overall model structure.

C.2 RHVAE parameters

Parameters used for the RHVAE used in the experiments in Section 4.3.3 Section 4.3.4.

Data set Parameters
nlf εlf T λ

?
β0

Synthetic data 5 10´2 1 10´3 0.3

MNIST 10 10´2 1 10´2 0.3

FashionMNIST 3 10´2 0.5 10´1 0.3

Olivetti 10 10´2 0.8 10´3 0.3

OASIS 5 10´3 0.8 10´3 0.3

Table 7: Parameters used to train the proposed RHVAE models and perform geodesic in-
terpolations on 5 data sets.

C.3 FashionMNIST

Geodesic interpolations on FashionMNIST.
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Figure 20: Affine interpolations with a classic VAE trained with 160 samples of a single
class extracted from the FashionMNIST data set and with 1000 epochs. Top:
The latent space along with the means of encoded data points and interpolation
curves. Bottom: The decoded samples along the curves (granularity of 5 time
steps).
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Figure 21: Affine and geodesic interpolations with the proposed VAE trained as specified
in (Arvanitidis et al., 2017) with 160 samples of a single class extracted from
the FashionMNIST data set and with 1000 epochs. Top: The latent space along
with the logarithm of the volume element and interpolation curves. Bottom:
The decoded samples along the curves (granularity of 5 time steps).

36



Geometry-Aware Hamiltonian VAE

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

affine

geodesic

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

VAE (Chen et al., 2018)

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

affine

geodesic

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Affine

Geodesic

Affine

Geodesic

Figure 22: Affine and geodesic interpolations with a VAE trained as specified in (Chen et al.,
2018) with 160 samples of a single class extracted from the FashionMNIST data
set and with 1000 epochs. Top: The latent space along with the logarithm of
the volume element and interpolation curves. Bottom: The decoded samples
along the curves (granularity of 5 time steps).

C.4 Olivetti faces

We also test the model on the Olivetti faces data set (Cambridge) and try to see if geodesic
interpolations between faces remain meaningful. On this very data set, the improvement
coming from geodesic interpolation is more difficult to perceive since the learned metric is
more round. Nonetheless, it can be noted that again the geodesic interpolation is smoother.
On the top rows of Figure 23, the face contour are blurrier for the affine interpolation
since it only superposes two different faces whereas this aspect is mitigated for the geodesic
interpolation. In the bottom rows, some frames of the interpolation does not make much
sense. Indeed, we try to interpolate two faces of people looking right in front of them but
some points of the latent space correspond to people looking on the right side. We would
expect to see the face keeping the same orientation all along the interpolation which seems
to be the case for the geodesic interpolation.

37



Chadebec et al.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

affine

geodesic

−2

0

2

4

6

RHVAE (Ours)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

affine

geodesic

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−2

0

2

4

6

Affine

Geodesic

Affine

Geodesic

Figure 23: Affine and geodesic interpolations with the proposed RHVAE trained on the
Olivetti faces data set. The model is trained with 3000 epochs on 80 % of the
data set randomly chosen. Top: The latent space along with the logarithm of
the volume element and interpolation curves. Bottom: The decoded samples
along the curves (granularity of 5 time steps).
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Appendix D.

Parameters used for the RHVAE used in the experiments in Section 4.4.

Data set Parameters
d˚ nlf εlf T λ β0

MNIST 2 3 10´3 0.8 10´2 0.3

FashionMNIST 10 3 10´3 0.8 10´2 0.3

Olivetti 15 3 10´3 0.8 10´3 0.3

* The latent space dimension is the same for VAE models

Table 8: Parameters used to train the proposed RHVAE models to perform samples gener-
ation on 3 data sets.
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Appendix E.

Parameters used for the experiments in Section 4.5.

data set Parameters
nlf εlf T λ

?
β0

Synthetic data 3 10´2 0.8 10´3 0.3

MNIST 1 10 10´2 0.8 10´3 0.3
MNIST 2 10 10´2 0.8 10´3 0.3
MNIST 3 10 10´2 0.8 10´3 0.3

FashionMNIST 1 10 10´2 0.8 10´3 0.3
FashionMNIST 2 10 10´2 0.8 10´3 0.3
FashionMNIST 3 10 10´3 0.8 10´3 0.3

Table 9: Parameters used to train the proposed RHVAE models to compare affine and
geodesic clustering under both metrics.

Networks Configurations

µϕ MLP - pD, 400, ReLuq˚ MLP - p400, d, Linearq
Σϕ MLP - pD, 400, ReLuq˚ MLP - p400, d, Linearq
πθ MLP - pd, 400, ReLuq MLP - p400, D, Sigmoidq

Lψ (diag) MLP - pD, 400, ReLuq˚˚ MLP - p400, d, Linearq

Lψ (lower) MLP - pD, 400, ReLuq˚˚ MLP - p400, dpd´1q
2 , Linearq

* Same layers, ** Same layers

Table 10: Inference and generator neural networks used for the RHVAE along with the
neural network shapes used for metric learning in Section 4.5.
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