
HAL Id: hal-02974237
https://hal.science/hal-02974237v1

Submitted on 21 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dual-Free Stochastic Decentralized Optimization with
Variance Reduction

Hadrien Hendrikx, Francis Bach, Laurent Massoulié

To cite this version:
Hadrien Hendrikx, Francis Bach, Laurent Massoulié. Dual-Free Stochastic Decentralized Optimization
with Variance Reduction. NeurIPS 2020 - 34th Conference on Neural Information Processing Systems,
Dec 2020, Vancouver / Virtual, Canada. �hal-02974237�

https://hal.science/hal-02974237v1
https://hal.archives-ouvertes.fr

Dual-Free Stochastic Decentralized Optimization
with Variance Reduction

Hadrien Hendrikx
INRIA - DIENS - PSL Research University

hadrien.hendrikx@inria.fr

Francis Bach
INRIA - DIENS - PSL Research University

francis.bach@inria.fr

Laurent Massoulié
INRIA - DIENS - PSL Research University

laurent.massoulie@inria.fr

Abstract

We consider the problem of training machine learning models on distributed data
in a decentralized way. For finite-sum problems, fast single-machine algorithms
for large datasets rely on stochastic updates combined with variance reduction. Yet,
existing decentralized stochastic algorithms either do not obtain the full speedup
allowed by stochastic updates, or require oracles that are more expensive than
regular gradients. In this work, we introduce a Decentralized stochastic algorithm
with Variance Reduction called DVR. DVR only requires computing stochastic
gradients of the local functions, and is computationally as fast as a standard
stochastic variance-reduced algorithms run on a 1/n fraction of the dataset, where
n is the number of nodes. To derive DVR, we use Bregman coordinate descent
on a well-chosen dual problem, and obtain a dual-free algorithm using a specific
Bregman divergence. We give an accelerated version of DVR based on the Catalyst
framework, and illustrate its effectiveness with simulations on real data.

1 Introduction

We consider the regularized empirical risk minimization problem distributed on a network of n nodes.
Each node has a local dataset of size m, and the problem thus writes:

min
x∈Rd

F (x) ,
n∑
i=1

fi(x), with fi(x) ,
σi
2
‖x‖2 +

m∑
j=1

fij(x), (1)

where fij typically corresponds to the loss function for training example j of machine i, and σi
is the local regularization parameter for node i. We assume that each function fij is convex and
Lij-smooth (see, e.g., [30]), and that each function fi is Mi-smooth. Following [40], we denote
κi = (1 +

∑m
i=1 Lij)/σi the stochastic condition number of fi, and κs = maxi κi. Similarly, the

batch condition number is κb = maxiMi/σi. It always holds that κb ≤ κs ≤ mκb, but generally
κs � mκb, which explains the success of stochastic methods. Indeed, κs ≈ mκb when all Hessians
are orthogonal to one another which is rarely the case in practice, especially for a large dataset.

Regarding the distributed aspect, we follow the standard gossip framework [5, 29, 8, 32] and assume
that nodes are linked by a communication network which we represent as an undirected graph G. We
denote N (i) the set of neighbors of node i and 1 ∈ Rd the vector with all coordinates equal to 1.
Communication is abstracted by multiplication by a positive semi-definite matrix W ∈ Rn×n, which
is such that Wk` = 0 if k /∈ N (`), and Ker(W) = Span(1). The matrix W is called the gossip
matrix, and we denote its spectral gap by γ = λ+

min(W)/λmax(W), the ratio between the smallest

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

non-zero and the highest eigenvalue of W , which is a key quantity in decentralized optimization.
We finally assume that nodes can compute a local stochastic gradient ∇fij in time 1, and that
communication (i.e., multiplication by W) takes time τ .

Single-machine stochastic methods. Problem (1) is generally solved using first-order methods.
Whenm is large, computing∇F becomes very expensive, and batch methods requireO(κb log(ε−1))
iterations, which takes time O(mκb log(ε−1)), to minimize F up to precision ε. In this case, updates
using the stochastic gradients∇fij , where (i, j) is selected randomly, can be much more effective [4].
Yet, these updates are noisy and plain stochastic gradient descent (SGD) does not converge to the
exact solution unless the step-size goes to zero, which slows down the algorithm. One way to fix this
problem is to use variance-reduced methods such as SAG [33], SDCA [35], SVRG [16] or SAGA [7].
These methods require O((nm+ κs) log(ε−1)) stochastic gradient evaluations, which can be much
smaller than O(mκb log(ε−1)).

Decentralized methods. Decentralized adaptations of gradient descent in the smooth and strongly
convex setting include EXTRA [37], DIGing [28] or NIDS [21]. These algorithms have sparked a
lot of interest, and the latest convergence results [14, 42, 20] show that EXTRA and NIDS require
time O((κb + γ−1)(m + τ)) log(ε−1)) to reach precision ε. A generic acceleration of EXTRA
using Catalyst [20] obtains the (batch) optimal O(

√
κb(1 + τ/

√
γ) log(ε−1)) rate up to log factors.

Another line of work on decentralized algorithms is based on the penalty method [19, 9]. This
consists in performing traditional optimization algorithms to problems augmented with a Laplacian
penalty, and in particular enables the use of accelerated methods. Yet, these algorithms are sensitive
to the value of the penalty parameter (when it is fixed), since it directly influences the solution they
converge to. Another natural way to construct decentralized optimization algorithms is through dual
approaches [32, 38]. Although the dual approach leads to algorithms that are optimal both in terms of
number of communications and computations [31, 13], they generally assume access to the proximal
operator or the gradient of the Fenchel conjugate of the local functions, which is not very practical in
general since it requires solving a subproblem at each step.

Decentralized stochastic optimization. Although both stochastic and decentralized methods have
a rich litterature, there exist few decentralized stochastic methods with linear convergence rate.
Although DSA [27], or GT-SAGA [41] propose such algorithms, they respectively take time
O((mκs + κ4

sγ
−1(1 + τ) log(ε−1)) and O((m + κ2

sγ
−2)(1 + τ) log(ε−1)) to reach precision ε.

Therefore, they have significantly worse rates than decentralized batch methods when m = 1,
and than single-machine stochastic methods when n = 1. Other methods have better rates of
convergence [36, 12] but they require evaluation of proximal operators, which may be expensive.

Our contributions. This work develops a dual approach similar to that of [12], which leads to a
decentralized stochastic algorithm with rate O(m+κs + τκb/

√
γ), where the

√
γ factor comes from

Chebyshev acceleration, such as used in [32]. Yet, our algorithm, called DVR, can be formulated in
the primal only, thus avoiding the need for computing expensive dual gradients or proximal operators.
Besides, DVR is derived by applying Bregman coordinate descent to the dual of a specific augmented
problem. Thus, its convergence follows from the convergence of block coordinate descent with
Bregman gradients, which we prove as a side contribution. When executed on a single-machine, DVR
is similar to dual-free SDCA [34], and obtains similar rates. We believe that the same methodology
could be applied to tackle non-convex problems, but we leave these extensions for future work.

We present in Section 2 the derivations leading to DVR, namely the dual approach and the dual-free
trick. Then, Section 3 presents the actual algorithm along with a convergence theorem based on
block Bregman coordinate descent (presented in Appendix A). Section 4 shows how to accelerate
DVR, both in terms of network dependence (Chebyshev acceleration) and global iteration complexity
(Catalyst acceleration [23]). Finally, experiments on real-world data are presented in Section 5, that
demonstrate the effectiveness of DVR.

2 Algorithm Design

This section presents the key steps leading to DVR. We start by introducing a relevant dual formulation
from [12], then introduce the dual-free trick based on [17], and finally show how this leads to DVR, an
actual implementable decentralized stochastic algorithm, as a special case of the previous derivations.

2

2.1 Dual formulation

The standard dual formulation of Problem (1) is obtained by associating a parameter vector to each
node, and imposing that two neighboring nodes have the same parameters [6, 15, 32]. This leads to
the following constrained problem, in which we write θ(i) ∈ Rd the local vector of node i:

min
θ∈Rnd

n∑
i=1

fi(θ
(i)) such that ∀k, ` ∈ N (k), θ(k) = θ(`). (2)

Following the approach of [12, 13], we further split the fi(θ
(i)) term into σi‖θ(i)‖2/2 +∑n

j=1 fij(θ
(ij)), with the constraint that θ(i) = θ(ij) for all j. This is equivalent to the previ-

ous approach performed on an augmented graph [12, 13] in which each node is split into a star
network with the regularization in the center and a local summand at each tip of the star. Thus, the
equivalent augmented constrained problem that we consider writes:

min
θ∈Rn(m+1)d

n∑
i=1

σi
2
‖θ(i)‖2+

m∑
j=1

fij(θ
(ij))

 s.t. ∀k, ` ∈ N (k), θ(k) = θ(`) and ∀i, j, θ(i) = θ(ij).

(3)
We now use Lagrangian duality, and introduce two kinds of multipliers. The variable x corresponds
to multipliers associated with the constraints given by edges of the communication graph (i.e.,
θ(k) = θ(`) if k ∈ N (`)), that we will call communication edges. Similarly, y corresponds to the
constraints associated with the edges that are specific to the augmented graph (i.e., θ(i) = θ(ij) ∀i, j)
that we call computation or virtual edges, since they are not present in the original graph and were
constructed for the augmented problem. Therefore, there are E communication edges (number of
edges in the initial graph), and nm virtual edges. The dual formulation of Problem (3) thus writes:

min
x∈REd, y∈Rnmd

1

2
qA(x, y)+

n∑
i=1

m∑
j=1

f∗ij((A(x, y))(ij)), with qA(x, y) , (x, y)>A>ΣA(x, y), (4)

and where (x, y) ∈ R(E+nm)d is the concatenation of vectors x ∈ REd, which is associated with
the communication edges, and y ∈ Rnmd, which is the vector associated with computation edges.
We denote Σ = Diag(σ−1

1 , · · · , σ−1
n , 0, · · · , 0) ⊗ Id ∈ Rn(m+1)d×n(m+1)d and A is such that for

all z ∈ Rd, A(ek,` ⊗ z) = µk`(uk − u`) ⊗ Pk`z for edge (k, `), where Pk` = Id if (k, `) is a
communication edge, Pij is the projector on Ker(fij)

⊥ , (∩x∈RdKer(∇2fij(x)))⊥ if (i, j) is
a virtual edge, z1 ⊗ z2 is the Kronecker product of vectors z1 and z2, and ek,` ∈ RE+nm and
uk ∈ Rn(m+1) are the unit vectors associated with edge (k, `) and node k respectively.

Note that the upper left nd× nd block of AA> (corresponding to the communication edges) is equal
to W ⊗ Id where W is a gossip matrix (see, e.g., [32]) that depends on the µk`. In particular, W is
equal to the Laplacian of the communication graph if µ2

k` = 1/2 for all (k, `). For computation edges,
the projectors Pij account for the fact that the parameters θ(i) and θ(ij) only need to be equal on the
subspaces on which fij is not constant, and we choose µij such that µ2

ij = αLij for some α > 0.
Although this introduces heavier notations, explicitly writing A as an n(1 + m)d × (E + nm)d
matrix instead of an n(1 + m) × (E + nm) matrix allows to introduce the projectors Pij , which
then yields a better communication complexity than choosing Pij = Id. See [12, 13] for more details
on this dual formulation, and in particular on the construction on the augmented graph. Now that
we have obtained a suitable dual problem, we would like to solve it without computing gradients or
proximal operators of f∗ij , which can be very expensive.

2.2 Dual-free trick

Dual methods are based on variants of Problem (4), and apply different algorithms to it. In particular,
[32, 38] use accelerated gradient descent [30], and [11, 12] use accelerated (proximal) coordinate
descent [24]. Let pcomm denote the probability of performing a communication step and pij be the
probability that node i samples a gradient of fij , which are such that for all i,

∑m
j=1 pij = 1−pcomm.

Applying a coordinate update with step-size η/pcomm to Problem (4) in the direction x (associated
with communication edges) writes:

xt+1 = xt − ηp−1
comm∇xqA(xt, yt), (5)

3

where we denote∇x the gradient in coordinates that correspond to x (communication edges), and
∇y,ij the gradient for coordinate (ij) (computation edge). Similarly, the standard coordinate update
of a local computation edge (i, j) can be written as:

y
(ij)
t+1 = arg min

y∈Rd

{(
∇y,ijqA(xt, yt) + µij∇f∗ij(µijy

(ij)
t)

)>
y +

pij
2η
‖y − y(ij)

t ‖2
}
, (6)

where the minimization problem actually has a closed form solution. Yet, as mentioned before,
solving Equation (6) requires computing the derivative of f∗ij . In order to avoid this, a trick introduced
by [17] and later used in [39] is to replace the Euclidean distance term by a well-chosen Bregman
divergence. More specifically, the Bregman divergence of a convex function φ is defined as:

Dφ(x, y) = φ(x)− φ(y)−∇φ(y)>(x− y). (7)

Bregman gradient algorithms typically enjoy the same kind of guarantees as standard gradient
algorithms, but with slightly different notions of relative smoothness and strong convexity [1, 25].
Note that the Bregman divergence of the squared Euclidean norm is the squared Euclidean distance,
and the standard gradient descent algorithm is recovered in that case. We now replace the Euclidean
distance by the Bregman divergence induced by function φ : y 7→ (Lij/µ

2
ij)f

∗
ij(µijy

(ij)), which is
normalized to be 1-strongly convex since f∗ij is L−1

ij -strongly convex. We introduce the constant
α > 0 such that µ2

ij = αLij for all computation edges (i, j). Using the definition of the Bregman
divergence with respect to φ, we write:

y
(ij)
t+1 = arg min

y∈Rd

(
∇y,ijqA(xt, yt) + µij∇f∗ij(µijy

(ij)
t)

)>
y +

pij
η
Dφ

(
y, y

(ij)
t

)
= arg min

y∈R

(
αη

pij
∇y,ijqA(xt, yt)−

(
1− αη

pij

)
µij∇f∗ij(µijy

(ij)
t)

)>
y + f∗ij(µijy)

=
1

µij
∇fij

((
1− αη

pij

)
∇f∗ij(µijy

(ij)
t)− αη

µijpij
∇y,ijqA(xt, yt)

)
.

In particular, if we know∇f∗ij(µijy
(ij)
t) then it is possible to compute y(ij)

t+1. Besides,

∇f∗ij(µijy
(ij)
t+1) = (1− αη)∇f∗ij(µijy

(ij)
t)− αη

µij
∇y,ijqA(xt, yt), (8)

so we can also compute ∇f∗ij(µijy
(ij)
t+1), and we can use it for the next step. Therefore, instead of

computing a dual gradient at each step, we can simply choose y(i)
0 = µ−1

ij ∇fij(z
(ij)
0) for any z(ij)

0 ,
and iterate from this. Therefore, the Bregman coordinate update applied to Problem (4) in the block
of direction (i, j) with y(ij)

0 = µ−1
ij ∇fi(z

(ij)
0) yields:

z
(ij)
t+1 =

(
1− αη

pij

)
z

(ij)
t − αη

pijµij
∇y,ijqA(xt, yt), y

(ij)
t+1 = µ−1

ij ∇fi(z
(ij)
t+1). (9)

The iterations of (9) are called a dual-free algorithm because they are a transformation of the iterations
from (6) that do not require computing∇f∗ij anymore. This is obtained by replacing the Euclidean
distance in (6) by the Bregman divergence of a function proportional to f∗ij . Note that although
we use the same dual-free trick the tools are different since [17] applies a randomized primal-dual
algorithm with fixed Bregman divergences choice to a specific primal-dual formulation. Instead, we
apply a generic randomized Bregman coordinate descent algorithm to a specific dual formulation.

2.3 Distributed implementation

Iterations from (9) do not involve functions f∗ij anymore, which was our first goal. Yet, they consist in
updating dual variables associated with edges of the augmented graph, and have no clear distributed
meaning yet. In this section, we rewrite the updates of (9) in order to have an easy to implement
distributed algorithm. The key steps are (i) multiplication of the updates by A, (ii) expliciting the
gossip matrix and (iii) remarking that θ(i)

t = (ΣA(xt, yt))
(i) converges to the primal solution for

all i. For a vector z ∈ R(n+nm)d, we denote [z]comm ∈ Rnd its restriction to the communication
nodes, and [M]comm ∈ Rnd×nd similarly refers to the restriction on communication edges of a matrix

4

M ∈ R(n+nm)d×(n+nm)d. By abuse of notations, we call Acomm ∈ Rnd×Ed the restriction of A
to communication nodes and edges. We denote Pcomm the projector on communication edges, and
Pcomp the projector on y. We multiply the x (communication) update in (9) by A on the left (which
is standard [32, 12]) and obtain:

Acommxt+1 = Acommxt − ηp−1
comm[APcommA

>]comm[ΣA(xt, yt)]comm. (10)

Note that [PcommA
>ΣA(xt, yt)]comm = [PcommA

>]comm[ΣA(xt, yt)]comm because Pcomm and Σ
are non-zero only for communication edges and nodes. Similarly, and as previously stated, one
can verify that Acomm[PcommA

>]comm = [APcommA
>]comm = W ⊗ Id ∈ Rnd×nd where W is a

gossip matrix. We finally introduce x̃t ∈ Rnd which is a variable associated with nodes, and which is
such that x̃t = Acommxt. With this rewriting, the communication update becomes:

x̃t+1 = x̃t − ηp−1
comm(W ⊗ Id)Σcomm [A(xt, yt)]comm .

To show that [A(xt, yt)]comm is locally accessible to each node, we write:

[A(xt, yt)]
(i)
comm = (Acommxt)

(i) −
(n∑
k=1

m∑
j=1

(A(ekj ⊗ y(kj)
t))(i)

)
= (x̃t)

(i) −
m∑
j=1

µijy
(ij)
t .

We note this rescaled local vector θt = Σcomm([A(xt, yt)]comm), and obtain for variables x̃t the
gossip update of (12). Note that we directly write y(ij)

t instead of Pijy
(ij)
t even though there has

been a multiplication by the matrix A. This is allowed because Equation (13) implies that (i)
y

(ij)
t ∈ Ker(fij)

⊥ for all t, and (ii) the value of (Id − Pij)z(ij)
t does not matter since z(ij)

t is only
used to compute∇fij . We now consider computation edges, and remark that:

∇y,ijqA(xt, yt) = −µij(Σcomm)ii([A(xt, yt)]comm)(i) = −µijθt. (11)

Plugging Equation (11) into the updates of (9), we obtain the following updates:

x̃t+1 = x̃t −
η

pcomm
(W ⊗ Id)θt, (12)

for communication edges, and for the local update of the j-th component of node i:

z
(ij)
t+1 =

(
1− αη

pij

)
z

(ij)
t +

αη

pij
θ

(i)
t , θ

(i)
t+1 =

1

σi

(
x̃

(i)
t+1 −

m∑
j=1

∇fij(z(ij)
t+1)

)
. (13)

Finally, Algorithm 1 is obtained by expressing everything in terms of θt and removing variable x̃t.
To simplify notations, we further consider θ as a matrix in Rn×d (instead of a vector in Rnd), and so
the communication update of Equation (12) is a standard gossip update with matrix W , which we
recall is such that W ⊗ Id = [APcommA

>]comm. We now discuss the local updates of Equation (13)
more in details, which are closely related to dual-free SDCA updates [34].

3 Convergence Rate

The goal of this section is to set parameters η and α in order to get the best convergence guarantees.
We introduce κcomm = γλmax(A>commΣcommAcomm)/λ+

min(A>commD
−1
M Acomm), where λ+

min and
λmax respectively refer to the smallest non-zero and the highest eigenvalue of the corresponding
matrices. We denote DM the diagonal matrix such that (DM)ii = σi + λmax(

∑m
j=1 LijPij), where

∇2fij(x) 4 LijPij for all x ∈ Rd. Note that we use notation κcomm since it corresponds to a
condition number. In particular, κcomm ≤ κs when σi = σj for all i, j, and κcomm more finely
captures the interplay between regularity of local functions (through DM and Σcomm) and the
topology of the network (through A) otherwise.

Theorem 1. We choose pcomm =
(
1 + γ m+κs

κcomm

)−1
, pij ∝ (1 − pcomm)(1 + Lij/σi) and α and η

as in Algorithm 1. Then, there exists C0 > 0 that only depends on θ0 (initial conditions) such that for
all t > 0, the error and the expected time Tε required to reach precision ε are such that:

n∑
i=1

1

2
E
[
‖θ(i)
t − θ?‖2

]
≤ C0

(
1− αη

2

)t
, and so Tε = O

([
m+ κs + τ

κcomm

γ

]
log ε−1

)
.

5

Algorithm 1 DVR(z0)

1: α = 2λ+
min(A>commD

−1
M Acomm), η = min

(
pcomm

λmax(A>commΣcommAcomm)
,

pij

α(1+σ−1
i Lij)

)
// Init.

2: θ(i)
0 = −(

∑m
j=1∇fij(z

(ij)
0))/σi. // z0 is arbitrary but not θ0.

3: for t = 0 to K − 1 do // Run for K iterations
4: Sample ut uniformly in [0, 1]. // Randomly decide the kind of update
5: if ut ≤ pcomm then
6: θt+1 = θt − η

pcomm
ΣWθt // Communication using W

7: else
8: for i = 1 to n do
9: Sample j ∈ {1, · · · ,m} with probability pij .

10: z
(ij′)
t+1 = z

(ij′)
t for j 6= j′ // Only one virtual node is updated

11: z
(ij)
t+1 =

(
1− αη

pij

)
z

(ij)
t + αη

pij
θ

(i)
t // Virtual node update

12: θ
(i)
t+1 = θ

(i)
t − 1

σi

(
∇fij(z(ij)

t+1)−∇fij(z(ij)
t)

)
// Local update using fij

13: return θK

Proof sketch. We have seen in Section 2 that DVR is obtained by applying Bregman coordinate
descent on a well-chosen dual problem. Therefore, one of our key results consists in proving
convergence rates for Bregman coordinate descent in the relatively smooth setting. Although a similar
algorithm is analyzed in [10], we give sharper results in the case of arbitrary sampling of blocks, and
tightly adapt to the separability structure. This is crucial to our analysis since the probabilities to
sample a local gradient and to communicate can be vastly different. In order to ease the reading of
the paper, we present these results for a general setting in Appendix A, which is self-contained and
which we believe to be of independent interest (beyond its application to decentralized optimization).

Then, Appendix B focuses on the application to decentralized optimization. In particular, we recall
the Equivalence between DVR and Bregman coordinate descent applied to the dual problem of
Equation (4), and show that its structure is suited to the application of coordinate descent. Indeed, no
two virtual edges adjacent to the same node are updated at the same time with our sampling. Then,
we evaluate the relative smoothness and strong convexity constants of the augmented problem, which
is rather challenging due to the complex structure of the dual problem. This allows to derive adequate
values for parameters α and η. Finally, we choose pcomm in order to minimize the execution time of
DVR.

We would like to highlight the fact that the convergence theory of DVR decomposes nicely into
several building blocks, and thus simple rates are obtained. This is not so usual for decentralized
algorithms, for instance many follow-up papers were needed to obtain a tight convergence theory for
EXTRA [37, 14, 42, 20]. We now discuss the convergence rate of DVR more in details.

Computation complexity. The computation complexity of DVR is the same computation complexity
as locally running a stochastic algorithm with variance reduction at each node. This is not surprising
since, as we argue later, DVR can be understood as a decentralized version of an algorithm that is
closely related to dual-free SDCA [34]. Therefore, this improves the computation complexity of
EXTRA fromO(m(κb+γ

−1)) individual gradients toO(m+κs), which is the expected improvement
for stochastic variance-reduced algorithm. In comparison, GT-SAGA [41], a recent decentralized
stochastic algorithm, has a computation complexity of order O(m+ κ2

s/γ
2), which is significantly

worse than that of DVR, and generally worse than that of EXTRA as well.

Communication complexity. The communication complexity of DVR (i.e., the number of commu-
nications, so the communication time is retrieved by multiplying by τ) is of order O(κcomm/γ), and
can be improved to O(κcomm/

√
γ) using Chebyshev acceleration (see Section 4). Yet, this is in

general worse than the O(κb + γ−1) communication complexity of EXTRA or NIDS, which can
be interpreted as a partly accelerated communication complexity since the optimal dependence is
O(
√
κb/γ) [31], and 2

√
κb/γ = κb + γ−1 in the worst case (κb = γ−1). Yet, stochastic updates

are mainly intended to deal with cases in which the computation time dominates, and we show in the
experimental section that DVR outperforms EXTRA and NIDS for a wide range of communication

6

times τ (the computation complexity dominates roughly as long as τ <
√
γ(m+ κs)/κcomm). Fi-

nally, the communication complexity of DVR is significantly lower than that of DSA and GT-SAGA,
the primal decentralized stochastic alternatives presented in Section 1.

Homogeneous parameter choice. In the homogeneous case (σi = σj for all i, j), choosing the
optimal pcomp and pcomm described above leads to ηλmax(W) = σpcomm. Therefore, the commu-
nication update becomes θt+1 = (I −W/λmax(W)) θt, which is a gossip update with a standard
step-size (independent of the optimization parameters). Similarly, αη(m+ κs) = pcomp, and so the
step-size for the computation updates is independent of the network.

Links with SDCA. The single-machine version of Algorithm 1 (n = 1, pcomm = 0) is closely related
to dual-free SDCA [34]. The difference is in the stochastic gradient used: DVR uses ∇fij(z(ij)

t),
where z(ij)

t is a convex combination of θ(i)
k for k < t, whereas dual-free SDCA uses g(ij)

t , which is a
convex combination of∇fij(θ(i)

k) for k < t. Both algorithms obtain the same rates.

Local synchrony. Instead of using the synchronous communications of Algorithm 1, it is possible to
update edges one at a time, as in [12]. This can be very efficient in heterogeneous settings (both in
terms of computation and communication times) and similar convergence results can be obtained
using the same framework, and we leave the details for future work.

4 Acceleration

We show in this section how to modify DVR to improve the convergence rate of Theorem 1.

Network acceleration. Algorithm 1 depends on γ−1, also called the mixing time of the graph,
which can be as high as O(n2) for a chain of length n [26]. However, it is possible to improve this
dependency to γ−1/2 by using Chebyshev acceleration, as in [32]. To do so, the first step is to choose
a polynomial P of degree k and communicate with P (W) instead of W . In terms of implementation,
this comes down to performing k communication rounds instead of one, but this makes the algorithm
depend on the spectral gap of P (W). Then, the important fact is that there is a polynomial Pγ of
degree dγ−1/2e such that the spectral gap of Pγ(W) is of order 1. Each communication step with
Pγ(W) only takes time τdeg(Pγ) = τdγ−1/2e, and so the communication term in Theorem 1 can be
replaced by τκcommγ

−1/2, thus leading to network acceleration. The polynomial Pγ can for example
be chosen as a Chebyshev polynomial, and we refer the interested reader to [32] for more details.
Finally, other polynomials yield even faster convergence when the graph topology is known [2].

Catalyst acceleration. Catalyst [22] is a generic framework that achieves acceleration by solving a
sequence of subproblems. Because of space limitations, we only present the accelerated convergence
rate without specifying the algorithm in the main text. Yet, only mild modifications to Algorithm 1
are required to obtain these rates, and the detailed derivations and proofs are presented in Appendix C.

Theorem 2. DVR can be accelerated using catalyst, so that the time Tε required to reach precision ε
is equal (up to log factors) to

Tε = Õ

([
m+

√
mκs + τ

√
κcomm

γ
×
√
m
κcomm

κs

]
log ε−1

)
Proof sketch. We follow the approach of [20] to derive the algorithm, and apply Catalyst acceleration
to the primal problem on the mean parameter θ̄t (which is never explicitly computed). Indeed, this
conceptual algorithm can actually be implemented in a fully decentralized manner.

Then, we proceed to the actual proof, which requires a tight control over both primal and dual
warm-start errors. Indeed, Theorem 4 (Appendix B) controls dual variables but Catalyst acceleration
is applied to the primal variables.

This rate recovers the computation complexity of optimal finite sum algorithms such as ADFS [12, 13].
Although the communication time is slightly increased (by a factor

√
mκcomm/κs), ADFS uses a

stronger oracle than DVR (proximal operator instead of gradient), which is why we develop DVR in
the first place. Although both ADFS and DVR are derived using the same dual formulation, both
the approach and the resulting algorithms are rather different: ADFS uses accelerated coordinate

7

0 1 2 3 4
Nb. of indiv. gradients 1e5

10 12

10 9

10 6

10 3

100

Su
bo

pt
im

al
ity

0 2000 4000 6000 8000
Nb. of communications

10 11

10 8

10 5

10 2

Su
bo

pt
im

al
ity

0.00 0.25 0.50 0.75 1.00
Time 1e7

10 12

10 9

10 6

10 3

100

Su
bo

pt
im

al
ity

EXTRA
DVR
NIDS
GTSAGA
Acc. EXTRA
Acc. DVR

(a) Erdős-Rényi, σ = m · 10−5

0.0 0.5 1.0 1.5
Time (= 250) 1e6

10 13

10 10

10 7

10 4

10 1

Su
bo

pt
im

al
ity

(b) Grid, σ = m · 10−5

0.0 0.5 1.0
Time (= 250) 1e7

10 14

10 11

10 8

10 5

10 2

101

Su
bo

pt
im

al
ity

(c) Erdős-Rényi, σ = m · 10−7

0 1 2 3
Time (= 250) 1e7

10 14

10 11

10 8

10 5

10 2

101

Su
bo

pt
im

al
ity

(d) Grid, σ = m · 10−7

Figure 1: Experimental results for the RCV1 dataset with different graphs of size n = 81, with
m = 2430 samples per node, and with different regularization parameters.

descent, and thus has strong convergence guarantees at the cost of requiring dual oracles. DVR uses
coordinate descent with the Bregman divergence of φij ∝ f∗ij in order to work with primal oracles,
but thus loses direct acceleration, which is recovered through the Catalyst framework. Note that the
parameters of accelerated DVR can also be set such that Tε = Õ

(√
κcomm

[
m+ τ/

√
γ
]

log ε−1
)
,

which recovers the convergence rate of optimal batch algorithms, but loses the finite-sum speedup.

5 Experiments

We investigate in this section the practical performances of DVR. We solve a regularized logistic
regression problem on the RCV1 dataset [18] (d = 47236) with n = 81 (leading to m = 2430) and
two different graph topologies: an Erdős-Rényi random graph (see, e.g., [3]) and a grid. We choose
µ2
k` = 1/2 for all communication edges, so the gossip matrix W is the Laplacian of the graph.

Figure 1 compares the performance of DVR with that of state-of-the-art primal algorithms such as
EXTRA [37], NIDS [21], GT-SAGA [41], and Catalyst accelerated versions of EXTRA [20] and
DVR. Suboptimality refers to F (θ

(0)
t) − F (θ?), where node 0 is chosen arbitrarily and F (θ?) is

approximated by the minimal error over all iterations. Each subplot of Figure 1(a) shows the same
run with different x axes. The left plot measures the complexity in terms of individual gradients
(∇fij) computed by each node whereas the center plot measures it in terms of communications
(multiplications by W). All other plots are taken with respect to (simulated) time (i.e., computing
∇fij takes time 1 and multiplying by W takes time τ) with τ = 250 in order to report results that are
independent of the computing cluster hardware and status. All parameters are chosen according to
theory, except for the smoothness of the fi, which requires finding the smallest eigenvalue of a d× d
matrix. For this, we start with Lb = σi +

∑m
j=1 Lij (which is a known upper bound), and decrease it

while convergence is ensured, leading to κb = 0.01κs. The parameters for accelerated EXTRA are
chosen as in [20] since tuning the number of inner iterations does not significantly improve the results
(at the cost of a high tuning effort). For accelerated DVR, we set the number of inner iterations to
N/pcomp (one pass over the local dataset). We use Chebyshev acceleration for (accelerated) DVR
but not for (accelerated) EXTRA since it is actually slower, as predicted by the theory.

As expected from their theoretical iteration complexities, NIDS and EXTRA perform very simi-
larly [20], and GT-SAGA is the slowest method. Therefore, we only plot NIDS and GT-SAGA in
Figure 1(a). We then see that though it requires more communications, DVR has a much lower

8

0 1000 2000 3000 4000
Nb. of communications

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Su
bo

pt
im

al
ity

EXTRA
DVR
NIDS
Acc. EXTRA
Acc. DVR
MSDA

(a) Erdős-Rényi, σ = m · 10−5

0 1000 2000 3000 4000 5000
Nb. of communications

10 14

10 12

10 10

10 8

10 6

10 4

10 2

Su
bo

pt
im

al
ity

Acc. EXTRA
Acc. DVR
EXTRA
DVR
MSDA

(b) Grid, σ = m · 10−5

0.0 0.5 1.0 1.5 2.0 2.5
Nb. of communications 1e4

10 9

10 7

10 5

10 3

10 1

Su
bo

pt
im

al
ity

Acc. DVR
DVR
Acc. EXTRA
EXTRA
MSDA
Acc. DVR, comm

(c) Grid, σ = m · 10−7

Figure 2: Experimental results for the RCV1 dataset with different graphs of size n = 81, with
m = 2430 samples per node, and with different regularization parameters.

computation complexity than EXTRA, which illustrates the benefits of stochastic methods. We see
that DVR is faster overall if we choose τ = 250, and both methods perform similarly for τ ≈ 1000,
at which point communicating takes roughly as much time as computing a full local gradient. We
then see that accelerated EXTRA has quite a lot of overhead and, despite our tuning efforts, is slower
than EXTRA when the regularization is rather high. On the other hand, accelerated DVR consistently
outperforms DVR by a relatively large margin. The communication complexity is in particular greatly
improved, allowing accelerated DVR to be the fastest method regardless of the setting.

Finally, Figure 2 presents the comparison between DVR and MSDA [32], an optimal decentralized
batch algorithm, in terms of communication complexity. To implement MSDA, we compute the dual
gradients by solving each local subproblem (∇f∗(x) = arg maxy x

>y−f(y)) up to precision 10−11

using accelerated gradient descent. Solving the subproblems with lower precision caused MSDA
to plateau and not converge to the true optimum. In Figure 2(c), Acc. DVR comm (the brown line)
refers to Accelerated DVR with Catalyst parameter chosen to favor communication complexity (as
explained after Theorem 2). MSDA is the fastest algorithm as expected, but accelerated DVR is not
too far behind, especially given the fact that it relies on generic Catalyst acceleration, which adds some
complexity overhead. Therefore, the comparison with MSDA corroborates the fact that accelerated
DVR is competitive with optimal methods in terms of communication while enjoying a drastically
lower computational cost. Further experimental results are given in Appendix D, and the code is
available in supplementary material and at https://github.com/HadrienHx/DVR_NeurIPS.

6 Conclusion

This paper introduces DVR, a Decentralized stochastic algorithm with Variance Reduction obtained
using Bregman block coordinate descent on a well-chosen dual formulation. Thanks to this approach,
DVR inherits from the fast rates and simple theory of dual approaches without the computational
burden of relying on dual oracles. Therefore, DVR has a drastically lower computational cost
than standard primal decentralized algorithms, although sometimes at the cost of a slight increase
in communication complexity. The framework used to derive DVR is rather general and could
in particular be extended to analyze asynchronous algorithms. Finally, although deriving a direct
acceleration of DVR is a challenging open problem, Catalyst and Chebyshev accelerations allow to
significantly reduce DVR’s communication overhead both in theory and in practice.

Acknowledgement

This work was funded in part by the French government under management of Agence Na-
tionalede la Recherche as part of the “Investissements d’avenir” program, reference ANR-19-P3IA-
0001(PRAIRIE 3IA Institute). We also acknowledge support from the European Research Council
(grantSEQUOIA 724063) and from the MSR-INRIA joint centre.

Broader impact statement

This work does not present any foreseeable societal consequence.

9

https://github.com/HadrienHx/DVR_NeurIPS

References
[1] Heinz H. Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond Lipschitz

gradient continuity: first-order methods revisited and applications. Mathematics of Operations
Research, 42(2):330–348, 2017.

[2] Raphaël Berthier, Francis Bach, and Pierre Gaillard. Accelerated gossip in networks of given
dimension using jacobi polynomial iterations. SIAM Journal on Mathematics of Data Science,
2(1):24–47, 2020.

[3] Béla Bollobás. Random graphs. Number 73 in Cambridge studies in advanced mathematics.
Cambridge University Press, 2001.

[4] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT, pages 177–186. Springer, 2010.

[5] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip
algorithms. IEEE Transactions on Information Theory, 52(6):2508–2530, 2006.

[6] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed opti-
mization and statistical learning via the alternating direction method of multipliers. Foundations
and Trends R© in Machine learning, 3(1):1–122, 2011.

[7] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems, pages 1646–1654, 2014.

[8] John C. Duchi, Alekh Agarwal, and Martin J. Wainwright. Dual averaging for distributed
optimization: Convergence analysis and network scaling. IEEE Transactions on Automatic
Control, 57(3):592–606, 2012.

[9] Darina Dvinskikh and Alexander Gasnikov. Decentralized and parallelized primal and dual accel-
erated methods for stochastic convex programming problems. arXiv preprint arXiv:1904.09015,
2019.

[10] F. Hanzely and P. Richtárik. Fastest rates for stochastic mirror descent methods.
arXiv:1803.07374, 2018.

[11] Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. Accelerated decentralized optimiza-
tion with local updates for smooth and strongly convex objectives. In Artificial Intelligence and
Statistics, 2019.

[12] Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. An accelerated decentralized stochas-
tic proximal algorithm for finite sums. In Advances in Neural Information Processing Systems,
2019.

[13] Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. An optimal algorithm for decentralized
finite sum optimization. arXiv preprint arXiv:2005.10675, 2020.

[14] Dušan Jakovetić. A unification and generalization of exact distributed first-order methods. IEEE
Transactions on Signal and Information Processing over Networks, 5(1):31–46, 2018.

[15] Dušan Jakovetić, José M. F. Moura, and Joao Xavier. Linear convergence rate of a class
of distributed augmented Lagrangian algorithms. IEEE Transactions on Automatic Control,
60(4):922–936, 2014.

[16] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, pages 315–323, 2013.

[17] Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. Mathematical
Programming, pages 1–49, 2017.

[18] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A new benchmark collection
for text categorization research. Journal of machine learning research, 5(Apr):361–397, 2004.

10

[19] Huan Li, Cong Fang, Wotao Yin, and Zhouchen Lin. A sharp convergence rate analysis for
distributed accelerated gradient methods. arXiv preprint arXiv:1810.01053, 2018.

[20] Huan Li and Zhouchen Lin. Revisiting EXTRA for smooth distributed optimization. arXiv
preprint arXiv:2002.10110, 2020.

[21] Zhi Li, Wei Shi, and Ming Yan. A decentralized proximal-gradient method with network inde-
pendent step-sizes and separated convergence rates. IEEE Transactions on Signal Processing,
67(17):4494–4506, 2019.

[22] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimiza-
tion. In Advances in Neural Information Processing Systems, pages 3384–3392, 2015.

[23] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. Catalyst acceleration for first-order convex
optimization: from theory to practice. Journal of Machine Learning Research, 18(1):7854–7907,
2017.

[24] Qihang Lin, Zhaosong Lu, and Lin Xiao. An accelerated randomized proximal coordinate
gradient method and its application to regularized empirical risk minimization. SIAM Journal
on Optimization, 25(4):2244–2273, 2015.

[25] Haihao Lu, Robert M. Freund, and Yurii Nesterov. Relatively smooth convex optimization by
first-order methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

[26] Bojan Mohar. Some applications of laplace eigenvalues of graphs. In Graph Symmetry, pages
225–275. Springer, 1997.

[27] Aryan Mokhtari and Alejandro Ribeiro. DSA: Decentralized double stochastic averaging
gradient algorithm. Journal of Machine Learning Research, 17(1):2165–2199, 2016.

[28] Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633, 2017.

[29] Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent opti-
mization. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

[30] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87.
Springer Science & Business Media, 2013.

[31] Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Lee, and Laurent Massoulié. Optimal
convergence rates for convex distributed optimization in networks. Journal of Machine Learning
Research, 20:1–31, 2019.

[32] Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal
algorithms for smooth and strongly convex distributed optimization in networks. In International
Conference on Machine Learning, pages 3027–3036, 2017.

[33] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[34] Shai Shalev-Shwartz. SDCA without duality, regularization, and individual convexity. In
International Conference on Machine Learning, pages 747–754, 2016.

[35] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning Research, 14(Feb):567–599, 2013.

[36] Zebang Shen, Aryan Mokhtari, Tengfei Zhou, Peilin Zhao, and Hui Qian. Towards more
efficient stochastic decentralized learning: Faster convergence and sparse communication. In
International Conference on Machine Learning, pages 4631–4640, 2018.

[37] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for
decentralized consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

11

[38] César A. Uribe, Soomin Lee, Alexander Gasnikov, and Angelia Nedić. A dual approach
for optimal algorithms in distributed optimization over networks. Optimization Methods and
Software, pages 1–40, 2020.

[39] Jialei Wang and Lin Xiao. Exploiting strong convexity from data with primal-dual first-order
algorithms. In International Conference on Machine Learning, pages 3694–3702, 2017.

[40] Lin Xiao, Adams Wei Yu, Qihang Lin, and Weizhu Chen. DSCOVR: Randomized primal-dual
block coordinate algorithms for asynchronous distributed optimization. Journal of Machine
Learning Research, 20(43):1–58, 2019.

[41] Ran Xin, Soummya Kar, and Usman A Khan. Decentralized stochastic optimization and
machine learning: A unified variance-reduction framework for robust performance and fast
convergence. IEEE Signal Processing Magazine, 37(3):102–113, 2020.

[42] Jinming Xu, Ye Tian, Ying Sun, and Gesualdo Scutari. Distributed algorithms for composite
optimization: Unified and tight convergence analysis. arXiv preprint arXiv:2002.11534, 2020.

12

This appendix contains the details of the derivations and proofs from the main text. More specifically,
Appendix A is a self-contained appendix that specifies the Bregman coordinate descent algorithm and
proves its convergence rate. Appendix B focuses on the application of Bregman coordinate descent
to the dual problem (relative smoothness and strong convexity constants, sparsity structure), and how
to retrieve guarantees on the primal parameters. Appendix C is devoted to presenting the Catalyst
acceleration of DVR and proving its convergence speed, and Appendix D details the experimental
setting, along with more experiments.

A Block Coordinate descent

We focus in this section on the general problem minimizing f + g using coordinate Bregman gradient,
where g is separable, i.e., g(x) =

∑d
i=1 gi(x

(i)). This is a self-contained section, and notations may
differ from the rest of the paper. In particular, function f is for now arbitrary and not related to F or
fi from Problem (1), and the dimension d is arbitrary as well.

We first precise the blocks sampling rule. More specifically, we define a block b ⊂ {1, . . . , d} as
a collection of coordinates, and B is the set of all blocks that can be chosen for the updates. Then,
the algorithm updates each block b ∈ B with probability p(b), so that the probability of updating
a given coordinate is given by pi =

∑
i∈b p(b). Similarly to individual coordinates, we write x(b)

the restriction of x to coordinates in b. The Bregman coordinate gradient update for a block of
coordinates b writes:

xt+1 = arg min
x∈Rd

{
V bt (x) ,

∑
i∈b

ηt
pi

[
∇if(xt)

>x+ gi(x
(i))
]

+Dφ(x, xt)

}
, (14)

where∇if denotes the gradient of f in direction i. Note that this update is more general than the one
used to derive DVR, for which g = 0. In order to derive strong guarantees for this block coordinate
descent algorithm, we need to ensure that there is some separability in functions f and φ, and that the
block structure is suited to this separability. All the assumptions about the separability structure of f ,
g and φ are contained in the following assumption.
Assumption 1 (Separability). The function g is separable and the function φ is block-separable for
b, meaning that for all b ∈ B, there exist two convex functions φb and φ⊥b such that for all x,

φ(x) = φb(x
(b)) + φ⊥b (x− x(b)). (15)

Besides, for all b ∈ B, either of the following two hold:

1. φ and f are separable for b, i.e., φb(x(b)) =
∑
i∈b φi(x

(i)), and∑
i∈b

[f(xt + δiei)− f(xt)] = f

(
xt +

∑
i∈b

δiei

)
− f(xt).

2. pi = pj for all i, j ∈ b.

If φ is not block-separable, the support of the Bregman update in direction b may not restricted to
b. This causes some of the derivations below to fail, which is why we prevent it by assuming that
Equation (15) holds.

Then, the first option ensures that within a block, the updates do not affect each other. The function
f is not separable, but some directions can be updated independently from others. To have these
independent updates, we also need to assume further separability of φ within the blocks. The second
option states that if only block-separability of φ is assumed then within each block for which φ and f
are not separable, coordinates must be picked with the same probability.

Assumption 1 is a bit technical but we actually require all statements in order to derive DVR. In
particular, the first option is verified when updating within the same block virtual edges that are
adjacent to different nodes in the dual problem. The second option is verified when picking all
communication edges at once within the same block.

Now that we have made assumptions on the structure of f , g and φ, we will make assumptions on
their regularity. We start by a directional relative smoothness assumption between f and φ, i.e., we

13

assume that for all i, there exists Lirel such that for all δ > 0 and ei the unit vector of direction i,

Df (x+ δei, x) ≤ LirelDφ(x+ δei, x). (16)

Similarly, for σrel > 0, f is said to be σrel-strongly convex relatively to φ if for all x, y:

Df (x, y) ≥ σrelDφ(x, y). (17)

We finally assume that f and φ are convex (but not necessarily smooth). We can now state the central
theorem of this section:

Theorem 3. Let f and φ be such that f is Lirel-smooth in direction i and σrel-strongly convex
relatively to φ. Denote pmin = mini pi, and

Lt = Dφ(x, xt) +
ηt
pmin

(F (xt)− F (x)) .

Then, if the blocks B respect Assumption 1 (separability) and ηtLirel < pi for all i, the Bregman
coordinate descent algorithm guarantees for all x:

E [Lt+1] ≤ (1− ηtσrel)Lt.

The same result holds with L′t = Dφ(x, xt) + 1
Lmax

rel
(F (xt)− F (x)), where Lmax

rel = maxi L
i
rel.

To prove this theorem, we start by proving the monotonicity of such iterations.

Lemma 1 (Monotonicity). We note δi = e>i (xt+1 − xt)ei. If xt+1 = arg minx V
b
t (x) then:

1. If φ and f are separable for b then for all i ∈ b, if ηtLirel ≤ pi then F (xt) ≥ F (xt + δi).

2. If pi = pj for all i, j ∈ b and ηtLbrel ≤ pb then F (xt) ≥ F (xt+1).

Proof. We start by the first point. If φ is separable for b then this means that each coordinate is
updated independently. By definition of x(i)

t+1, we have V bt (x
(b)
t+1) ≤ V bt (xt). This writes, splitting

over each i and using the fact that Dφi(xt, xt) = 0:

gi(x
(i)
t)− gi(x(i)

t+1) ≥ ∇if(xt)
>(x

(i)
t+1 − x

(i)
t) +

pi
η
Dφi(x

(i)
t+1, x

(i)
t)

= ∇if(xt)
>(xt + δi − xt) +

pi
η
Dφi(x

(i)
t+1, x

(i)
t)

= f(xt + δi)− f(xt)−Df (x
(i)
t+1, x

(i)
t) +

pi
η
Dφi(x

(i)
t+1, x

(i)
t)

≥ f(xt + δi)− f(xt) +

(
pi
η
− Lirel

)
Dφi(x

(i)
t+1, x

(i)
t)

≥ f(xt + δi)− f(xt).

The result follows from summing over all i ∈ b, and using Assumption 1. For the second point, it is
not possible to split the update per coordinate since φ is not separable. Yet, we can still write (using
separability of g):∑

i∈b

ηt
pi

[
g(x

(i)
t)− g(x

(i)
t+1)−∇if(xt)

>(x
(i)
t+1 − x

(i)
t)
]
≥ Dφ(xt+1, xt). (18)

Since g is separable and pi = pb for all i ∈ b, Equation (18) writes:

g(xt)− g(xt+1) ≥ ∇f(xt)
>(xt+1 − xt) +

pb
η
Dφ(xt+1, xt). (19)

Note that this crucially relies on xt+1 − xt having support on b, which is enforced by the block-
separability of φ. Then, the proof is similar to that of the first point, using that ηtLbrel ≤ pb.

Using this monotonicity result allows us to prove Theorem 3.

14

Proof of Theorem 3. First note that by convexity of all gi,

∇2V bt (x) =
∑
i∈b

ηt
pi
∇2gi(x

(i)) +∇2φ(x) < ∇2φ(x).

Therefore, we have DV bt
(x, y) ≥ Dφ(x, y) for all x, y ∈ Rd. Applying this with y = xt+1 yields:

V bt (x)− V bt (xt+1)−∇V bt (xt+1)>(x− xt+1) ≥ Dφ(x, xt+1). (20)

Then, ∇V bt (xt+1) = 0 by definition of xt+1, so Equation (20) writes:

Dφ(x, xt+1) +
∑
i∈b

ηt
pi

(
gi(x

(i)
t+1)− g(x(i))

)
≤
∑
i∈b

ηt
pi
∇if(xt)

>(x− xt+1)

+Dφ(x, xt)−Dφ(xt+1, xt).

We first consider that the first option of Assumption 1 holds, i.e., that f and φ are separable in b. We
note δi = e>i (xt+1 − xt)ei, so that:

−∇if(xt)
>(xt+1 − xt) = ∇f(xt)

>(xt + δi − xt)
= f(xt)− f(xt + δi) +Df (xt + δi, xt)

≤ f(xt)− f(xt + δi) + LirelDφi(x
(i)
t+1, x

(i)
t).

Therefore, if ηtLirel ≤ pi for all i ∈ b,

−
∑
i∈b

ηt
pi
∇if(xt)

>(xt+1 − xt)−Dφ(xt+1, xt)

≤
∑
i∈b

ηt
pi

[f(xt)− f(xt + δi)] +
∑
i∈b

(
ηtL

i
rel

pi
− 1

)
Dφi(x

(i)
t+1, x

(i)
t)

≤
∑
i∈b

ηt
pi

[f(xt)− f(xt + δi)]

The gi(x
(i)
t+1) − gi(x(i)) term can be replaced by g(xt + δi) − g(xt) + gi(x

(i)
t) − gi(x(i)) since

gj(xt+1) = gj(xt) for j 6= i. Therefore, we obtain:

Dφ(x, xt+1) +
∑
i∈b

ηt
pi

[F (xt + δi)− F (xt)] +
∑
i∈b

ηt
pi

(
gi(x

(i)
t)− gi(x(i))

)
≤
∑
i∈b

ηt
pi
∇if(xt)

>(x− xt) +Dφ(x, xt).
(21)

The separability of F in b and its monotonicity lead to, using the fact that xt+1 = xt +
∑
i∈b δi:∑

i∈b

ηt
pi

[F (xt + δi)− F (xt)] ≥
ηt
pmin

∑
i∈b

[F (xt + δi)− F (xt)] =
ηt
pmin

[F (xt+1)− F (xt)] .

Therefore, if the first option of Assumption 1 holds, we obtain:

Dφ(x, xt+1) +
ηt
pmin

[F (xt+1)− F (xt)] +
∑
i∈b

ηt
pi

(
gi(x

(i)
t)− gi(x(i))

)
≤
∑
i∈b

ηt
pi
∇if(xt)

>(x− xt) +Dφ(x, xt).
(22)

If the second option holds, i.e., pi = p for all i ∈ b, then∑
i∈b

ηt
pi
∇if(xt)

>(xt+1 − xt) =
ηt
p
∇f(xt)

>(xt+1 − xt),

and Equation (22) can be obtained through similar derivations (at the block-level). Using the
separability of g, we obtain that

E

[∑
i∈b

1

pi

(
gi(x

(i)
t)− gi(x(i))

)]
= g(xt)− g(x).

15

Then, since E
[∑

i∈b
1
pi
∇if(xt)

]
=
∑
i p
−1
i

∑
b:i∈b p(b)∇if(xt) = ∇f(xt), and the relative strong

convexity assumption yields:

E

[∑
i∈b

1

pi
∇if(xt)

>(x− xt)

]
= ∇f(xt)

>(x− xt) ≤ f(x)− f(xt)− σrelDφ(x, xt).

Therefore, taking the expectation of Equation (21) yields:

E
[
Dφ(x, xt+1) +

ηt
pmin

(F (xt+1)− F (xt))

]
≤ ηt (F (x)− F (xt)) + (1− ηtσrel)Dφ(x, xt).

We obtain after some rewriting:

E
[
Dφ(x, xt+1) +

ηt
pmin

(F (xt+1)− F (x))

]
≤ (1− pmin)

ηt
pmin

(F (xt)− F (x)) + (1− ηtσrel)Dφ(x, xt).

Finally, σrel ≤ Lirel so ηtσrel ≤ ηtLirel ≤ pi for all i, and in particular 1− pmin ≤ 1− ηtσrel, which
yields the desired result.

The result on L′t is be obtained by bounding η/pmin by Lmax
rel = maxi L

i
rel and remarking that

1− ηtLmax
rel ≤ 1− ηtσrel since Lmax

rel ≥ σrel.

B Convergence results for DVR

We now give a series of small results, that justify our approach. We start by showing the applicability
of Theorem 3 to Problem (4), and the associated constants. Finally, we show how to obtain rates for
the primal iterates θt.

B.1 Application to the dual of the augmented problem

In this section, we note f∗sum =
∑n
i=1

∑m
j=1 f

∗
ij , so that Problem 4 writes:

min
x,y

qA(x, y) + f∗sum(y) (23)

Lemma 2. The iterations of Algorithm 1 are equivalent to the iteration of Equations (14) applied
to Problem (4) with g = 0 and φ(x, y) = φcomm(x) +

∑n
i=1

∑m
j=1 φij(y

(ij)), with φcomm(x) =
1
2‖x‖

2
A†A for coordinates associated with communication edges, and φij(y(ij)) =

Lij
µ2
ij
f∗ij(µijyij)

for coordinates associated with computation edges.

Proof. This result follows from the dual-free and implementation-friendly derivations presented in
the previous section.

Lemma 3. Let α = 2λmin(A>commD
−1
M Acomm), and φ as in Lemma 2, then:

1. qA + f∗sum is (α/2)-strongly convex relatively to φ.

2. qA + f∗sum is (Lcomm
rel)-smooth relatively to φ in the direction of communication edges, with

Lcomm
rel = λmax(A>commΣcommAcomm).

3. qA + f∗sum is (Lijrel)-smooth relatively to φ in the direction of virtual edge (i, j), with

Lijrel = α

(
1 +

Lij
σi

)
.

Proof. First note that ∇2f∗sum is a block-diagonal matrix, and its ij-th block is equal to

(∇2f∗sum(y))ij = A>(uiju
>
ij ⊗∇2f∗ij(µijy

(ij)))A <
1

Lij
A>(uiju

>
ij ⊗ Pij)A, (24)

16

where uij ∈ Rn(1+m) denotes the unit vector corresponding to virtual node (i, j). We denote
Σ̃ = Σ +

∑n
i=1

∑m
j=1

1
Lij

(uiju
>
ij)⊗ Id. Then,

∇2qA(x, y) +∇2f∗sum(y) = A>Σ̃A+∇2f∗sum(y)−A>
 n∑
i=1

m∑
j=1

1

Lij
(uiju

>
ij)⊗ Pij

A. (25)

Relative strong convexity. Then, [13, Lemma 6.5] leads to A>Σ̃A < σFA
†A. Note that the

notations are slightly different, and the matrix Σ̃ in this paper is the same as the matrix Σ† in [13].
Then, remark that (A†A)ij = Pij = 1

µ2
ij

(A>[(uiju
>
ij)⊗ Pij]A)ij , and φij = α−1f∗ij , so that:

∇2qA(x, y) +∇2f∗sum(y) < σF∇2φ(x, y)+

(1− α−1σF)

∇2f∗sum(y)−A>
 n∑
i=1

m∑
j=1

1

Lij
(uiju

>
ij)⊗ Pij

A.
 .

Finally, using that Equation (24) along with the fact that σF ≤ α implies that qA + f∗sum is σF -
relatively strongly convex with respect to φ.

Relative smoothness. We first prove the relative smoothness property for communicate edges. For
any x̃ ∈ REd, Equation (25) leads to:

(x̃, 0)>[∇2qA(x, y) +∇2f∗sum(y)](x̃, 0) = (x̃, 0)>A>ΣA(x̃, 0) 4 Lcomm
rel (x̃, 0)>∇2φ(x, y)(x̃, 0).

Similarly, for any θ ∈ Rd, we consider ỹ = eij ⊗ θ and write:

ỹ>[∇2qA(x, y) +∇2f∗sum(y)]ỹ = ỹ>A>Σ̃Aỹ + µ2
ijθ
>
[
∇2f∗ij(µijy

(ij))− 1

Lij
Pij

]
θ

4 Lirelỹ
>∇2φ(x, y)ỹ + (1− α−1Lirel)θ

>
[
∇2f∗ij(µijy

(ij))− 1

Lij
Pij

]
θ,

with

Lirel = max
θ
µ2
iju
>
ijΣ̃uij

θ>Pijθ

‖θ‖2
≤ α

(
1 +

Lij
σi

)
.

Finally, ∇2f∗ij(µijy
(ij)) < Pij/Lij , and α ≤ Lirel, which ends the proof of the directional relative

smoothness result.

Lemma 4. Assumption 1 holds with f = qA + f∗sum, g = 0, and φ as in Lemma 2, and when the
sampling is such that either:

• All communication edges are sampled at once, or

• Each node samples exactly one virtual edge.

Proof. First of all, g = 0 is separable, and φ is separable with respect to the communication and
computation blocks by construction.

We note bcomm the block of all communication edges, which is sampled with probability pcomm.
All communication edges are sampled at the same time, so pi = pcomm for all i ∈ bcomm and so φ
respects option 2 for the communication block.

Let us now consider a computation block b. First of all, φ is separable for the virtual edges. Then,
virtual blocks contain exactly one virtual edge per node, and so b = {(1, j1), · · · , (n, jn)}. Let k 6= `,
then

e>k,jkA
>ΣAe`,j` = µk,jkµ`,j`(ek − ek,jk)>Σ(e` − e`,j`) = 0.

17

Therefore,

qA

xt +
∑

(i,j)∈b

δij

− qA(xt) =
1

2

 ∑
(i,j)∈b

δij

A>ΣA

(∑
(ij)∈b

δij

)
+

 ∑
(ij)∈b

Aδij

>ΣAxt

=
∑

(i,j)∈b

(
qA(δij) + δ>ijA

>ΣAxt
)

=
∑

(i,j)∈b

(qA(xt + δij)− qA(xt)) .

Finally, f∗sum is separable, and so qA + f∗sum respects option 2.

We can now prove the main theorem on the convergence rate of DVR.

Theorem 4. We choose pcomm =
(
1 + γ m+κs

κcomm

)−1
and pij ∝ (1− pcomm)(1 + Lij/σi). Then, for

all θ0 ∈ Rn×d and all t > 0, the error is such that:
ηt
pmin

Dφ(λ?, λt) +D(λt)−D(λ?) ≤
(

1− αηt
2

)t [ηt
pmin

Dφ(λ?, λ0) +D(λ0)−D(λ?)

]
, (26)

with pmin = min(pcomm,minij pij), λt = (xt, yt) and D = −(qA + f∗sum). Therefore, the expected
time Tε required to reach precision ε is equal to:

Tε = O

([
m+ κs + τ

κcomm

γ

]
log ε−1

)
.

Proof. Using Lemmas 4 and 3, we apply Theorem 3 (convergence of Bregman coordinate gra-
dient descent), and obtain that the convergence rate is ηtα/2, with ηt ≤ minij pij/L

i
rel and

ηt ≤ pcomm/L
comm
rel . Therefore, for communication edges, we have that

ηt ≤
pcomm

Lcomm
rel

=
pcomm

λmax(A>commΣ−1
commAcomm)

.

For computation edges, we know that pij = pcomm(1 + Lij/σi)/(
∑m
j=1(1 + Lij/σi)), and so

ηt ≤
pij

Lijrel

=
pcomp

α
∑m
j=1(1 + σ−1

i Lij)
≤ pcomp

α(m+ κs)
,

with κs ≥ σ−1
i

∑m
j=1 Lij for all i.

In the end, we would like these two bounds to be equal, so we choose pcomp and pcomm such that

pcomp = pcomm (m+ κs)
λ+

min(A>commD
−1
M Acomm)

λmax(A>commΣ−1
commAcomm)

.

Yet, we also know that pcomm = 1− pcomp, so

pcomp =

(
1 +

1

m+ κs

λmax(A>commΣ−1
commAcomm)

λ+
min(A>commD

−1
M Acomm)

)−1

.

Equivalently, this corresponds to taking

pcomm =

(
1 + γ

m+ κs
κcomm

)−1

.

With this choice, one can verify that ηt verifies both ηtα ≤ 2pcomm and ηtα ≤ 2 minij pij , so the
rate is:

1− ηtα

2
= 1− pcomp

2(m+ κs)
.

The expected execution time to reach precision ε, denoted Tε, is equal to Tε = ρ−1(pcomp +
τpcomm)Kε with Kε such that C(1− ηtα/2)Kε < ε for some constant C, and so:

Tε = O

(
2(m+ κs) + τ

κcomm

γ

)
.

18

B.2 Primal guarantees

The goal of this section is to recover primal guarantees from dual guarantees. Although the initial
setting is inspired from [24], the proof is different, and in particular does not require smoothness of
the f∗ij or an extra proximal step. We define for β ≥ 0 the Lagrangian function:

L(λ, θ) =

n∑
i=1

m∑
j=1

fij(θ
(ij)) +

σi
2
‖θ(i)‖2 +

β

2
‖θ(i) − ω(i)‖2 − λ>A>θ. (27)

The dual problem D(λ) is defined as

D(λ) = min
θ
L(λ, θ).

Given an approximate dual solution λk, we can get an approximate primal solution θk =
arg minθ L(λk, θ), which is obtained as:

θ
(ij)
t = arg min

v

(
fij(v)− µijλ(ij)

t v
)
∈ ∂f∗ij(µijλ

(ij)
t), (28)

θ
(i)
t =

1

σi + β

(
(Aλt)

(i) + βω(i)
)
. (29)

Note that θ(ij)
t corresponds to the z(ij)

t from Algorithm 1. We chose to use a different notation in
the main text to emphasize on the fact that these are the parameters for the virtual nodes, but z(ij)

t
actually converge to the solution as well. Similarly, λt corresponds to (xt, yt) the concatenation of
the parameters for communication and virtual edges from Section 2. The last difference is that the
Lagrangian defined in Equation (27) actually corresponds to a Lagrangian associated to a perturbed
version of Problem (1) in which f̃i(θ) = fi(θ) + β

2 ‖θ − ω
(i)‖2. The solution to the initial problem

can be retrieved by taking β = 0, but this more general formulation enables us to derive results that
also holds for the inner problems solved by the Catalyst accelerated version of DVR.

Lemma 5. Denote C0 = (β+σmax+Lmax)
2(σmin+β)2

(
pmin

ηt
Dφ(λ?, λ0) + (D(λ?)−D(λ0))

)
, then

n∑
i=1

‖θ(i)
t − θ?‖2 ≤ C0(1− ρ)t. (30)

Proof. Using the fact that θ(i)
t = 1

σi+β
((Aλt)

(i) +ω
(i)
t) (and similarly for θ?), where Σβ is the block

diagonal matrix such that (Σβ)ii = (σi + β)−1Id, we obtain:

n∑
i=1

‖θ(i)
t − θ?‖2 =

n∑
i=1

1

(σi + β)2
‖(Aλt)(i) − (Aλ?)(i)‖2

≤ 1

(σmin + β)2
‖Aλt −Aλ?‖2.

Using the min((σmax +β)−1, L−1
ij)-strong convexity of θ 7→ 1

2x
>Σβx+

∑
i,j f

∗
ij(x

(ij)), we obtain:

n∑
i=1

‖θ(i)
t − θ?‖2 ≤ 2

(β + σmax + Lmax)

(σmin + β)2
(D(λ?)−D(λt)) . (31)

Then, we add pminη
−1
t Dφ(λ?, λt) ≥ 0 and apply Theorem 4, which yields

n∑
i=1

‖θ(i)
t − θ?‖2 ≤

2(β + σmax + Lmax)

(σmin + β)2
(1− ρ)t

(
pmin

ηt
Dφ(λ?, λ0) + (D(λ?)−D(λ0))

)
.

Then, Theorem 1 is a direct consequence of Theorem 4 and Lemma 5.

19

C Catalyst acceleration

We show in this Section how to apply Catalyst acceleration to DVR, and prove the convergence speed
in this case.

C.1 Derivation and rates

In the main text, we derived DVR to solve regularized finite sum problems. Although not so different,
the subproblem obtained with Catalyst is not in the form of Problem (1), and some adjustments need
to be made. More specifically, we would like to solve problems of the form:

min
θ

Ft(θ) ,
n∑
i=1

σi
2
‖θ‖2 +

β

2
‖θ − ω(i)

t ‖2 +

m∑
j=1

fij(θ)

 . (32)

An easy way to adapt the algorithm is to consider the extra (β/2)‖θ−ω(i)
t ‖2 as just another component

of the sum. Yet, the point of this extra term is to make the problem easier to solve by adding strong
convexity. This would not be the case if this term were is treated as just another term in the sum.
Therefore, we want to include it with the quadratic term. We define:

h(x) =
σi
2
‖θ‖2 +

β

2
‖θ − ω(i)

t ‖2,

then h∗(x) = 1
2(β+σ)‖x+ βω

(i)
t ‖2 −

β
2 ‖ω

(i)
t ‖2. Therefore, Problem (4) becomes:

min
λ∈R(E+mn)d

1

2
λ>A>ΣβAλ+ βω>t ΣβAλ+

n∑
i=1

m∑
j=1

f∗ij((Aλ)ij), (33)

with (Σβ)ii = (σi + β)−1 for i ∈ {1, . . . , n}. The linear term does not affect the Hessians, and thus
the convergence rate is the same as before, with σ replaced by σ + β. In terms of algorithms, we just
need to modify the gradient term, and obtain Algorithm 2. The only term that changes is ∇qA(x, y),
to which an extra βΣβωt term is added. Therefore, the updates to θt and zt remain unchanged, and
only the initial expression of θt requires some adjustments since we now have that (as written in
Equation 29):

θ
(i)
t,k =

1

σi + β

(
(Aλt,k)(i) + βω(i)

)
.

If we only consider 1 inner loop then the only thing that changes is the initial condition. If we consider
several outer loops, then the we must choose the new parameter as θt+1

0 = θtT + Σβ(ωt+1 − ωt) in
order to maintain the invariant, but a remarkable fact is that the inner iterations remain the same, with
the only exception that Σ is replaced by Σβ . Note that it is possible to warm-start the zt+1,0 as well,
but this requires updating θt,0 accordingly with∇fij(z(ij)

t,0), which requires a full pass over the local
dataset. We therefore choose not to do it.

However, it is not obvious that Algorithm 2 corresponds to a genuine Catalyst acceleration yet.
Indeed, Catalyst acceleration requires having a feasible εt-approximations for the primal problem,
i.e., points θt ∈ Rd such that Ft(θt)−minθ F (θ) ≤ εt. In our case, we only have dual guarantees
and approximate feasibility. We know that the parameters converge to consensus, but they do not
reach it at any time. This is a problem because it is then not possible to adequately define Ft+1 based
on the local approximations of the solutions of Ft. Yet, following the approach of [20], we note that

n∑
i=1

‖θ − ω(i)
t ‖2 = n‖θ − ω̄t‖2 +

n∑
i=1

‖ω(i)
t ‖2 − n‖ω̄t‖2,

where ω̄t = 1
n

∑n
i=1 ω

(i)
t . This means that although Ft is only defined with the local variables ω(i)

t ,
solving Ft is equivalent to solving a problem involving ω̄t only. Besides, the Catalyst iterations are
linear, meaning that performing the extrapolation step on θ̄t is equivalent to performing it on each θ(i)

t
individually. Therefore, although Catalyst is implemented in a fully decentralized manner (each node

20

Algorithm 2 Accelerated DVR(z0)

1: α = 2λ+
min(A>commD

−1
M Acomm), η = min

(
pcomm

λmax(A>commΣβ,commAcomm)
,

pij

α(1+σ−1
i Lij)

)
2: q = σmin

σmin+β // Initialization

3: ω(i)
0 = − 1

σi+β

∑m
j=1∇fij(z

(ij)
0), θ(i)

0 =
(

1 + β
σi+β

)
ω

(i)
0 . // z0 is arbitrary but not θ0.

4: for t = 0 to T − 1 do // T outer loops
5: for k = 0 to K − 1 do // Inner loop runs for K iterations
6: zt,k+1 = zt,k.
7: Sample ut uniformly in [0, 1]. // Randomly decide the kind of update
8: if ut ≤ pcomm then
9: θt,k+1 = θt,k − ηt

pcomm
ΣβWθt,k // Communication using W

10: else
11: for i = 1 to n do
12: Sample j ∈ {1, · · · ,m} with probability pij .

13: z
(ij)
t,k+1 =

(
1− αη

pcomp

)
z

(ij)
t,k + αη

pcomp
θ

(i)
t,k // Computing new virtual node parameter

14: θ
(i)
t,k+1 = θ

(i)
t,k −

1
σi+β

(
∇fij(z(ij)

t,k+1)−∇fij(z(ij)
t,k)

)
// Local update using fij

15: ωt+1 = θt,K +
1−√q
1+
√
q (θt,K − θt−1,K)

16: θt+1,0 = θt,K + β
β+σi

(ωt+1 − ωt)
17: zt+1,0 = zt,K
18: return θT

knowing only its own parameter), it is conceptually applied to a mean parameter θ̄t (that is never
explicitly computed). In the following, we thus analyze the performances of the following algorithm:

θ̄t+1 ≈ arg min
θ
F (θ) +

nβ

2
‖θ − ω̄t‖2

ω̄t = θ̄t+1 +
1−√q
1 +
√
q

(θ̄t+1 − θ̄t),
(34)

where we recall that q = σmin/(σmin +β). Recall that the inner problem is approximated using DVR
and the means do not need to be computed explicitly. Let κβs = maxi 1 + (

∑m
j=1 Lij)/(β + σi),

and κβcomm be obtained similarly to κcomm but replacing Σ by Σβ . We consider in this section that
σi = σ for all i ∈ {1, . . . , n} in order to simplify exposition, but the results hold more generally.
Note that α and η have slightly different expressions than in the main text since β is now involved in
their definitions. We define the sequence εt which is such that:

εt =
2

9
(F (θ0)− F (θ?)) (1− ρout)t with ρout <

√
q, and q =

σ

σ + β
. (35)

We then prove the following theorem:

Theorem 5. Consider Algorithm 2 with pcomm =
(
1+γ

m+κβs
κβcomm

)−1
, pij ∝ (1−pcomm)(1+Lij/(σi+

β)). If K = Õ (1/(ηtα)) then for all t ≤ T , Ft(θ̄t)− Ft(θ?t) ≤ εt and

F (θ̄t)− F (θ?) ≤ 8

(
√
q − ρout)2

(1− ρout)t+1(F (θ̄0)− F (θ?)). (36)

Note that the error is on the mean parameter, and we also want θ(i)
t to be close to θ̄t for all i. This is

ensured by Lemma 5. Before we start the proof of Theorem 5, we show that Theorem 2 is a corollary
of Theorem 5.

Proof of Theorem 2. Using the same argument as in Theorem 1, we obtain that each inner loop takes
time

Tinner = O

(
m+

Ls + σ

β + σ
+ τ

Lcomm + β

γ(β + σ)

)

21

in expectation, so the total number of inner iterations is of order:

Tε = Õ

d1/ρoute∑
k=0

Tinner

 = Õ

(√
1 +

β

σ

(
m+

Ls + σ

β + σ
+ τ

Lcomm + β

γ(β + σ)

)
log

1

ε

)
. (37)

Therefore, we see that if we choose β + σ = Lcomm then, taking into account the fact that κs ≤
mκcomm, the algorithm takes time:

Tε = Õ

(
√
κcomm

(
m+

τc
γ

))
.

Therefore, using Chebyshev acceleration allows to recover the rate of optimal batch algorithms (up to
log factors). On the other hand, if we choose β = Ls/m− σ then if β ≥ 0 (i.e., κs ≥ m), the time
to convergence is equal to:

Tε = Õ

(√
κs
m

(
m+ τ

mκcomm + κs
γκs

))
.

This can be rewritten as:

Tε = Õ

(
√
mκs + τ

√
κcomm

γ

√
mκcomm

κs

)
.

Therefore, we obtain the optimal
√
mκs computation complexity in this case, with a slightly subopti-

mal communication complexity due to the
√
mκcomm/κs term. When this term is equal to 1 then√

mκs = m
√
κb and so nothing is gained from using a stochastic algorithm. Otherwise, this allows

to trade-off communications for computations.

The proof of Theorem 5 is obtained in several steps, that we emphasize below:

1. Equivalent decentralized implementation of Catalyst.
2. Bounding the primal suboptimality as Ft(θ̄t) −minθ Ft(θ) ≤ (1 − (ηα)/2)kDt

0, with k
the number of inner iterations and Dt

0 a dual error. This quantifies how precisely the inner
problem is solved.

3. Evaluating the initial dual suboptimality Dt
0, which depends on θt−1 (and its associated dual

parameter λt−1). This quantifies how good θ̄t−1 already is as a solution to Ft.

In the end, this allows us to use the catalyst general results with primal criterion, and with simple
warm-start scheme (warm-start on the last iterate of the last outer iteration). The first point is presented
at the beginnning of this section and the second one is adressed by Lemma 5. The following section
deals the last point.

C.2 Proof of Theorem 5

We now show a bound on the initial error of an inner loop when warm-starting on the last iterate of
the previous inner loop. Indeed, the convergence results for DVR depend on the initial dual error
and so results from [23] cannot be used directly. Yet, it can be adapted, as we show in this section.
We note Dt(λ) the dual function at outer step t (which should not be mistaken with the Bregman
divergence Dφ), and λt? its minimizer. Similarly, we note θt? = arg minθ Ft(θ), whereas θ? is the
global minimizer of F . The following theorem ensures convergence of θ̄t to the true optimum, given
that the subproblems are solved precisely enough.
Theorem 6. [23, Proposition 5]. If Fk(θ̄k)− Fk(θk?) ≤ εk for all k ≤ t then

F (θ̄t)− F (θ?) ≤ 8

(
√
q − ρout)2

(1− ρout)t+1(F (θ̄0)− F (θ?)). (38)

Therefore, our goal is to prove that Ft(θ̄t+1)− Ft(θt?) ≤ εt for all t. The smoothness of Ft ensures
that this is achieved if

n∑
i=1

‖θ(i)
t+1 − θt?‖2 ≤

n

L
εt. (39)

22

Yet, using Lemma 5, we know that, since θ(i)
t+1 is obtained by applying K steps of DVR to Ft starting

from λt0.
n∑
i=1

‖θ(i)
t+1 − θt?‖2 ≤

(β + σmax + Lmax)

(σmin + β)2
(1− ρ)K

(
pmin

ηt
Dφ(λt?, λ

t
0) +Dt(λ

t
?)−Dt(λ

t
0)

)
.

Unfortunately, we have no control over the dual error at this point. In the remainder of this section,
we prove by recursion that Equation (39) holds for all t. More specifically, we start by assuming that:

1

2

n∑
i=1

‖θ(i)
t+1 − θt?‖2 ≤

n

L
εt, (40)

1

2

n∑
i=1

m∑
j=1

‖θ(ij)
t+1 − θt?‖2 ≤ C1εt, (41)

Dt(λ
t
?)−Dt(λt+1) ≤ C2εt, (42)

where C1 and C2 are such that the conditions are verified for t = −1, with D−1 = D0, θ−1
? = θ0

?,
and λ−1

? = λ0
?. Equation (40) may not hold for t = −1, but making it hold at time t = 0 would

only require a slightly longer first inner iteration, meaning at most an extra log factor. Therefore
we assume without loss of generality that it is the case, since the final complexities are given up to
logarithmic factors. The rest of this section is devoted to showing that if K is chosen as in Theorem 5
then Equations (40), (41) and (42) hold regardless of t. The first part focuses on assessing the initial
error of outer iteration t+ 1 when the conditions hold at the end of outer iteration t, and the second
part on showing how these errors shrink during outer iteration t+ 1.

C.2.1 Warm-start error

We know that DVR converges linearly, and so the error for each subproblem decreases exponentially
fast. Yet, we need to know how big the error is when solving a new problem in order to make sure
that the progress from solving previous subproblems is not lost. The point of this is to avoid an extra
log(ε−1) factor in the rate, which would come from having to solve each subproblem from a O(1)
precision to an ε precision using DVR. We show in this section that the initial error is actually much
lower than O(1) and decreases with the outer iterations. We first start by bounding the variations of
ωt across iterations, which we will need for the next proofs.
Lemma 6 (Distance between subproblems). It holds that

‖ωt − ωt−1‖2 ≤ Cωεt−1, with Cω =
1080n

1− ρout

(
8(1− ρout)

σmin(
√
q − ρout)2

+
4

9L

)
.

Proof. The form of the updates yields that (see [23, Proposition 12] or [20, Proof of Lemma 10])

‖ω(i)
t − ω

(i)
t−1‖ ≤ 40 max{‖θ(i)

t − θ?‖, ‖θ
(i)
t−1 − θ?‖, ‖θ

(i)
t−2 − θ?‖}.

Note that here, θ? is the actual solution of the primal problem without the catalyst perturbation. Then,
the error can be decomposed as:

n∑
i=1

‖θ(i)
t − θ?‖2 ≤ 3

n∑
i=1

(
‖θ(i)
t − θt?‖2 + ‖θt? − θ̄t‖2 + ‖θ̄t − θ?‖2

)
≤ 3n‖θ̄t − θ?‖2 + 6

n∑
i=1

‖θ(i)
t − θt?‖2.

Finally, the strong convexity of F leads to
σmin

2
‖θ̄t − θ?‖2 ≤ F (θ̄t)− F (θ?) ≤ 8

(
√
q − ρout)2

(1− ρout)t+1(F (θ0)− F (θ?)) (43)

where in the last inequality we use [23, Proposition 5], which holds because Fk(θ̄k)− Fk(θk?) ≤ εk
for all k < t. Indeed, K is such that for all k ≤ t, 1

2

∑n
i=1 ‖θ

(i)
k − θk?‖2 ≤

n
Lεk, which yields:

Fk(θ̄k)− Fk(θk?) ≤ L

2
‖θ̄k − θk?‖2 ≤

L

2n

n∑
i=1

‖θ(i)
k − θ

k
?‖2 ≤ εk.

23

Therefore,
n∑
i=1

‖θ(i)
t − θ?‖2 ≤ 6n

(
1− ρout

)t
(F (θ0)− F (θ?))

(
8(1− ρout)

σmin(
√
q − ρout)2

+
4

9L

)
,

and a similar bound can be used for θ(i)
t−1 and θ(i)

t−2. Then, we finish proof by plugging in the
expression of εt−1.

We then use Lemma 6 to bound the initial dual error. We denote θtk (and λtk) the parameters at inner
iteration k of outer iteration t.
Lemma 7 (Dual error warm-start). The warm-started dual error verifies:

Dt(λ
t
?)−Dt(λt) ≤ CDεt−1, with CD =

(
C2 + Cω + 4

βn

L

)
. (44)

Note that we simply warm-start the dual coordinates for an outer iteration using the last iterate from
the previous one. Yet, this leads to θt0 = θt−1

K + βΣ−1
β (ωt+1 − ωt), as in Algorithm 2.

Proof. Equation (33) implies that Dt(λ) can be written as:

Dt(λ) = −
n∑
i=1

1

β + σi

[
1

2
(Aλ)(i) + βω

(i)
t

]>
(Aλ)(i) +Rcomp(λ), (45)

with Rcomp(λ) that only depends on λ(ij) and not on ω(i)
t for i ∈ {1, · · · , n}. Therefore,

Dt(λ
t
?)−Dt(λ

t−1
K)

= Dt−1(λt?)−Dt−1(λt−1
K)− β

n∑
i=1

[
(Aλt?)

(i) − (Aλt−1
K)(i)

]>
Σβ

[
ω

(i)
t − ω

(i)
t−1

]
.

Equation (29) writes (Aλt?)
(i) = (β + σi)θ

t
? − βω

(i)
t , and so:

Aλt?−Aλt−1
K = Aλt?−Aλt−1

? +Aλt−1
? −Aλt−1

K = Σ−1
β (θt?−θt−1

?)+Aλt−1
? −Aλt−1

K −β(ωt−ωt−1).

Then, we know from the equivalent reformulation of Equation (34) that θ?t = arg minF (θ) + β
2 ‖θ−

ω̄t‖2, so using the 1-Lipschitzness of the proximal operator yields

‖θt? − θt−1
? ‖2 ≤ ‖ω̄t − ω̄t−1‖2 ≤

1

n

n∑
k=1

‖ω(k)
t − ω

(k)
t−1‖2 =

1

n
‖ωt − ωt−1‖2. (46)

Similarly, Σβ(Aλt−1
? −Aλt−1

K) = θt−1
? − (θt−1

K)(i), and so:
n∑
i=1

[
(Aλt?)

(i) − (Aλt−1
K)(i)

]
Σβ

[
ω

(i)
t − ω

(i)
t−1

]
≤

n∑
i=1

∥∥∥∥ (Aλt?)
(i) − (Aλt−1

K)(i)

β + σi

∥∥∥∥∥∥∥ω(i)
t − ω

(i)
t−1

∥∥∥
n∑
i=1

2‖θt? − θt−1
? ‖2 + 2‖θt−1

? − (θt−1
K)(i)‖2 +

(
β

β + σi
+ 4

)
‖ω(i)

t − ω
(i)
t−1‖2.

Plugging in Equation (46) yields:

Dt(λ
t
?)−Dt(λ

t−1
K) ≤ Dt−1(λt?)−Dt−1(λt−1

K) + 2β

n∑
i=1

‖(θt−1
K)(i) − θt−1

? ‖2 + 7β‖ωt − ωt−1‖2

Finally note thatDt−1(λt?) ≤ Dt−1(λt−1
?) since λt−1

? is the maximizer ofDt−1, and (θt−1
K)(i) = θ

(i)
t

since it is the output of DVR after inner iteration t. The final expression is obtained using 6 and the
recursion assumptions given by Equations (40) and (42).

Finally, the warm-start error on the nodes parameters is given by the two following lemmas.

24

Lemma 8 (Virtual parameters warm-starts). Denote ‖θ1 − θ2‖2comp =
∑n
i=1

∑m
j=1 ‖θ

(ij)
1 − θ(ij)

2 ‖2.
Then,

‖θt0 − θt?‖2comp ≤ 2(Cω + 2mC1)εt−1. (47)

Proof. We use the fact that (θt)
(ij) = (θt0)(ij) = (θt−1

K)(ij) to write:

‖θt0 − θt?‖2comp = ‖θt−1
K − θt−1

? + θt−1
? − θt?‖2comp ≤ 2‖θt − θt−1

? ‖2comp + 2nm‖θt−1
? − θt?‖2.

Then, as before, the 1-Lipchitzness of the prox operator yields ‖θt−1
? − θt?‖ ≤ 1

n‖ωt − ωt−1‖.

Lemma 9 (Parameters warm-start). Denote ‖θ1 − θ2‖2comp =
∑n
i=1

∑m
j=1 ‖θ

(ij)
1 − θ(ij)

2 ‖2. Then,

n∑
i=1

‖(θt0)(i) − θt?‖2 ≤ 6
(
Cω +

n

L

)
εt−1. (48)

Proof. We use the fact that since λt0 = λt−1
K then (θt0)(i) = (θt0)(i) + β

β+σi
(ω

(i)
t − ω

(i)
t−1) to write:

n∑
i=1

‖(θt0)(i) − θt?‖2 ≤
n∑
i=1

‖(θt−1
K)(i) − θt−1

? + θt−1
? − θt? +

β

σi + β
(ω

(i)
t − ω

(i)
t−1)‖2

≤ 3‖ωt − ωt−1‖2 + 3n‖θt−1
? − θt?‖2 + 3

n∑
i=1

‖(θt)(i) − θt−1
? ‖2.

We finish this part on warm starts by proving the following lemma, that links the initial dual parameters
error (computed with the Bregman divergence of φ), to the other parameters which we already know
how to control.
Lemma 10 (Dual parameters warm-start, as measured by the Bregman divergence).

Dφ(λt?, λ
t
0) ≤ Cφεt−1, (49)

with Cφ =
6(Cω+n/L)+L2

max(2Cω+2mC1)

λ+
min(A>Σ2

βA)
+ 2Lmax(Cω+2mC1)

α .

Proof. We first decompose the Bregman divergence as:

Dφ(λt0, λ
t
?) ≤

1

2
‖(λt0)comm − (λt?)

comm‖A†commAcomm
+

n∑
i=1

m∑
j=1

Dφij ((λ
t
?)

(ij), (λt0)(ij)). (50)

Then, we bound the communication term as:

‖(λt0)comm − (λt?)
comm‖A†commAcomm

≤ ‖λt0 − λt?‖A†A ≤
1

λ+
min(A>Σ2

βA)
‖ΣβA

(
λt0 − λt?

)
‖2

=
1

λ+
min(A>Σ2

βA)

 n∑
i=1

‖(θt0)(i) − θt?‖2 +

n∑
i=1

m∑
j=1

µ2
ij‖(λt0)(ij) − (λt?)

(ij)‖2

=
1

λ+
min(A>Σ2

βA)

 n∑
i=1

‖(θt0)(i) − θt?‖2 +

n∑
i=1

m∑
j=1

‖∇fij((θt0)(ij))−∇fij((θt?)(ij))‖2

=
1

λ+
min(A>Σ2

βA)

 n∑
i=1

‖(θt0)(i) − θt?‖2 +

n∑
i=1

m∑
j=1

L2
ij‖(θt0)(ij) − (θt?)

(ij)‖2
 .

Using Lemmas 8 and 9, we obtain:

1

2
‖(λt0)comm − (λt?)

comm‖A†commAcomm
≤
(
6
(
Cω + n

L

)
+ L2

max(2Cω + 2mC1)
)

λ+
min(A>Σ2

βA)
εt−1. (51)

25

For the computation part, we use the duality property of the Bregman divergence, which yields

Dφij ((λ
t
?)

(ij), (λt0)(ij)) =
Lij
µ2
ij

Df∗ij
(µij(λ

t
?)

(ij), µij(λ
t
0)(ij))

=
Lij
µ2
ij

Dfij (∇fij(µij(λt0)(ij)),∇fij(µij(λt?)(ij)))

=
Lij
µ2
ij

Dfij ((θ
t
0)(ij), (θt?)

(ij)) ≤
L2
ij

µ2
ij

‖(θt0)(ij) − (θt?)
(ij)‖2

Therefore,
n∑
i=1

m∑
j=1

Dφij ((λ
t
0)(ij), (λt?)

(ij)) ≤ 2Lmax(Cω + 2mC1)

α
εt−1. (52)

Substituting Equations (51) and (52) into Equation (50) finishes the proof.

C.2.2 Inner iteration error decrease

Now that we have bounded the error at the beginning of each outer iteration, we bound error at the
end of each outer iteration by using the convergence results for DVR. We first prove the following
Lemma, which controls the distance between the virtual parameters and the actual one:
Lemma 11 (Virtual error decrease). For all (i, j),

E

∑
i,j

‖(θt+1)(ij) − θt?‖2
 ≤ (1− ρ)K

[
‖θt0 − θt?‖2comp +

ρsumK

1− ρ
C0(t)

]
. (53)

Proof. We cannot retrieve direct control over the θ(ij)
t+1 from control over the dual variables or the

dual error, since this would require the f∗ij functions to be smooth, which they may not be. Yet,

we leverage the fact that θ(ij)
t+1 is obtained by a convex combination between θ(ij)

t and θ(i)
t to obtain

convergence of to θt?. We note jt,k(i) the virtual node that is updated at time (t, k) for node i. We
note Ek the expectation relative to the value of jt,k(i). We start by remarking that:

Ek+1

[
‖(θtk+1)(ij) − θt?‖2

]
= (1− pij)‖(θtk)(ij) − θt?‖2 + pij‖(1− ρij)(θtk)(ij) + ρij(θ

t
k)(i) − θt?‖2

≤ (1− pijρij)‖(θtk)(ij) − θt?‖2 + pijρij‖(θtk)(i) − θt?‖2,
where in the last inequality we used the convexity of the squared norm. We use that pijρij ≥ ρ (equal
for the smallest one), and write that:

E
[
‖(θtK)(ij) − θt?‖2

]
≤ (1−ρ)K‖(θt0)(ij)−θt?‖2 +pijρij

K∑
k=1

(1−ρ)k−1‖(θtK−k)(i)−θt?‖2. (54)

Noting ρsum = maxi
∑m
j=1 ρijpij and ‖θtk − θt?‖2comp,i =

∑m
j=1 ‖(θtk)(ij) − θt?‖2, we obtain

E
[
‖θtK − θt?‖2comp,i

]
≤ (1− ρ)K‖θt0 − θt?‖2comp,i + ρsum

K∑
k=1

(1− ρ)k−1‖(θtK−k)(i) − θt?‖2. (55)

Using Lemma 5, we know that
∑n
i=1 ‖(θtk)(i) − θt?‖2 ≤ C0(t)(1− ρ)k, with C0(t) a constant that

depends on the initial conditions of outer iteration t. Therefore,
n∑
i=1

K∑
k=1

(1− ρ)k−1‖(θtK−k)(i) − θt?‖2 ≤ K(1− ρ)K−1C0(t). (56)

In the end,

E
[
‖θtK − θt?‖2comp

]
≤ (1− ρ)K

[
‖θt0 − θt?‖2comp +

ρsumK

1− ρ
C0(t)

]
. (57)

26

This lemma has the following corollary:
Corollary 1 (Warm-started virtual error decrease). For all (i, j),

E

∑
i,j

‖(θt+1)(ij) − θt?‖2
 ≤ (1− ρ)K

[
6
(
Cω +

n

L

)
+K

ρsumCcomp

1− ρ

]
εt−1, (58)

with

Ccomp =
(β + σmax + Lmax)

(σmin + β)2

(
pmin

ηt
Cφ + C2 + Cω + 4

βn

L

)
Proof. Using Lemmas 5, 10 and 7, we write:

C0(t) =
(β + σmax + Lmax)

(σmin + β)2

(
pmin

ηt
Dφ(λt?, λ

t
0) +

(
D(λt?)−D(λt0)

))
≤ Ccompεt−1

We use Lemma 8 for the first term.

Lemma 12 (Condition on K). If Equations (40), (41) and (42) hold at time t, and K is such that:

(1− ρ)K ≤ min

(
C1(1− ρout)

12(Cω + n/L)
,
C1(1− ρout)(1− ρ)

KρsumCcomp
,
C2

CL
,

n(σmin + β)2

2LCL(β + σmax + Lmax)

)
,

then they also hold at time t+ 1.

Proof. Using Corollary 1, we obtain that if K is set such that

(1− ρ)K
[
6
(
Cω +

n

L

)
+K

ρsumCcomp

1− ρ

]
≤ C1(1− ρout),

then the recursion condition is respected for the virtual parameters. This yields the first and second
conditions on K. Now, we write CL =

(
pmin

ηt
Cφ + CD

)
, then using Lemmas 10 and 7 (where Cφ

and CD are defined), we obtain using Theorem 4 that

Dt(λ
t
?)−Dt(λt+1) ≤ CL(1− ρ)Kεt−1,

since λt+1 is obtained by performing K iterations of DVR to minimize Ft starting from λt. This
yields the third condition on K. Finally, the last condition on K is obtained by leveraging Lemma 5.

D Experiments

For the experiments, the following logistic regression problem is solved:

min
θ∈Rd

n∑
i=1

σ
2
‖θ‖2 +

m∑
j=1

1

m
log(1 + exp(−yijX>ijθ))

 , (59)

where the pairs (Xij , yij) ∈ Rd × {−1, 1} are taken from the RCV1 dataset, which we downloaded
from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Figure 3 is the full version of Figure 1, in which we report the number of individual gradients
and number of communications for each configuration. We see that accelerated EXTRA actually
outperforms EXTRA when the regularization is small, as already mentioned in the main text. We also
see that Accelerated EXTRA and Accelerated DVR have comparable communication complexity on
the grid graph, when γ is smaller. Yet, the computation complexity of (accelerated) DVR is much
smaller, so accelerated DVR is much faster overall as long as τ is not too big.

27

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

0 1 2 3 4
Nb. of indiv. gradients 1e5

10 12

10 9

10 6

10 3

100

Su
bo

pt
im

al
ity

0 2000 4000 6000 8000
Nb. of communications

10 11

10 8

10 5

10 2

Su
bo

pt
im

al
ity

0.00 0.25 0.50 0.75 1.00
Time 1e7

10 12

10 9

10 6

10 3

100

Su
bo

pt
im

al
ity

EXTRA
DVR
NIDS
GTSAGA
Acc. EXTRA
Acc. DVR

(a) Erdős-Rényi, σ = m · 10−5

0 2 4 6
Nb. of indiv. gradients 1e5

10 11

10 8

10 5

10 2

Su
bo

pt
im

al
ity

0 2000 4000
Nb. of communications

10 13

10 10

10 7

10 4

10 1

Su
bo

pt
im

al
ity

0.0 0.5 1.0 1.5
Time (= 250) 1e6

10 13

10 10

10 7

10 4

10 1

Su
bo

pt
im

al
ity

(b) Grid, σ = m · 10−5

0 2 4
Nb. of indiv. gradients 1e6

10 8

10 6

10 4

10 2

100

102

Su
bo

pt
im

al
ity

0 1 2 3
Nb. of communications 1e4

10 11

10 8

10 5

10 2

Su
bo

pt
im

al
ity

0.0 0.5 1.0
Time (= 250) 1e7

10 14

10 11

10 8

10 5

10 2

101

Su
bo

pt
im

al
ity

(c) Erdős-Rényi, σ = m · 10−7

0 1 2 3
Nb. of indiv. gradients 1e6

10 5

10 3

10 1

Su
bo

pt
im

al
ity

0 1 2 3
Nb. of communications 1e4

10 5

10 3

10 1

Su
bo

pt
im

al
ity

0 1 2 3
Time (= 250) 1e7

10 14

10 11

10 8

10 5

10 2

101

Su
bo

pt
im

al
ity

(d) Grid, σ = m · 10−7

Figure 3: Experimental results for the RCV1 dataset with different graphs of size n = 81, with
m = 2430 samples per node, and with different regularization parameters.

28

	Introduction
	Algorithm Design
	Dual formulation
	Dual-free trick
	Distributed implementation

	Convergence Rate
	Acceleration
	Experiments
	Conclusion
	Block Coordinate descent
	Convergence results for DVR
	Application to the dual of the augmented problem
	Primal guarantees

	Catalyst acceleration
	Derivation and rates
	Proof of Theorem 5
	Warm-start error
	Inner iteration error decrease

	Experiments

