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Statistically Preconditioned Accelerated Gradient Method
for Distributed Optimization

Hadrien Hendrikx 1 Lin Xiao 2 Sébastien Bubeck 2 Francis Bach 1 Laurent Massoulié 1

Abstract
We consider the setting of distributed empirical
risk minimization where multiple machines com-
pute the gradients in parallel and a centralized
server updates the model parameters. In order to
reduce the number of communications required
to reach a given accuracy, we propose a precon-
ditioned accelerated gradient method where the
preconditioning is done by solving a local opti-
mization problem over a subsampled dataset at
the server. The convergence rate of the method de-
pends on the square root of the relative condition
number between the global and local loss func-
tions. We estimate the relative condition number
for linear prediction models by studying uniform
concentration of the Hessians over a bounded do-
main, which allows us to derive improved con-
vergence rates for existing preconditioned gradi-
ent methods and our accelerated method. Experi-
ments on real-world datasets illustrate the benefits
of acceleration in the ill-conditioned regime.

1. Introduction
We consider empirical risk minimization problems of the
form

minimize
x∈Rd

Φ(x) , F (x) + ψ(x), (1)

where F is the empirical risk over a dataset {z1, . . . , zN}:

F (x) =
1

N

N∑
i=1

`(x, zi), (2)

and ψ is a convex regularization function. We incorporate
smooth regularizations such as squared Euclidean norms
(λ/2)‖x‖2 into the individual loss functions `(x, zi), and
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leave ψ mainly for non-smooth regularizations such as the
`1-norm or the indicator function of a constraint set.

In modern machine learning applications, the dataset is often
very large and has to be stored at multiple machines. For
simplicity of presentation, we assume N = mn, where m
is the number of machines and n is the number of samples
stored at each machine. Let Dj = {z(j)

1 , . . . , z
(j)
n } denote

the dataset at machine j and define the local empirical risk

fj(x) =
1

n

n∑
i=1

`
(
x, z

(j)
i

)
, j = 1, . . . ,m. (3)

The overall empirical risk of Equation (2) can then be writ-
ten as

F (x) =
1

m

m∑
j=1

fj(x) =
1

nm

m∑
j=1

n∑
i=1

`
(
x, z

(j)
i

)
.

We assume that F is LF -smooth and σF -strongly convex
over domψ, in other words,

σF Id � ∇2F (x) � LF Id, ∀x ∈ domψ, (4)

where Id is the d× d identity matrix. The condition number
of F is defined as κF = LF /σF .

We focus on a basic setting of distributed optimization where
the m machines (workers) compute the gradients in parallel
and a centralized server updates the variable x. Specifically,
during each iteration t = 0, 1, 2, . . .,

(i) the server broadcasts xt to all m machines;

(ii) each machine j computes the gradient ∇fj(xt) and
sends it back to the server;

(iii) the server forms ∇F (xt) = 1
m

∑m
j=1∇fj(xt) and

uses it to compute the next iterate xt+1.

A standard way for solving problem (1) in this setting is to
implement the proximal gradient method at the server:

xt+1 =argmin
x∈Rd

{
∇F (xt)

>x+ψ(x)+
1

2ηt
‖x−xt‖2

}
, (5)

where ‖ · ‖ denotes the Euclidean norm and ηt > 0 is the
step size. Setting ηt = 1/LF leads to linear convergence:

Φ(xt)− Φ(x∗) ≤
(
1− κ−1

F

)t LF
2 ‖x∗ − x0‖2, (6)
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where x∗ = arg min Φ(x) (e.g., Beck, 2017, Section 10.6).
In other words, in order to reach Φ(xt) − Φ(x∗) ≤ ε, we
needO(κF log(1/ε)) iterations, which is also the number of
communication rounds between the workers and the server.
If we use accelerated proximal gradient methods (e.g., Nes-
terov, 2004; Beck and Teboulle, 2009; Nesterov, 2013) at
the server, then the iteration/communication complexity can
be improved to O(

√
κF log(1/ε)).

1.1. Statistical Preconditioning

In general, for minimizing F (x) = (1/m)
∑m
j=1 fj(x)

with first-order methods, the communication complexity
of O(

√
κF log(1/ε)) cannot be improved (Arjevani and

Shamir, 2015; Scaman et al., 2017). However, for dis-
tributed empirical risk minimization (ERM), the additional
finite-sum structure of each fj in (3) allows further improve-
ment. A key insight here is that if the datasetsDj at different
workers are i.i.d. samples fr (3om the same source distri-
bution, then the local empirical losses fj are statistically
very similar to each other and to their average F , especially
when n is large. Statistical preconditioning is a technique
to further reduce communication complexity based on this
insight.

An essential tool for preconditioning in first-order methods
is the Bregman divergence. The Bregman divergence of a
strictly convex and differentiable function φ is defined as

Dφ(x, y) , φ(x)− φ(y)−∇φ(y)>(x− y). (7)

We also need the following concepts of relative smoothness
and strong convexity (Bauschke et al., 2017; Lu et al., 2018).

Definition 1. Suppose φ : Rd → R is convex and twice
differentiable. The function F is said to be LF/φ-smooth
and σF/φ-strongly convex with respect to φ if for all x ∈ Rd,

σF/φ∇2φ(x) � ∇2F (x) � LF/φ∇2φ(x). (8)

The classical definition in (4) can be viewed as relative
smoothness and strong convexity where φ(x) = (1/2)‖x‖2.
Moreover, it can be shown that (8) holds if and only if for
all x, y ∈ Rd

σF/φDφ(x, y) ≤ DF (x, y) ≤ LF/φDφ(x, y). (9)

Consequently, we define the relative condition number of F
with respect to φ as κF/φ = LF/φ/σF/φ.

Following the Distributed Approximate Newton (DANE)
method by Shamir et al. (2014), we construct the reference
function φ by adding some extra regularization to one of the
local loss functions (say f1, without loss of generality):

φ(x) = f1(x) +
µ

2
‖x‖2. (10)

Then we replace (1/2)‖x− xt‖2 in the proximal gradient
method (5) with the Bregman divergence of φ, i.e.,

xt+1 =argmin
x∈Rd

{
∇F (xt)

>x+ψ(x)+
1

ηt
Dφ(x, xt)

}
. (11)

In this case, worker 1 acts as the server to compute xt+1,
which requires solving a nontrivial optimization problem
involving the local loss function f1.

According to Shamir et al. (2014) and Lu et al. (2018), with
ηt = 1/LF/φ, the sequence {xt} generated by (11) satisfies

Φ(xt)− Φ(x∗) ≤
(
1− κ−1

F/φ

)t
LF/φDφ(x∗, x0), (12)

which is a direct extension of (6). Therefore, the effective-
ness of preconditioning hinges on how much smaller κF/φ
is compared to κF . Roughly speaking, the better f1 or φ
approximates F , the smaller κF/φ (≥ 1) is. In the extreme
case of f1 ≡ F (with only one machine m = 1), we can
choose µ = 0 and thus φ ≡ F , which leads to κF/φ = 1,
and we obtain the solution within one step.

In general, we choose µ to be an upper bound on the spectral
norm of the matrix difference ∇2f1 − ∇2F . Specifically,
we assume that with high probability, for the operator norm
between matrices (i.e., the largest singular value),∥∥∇2f1(x)−∇2F (x)

∥∥ ≤ µ, ∀x ∈ domψ, (13)

which implies (Zhang and Xiao, 2018, Lemma 3),

σF
σF + 2µ

∇2φ(x) � ∇2F (x) � ∇2φ(x). (14)

Now we invoke a statistical argument based on the empirical
average structure in (3). Without loss of generality, we
assume thatD1 contains the first n samples of {z1, . . . , zN}
and thus ∇2f1(x) = 1

n

∑n
i=1∇2`(x, zi). For any fixed x,

we can use Hoeffding’s inequality for matrices (Tropp, 2015)
to obtain, with probability 1− δ,∥∥∥∥ 1

n

n∑
i=1

∇2`(x, zi)−∇2F (x)

∥∥∥∥≤
√

32L2
` log(d/δ)

n
, (15)

where L` is the uniform upper bound on ‖∇2`(x, zi)‖.

If the losses `(x, zi) are quadratic in x, then the Hessians
are constant and (13) holds with µ = Õ(L`/

√
n), hiding

the factor log(d/δ). In this case, we derive from (14) that

κF/φ = 1 +
2µ

σF
= 1 + Õ

(
κ`√
n

)
, (16)

where we assume σF ≈ σ`, where ∇2`(x, zi) � σ`Id for
all x. Therefore, for large n, whenever we have κF/φ < κF ,
the communication complexity O(κF/φ log(1/ε)) is better
than without preconditioning.
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For non-quadratic loss functions, we need to ensure that
(13) holds uniformly over a compact domain with high prob-
ability. Standard ball-packing arguments encounter an addi-
tional factor of

√
d (e.g., Zhang and Xiao, 2018, Lemma 6).

In this case, we have µ = Õ(L`
√
d/n) and

κF/φ = 1 +
2µ

σF
= 1 + Õ

(
κ`
√
d√
n

)
, (17)

which suggests that the benefit of preconditioning may de-
grade or disappear in high dimension.

1.2. Contributions and Outline

In this paper, we make the following two contributions.

First, we propose a Statistically Preconditioned Acceler-
ated Gradient (SPAG) method that can further reduce the
communication complexity. Accelerated methods with
O(
√
κF/φ log(1/ε)) complexity have been developed for

quadratic loss functions (see related works in Section 2).
However, Dragomir et al. (2019) have shown that accel-
eration is not possible in general in the relatively smooth
and strongly convex setting, and that more assumptions are
needed. Here, by leveraging the fact the reference function φ
itself is smooth and strongly convex, we obtain

Φ(xt)−Φ(x∗) ≤
t∏

τ=1

(
1− 1√

κF/φGτ

)
LF/φDφ(x∗, x0),

where 1 ≤ Gt ≤ κφ and Gt → 1 geometrically. Moreover,
Gt can be calculated at each iteration and serve as numeri-
cal certificate of the actual convergence rate. In all of our
experiments, we observe Gt ≈ 1 even in early iterations,
which results in O(

√
κF/φ log(1/ε)) iterations empirically.

Second, we derive refined bounds on the relative condition
number for linear prediction models. Linear models such
as logistic regression have the form `(x, zi) = `i(a

>
i x) +

(λ/2)‖x‖2. Assume that `′′i (a>i x) ≤ 1 and ‖ai‖ ≤ R for
all i, which implies L` = R2 and κ` = R2/λ. Then the
Hoeffding bounds in (16) for quadratics becomes κF/φ =

1 + Õ
(
R2
√
nλ

)
, and for nonquadratics, the bound in (17)

(from previous work) becomes κF/φ = 1 + Õ
(
R2
√
d√

nλ

)
. We

show that:

• For quadratic losses, the bound on relative condition
number can be improved by a factor of

√
n, i.e.,

κF/φ =
3

2
+O

(
R2

nλ
log

(
d

δ

))
.

• For non-quadratic losses, we derive a uniform concen-
tration bound to remove the dependence of κF/φ on d,

κF/φ = 1 +O

(
R2

√
nλ

(
RD +

√
log(1/δ)

))
,

where D is the diameter of domφ (bounded domain).
We also give a refined bound when the inputs ai are
sub-Gaussian.

These new bounds on κF/φ improve the convergence rates
for all existing accelerated and non-accelerated precondi-
tioned gradient methods (see related work in Section 2).

We start by discussing related work in Section 2. In Sec-
tion 3, we introduce SPAG and give its convergence anal-
ysis. In Section 4, we derive sharp bounds on the relative
condition number, and discuss their implications on the con-
vergence rates of SPAG and other preconditioned gradient
methods. We present experimental results in Section 5.

2. Related Work
Shamir et al. (2014) considered the case ψ ≡ 0 and in-
troduced the statistical preconditioner (10) in DANE. Yet,
they define a separate φj(x) = fj(x) + (µ/2)‖x‖2 for each
worker j, compute m separate local updates using (11), and
then use their average as xt+1. For quadratic losses, they
obtain the communication complexity Õ((κ2

`/n) log(1/ε)),
which is roughly O(κ2

F/φ log(1/ε)) in our notation, which
is much worse than their result without averaging of
O(κF/φ log(1/ε)) given in Section 1.1. We further improve
this to O(

√
κF/φ log(1/ε)) using acceleration.

Zhang and Xiao (2015) proposed DiSCO, an inexact
damped Newton method, where the Newton steps are com-
puted by a distributed conjugate gradient method with a
similar preconditioner as (10). They obtain a communica-
tion complexity of Õ((

√
κ`/n

1/4) log(1/ε)) for quadratic
losses and Õ(

√
κ`(d/n)1/4 log(1/ε)) for self-concordant

losses. Comparing with (16) and (17), in both cases they
correspond to O(

√
κF/φ log(1/ε)) in our notation. Reddi

et al. (2016) use the Catalyst framework (Lin et al., 2015)
to accelerate DANE; their method, called AIDE, achieves
the same improved complexity for quadratic functions. We
obtain similar results for smooth convex functions using
direct acceleration.

Yuan and Li (2019) revisited the analysis of DANE and
found that the worse complexity of Õ((κ2

`/n) log(1/ε)) is
due to the lost statistical efficiency when averaging m differ-
ent updates computed by (11). They propose to use a single
local preconditioner at the server and obtain a communica-
tion complexity of Õ((1 + κ`/

√
n) log(1/ε)) for quadratic

functions. In addition, they propose a variant of DANE
with heavy-ball momentum (DANE-HB), and show that
it has communication complexity Õ((

√
κ`/n

1/4) log(1/ε))
for quadratic loss functions, matching that of DiSCO and
AIDE. For non-quadratic functions, they show DANE-HB
has accelerated local convergence rate near the solution.

Wang et al. (2018) proposed GIANT, an approximate New-



Statistically Preconditioned Accelerated Gradient Method

ton method that approximates the overall Hessian by the
harmonic mean of the local Hessians. It is equivalent to
DANE in the quadratic case. They obtain a communication
complexity that has logarithmic dependence on the condi-
tion number but requires local sample size n > d. Mahajan
et al. (2018) proposed a distributed algorithm based on local
function approximation, which is related to the precondition-
ing idea of DANE. Wang and Zhang (2019) apply statistical
preconditioning to speed up a mini-batch variant of SVRG
(Johnson and Zhang, 2013), but they rely on generic Cata-
lyst acceleration and their convergence results only hold for
a very small ball around the optimum.

Distributed optimization methods that use dual variables to
coordinate solutions to local subproblems include ADMM
(Boyd et al., 2010) and CoCoA (Jaggi et al., 2014; Ma et al.,
2015; 2017). Numerical experiments demonstrate that they
benefit from statistical similarities of local functions in the
early iterations (Xiao et al., 2019), but their established com-
munication complexity is no better than O(κF log(1/ε)).

3. The SPAG Algorithm
Although our main motivation in this paper is distributed
optimization, the SPAG algorithm works in the general set-
ting of minimizing relatively smooth and strongly convex
functions. In this section, we first present SPAG in the more
general setting (Algorithm 1), then explain how to run it for
distributed empirical risk minimization.

In the general setting, we consider convex optimization prob-
lems of the form (1), where ψ is a closed convex function
and F satisfies the following assumption.
Assumption 1. F is LF -smooth and σF -strongly convex.
In addition, it is LF/φ-smooth and σF/φ-strongly convex
with respect to a differentiable convex function φ, and φ
itself is Lφ-smooth and σφ-strongly convex.

Algorithm 1 requires an initial point x0 ∈ domψ and two
parameters LF/φ and σF/φ. During each iteration, Line 6
finds at+1 > 0 by solving a quadratic equation, then Line 7
calculates three scalars αt, βt and ηt, which are used in the
later updates for the three vectors yt, vt+1 and xt+1. The
function Vt(·) being minimized in Line 10 is defined as

Vt(x) = ηt
(
∇F (yt)

>x+ ψ(x)
)

+ (1− βt)Dφ(x, vt) + βtDφ(x, yt). (18)

The inequality that needs to be satisfied in Line 12 is

Dφ(xt+1, yt) (19)

≤ α2
tGt

(
(1− βt)Dφ(vt+1, vt) + βtDφ(vt+1, yt)

)
,

where Gt is a scaling parameter depending on the properties
of Dφ. It is a more flexible version of the triangle scaling
gain introduced by Hanzely et al. (2018).

Algorithm 1 SPAG(LF/φ, σF/φ, x0)

1: v0 = x0, A0 = 0, B0 = 1, G−1 = 1

2: for t = 0, 1, 2, . . . do
3: Gt = max{1, Gt−1/2}/2
4: repeat
5: Gt ← 2Gt

6: Find at+1 such that a2
t+1LF/φGt = At+1Bt+1

where At+1 =At +at+1, Bt+1 =Bt +at+1σF/φ

7: αt = at+1

At+1
, βt = at+1

Bt+1
σF/φ, ηt = at+1

Bt+1

8: yt = 1
1−αtβt

(
(1− αt)xt + αt(1− βt)vt

)
9: Compute∇F (yt) (requires communication)

10: vt+1 = arg minx Vt(x)

11: xt+1 = (1− αt)xt + αtvt+1

12: until Inequality (19) is satisfied
13: end for

As we will see in Theorem 1, smaller Gt’s correspond to
faster convergence rate. Algorithm 1 implements a gain-
search procedure to automatically find a small Gt. At the
beginning of each iteration, the algorithm always trys to
set Gt = Gt−1/2 as long as Gt−1 ≥ 2 (Gt−1 is divided
by 4 in Line 3 since it is always multiplied by 2 in Line 5).
Whenever (19) is not satisfied, Gt is multiplied by 2. When
the inequality (19) is satisfied,Gt is within a factor of 2 from
its smallest possible value. The following lemma guarantees
that the gain-search loop always terminates within a small
number of steps (see proof in Appendix A).

Lemma 1. If Assumption 1 holds, then the inequality (19)
holds with Gt = κφ = Lφ/σφ.

Therefore, if φ = (1/2)‖ · ‖2, then we can set Gt = 1 and
there is no need to check (19). In general, Algorithm 1
always produces Gt < 2κφ for all t ≥ 0. Following the
argument from Nesterov (2013, Lemma 4), the total number
of gain-searches performed up to iteration t is bounded by

2(t+ 1) + log2(Gt),

which also bounds the total number of gradient evaluations.
Thus the overhead is roughly twice as if there were no gain-
search. Next we present a convergence theorem for SPAG.

Theorem 1. Suppose Assumption 1 holds. Then the se-
quences generated by SPAG satisfy for all t ≥ 0,

(
Φ(xt)− Φ(x∗)

)
+ σF/φDφ(x∗, vt) ≤

1

At
Dφ(x∗, v0),

where At = 1
4σF/φ

(∏t−1
τ=0 (1 + γτ )−

∏t−1
τ=0 (1− γτ )

)2

,

and γt = 1

2
√
κF/φGt

.
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The proof of Theorem 1 relies on the techniques of Nesterov
and Stich (2017), and the details are given in Appendix A.
We can estimate the convergence rate as follows:

1

At
= O

( t∏
τ=0

(
1− 1√

κF/φGτ

))
= O

((
1− 1√

κF/φG̃t

)t)
,

where G̃t is such that G̃−1/2
t = (1/t)

∑t
τ=0G

−1/2
t , that is,

G̃
1/2
t is the harmonic mean of G1/2

0 , . . . , G
1/2
t−1. In addition,

it can be shown that At ≥ t2/(4LF/φG̃t). Therefore, as
σF/φ → 0, Theorem 1 gives an accelerated sublinear rate:

Φ(xt)− Φ(x∗) ≤
4LF/φG̃t

t2
Dφ(x∗, x0).

To estimate the worst case when σF/φ > 0, we
replace Gt by κφ to obtain the iteration complexity
O
(√
κF/φκφ log(1/ε)

)
. Since κF/φκφ ≈ κF , this is

roughly O
(√
κF log(1/ε)

)
, the same as without precon-

ditioning. However, the next lemma shows that under a mild
condition, we always have Gt → 1 geometrically.

Lemma 2. Suppose Assumption 1 holds and in addition,
∇2φ is M -Lipschitz-continuous, i.e., for all x, y ∈ domψ,∥∥∇2φ(x)−∇2φ(y)

∥∥ ≤M‖x− y‖.
Then the inequality (19) holds with

Gt = min
{
κφ, 1 + (M/σφ)dt

}
, (20)

where dt = ‖vt+1 − vt‖+ ‖vt+1 − yt‖+ ‖xt+1 − yt‖.

In particular, if φ is quadratic, then we have M = 0 and
Gt = 1 always satisfies (19). In this case, the convergence
rate in Theorem 1 satisfies 1/At = O

((
1− 1/

√
κF/φ

)t )
.

In general, M 6= 0, but it can be shown that the sequences
generated by Algorithm 1, {xt}, {yt} and {vt} all converge
to x∗ at the rate

(
1−1/

√
κF
)t

(see, e.g., Lin and Xiao, 2015,
Theorem 1). As a result, dt → 0 and thus Gt → 1 at the
same rate. Consequently, the convergence rate established
in Theorem 1 quickly approaches O

((
1− 1/

√
κF/φ

)t )
.

The asymptotic nature of the preconditioned convergence
rate in the nonquadratic case (Gt converges to 1 instead of
being a small constant) seems to be unavoidable, given the
recent work on lower bounds for mirror descent methods
by Dragomir et al. (2019).

3.1. Implementation for Distributed Optimization

In distributed optimization, Algorithm 1 is implemented at
the server. During each iteration, communication between
the server and the workers only happens when computing
∇F (yt). Checking if the inequality (19) holds locally re-
quires that the server has access to the preconditioner φ.

If the datasets on different workers are i.i.d. samples from
the same source distribution, then we can use any fj in the
definition of φ in (10) and assign worker j as the server.
However, this is often not the case in practice and obtaining
i.i.d. datasets on different workers may involve expensive
shuffling and exchanging large amount of data among the
workers. In this case, a better alternative is to randomly
sample small portions of the data on each worker and send
them to a dedicated server. We call this sub-sampled dataset
D0 and the local loss at the server f0, which is defined the
same way as in (3). Then the server implements Algorithm 1
with φ(x) = f0(x) + (µ/2)‖x‖2. Here we only need D0

be a uniform sub-sample of ∪mj=1Dj , which is critical for
effective preconditioning. On the other hand, it is not a
problem at all if the datasets at the workers, D1, . . . ,Dm,
are not shuffled to to be i.i.d., because it does not change the
average gradients ∇F (yt). In the rest of the paper, we omit
the subscript to simply use f to represent the local empirical
loss function. As discussed in Section 1.1, if∥∥∇2f(x)−∇2F (x)

∥∥ ≤ µ, ∀x ∈ domψ (21)

with high probability, then according to (14), we can choose

LF/φ = 1, σF/φ =
σF

σF + 2µ

as the input to Algorithm 1. In the next section, we leverage
matrix concentration bounds to estimate how µ varies with
the number of subsamples n. With sufficiently large n, we
can make µ small so that the relative condition number
κF/φ = 1 + 2µ/σF is much smaller than κF .

4. Bounding the Relative Condition Number
In this section, we derive refined matrix concentration
bounds for linear prediction models. Suppose the over-
all dataset consists of N samples {z1, . . . , zN}, where
each zi = (ai, bi) with ai ∈ Rd being a feature vec-
tor and bi the corresponding label or regression target.
Linear models (including logistic and ridge regression)
have the form `(x, zi) = `i(a

>
i x) + λ

2 ‖x‖
2, where `i is

twice differentiable and may depend on bi, and λ > 0.
We further assume that `′′i = `′′j for all i and j, which
is valid for logistic and ridge regression as well. Since
f(x) = (1/n)

∑n
i=1 `(x, zi), we have

∇2f(x) =
1

n

n∑
i=1

`′′i (a>i x)aia
>
i + λId. (22)

Here we omit the subscript j in fj since we only need one
subsampled dataset at the server, as explained in Section 3.1.
For the overall loss function defined in (2), the Hessian
∇2F (x) is defined similarly by replacing n with N .

We assume for simplicity that the strong convexity of F
mainly comes from regularization, that is, σF = σ` = λ, but
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the results can be easily extended to account for the strong
convexity from data. We start by showing tight results for
quadratics, and then provide uniform concentration bounds
of Hessians for more general loss functions. Finally, we
give a refined bound when the ai’s are sub-Gaussian.

4.1. Quadratic Case

We assume in this section that `i(a>i x) = (a>i x − bi)2/2,
and that there exists a constant R such that ‖ai‖ ≤ R for
all i = 1, . . . , N . In this case we have L` = R2 and
κ` = R2/λ. Since the Hessians do not depend on x, we use
the notation

HF = ∇2F (x), Hf = ∇2f(x).

Previous works (Shamir et al., 2014; Reddi et al., 2016;
Yuan and Li, 2019) use the Hoeffding bound (15) to obtain(

1 +
2µ

λ

)−1

(Hf + µId) � HF � Hf + µId, (23)

with µ =
R2

√
n

√
32 log(d/δ). (24)

Our result is given in the following theorem.

Theorem 2. Suppose `i is quadratic and ‖ai‖ ≤ R for all i.
For a fixed δ > 0, if n > 28

3 log
(

2d
δ

)
, then the following

inequality holds with probability at least 1− δ:(
3

2
+

2µ

λ

)−1

(Hf + µId) � HF � 2 (Hf + µId) , (25)

with µ =
1

2

(
28R2

3n
log

(
2d

δ

)
− λ
)+

. (26)

Thus, for this choice of µ, σF/φ =
(

3
2 + 2µ

λ

)−1
, LF/φ = 2

and so κF/φ = O
(
1 + κ`

n log
(
d
δ

))
with probability 1− δ.

Theorem 2 improves on the result in (24) by a factor of
√
n.

The reason is that matrix inequality (23) is derived from
the additive bound ‖Hf − HF ‖ ≤ µ (e.g., Shamir et al.,
2014; Yuan and Li, 2019). We derive the matrix inequal-
ity (25) directly from a multiplicative bound using the ma-
trix Bernstein inequality (see proof in Appendix B.1). Note
that by using matrix Bernstein instead of matrix Hoeffding
inequality (Tropp, 2015), one can refine the bound for µ
in (23) from L`/

√
n to

√
L`LF /n, which can be as small

as L`/n in the extreme case when all the ai’s are orthogonal.
Our bound in (26) states that µ = Õ(L`/n) in general for
quadratic problems, leading to κF/φ = Õ(1 + κ`/n).

Remark 1. Theorem 2 is proved by assuming random sam-
pling with replacement. In practice, we mostly use random
sampling without replacement, which usually concentrates
even more than with replacement (Hoeffding, 1963).

Remark 2. In terms of reducing κF/φ, there is not much
benefit to having µ < λ. Indeed, higher values of µ regular-
ize the inner problem of minimizing Vt(x) in (18), because
the condition number ofDφ(x, y) = Df (x, y)+(µ/2)‖x−
y‖2 is (Lf +µ)/(λ+µ). Increasing µ can thus lead to sub-
stantially easier subproblems when µ > λ, which reduces
the computation cost at the server, although this may some-
times affect the rate of convergence.

4.2. Non-quadratic Case

For non-quadratic loss functions, we need ∇2f(x) to be
a good approximation of ∇2F (x) for all iterations of the
SPAG algorithm. It is tempting to argue that concentration
only needs to hold for the iterates of SPAG, and a union
bound would then give an extra log T factors for T itera-
tions. Yet this only works for one step since xt depends on
the points chosen to build f for t > 0, so the `′′(a>i xt)aia

>
i

are not independent for different i (because of xt). There-
fore, the concentration bounds need to be written at points
that do not depend on f . In order to achieve this, we re-
strict the optimization variable within a bounded convex set
and prove uniform concentration of Hessians over the set.
Without loss of generality, we consider optimization prob-
lems constrained in B(0, D), the ball of radius D centered
at 0. Correspondingly, we set the nonsmooth regularization
function as ψ(x) = 0 if x ∈ B(0, D) and infinity otherwise.

If the radius D is small, it is then possible to leverage the
quadratic bound by using the inequality

‖Hf (x)−HF (x)‖ ≤ ‖Hf (x)−Hf (y)‖
+ ‖Hf (y)−HF (y)‖+ ‖HF (x)−HF (y)‖.

Thus, under a Lipschitz-continuous Hessian assumption
(which we have), only concentration at point y matters. Yet,
such bounding is only meaningful when x is close to y, thus
leading to the very small convergence radius of Wang and
Zhang (2019, Theorem 13), in which they use concentration
at the optimal point x∗. Using this argument for several
y’s that pave B(0, D) leads to an extra

√
d multiplicative

factor since concentration needs to hold at exponentially
(in d) many points, as discussed in Section 1.1. We take
a different approach in this work, and proceed by directly
bounding the supremum for all x ∈ B(0, D), thus looking
for the smallest µ that satisfies:

sup
x∈B(0,D)

‖Hf (x)−HF (x)‖op ≤ µ. (27)

Equation (23) can then be used with this specific µ. We now
introduce Assumption 2, which is for example verified for
logistic regression with B` = 1/4 and M` = 1.

Assumption 2. There exist B` and M` such that `′′i is M`-
Lipschitz continuous and 0 ≤ `′′i (a>x) ≤ B` almost surely
for all x ∈ B(0, D).



Statistically Preconditioned Accelerated Gradient Method

Theorem 3. If `i satisfies Assumption 2, then Equation (27)
is satisfied with probability at least 1− δ for

µ =
√

4π
R2

√
n

(
B`

[
2 +

√
1

2π
log(δ−1)

]
+RM`D

)
.

Sketch of proof. The high probability bound on the supre-
mum is obtained using Mc Diarmid inequality (Boucheron
et al., 2013). This requires a bound on its expectation, which
is obtained using symmetrization and the Sudakov-Fernique
Lemma (Boucheron et al., 2013). The complete proof can
be found in Appendix B.2.

The bound of Theorem 3 is relatively tight as long as
RM`D < B`

√
log(δ−1). Indeed, using the matrix Bern-

stein inequality for a fixed x ∈ B(0, D) would yield
µ = O

(
R
√
LFB` log(d/δ)/

√
n
)
. Therefore, Theorem 3

is tight up to a factor R/
√
LF in this case.

Remark 3. We consider D to be fixed in this work, al-
though obtaining a meaningful solution to the ERM prob-
lem may require D to depend on the dimension d. Yet, D
would actually depend on the intrinsic dimension of the data,
which can be much smaller than d, especially when features
are sparse.

4.3. Sub-Gaussian Bound

We show in this section that the bound of Theorem 3 can be
improved under a stronger sub-Gaussian assumption on a.
Definition 2. The random variable a ∈ Rd is sub-Gaussian
with parameter ρ > 0 if one has for all ε > 0, x ∈ B(0, D):

P(|a>i x)| ≥ ρε) ≤ 2e
− ε2

2‖x‖2 . (28)

Theorem 4. If `i satisfies Assumption 2 and the ai are sub-
Gaussian with constant ρ, then denoting B̃ = B`/(M`D),
there exists C > 0 such that Equation (27) is satisfied with
probability 1− δ for

µ = C
ρ2M`D√

n
(d+ log(δ−1))

[
ρ+ B̃√

d
+
ρ+ (R2B̃)

1
3

√
n

]
.

Recall that this value of µ can be plugged into Equation (23)
to bound the relative condition number.

Sketch of proof. This bound is a specific instantiation of a
more general result based on chaining, which is a standard
argument for proving results on suprema of empirical pro-
cesses (Boucheron et al., 2013). The complete proof can be
found in Appendix B.3.

The sub-Gaussian assumption (28) always holds with ρ =
R, the almost sure bound on ‖ai‖. However Theorem 4 im-
proves over Theorem 3 only with a stronger sub-Gaussian
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Figure 1. Effect of µ on the convergence speed of SPAG on RCV1
with λ = 10−7 and n = 104.

assumption, i.e., when ρ < R. In particular for ai uni-
form over B(0, R), one has ρ = R/

√
d. Assuming fur-

ther that the (R2B)1/3/
√
n term dominates yields µ =

O(R2(R2B)1/3/n), a
√
n improvement over Theorem 3.

We expect tighter versions of Theorem 4, involving the
effective dimension deff of vectors ai instead of the full
dimension d, to hold.

5. Experiments
We have seen in the previous section that preconditioned
gradient methods can outperform gradient descent by a large
margin in terms of communication rounds, which was al-
ready observed empirically (Shamir et al., 2014; Reddi et al.,
2016; Yuan and Li, 2019). We compare in this section the
performances of SPAG with those of DANE and its heavy-
ball acceleration, HB-DANE (Yuan and Li, 2019), as well
as accelerated gradient descent (AGD). Due to its better
convergence guarantees (Shamir et al., 2014; Yuan and Li,
2019), DANE refers in this section to the proximal gra-
dient method with the Bregman divergence associated to
φ = f1 + (µ/2)‖ · ‖2 (without averaging over m workers).

We apply these algorithms to train linear prediction models
over a dataset {(ai, bi)}Ni=1, where each ai ∈ Rd is a feature
vector and bi is the corresponding label or regression target.
Specifically, we solve the problem

minimize
x∈Rd

F (x) =
1

N

n∑
i=1

`i(a
>
i x) +

λ

2
‖x‖2,

where `i(a>i x) = log(1 + exp(−bi(a>i x))) for logistic re-
gression with bi ∈ {−1,+1} and `i(a>i x) = (a>i x − bi)2

for ridge regression with bi ∈ R. We use two datasets from
LibSVM1, RCV1 (Lewis et al., 2004) and the preprocessed
version of KDD2010 (algebra) (Yu et al., 2010).

1Accessible at https://www.csie.ntu.edu.tw/
˜cjlin/libsvmtools/datasets/binary.html

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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(a) Regularization λ = 10−5
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(b) Regularization λ = 10−7

Figure 2. Logistic regression on RCV1 dataset. The legend is the same for all figures. We use µ = 0.1/n, except for n = 105 for which
we use µ = 2 · 10−6.

Note that, as mentioned in Section 3.1, the number of nodes
used by SPAG does not affect its iteration complexity (but
change the parallelism of computing ∇F (xt)). Only the
size n of the dataset used for preconditioning matters. We
initialize all algorithms at the same point, which is the min-
imizer of the server’s entire local loss (with 105 samples
regardless of how many samples are used for precondition-
ing). Note that this is not mandatory but provides a good
communication-free initialization, although it requires par-
tially solving the server’s local loss. Not performing this
would simply yield a worse initialization.

Tuning µ. Although µ can be estimated using concentra-
tions results, as done in Section 4, these bounds are too loose
to be used in practice. Yet, they show that µ depends very
weakly on λ. This is verified experimentally, and we there-
fore use the same value for µ regardless of λ. To test the
impact of µ on the iteration complexity, we fix a step-size
of 1 and plot the convergence speed of SPAG for several val-
ues of µ. We see on Figure 1 that the value of µ drastically
affects convergence, actually playing a role similar to the
inverse of a step-size. Indeed, the smaller the µ the faster
the convergence, up to a point at which the algorithm is not
stable anymore. Convergence could be obtained for smaller
values of µ by taking a smaller step-size. Yet, the step-size
needs to be tuned for each value of µ, and we observed that
this does not lead to significant improvements in practice.
Thus, unless explicitly stated, we stick to the guidelines for
DANE by Shamir et al. (2014), i.e., we choose LF/φ = 1
and tune µ. The tuning strategy for µ is the following: we
tune the base value of µ by starting from 0.1/n for the
smallest n and then decreasing it as long as it is stable, or
increasing it as long as it is unstable. Then, we keep this

base value and obtain µ for other values of n by relying on
the fact that µ should be proportional to 1/n (slightly ad-
justing when necessary if the algorithm becomes unstable).
Therefore, even though some tuning is required to set µ, this
tuning is guided by the insight provided by Section 4.

Setting acceleration parameters. SPAG and HB-DANE
require additional parameters compared with DANE. Yet,
we use in our experiments the values given by the theory, i.e.,
we use SPAG with σ−1

F/φ = 1 + 2µ/λ and HB-DANE with
β = (1− (1 + 2µ/λ)−1/2)2. Fine tuning these parameters
only leads to small improvements for both algorithms, as
described in Appendix C. Therefore, SPAG and HB-DANE
do not require more parameter tuning than DANE. We tune
both the learning rate and the momentum of AGD.

Line search for Gt. As explained in Section 3, the optimal
Gt is obtained through a line search. Yet, we observed in all
our experiments thatGt = 1 most of the time. This is due to
the fact that we start at the minimizer of the local cost func-
tion, which can be close to the global solution. In addition,
Equation (20) can actually be verified for Gt < 1, even in
the quadratic. Therefore, the line search generally has no
added cost (apart from checking that Gt = 1 works) and the
effective rate in our experiments is κ−1/2

F/φ . Experiments for
Figures 2 and 4 use Gt = 1 for simplicity.

Local subproblems. Local problems are solved using a
sparse implementation of dual-free SDCA (Shalev-Shwartz,
2016). In practice, the ill-conditionned regime is very hard,
especially when µ is small. Indeed, the local subproblems
are very hard to solve, and it should be beneficial to use
accelerated algorithms to solve the inner problems. In our
experiments, we warm-start the local problems (initializing
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Figure 3. Ridge regression on RCV1 dataset with λ = 10−5. The
legend is the same as in Figure 4. We use µ = 4/n, and LF/φ = 1,
except for SPAG with n = 105 for which we use L−1

F/φ = 0.9 as
it proved to be more stable.

on the solution of the previous one), and keep doing passes
over the preconditioning dataset until ‖∇Vt(xt)‖ ≤ 10−9

(checked at each epoch).

RCV1. Figure 2 presents results for logistic regression on
the RCV1 dataset with different regularization weights. All
algorithms are run with N = 677399 (split over 4 nodes)
and d = 47236. We see that in Figure 2(a), the curves can be
clustered by values of n, meaning that when regularization is
relatively high (λ = 10−5), increasing the preconditioning
sample size has a greater effect than acceleration since the
problem is already well-conditioned. In particular, accelera-
tion does not improve the convergence rate when n = 105

and λ = 10−5. When regularization is smaller (λ = 10−7),
SPAG and HB-DANE outperform DANE even when ten
times less samples are used for preconditioning, as shown
in Figure 2(b). As discussed in Appendix C, finer tuning
(without using the theoretical parameters) of the momen-
tum marginally improves the performances of SPAG and
HB-DANE, at the cost of a grid search. SPAG generally out-
performs HB-DANE in our experiments, but both methods
have comparable asymptotic rates.

Figure 3 presents results for ridge regression on the same
RCV1 dataset, using the class labels as the regression targets.
In this case, φ is quadratic so we do not need line search on
Gt and always set Gt = 1. The results are very similar to
the logistic regression case.

KDD2010. Figure 4 presents the results of larger scale ex-
periments on a random subset of the KDD2010 dataset with
N = 7557074 (split over 80 nodes), d = 20216830 and
λ = 10−7. The conclusions are similar to the experiments
on RCV1, i.e., acceleration allows to use significantly less
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Figure 4. Logistic regression on KDD2010 with λ = 10−7. We
use µ = 0.1/(2n), except for n = 103 where µ = 10−5, and
LF/φ = 2 for SPAG.

samples at the server for a given convergence speed. AGD
competes with DANE when λ and n are small, but it is
outperformed by SPAG in all our experiments. More exper-
iments investigating the impact of line search, tuning and
inaccurate local solutions are presented in Appendix C.

6. Conclusion
We have introduced SPAG, an accelerated algorithm that per-
forms statistical preconditioning for large-scale distributed
optimization. Although our motivation in this paper is dis-
tributed empirical risk minimization, SPAG applies to much
more general settings that can benefit from statistical pre-
conditioning. We have given tight bounds on the relative
condition number, a crucial quantity to understand the con-
vergence rate of preconditioned algorithms. We have also
shown, both in theory and in experiments, that acceleration
allows SPAG to efficiently leverage rough preconditioning
when only limited number of local samples are available.
Preliminary experiments suggest that SPAG is more robust
to inaccurate solution of the inner problems than HB-DANE.
Characterizing the effects of inaccurate inner solutions in the
preconditioning setting would be an interesting extension of
this work.
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Appendix

A. Convergence Analysis of SPAG
This section provides proofs for Lemma 1, Theorem 1 and Lemma 2 presented in Section 3. Before getting to the proofs, we
first comment on the nature of the accelerated convergence rate obtained in Theorem 1.

Note that SPAG (Algorithm 1) can be considered as an accelerated variant of the general mirror descent method considered
by Bauschke et al. (2017) and Lu et al. (2018). Specifically, we can replace Dφ by the Bregman divergence of any convex
function of Legendre type (Rockafellar, 1970, Section 26). Recently, Dragomir et al. (2019) show that fully accelerated
convergence rates, as those for Euclidean mirror-maps achieved by Nesterov (2004), may not be attainable in the general
setting. However, this negative result does not prevent us from obtaining better accelerated rates in the preconditioned
setting. Indeed, we choose a smooth and strongly convex mirror map and further assume Lipschitz continuity of its Hessian.
For smooth and strongly convex cost functions, the convergence rates of SPAG are almost always better than those obtained
by standard accelerated algorithms (without preconditioning) as long as n is not too small, and can be much better with a
good preconditioner.

A.1. Proof of Lemma 1

Using the second-order Taylor expansion (mean-value theorem), we have

Dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉 =
1

2
(x− y)>∇2φ

(
y + t(x− y)

)
(x− y),

for some scalar t ∈ [0, 1]. We define
H(x, y) = ∇2φ

(
y + t(x− y)

)
,

where the dependence on t ∈ [0, 1] is made implicit with the ordered pair (x, y). Then we can write

Dφ(x, y) =
1

2
‖x− y‖2H(x,y).

By Assumption 1, φ is Lφ-smooth and σφ-strongly convex, which implies that for all x, y ∈ Rd,

σφ‖x− y‖2 ≤ ‖x− y‖2H(x,y) ≤ Lφ‖x− y‖
2.

Let wt = (1− βt)vt + βtyt. Then we have xt+1 − yt = αt
(
vt+1 − wt

)
and

Dφ(xt+1, yt) =
1

2
‖xt+1 − yt‖2H(xt+1,yt)

≤ Lφ
2
‖xt+1 − yt‖2 = α2

t

Lφ
2
‖vt+1 − wt‖2.

Next we use vt+1 − wt = (1− βt)(vt+1 − vt) + βt(vt+1 − yt) and convexity of ‖ · ‖2 to obtain

Dφ(xt+1, yt) ≤ α2
t

Lφ
2

(
(1− βt)‖vt+1 − vt‖2 + βt‖vt+1 − yt‖2

)
≤ α2

t

Lφ
2σφ

(
(1− βt)‖vt+1 − vt‖2H(vt+1,vt)

+ βt‖vt+1 − yt‖2H(vt+1,yt)

)
= α2

tκφ
(
(1− βt)Dφ(vt+1, vt) + βtDφ(vt+1, yt)

)
.

This finishes the proof of Lemma 1.

A.2. Proof of Theorem 1

Theorem 2 is a direct consequence of the following result, which is adapted from Nesterov and Stich (2017).
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Theorem 5 (Smooth and strongly convex mirror map φ). Suppose Assumption 1 holds. Then the sequences generated by
Algorithm 1 satisfy for all t ≥ 0,

At
(
Φ(xt)− Φ(x∗)

)
+BtD(x∗, vt) ≤ A0

(
F (x0)− F (x∗)

)
+B0D(x∗, v0).

Moreover, if we set A0 = 0 and B0 = 1 then for t ≥ 0,

At ≥
1

4σF/φ

[
π+
t − π−t

]2
, Bt = 1 + σF/φAt ≥

1

4

[
π+
t + π−t

]2
,

where

π+
t =

t−1∏
i=0

(
1 +

√
σF/φ

LF/φGt

)
, π−t =

t−1∏
i=0

(
1−

√
σF/φ

LF/φGt

)
.

We first state an equivalent definition of relative smoothness and relative strong convexity (Lu et al., 2018). The function F
is said to be LF/φ-smooth and σF/φ-strongly convex with respect to φ if for all x, y ∈ Rd,

F (y) +∇F (y)>(x− y) + σL/φDφ(x, y) ≤ F (x) ≤ F (y) +∇F (y)>(x− y) + LL/φDφ(x, y). (29)

Obviously this is the same as (9). We also need the following lemma, which is an extension of a result from Chen and
Teboulle (1993, Lemma 3.2), whose proof we omit.

Lemma 3 (Descent property of Bregman proximal point). Suppose g is a convex function defined over domφ and

vt+1 = argmin
x

{
g(x) + (1− βt)Dφ(x, vt) + βtDφ(x, yt)

}
,

then for any x ∈ domh,

g(vt+1) + (1− βt)Dφ(vt+1, vt) + βtDφ(vt+1, yt) ≤ g(x) + (1− βt)Dφ(x, vt) + βtDφ(x, yt)−Dφ(x, vt+1).

Proof of Theorem 5. The proof follows the same lines as Nesterov and Stich (2017), with adaptations to use general
Bregman divergences. Applying Lemma 3 with g(x) = ηt

(
∇f(yt)

>x+ ψ(x)
)
, we have for any x ∈ domφ,

D(x, vt+1) + (1− βt)D(vt+1, vt) + βtD(vt+1, yt)− (1− βt)D(x, vt)− βtD(x, yt)

≤ ηt∇f(yt)
>(x− vt+1) + ηt

(
ψ(x)− ψ(vt+1)

)
.

Since by definition ηt = at+1

Bt+1
, multiplying both sides of the above inequality by Bt+1 yields

Bt+1D(x, vt+1) +Bt+1

(
(1− βt)D(vt+1, vt) + βtD(vt+1, yt)

)
−Bt+1(1− βt)D(x, vt)−Bt+1βtD(x, yt)

≤ at+1∇f(yt)
>(x− vt+1) + at+1

(
ψ(x)− ψ(vt+1)

)
.

Using the scaling property (19) and the relationships αt = at+1

At+1
and a2

t+1Lf/φGt = At+1Bt+1, we obtain

Bt+1

(
(1− βt)D(vt+1, vt) + βtD(vt+1, yt)

)
≥ Bt+1

α2
tGt

D(xt+1, yt) =
A2
t+1Bt+1

a2
t+1Gt

D(xt+1, yt) = At+1Lf/φD(xt+1, yt).

Combining the last two inequalities and using the facts Bt+1(1− βt) = Bt and Bt+1βt = at+1σf/φ, we arrive at

Bt+1D(x, vt+1) +At+1Lf/φD(xt+1, yt)−BtD(x, vt)− at+1σf/φD(x, yt)

≤ at+1∇f(yt)
>(x− vt+1) + at+1

(
ψ(x)− ψ(vt+1)

)
. (30)

We then expand the gradient term on the right-hand side of (30) into two parts:

at+1∇f(yt)
>(x− vt+1) = at+1∇f(yt)

>(x− wt) + at+1∇f(yt)
>(wt − vt+1), (31)
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where wt = (1− βt)vt + βtyt. For the first part,

at+1∇f(yt)
>(x− wt) = at+1∇f(yt)

>(x− yt) +
at+1(1− αt)

αt
∇f(yt)

>(xt − yt)

≤ at+1

(
f(x)− f(yt)− σf/φD(x, yt)

)
+
at+1(1− αt)

αt
(f(xt)− f(yt)) . (32)

Notice that

at+1
1− αt
αt

= at+1

(
1

αt
− 1

)
= at+1

(
At+1

at+1
− 1

)
= At+1 − at+1 = At.

Therefore, Equation (32) becomes

at+1∇f(yt)
>(x− wt) ≤ at+1f(x)−At+1f(yt) +Atf(xt)− at+1σf/φD(x, yt). (33)

For the second part on the right-hand side of (31),

at+1∇f(yt)
>(wt − vt+1) = −at+1

αt
∇f(yt)

>(xt+1 − yt) = −At+1∇f(yt)
>(xt+1 − yt)

≤ −At+1

(
f(xt+1)− f(yt)− Lf/φD(xt+1, yt)

)
, (34)

where in the last inequality we used the relative smoothness assumption in (29).

Summing the inequalities (30), (32) and (34), we have

Bt+1D(x, vt+1)−BtD(x, vt) ≤ at+1f(x)−At+1f(xt+1) +Atf(xt) + at+1(ψ(vt+1)− ψ(x))

≤ −At+1

(
f(xt+1)− f(x)

)
+At

(
f(xt)− f(x)

)
+ at+1

(
ψ(x)− ψ(vt+1)

)
,

which is the same as

At+1

(
f(xt+1)− f(x)

)
+Bt+1D(x, vt+1) ≤ At

(
f(xt)− f(x)

)
+BtD(x, vt) + at+1

(
ψ(x)− ψ(vt+1)

)
. (35)

Finally we consider the term at+1

(
ψ(x)− ψ(vt+1)

)
. Using xt+1 = (1− αt)xt + αtvt+1 and convexity of ψ, we have

ψ(xt+1) ≤ (1− αt)ψ(xt) + αtψ(vt+1).

Since by definition αt = at+1

At+1
and (1− αt) = At

At+1
, the above inequality is equivalent to

At+1ψ(xt+1) ≤ Atψ(xt) + at+1ψ(vt+1),

which implies (using At+1 = At + at+1) that for any x ∈ domφ,

At+1

(
ψ(xt+1)− ψ(x)

)
≤ At

(
ψ(xt)− ψ(x)

)
+ at+1

(
ψ(vt+1)− ψ(x)

)
. (36)

Summing the inequalities (35) and (36) and using Φ = f + ψ, we have

At+1

(
Φ(xt+1)− Φ(x)

)
+Bt+1D(x, vt+1) ≤ At

(
Φ(xt)− Φ(x)

)
+BtD(x, vt).

This can then be unrolled, and we obtain the desired result by setting x = x∗.

Finally, the estimates of At and Bt follow from a direct adaptation of the techniques in (Nesterov and Stich, 2017). The
only difference is the use of time-varying γt =

√
σF/φ/(LF/φGt) instead of a constant γ =

√
σF/φ/LF/φ, which does

not impact the derivations.
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A.3. Proof of Lemma 2

The analysis in Lemma 1 is very pessimistic, since we use uniform lower and upper bounds for the Hessian of φ, whereas
what we actually want is to bound is the differences between Hessians. If the Hessian is well-behaved (typically Lipschitz,
or if φ is self-concordant), we can prove Lemma 2, which leads to a finer asymptotic convergence rate.

We start with the local quadratic representation of Bregman divergence:

Dφ(xt+1, yt) =
1

2
‖xt+1 − yt‖2H(xt+1,yt)

=
α2
t

2
‖vt+1 − wt‖2H(xt+1,yt)

≤ α2
t

2

(
(1− βt)‖vt+1 − vt‖2H(xt+1,yt)

+ βt‖vt+1 − yt‖2H(xt+1,yt)

)
≤ α2

t

2

(
(1− βt)‖vt+1 − vt‖2H(vt+1,vt)

+ βt‖vt+1 − yt‖2H(vt+1,yt)

)
+
α2
t

2
(1− βt)‖H(xt+1, yt)−H(vt+1, vt)‖ · ‖vt+1 − vt‖2

+
α2
t

2
βt‖H(xt+1, yt)−H(vt+1, yt)‖ · ‖vt+1 − yt‖2.

Now we use the Lipschitz property of∇2φ to bound the spectral norms of differences of Hessians:

‖H(xt+1, yt)−H(vt+1, vt)‖ ≤M‖zxy − zvv‖, ‖H(xt+1, yt)−H(vt+1, yt)‖ ≤M‖zxy − zvy‖,

where zvv ∈ [vt+1, vt], zxy ∈ [yt, xt+1] and zvy ∈ [yt, vt+1]. Using the triangle inequality of norms, we have

‖zxy − zvy‖ = ‖zxy − yt + yt − zvy‖ ≤ ‖zxy − yt‖+ ‖yt − zvy‖ ≤ ‖xt+1 − yt‖+ ‖yt − vt+1‖,

and

‖zvv − zxy‖ ≤ ‖zvv − vt+1‖+ ‖vt+1 − yt‖+ ‖yt − zxy‖ ≤ ‖vt − vt+1‖+ ‖vt+1 − yt‖+ ‖yt − xt+1‖.

Therefore, we have

dt , max
{
‖zxy − zvv‖, ‖zxy − zvy‖

}
≤ ‖vt − vt+1‖+ ‖vt+1 − yt‖+ ‖yt − xt+1‖,

and consequently,

Dφ(xt+1, yt) ≤
α2
t

2

(
(1− βt)‖vt+1 − vt‖2H(vt+1,vt)

+ βt‖vt+1 − yt‖2H(vt+1,yt)

)
+
Mdtα

2
t

2

(
(1− βt)‖vt+1 − vt‖2 + βt‖vt+1 − yt‖2

)
≤ α2

t

2

(
(1− βt)‖vt+1 − vt‖2H(vt+1,vt)

+ βt‖vt+1 − yt‖2H(vt+1,yt)

)
+
Mdtα

2
t

2σφ

(
(1− βt)‖vt+1 − vt‖2H(vt+1,vt)

+ βt‖vt+1 − yt‖2H(vt+1,yt)

)
=
α2
t

2

(
1 +

Mdt
σφ

)(
(1− βt)‖vt+1 − vt‖2H(vt+1,vt)

+ βt‖vt+1 − yt‖2H(vt+1,yt)

)
= α2

t

(
1 +

Mdt
σφ

)(
(1− βt)D(vt+1, vt) + βtD(vt+1, yt)

)
.

Combining with Lemma 1, we see that Gt = min{κσ, 1 + (M/σφ)dt} satisfies the inequality (19). This finishes the proof
of Lemma 2.

Note that this condition is not directly useful. Indeed, xt+1 and vt+1 depend on Gt. Yet, under the uniform choice of
Gt ≤ κφ, it can be shown that dt → 0 at rate (1− 1/

√
κφκF/φ)t because the sequences vt, xt and yt all converge to x∗ at

this rate in the strongly convex case (Lin and Xiao, 2015, Theorem 1). As a consequence, Algorithm 1 will eventually use
Gt ≤ 2, leading to an asymptotic rate of (1− 1/

√
κF/φ)t.
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B. Concentration of Hessians
In practice, preconditioned gradient methods such as DANE are often used with a step-size of 1. This implies the assumption
of LF/φ = 1, which holds if n is sufficiently large with a given µ or if µ is sufficiently large for a given n (but µ ≤ LF
always). Otherwise convergence is not guaranteed (which is why it is sometimes considered as “rather unstable”). If µ is
such that ‖Hf (x)−HF (x)‖ ≤ µ for all x ∈ B(0, D) then LF/φ = 1 can safely be chosen since HF (x)−Hf (x) � µId.
Note that this choice of µ is completely independent of λ. In this case, we use that HF (x)−Hf (x) � −µI to write that

Hf (x) + µ � HF (x) + 2µ � (1 + 2µH−1
F (x))HF (x) �

(
1 +

2µ

λ

)
HF (x).

These derivations are similar to the ones of Zhang and Xiao (2018, Lemma 3), and so we obtain σF/φ =
(
1 + 2µ

λ

)−1
and

the corresponding relative condition number κF/φ = 1 + 2µ
λ , as explained in Section 1.1. We see that µ is independent of λ,

but the problem is still very ill-conditioned for small values of λ, meaning that acceleration makes a lot of sense. In the
quadratic case, tighter relative bounds can be derived.

B.1. The quadratic case

This section is focusing on proving Theorem 2.

Proof of Theorem 2. We consider the random variable a, and (ai)i∈{1,...,n} are n i.i.d. variables with the same law as a.
We introduce matrices Ĥ and H such that Hf = Ĥ + λId and HF = H + λId. In particular, H = E

[
aa>

]
= EĤ . We

define for α ≥ 0, β > 0, Hα,β = αH + βId, and

Si =
1

n
H
− 1

2

α,β (aia
>
i −H)H

− 1
2

α,β ,

which is such that E [Si] = 0. This allows to have bounds of the form ‖
∑
i Si‖ ≤ t with probability 1− δ and a spectral

bound µ that depends on α, β, δ (and other quantities related to H and aia>i ). We note that

n∑
i=1

Si = H
− 1

2

α,β (Ĥ −H)H
− 1

2

α,β ,

and write the concentration bounds on the Si as −tHα,β � Ĥ −H � tHα,β for some t > 0, which can be rearranged as:

Ĥ + tβId � (1− tα)H

Ĥ − tβId � (1 + tα)H.

Using Hf = Ĥ + λId and HF = H + λId, the first equation can be rearranged as:

HF �
1

1− tα
(Hf + t(β − αλ)Id) . (37)

The second equation can be written

Hf �
[
(1 + tα)Id + t(β − αλ)H−1

F

]
HF ,

which, by adding t(β − αλ)Id on both sides, leads to

Hf + t(β − αλ)Id �
[
(1 + tα)Id + 2t(β − αλ)H−1

F

]
HF .

We let µ = t(β − αλ) and use H−1
F � λ−1Id to write that:(

1 + αt+
2µ

λ

)−1

(Hf + µId) � HF �
1

1− αt
(Hf + µId) . (38)
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We then use the fact that aia>i and H are positive semidefinite and upper bounded by R2I to write that:

‖Si‖ ≤
1

n
‖H−1

α,β‖max
{
‖aa>‖, ‖H‖

}
≤ R2

βn
. (39)

Using the fact that H = E
[
aa>

]
, we bound the variance as:∥∥∥∑

i

E
[
SiS

>
i

]∥∥∥ =
1

n

∥∥∥E [H− 1
2

α,β (aa> −H)H−1
α,β(aa> −H)H

− 1
2

α,β

]∥∥∥
=

1

n

∥∥∥H− 1
2

α,β (E
[
aa>H−1

α,βaa
>
]
−HH−1

α,βH)H
− 1

2

α,β

∥∥∥
≤ 1

n
max

{
R̃2
∥∥∥H− 1

2

α,βE
[
aa>

]
H
− 1

2

α,β

∥∥∥ , ∥∥∥H− 1
2

α,βHH
−1
α,βHH

− 1
2

α,β

∥∥∥}
≤ 1

n

∥∥∥H− 1
2

α,βHH
− 1

2

α,β

∥∥∥max
{
R̃2,

∥∥∥H− 1
2

α,βHH
− 1

2

α,β

∥∥∥} ,
with R̃2 ≥ a>H−1

α,βa almost surely. We first notice that a>i H
−1
α,βai ≤

R2

β . Then, we use the positive definiteness of Hα,β

and H and the fact that βH−1
α,β � Id to show that for α > 0:∥∥∥H− 1

2

α,βHH
− 1

2

α,β

∥∥∥ = α−1
∥∥∥H− 1

2

α,β (αH + β − β)H
− 1

2

α,β

∥∥∥ = α−1
∥∥∥Id − βH−1

α,β

∥∥∥ ≤ α−1

(
1− β

αL+ β

)
=

L

αL+ β
,

where L is the spectral norm of H , i.e., L = ‖H‖. A quick calculation shows that this formula is also true for α = 0. In the
case α = 0 and β = 1 (absolute bounds), Hα,β = Id and we recover that we can bound the variance by LR2

n , leading to the
usual additive bounds.

For α > 0, we use the simpler bound
∥∥H− 1

2

α,βHH
− 1

2

α,β

∥∥ ≤ α−1 and R̃2 ≤ β−1R2, leading to∥∥∥∑
i

E
[
SiS

>
i

]∥∥∥ ≤ max(β−1R2, α−1)

nα
.

For any 1 > δ > 0, we note cδ = 28
3 log

(
2d
δ

)
. We now set α = βn

cδR2 , and assume that n > cδ (otherwise concentration
bounds will be very loose anyway). In this case, β−1R2 ≥ α−1, meaning that the bound on the variance becomes:∥∥∥∑

i

E
[
SiS

>
i

]∥∥∥ ≤ 1

α2cδ
.

Similarly, according to (39), every Si is almost surely bounded as: ‖Si‖ ≤ 1
αcδ

. We can now use Matrix Bernstein Inequality
(Tropp, 2015, Theorem (6.1.1)) to get that with probability 1− pδ and for t ≥ 0,∥∥∥ n∑

i=1

Si

∥∥∥ ≤ t,
with

pδ = 2d · exp(− t2/2

(α2cδ)−1 + (αcδ)−1t/3
).

We choose t = (2α)−1, which leads to pδ = δ. By substituting the expressions of αt = 1
2 and βt = R2cδ

n αt into
Equation (38), we obtain: (

3

2
+

2µ

λ

)−1

(Ĥλ + µId) � Hλ � 2
(
Ĥλ + µId

)
,

with

µ = t(β − αλ) =
1

2

(
28R2

3n
log

(
2d

δ

)
− λ
)
.

In case β is very small so that µ < 0 then it is always possible to choose δ′ < δ so that µ > 0. This means that the same
bound on µ holds with probability 1− δ′ > 1− δ.
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B.2. Almost surely bounded a

We first introduce Theorem 6, which proves a general concentration result that implies Theorem 3 as a special case.

Theorem 6. We consider functions ϕ1, ϕ2, which are respectively L1 and L2 Lipschitz-continuous. We consider two
sets X and Y which are contained in balls of center 0 and radius D1 and D2. We assume that |ϕ1(a>i x)| ≤ B1 and
|ϕ2(a>i y)| ≤ B2 almost surely for all x ∈ X and y ∈ Y . We consider

Y = sup
x∈X , y∈Y

{ 1

n

n∑
i=1

ϕ1(a>i x)ϕ2(a>i y)− Eϕ1(a>x)ϕ2(a>y)
}
.

Then, for all 1 ≥ δ > 0, with probability greater than 1− δ:

Y ≤
√

4π
(E
[
‖a‖2

]
)

1
2

√
n

(B2L1D1 +B1L2D2) +
2B1B2√

2n

√
log

1

δ
.

Theorem 3 is then a direct corollary of Theorem 6, as shown below:

Proof of Theorem 3. The result is obtained by applying Theorem 6 with ϕ1 = `′′ and ϕ2 = 1
2 (·)2. This implies that with

probability at least 1− δ,

sup
x∈B(0,D), y∈B(0,1)

y>
[ 1

n

n∑
i=1

`′′(a>i x)aia
>
i − E`′′(a>x)aa>

]
y ≤ µ,

where the value of µ can be obtained by letting B1 = B`, L1 = M`, D1 = D, D2 = 1, B2 = supy:‖y‖≤1 y
>aia

>
i y ≤ R2

and L2 = supy:‖y‖≤1 2‖y>ai‖ = 2R.

Proof of Theorem 6. If changing any ai to some a′i, then the deviation in Y is at most (almost surely):

1

n
sup

x∈X , y∈Y

∣∣ϕ1(a>i x)ϕ2(a>i y)
∣∣+ sup

x∈X , y∈Y

∣∣ϕ1(a′>i x)ϕ2(a′>i y)
∣∣ ≤ 2

n
B1B2.

Mac-Diarmid’s inequality (see, e.g., Vershynin, 2019, Theorem 2.9.1) thus implies that with probability greater than 1− δ,

Y ≤ EY +
2B1B2√

2n

√
log

1

δ
. (40)

In order to bound EY , we first use classical symmetrization property (see, e.g., Vershynin, 2019, Section 6.4)

EY ≤
√

2π · E sup
x∈X , y∈Y

1

n

n∑
i=1

εiϕ1(a>i x)ϕ2(a>i y),

where each εi is an independent standard normal variable.

Denoting Zx,y = 1
n

∑n
i=1 εiϕ1(a>i x)ϕ2(a>i y), we have, for any x, y, x′, y′, assuming the ai are fixed,

E(Zx,y − Zx′,y′)2 =
1

n2

n∑
i=1

(
ϕ1(a>i x)ϕ2(a>i y)− ϕ1(a>i x

′)ϕ2(a>i y
′)
)2

=
1

n2

n∑
i=1

(
ϕ1(a>i x)

[
ϕ2(a>i y)− ϕ2(a>i y

′)
]

+
[
ϕ1(a>i x)− ϕ1(a>i x

′)
]
ϕ2(a>i y

′)
)2

≤ 1

n2

n∑
i=1

(
2ϕ1(a>i x)2

[
ϕ2(a>i y)− ϕ2(a>i y

′)
]2

+ 2ϕ2(a>i y
′)2
[
ϕ1(a>i x)− ϕ1(a>i x

′)
]2)

≤ 1

n2

n∑
i=1

(
2B2

1

[
ϕ2(a>i y)− ϕ2(a>i y

′)
]2

+ 2B2
2

[
ϕ1(a>i x)− ϕ1(a>i x

′)
]2)

.
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We then have, using Lipschitz-continuity:

E(Zx,y − Zx′,y′)2 ≤ 1

n2

n∑
i=1

(
2B2

1L
2
2

[
a>i y − a>i y′

]2
+ 2B2

2L
2
1

[
a>i x− a>i x′

]2)
= E(Z̃x,y − Z̃x′,y′)2,

for

Z̃x,y =
1

n

n∑
i=1

{√
2B2L1ε̃1ia

>
i x+

√
2B1L2ε̃2ia

>
i y
}
,

with all ε̃1i and ε̃2i independent standard random variables.

Using Sudakov-Fernique inequality (Vershynin, 2019, Theorem 7.2.11), we get

EY =
√

2πE sup
x∈X , y∈Y

Zx,y

≤
√

2πE sup
x∈X , y∈Y

Z̃x,y

=
√

4πB2L1E sup
x∈X

1

n

n∑
i=1

ε̃1ia
>
i x+

√
4πB1L2E sup

y∈Y

1

n

n∑
i=1

ε̃2ia
>
i y

≤
√

4πB2L1D1E
∥∥∥ 1

n

n∑
i=1

ε̃1iai

∥∥∥+
√

4πB1L2D2E
∥∥∥ 1

n

n∑
i=1

ε̃2iai

∥∥∥
≤
√

4πB2L1D1

√√√√E
∥∥∥ 1

n

n∑
i=1

ε̃1iai

∥∥∥2

+
√

4πB1L2D2

√√√√E
∥∥∥ 1

n

n∑
i=1

ε̃2iai

∥∥∥2

≤
√

4πB2L1D1

(E
[
‖a‖2

]
)

1
2

√
n

+
√

4πB1L2D2

(E
[
‖a‖2

]
)

1
2

√
n

.

Plugging this into Equation (40), we obtain that with probability greater than 1− δ,

Y ≤
√

4π
(E
[
‖a‖2

]
)

1
2

√
n

(B2L1D1 +B1L2D2) +
2B1B2√

2n

√
log

1

δ
.

Remark 4 (Relative bounds). In the quadratic case, considering relative bounds allowed to choose smaller values of µ and
to tighten the bounds on the relative condition number by a

√
n factor. Theorem 3 consists in bounding (using the definition

of the operator norm)

sup
x∈B(0,D),y∈B(0,1)

{ 1

n

n∑
i=1

`′′(a>i x)(a>i y)2 − y>H(x)y
}
,

and heavily relies on the fact that (a>i y)2 is independent of x. The proof needs to be adapted in the case of the relative

bounds since this term becomes (a>i H
− 1

2

α,β (x)y)2, which now depends on x as well, and thus requires a different control.

B.3. Subgaussian a

We considered in the previous section a splitting of the summands of the Hessians as a product of 2 functions. We now
present a different bound that is designed for a product of an arbitrary number of functions ϕ1, . . . , ϕr : R → R. This
section is devoted to proving Theorem 7, which is based on the chaining argument (Boucheron et al., 2013, Chapter 13), and
from which Theorem 4 can be derived directly.
Theorem 7. Assume that for all i, ϕi(0) = 0 and ϕi is 1-Lipschitz. Assume that a is ρ-subgaussian, and that for all k,
supx∈B(0,1) |ϕk(a>i x)| ≤ Bk. Denote B =

∏r
k=1Bk. For suitable constant Cr, for all γ > 0, one has that

P

 sup
x1,...,xr∈B(0,1)

1

n

∑
i∈[n]

{
r∏

k=1

ϕk(a>i xk)− E
r∏

k=1

ϕk(a>xk)

}
≥ ρrCr(d+ γ)

[
1√
dn

+
(ρ−rB)1−2/r

n

] ≤ rπ2

6
e−γ .
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We are primarily interested in the case r = 3, ϕ1 = ϕ2 = id (the identity mapping) to control distances between Hessians.

Proof. We look for bounds on

Y := sup
x1,...,xr∈S1

1

n

∑
i∈[n]

{
r∏

k=1

ϕk(a>i xk)− Ea
r∏

k=1

ϕk(a>xk)

}
. (41)

For all j ≥ 0, let Nj be an ε-net of S1 that approximates S1 to distance 2−j . Then, Nj can be chosen as |Nj | ≤ (1 +
2j+1)d(see, e.g., Vershynin, 2019, Section 4.2). For all x ∈ S1, let Πj(x) be some point inNj such that ‖x−Πj(x)‖ ≤ 2−j .
By convention we take Π0(x) = 0.

Then for all (x1, . . . , xr) ∈ Sr, using the chaining approach (Boucheron et al., 2013), we write

1

n

∑
i∈[n]

∏
k∈[r]

ϕk(a>i xk) =
∑
j≥0

1

n

∑
i∈[n]

∏
k∈[r]

ϕk(a>i Πj+1(xk))−
∏
k∈[r]

ϕk(a>i Πj(xk))


=
∑
j≥0

∑
k∈[r]

1

n

∑
i∈[n]

k−1∏
`=1

ϕ`(a
>
i Πj+1(x`))

[
ϕk(a>i Πj+1(xk))− ϕk(a>i Πj(xk))

] r∏
`=k+1

ϕ`(a
>
i Πj(x`)).

Let j ≥ 0 and k ∈ [r] be fixed. Consider a term of the form Z = 1
n

∑
i∈[n] Zi, with

Zi =

k−1∏
`=1

ϕ`(a
>
i u`)

[
ϕk(a>i uk)− ϕk(a>i vk)

] r∏
`=k+1

ϕ`(a
>
i v`), (42)

where u` ∈ Nj , v` ∈ Nj+1, and ‖uk − vk‖ ≤ εj := 2−j+1. By the triangle inequality, for all x` ∈ S1, letting u` = Πj(x`)
and v` = Πj+1(x`), these assumptions are satisfied. For each Zi and t > 0, we have:

P(Zi ≥ εjρrt) ≤ P
(
|ϕ`(a>i u`)| ≥ ρt1/r for some ` < r,

or |ϕk(a>i uk)− ϕk(a>i vk)| ≥ ρεjt1/r,

or |ϕ`(a>i v`)| ≥ ρt1/r for some ` > k
)
.

Therefore, we have
P(Zi ≥ εjρrt) ≤ 2re−t

2/r/2 if t ≤ ρ−rPj,k and

P(Zi ≥ εjρrt) = 0 if t > ρ−rPj,k,

where we noted Pj,k := min
{

2B/εj , 2(B/Bk)R
}

. We will also make use of notation j∗(k) := dlog2(R/Bk)e, so that

j ≤ j∗(k)⇒ Pj,k = 2B/εj , j > j∗(k)⇒ Pj,k = 2(B/Bk)R.

Fixing j ≥ 0, k ∈ [r], we write for any θ > 0 (a specific θ will be chosen later):

E e(θ/n)ρ−r[Zi−EZi]/εj = 1 +

(
θ

n

)2

E
[
(ε−1
j ρ−r(Zi − EZi))2F ((θ/n)(ε−1

j ρ−r(Zi − EZi)))
]
,

where
F (x) := x−2[ex − x− 1] ≤ e|x|.

Thus using this bound and the inequality xy ≤ x2 + y2:

E e(θ/n)ρ−r[Zi−EZi]/εj ≤ 1 +

(
θ

n

)2 [
E((ε−1

j ρ−r(Zi − EZi))4 + Ee2(θ/n)ρ−r|Zi−EZi|/εj
]
. (43)
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By the sub-gaussian tail assumption, E(ε−1
j ρ−r(Zi − EZi))4 is bounded by a constant κr dependent on r. We now assume

that θ is such that
θ

n
≤ min

(
(ρ−rPj,k)2/r−1

8
, 1

)
,

which is equivalent to having (θ/n)y ≤ y2/r/8 for y ∈ [0, ρ−rPj,k] and r ≥ 2. Then, Ee2(θ/n)ρ−r|Zi−EZi|/εj is also
bounded by another constant κ′r dependent on r. Indeed, by the sub-gaussian tail assumption, |EZi| ≤ ρrεjsr for some
r-dependent constant, and we can then use the fact that:

EeαX =

∫ ∞
0

ekzp(z)dz =

∫ ∞
0

(
1 + α

∫ z

0

eαy
)
p(z)dzdy = 1+α

∫ ∞
0

∫ ∞
y

eαydyp(z)dz = 1+α

∫ ∞
0

eαyp(X ≥ y)dy,

with α = 2θ/n and X = ρ−r|Zi|εj to get:

E e2(θ/n)ρ−r|Zi−EZi|/εj ≤ E e2(θ/n)ρ−r(|Zi|+|EZi|)/εj

≤ e2(θ/n)srEe2θ/nρ−r|Zi|/εj

≤ e2(θ/n)sr [1 +
2θ

n

∫ ∞
0

e2(θ/n)y[P(Zi ≥ yρrεj) + P(−Zi ≥ yρrεj)]dy]

≤ e2(θ/n)sr [1 +
2θ

n
2r

∫ ρ−rPj,k

0

e2(θ/n)y−y2/r/2dy],

≤ e2(θ/n)sr [1 +
2θ

n
2r

∫ ∞
0

e−y
2/r/4dy]

= e2(θ/n)sr [1 +
θ

n
cr].

We finally use the fact that θ/n ≤ 1 to write Ee2(θ/n)ρ−r|Zi−EZi|/εj ≤ κ′r, with κ′r = e2sr [1 + cr]. We write κ′′r = κr + κ′r
and use Equation (43) together with the independence of the Zi to obtain:

E eθρ
−r[ 1

n

∑n
i=1 Zi−EZi]/εj ≤

(
1 +

(
θ

n

)2

κ′′r

)n
≤ e θ

2

n κ
′′
r .

Thus, using that P(X ≥ y) = P(eX ≥ ey) ≤ e−yEeX (Markov Inequality), we have that for fixed u` u`, v`, ` ∈ [r] in the
suitable ε-nets is upper bounded for all θ ∈ [0,min(n, n(ρ−rPj,k)2/r−1/8)] as:

P

 1

n

∑
i∈[n]

Zi − EZi ≥ ρrεjtj,k

 ≤ exp
(
(r + 1)d ln(1 + 2j+2)− θtj,k + κ′′rθ

2/n
)
. (44)

We see in Equation (42) that the variables Zi are built by fixing a specific either u` for ` < k, v` for ` > k, and uk and vk,
meaning that there are actually r + 1 variables to be fixed in nets of resolution either 2−j or 2−j−1. Note that all Zi for
i ∈ {1, · · · , n} are constructed with the same choice of u` and v`. Therefore, the number of possible choices for u` ∈ Nj
and v` ∈ Nj+1 involved in the definition of Zi is upper-bounded by

|Nj+1|r+1 ≤ ed(r+1) ln(1+2j+2).

Combining this with Equation (44), we obtain using a union bound that:

P
(

sup
u`,v`

{
Z − EZ

}
≥ ρrεjtj,k

)
= P

(
∪u`,v`

{
Z − EZ ≥ ρrεjtj,k

})
≤
∑
u`,v`

P (Z − EZ ≥ ρrεjtj,k)

≤ exp
(
(r + 1)d ln(1 + 2j+2)− θtj,k + κ′′rθ

2/n
)
.
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Let now θj,k = min(n, n(ρ−rPj,k)2/r−1/8,
√
nd), and

tj,k = κ′′r
θj,k
n

+
1

θj,k
[d(r + 1) ln(1 + 2j+2) + γ + 2 ln(j + 1)],

where γ > 0 is a free parameter. We then use the chaining decomposition of Y = supx

{∑
j≥0,k∈[r] Z−EZ

}
, and another

union bound on j and k to write that:

P

Y ≥ ρr ∑
j≥0,k∈[r]

εjtj,k

 = P

sup
x

{ ∑
j≥0,k∈[r]

Z − EZ
}
≥ ρr

∑
j≥0,k∈[r]

εjtj,k


≤ P

 ∑
j≥0,k∈[r]

sup
x
{Z − EZ} ≥ ρr

∑
j≥0,k∈[r]

εjtj,k


≤

∑
j≥0,k∈[r]

P
(

sup
u`,v`

{Z − EZ} ≥ ρrεjtj,k
)

≤
∑

j≥0,k∈[r]

e−γ−2 ln(1+j).

In the end, using that
∑
j≥1 j

−2 = π2/6, we obtain:

P

Y ≥ ρr ∑
j≥0,k∈[r]

εjtj,k

 ≤ rπ2

6
e−γ .

Moreover, one has

εjtj,k ≤ εjAr(1 + j)(d+ γ)

[
(ρ−rPj,k)1−2/r

n
+

1√
nd

+
1

n

]
,

for some suitable constant Ar dependent only on r. Fix some k ∈ [r]. Write:

1

Ar

∑
j≥0

εjtj,k ≤ 4
d+ γ√
nd

+
d+ γ

n

j∗(k)∑
j=0

εj(2ρ
−rB/εj)

1−2/r(1 + j)

+
d+ γ

n

∑
j>j∗(k)

εj(2ρ
−rBR/Bk)1−2/r(1 + j)

≤ 4
d+ γ√
nd

+
d+ γ

n
A′r(ρ

−rB)1−2/r
{

1 + (Bk/R)2/r ln(R/Bk)
}
,

whereA′r is another constant depending only on r. SinceBk ≤ R, then (Bk/R)2/r ln(R/Bk) is bounded by a (r-dependent)
constant.

We know present Corollary 1, which is a consequence of Theorem 7. We consider again i.i.d. ai, bounded by R, satisfying
the subgaussian tail assumption with parameter ρ, and some function ϕ that is 1-Lipschitz, and uniformly bounded by Bϕ.
Writing

H(x) =
1

n

n∑
i=1

aia
>
i ϕ(a>i x), (45)

We have the following corollary.

Corollary 1. Thus for 1 > δ > 0, with probability at least 1− δ, it holds for some C > 0 that

sup
x∈S1

‖H(x)‖op ≤ C
′ρ3(d+ ln(1/δ) + ln(5π2/6))[(1 + ρ−1Bϕ)/

√
dn+ (1 + {ρ−3R2Bϕ}1−2/3)/n]. (46)
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Proof. Let us write ϕ3(u) = ϕ(u)− ϕ(0). Then ϕ3 satisfies our assumptions (1-Lipschitz, ϕ3(0) = 0). Moreover, we can
decompose matrix H(x)− EH(x) into M(x) +N , where

M(x) =
1

n

n∑
i=1

[
aia
>
i ϕ3(a>i x)− Ea1a

>
1 ϕ3(a>1 x)

]
, N =

1

n

n∑
i=1

[
aia
>
i ϕ(0)− Ea1a

>
1 ϕ(0)

]
.

Taking r = 2, ϕ1 = ϕ2 = Id, the Theorem 7 gives us that

P(‖N‖op ≥ C2|ϕ(0)|ρ2(γ + d)(1/
√
dn+ 1/n)) ≤ 2

π2

6
e−γ . (47)

Taking next r = 3, and B = R2Bϕ, we obtain

P( sup
x∈S1

‖M(x)‖op ≥ C3ρ
3(d+ γ)(1/

√
dn+ [ρ−3R2Bϕ]1−2/3/n)) ≤ 3

π2

6
e−γ . (48)

Combined, these two bounds give us that for all γ > 0, we have, setting C = C2 + C3:

P( sup
x∈S1

‖H(x)‖op ≥ C
′ρ3(d+ γ)[(1 + ρ−1Bϕ)/

√
dn+ (1 + {ρ−3R2Bϕ}1−2/3)/n]) ≤ 5

π2

6
e−γ . (49)

We finally take γ = − ln
(

6δ
5π2

)
.

The last step required to prove Theorem 4 is to consider the supremum over B(0, D) with an arbitrary M`-Lipschitz function,
which can be done by direct reduction:

Proof of Theorem 4. To apply this to `′′, defined on B(0, D) andM` Lipschitz, we apply Corollary 1 to ϕ(x) = 1
M`D

`′′(Dx)

(which is 1-Lipschitz on B(0, 1)). Then, Bϕ = B`/M`D and the right hand side must be multiplied by M`D.

Remark 5. Note that there is a difference in the way Theorem 6 and Theorem 7 are applied to our linear models problem. In
particular, Theorem 6 considers ϕ1 = ‖ · ‖2 and ϕ2 = `′′, whereas Theorem 7 uses ϕ1 = ϕ2 = Id and ϕ3 = `′′. Theorem 6
can be adapted to work with r = 3, but the bound does not improve when splitting ‖ · ‖2 into Id× Id. Similarly, Theorem 7
could be used with r = 2 and ϕ1 = ‖ · ‖2/(2R) (to respect the 1-Lipschitz assumption), but in this case the bound can only
be worse since the main difference is that the ρ3 factor becomes Rρ2, and ρ is generally smaller than R.

B.4. Tightness of Theorem 7

Consider that the ai uniformly distributed on the sphere with radius R =
√
d, and take for fk the identity. Such vectors

can be constructed by taking vectors Ai with coordinates i.i.d. standard gaussian, and setting ai =
√
d‖Ai‖−1Ai. The

subgaussianity parameter ρ can then be taken equal to 1.

Then, using known results about maximal correlation between variables with fixed marginals (e.g., Vershynin, 2019,
Section 3), the expectation E

∏r
k=1 a

>
1 xk is maximized, over choices xk ∈ S1, by taking x1 = · · · = xr. We may choose

x1 = e1, the first unit vector, by rotational invariance, and thus the expectation is upper-bounded as:

E
r∏

k=1

a>1 xk ≤ Edr/2E
[
|Ai(1)|r

‖Ai‖r

]
.

This is of order 1, as can be shown using concentration inequalities on the deviations of ‖Ai‖ from
√
d. Consider then the

empirical sum 1
n

∑
i∈[n]

∏
k∈[r] a

>
i xk. Choose xk = d−1/2a1 for all k ∈ [r]. Then this empirical sum evaluates to

1

n

∑
i∈[n]

∏
k∈[r]

a>i xk =
1

n
dr/2 +

1

n

n∑
i=2

∏
k∈[r]

a>i a1.

The second sum can be shown to be of order 1 (conditioning on a1, and then using, e.g., Bienaymé-Tchebitchev inequality).
Thus, one cannot hope to establish concentration without extra assumptions on the data distribution unless dr/2 = O(n).

Contrast this with the result of Theorem 7: for R =
√
d, B = Rr and ρ = 1, it gives that Y ≤ O(d(r/2)(1−2/r)d/n) =

O(dr/2/n). Thus the result is sharp for the particular example we just considered.
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C. Experimental setting
Some implementation details are omitted in the main text due to lack of space. To ease the reader’s understanding, we
provide these details here, along with some additional experimental results. We also provide code for SPAG in supplementary
material.

Optimization problem. We used the logistic loss with quadratic regularization, meaning that the function at node i is:

fi : x 7→ 1

m

m∑
j=1

log
(

1 + exp(−yi,jx>a(i)
j )
)

+
λ

2
‖x‖2,

where yi,j ∈ {−1, 1} is the label associated with a(i)
j , the j-th sample of node i. The local datasets are constructed by

shuffling the LibSVM datasets, and then assigning a fixed portion to each worker. Then, the server subsamples n points
from its local dataset to construct the preconditioning dataset. To assess the suboptimality, we let the best algorithm run
for more time in order to get a good approximation of the minimum error. Then, we subtract it to the running error of an
algorithm to get the suboptimality at each step.

Adjusting αt and βt. We found that choosing A0 = 0 and B0 = 1 for SPAG is usually not the best choice. Indeed, rates are
asymptotic and sequences αt and βt converge very slowly when σF/φ is small, whereas we typically rarely use more than
about 100 iterations of SPAG. Therefore, we start the algorithm with At0 and Bt0 with t0 > 0 instead. We used t0 = 50,
but SPAG is not very sensitive to this choice.

Tuning the momentum. Figure 5(a) evaluates the relevance of tuning the parameters controlling the momentum of
SPAG and HB-DANE. To do so, we compare the default values of β = (1 − (1 + 2µ/λ)−1/2)2 (for HB-DANE) and
σF/φ = 1/(1 + 2µ/λ) (for SPAG) to values obtained through a grid search on the KDD2010 dataset with λ = 10−7. We
tune HB-DANE by using a grid-search of resolution 0.05 to test the values between 0.5 and 1. For n = 103, theory predicts
a momentum of β = 0.86 and the grid search gives β = 0.85. For n = 104, theory predicts β = 0.81 and the grid search
gives β = 0.8. For SPAG, we test σF/φ = 10−2, 3× 10−3, 10−3 and so on until σF/φ = 10−5 (so roughly divided by 3 at
each step). For n = 103, theory predicts σF/φ = 0.005 and the tuning yields σF/φ = 0.006. For n = 104, theory predicts
σF/φ = 0.0099 and the grid-search leads to σF/φ = 0.01. We do not display the curves in this case (n = 104) since they
are nearly identical. Therefore, the grid-search always obtains the value on the grid that is closest to the theoretical value of
the parameter, and the difference in practice is rather small, as can be seen in Figure 5(a). This is why we use default values
in the main text.

Local subproblems. Local problems are solved using a sparse implementation of SDCA (Shalev-Shwartz, 2016). In
practice, the ill-conditionned regime is very hard, especially when µ is small. Indeed, the local subproblems are very hard to
solve, and it should be beneficial to use accelerated algorithms to solve the inner problems. In our experiments, we warm-start
the local problems (initializing on the solution of the previous one), and keep doing passes over the preconditioning dataset
until ‖∇Vt(xt)‖ ≤ 10−9 (checked at each epoch). This threshold is important because it greatly affects the performances of
preconditioned gradient methods. Figure 5(b) compares the performances of SPAG, DANE and HB-DANE for different
number of passes on the inner problems for the RCV1 dataset for n = 104 and λ = 10−5. We use µ = 2 × 10−5 and a
step-size of 1 for all algorithms. We first see that increasing the number of passes significantly improves the convergence
speed of all algorithms. Besides, heavy-ball acceleration does not seem very efficient when local problems are not solved
accurately enough. On the contrary, SPAG seems to enjoy faster rates than DANE nevertheless. It would be interesting to
understand these different behaviours more in details.

Gain far from the optimum. So far, we have presented experiments with good initializations (solution for the local dataset),
and argued why Gt was very small in this case. Because of Lemma 2, one would expect that Gt could be large when xt is
very far from x∗. Yet, We see in the proof of Lemma 2 that the Lipschitz constant of the Hessian only needs to be considered
for any convex set that contains xt+1, vt+1, yt and vt. In the case of logistic regression, the third derivative decreases very
fast when far from 0, meaning that the local Lipschitz constant of the Hessian is small when the iterates are far from 0. In
other words, the Hessian changes slowly when far from the optimum (at least for logistic regression).

We believe that this is the reason why Gt can always be chosen of order 1 (smaller than 2) in our experiments, and that
this holds regardless of the initialization. To support this claim, we plot in Figure 5(c) the values of the gain for the RCV1
dataset with λ = 10−7 and 5 different x0 sampled from N (0, 103), the normal law centered at 0 with variance 103. We use
a step-size of 0.9 and µ = 2 × 10−5. We first see that for Gmin = 1, the gain is always very low, and actually increases
at some point instead of becoming lower and lower, so the fact that we were able to choose Gt of order 1 in the other
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(a) Impact of parameters tuning (KDD2010, λ = 10−7).

5 10 15 20 25 30
Iteration

10 12

10 10

10 8

10 6

10 4

10 2

Su
bo

pt
im

al
ity

DANE
SPAG
DANE-HB
1 pass
2 passes
3 passes

(b) Impact of inaccurate solving of the inner problems.
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(c) Impact of Gmin on the gain.
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(d) Impact of Gmin on the suboptimality.

Figure 5. Impact of several implementation details.

experiments is not linked to the good initialization. We had to choose a slightly higher µ than in the other experiments in
order to satisfy the relative smoothness condition, which was not satisfied at each iteration otherwise. Since Gt is small in
practice and the smaller the Gt the better the rate, we test SPAG with no minimum value for the gain Gt. The curve for the
gain in this case is shown by Gmin = 0, and we see that the true gain stabilizes to a higher value, since updates are more
agressive. We discuss the efficiency of this version in the next paragraph. Note that the oscillations are not due to numerical
instability or inaccurate solving of the inner problems, but rather to the fact that the step-size is slightly too big so sometimes
the smoothness inequality is not verified. Yet, this does not affect the convergence of SPAG, as shown in Figure 5(d).

Line Search with no minimum value. Since the gain is almost always smaller than 1, the line-search in SPAG generally
only consists in checking that Gt = 1 works, which can be done locally. Therefore, there is no added communication
cost. As discussed earlier, it is possible to allow Gt < 1 when performing line search, which makes SPAG slightly more
adaptative at the cost of a few more line-search loops. Figure 5(d) presents the difference between SPAG using a line search
with Gmin = 0 and Gmin = 1. The curves show the suboptimality for the runs used to generate Figure 5(c). Note that
we omit the cost of line search in the iteration cost (we still count in terms of number of iterations, even though more
communication rounds are actually needed when Gmin = 0). We see that setting Gmin = 0 is initially slightly faster but
that the rate is very similar, so that using Gmin = 0 may slightly improve iteration complexity but is not worth doing in this
case. Note that suboptimality curves for different initializations are almost indistinguishable, which can be explained by the
fact that the quadratic penalty term dominates and that all initializations have roughly the same norm (since d is high).


