Lepskii Principle in Supervised Learning - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Lepskii Principle in Supervised Learning

Résumé

In the setting of supervised learning using reproducing kernel methods, we propose a data-dependent regularization parameter selection rule that is adaptive to the unknown regularity of the target function and is optimal both for the least-square (prediction) error and for the reproducing kernel Hilbert space (reconstruction) norm error. It is based on a modified Lepskii balancing principle using a varying family of norms.

Dates et versions

hal-02974206 , version 1 (21-10-2020)

Identifiants

Citer

Gilles Blanchard, Peter Mathé, Nicole Mücke. Lepskii Principle in Supervised Learning. 2020. ⟨hal-02974206⟩
37 Consultations
0 Téléchargements

Altmetric

Partager

More