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ON ITERATIVE SOLUTION OF THE EXTENDED NORMAL
EQUATIONS\ast 

HENRI CALANDRA\dagger , SERGE GRATTON\ddagger , ELISA RICCIETTI\ddagger , AND XAVIER VASSEUR\S 

Abstract. Given a full-rank matrix A \in \BbbR m\times n (m \geq n), we consider a special class of linear
systems ATAx = ATb + c with x, c \in \BbbR n and b \in \BbbR m, which we refer to as the extended normal
equations. The occurrence of c gives rise to a problem with a different conditioning from the standard
normal equations and prevents direct application of standard methods for least squares. Hence, we
seek more insights on theoretical and practical aspects of the solution of such problems. We propose
an explicit formula for the structured condition number, which allows us to compute a more accurate
estimate of the forward error than the standard one used for generic linear systems, which does not
take into account the structure of the perturbations. The relevance of our estimate is shown on a set
of synthetic test problems. Then, we propose a new iterative solution method that, as in the case of
normal equations, takes advantage of the structure of the system to avoid unstable computations such
as forming ATA explicitly. Numerical experiments highlight the increased robustness and accuracy of
the proposed method compared to standard iterative methods. It is also found that the new method
can compare to standard direct methods in terms of solution accuracy.

Key words. linear systems, conjugate gradient method, forward error, least squares problems
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1. Introduction. Given A \in \BbbR m\times n, m \geq n, with rank(A) = n, b \in \BbbR m, and
x, c \in \BbbR n, we consider the extended least squares problem

(ELS) min
x\in \BbbR n

1

2
\| Ax - b\| 2  - cTx,

whose solution satisfies the extended normal equations

(ENE) ATAx = ATb+ c

or, equivalently, what is often known as the augmented system

(1.1)

\biggl[ 
\xi Im A
AT 0

\biggr] \biggl[ 
y
x

\biggr] 
=

\biggl[ 
b

 - c/\xi 

\biggr] 
, r = \xi y = b - Ax,

where \xi is a scaling parameter that can be chosen to minimize the condition number of
the augmented matrix. The optimal value of the scaling parameter is \xi \ast = 1\surd 

2
\sigma min(A)

[3]. The vectors x and r are uniquely determined and independent of \xi . Equation
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(1.1) also gives the first-order optimality conditions for the problems

(ELS-primal) min
x,r

1

2
\| r\| 2  - cTx subject to Ax+ r = b

and

(ELS-dual) min
r

1

2
\| r\| 2  - bT r subject to AT r =  - c.

Using the QR factorization [A b] = Q
\bigl[ 
R d1

0 d2

\bigr] 
with R \in \BbbR n\times n, we could obtain the

solution from

x = A\dagger b+A\dagger (A\dagger )T c = R - 1d1 + (RTR) - 1c.

At first sight (ENE) evokes a least squares problem in the normal equations form

ATAx = AT b,

but the vector cmakes the situation fundamentally different. Unlike pure least squares
problems, a very well-studied topic [4], [19, Chapter 5], [25, Chapter 10], problem
(ENE) has not been the object of much study in the literature. We mention Bj\"orck [3],
who studies the numerical solution of the augmented system by Gaussian elimination.

The solution of problem (ENE) is required in various applications in optimization,
such as the multilevel Levenberg--Marquardt methods [8], or certain formulations
based on penalty function approaches [13], [14, section 7.2], [15], which we describe
in section 2. Motivated by these important applications, we seek more insight on
theoretical and practical aspects of the numerical solution of (ENE). Having in mind
the possibility of seeking an approximate solution, we especially focus on iterative
methods. We expect to encounter issues similar to those reported in the literature on
normal equations.

First, it is well known that the product ATA should not be explicitly formed,
because the accuracy attainable by methods for the solution of the normal equations
may be much lower than for a backward stable method for least squares. If the matrix
is formed, the best forward error bound for the normal equations can be obtained by
the classical sensitivity analysis of linear systems. It is of order \kappa 2(A) \epsilon with \epsilon the
machine precision and \kappa (A) = \| A\| \| A\dagger \| the condition number of A in the Euclidean
norm [23, 28]. This is an underwhelming result, as fromWedin's theorem [23, Theorem
20.1] the sensitivity of a least squares problem is measured by \kappa 2(A) only when the
residual is large, and by \kappa (A) otherwise.

However, practical solution methods do not form the product ATA, and the follow-
ing key observation is rather exploited. The special structure of the normal equations
allows us to write

ATAx - ATb = AT (Ax - b),

which makes it possible to either employ a factorization of A rather than of ATA (in
the case of direct methods) or to perform matrix-vector multiplications of the form
Ax and ATy rather than ATAx (in the case of iterative methods). The standard
analysis of linear systems is unsuitable for predicting the error for such methods, as it
is based on the assumption that the linear system is subject to normwise perturbations
on ATA. If the product is not formed explicitly, such global perturbations are not
generated in finite precision and a condition number useful for predicting the error
should rather take into account structured perturbations, such as perturbations in



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the matrix A only. A structured analysis is then more relevant and indeed leads to
the same conclusions as for least squares problems [20].

It is therefore possible to devise stable implementations of methods for normal
equations. In [22, section 10], Hestenes and Stiefel propose a specialized implementa-
tion of the conjugate gradient (CG) method for the normal equations, now known as
CGLS. This has been deeply investigated in the literature [5, 19, 22, 27] and CGLS
was shown to be more stable than CG applied directly to the standard normal equa-
tion with c = 0. However, not all the considerations made for normal equations apply
to (ENE). The presence of c has important theoretical and practical consequences.

On one hand, c results in a different mapping for the condition number and a
different set of admissible perturbations for the backward error. Consequently, the
existing perturbation theory for least squares problems [1, 20, 29] does not apply. A
proper analysis of the structured condition number of the problem should be devel-
oped.

From a practical perspective, even though the system matrix is the same, the
presence of c in the right-hand side prevents direct application of standard methods
for the normal equations. Successful algorithmic procedures used for normal equations
can, however, be tailored to obtain stable solution methods.

Contributions. We propose CGLSc, a modification of standard CGLS that re-
sults in a stable method for the solution of (ENE). We provide an expression of the
structured condition number for (ENE), which allows us to compute first-order es-
timates of the forward error in the computed solution. We report on the numerical
performance of the method on a relevant set of test problems. The experimentation
confirms improved stability of the proposed method compared to standard iterative
methods such as CG and MINRES [26], and it is shown to provide solutions almost
as accurate as those obtained by stable direct methods. The estimate of the forward
error is also validated numerically and shown to be a sharper upper bound than the
standard bound from the theory of linear systems.

Structure. In section 2 we present two applications arising in optimization where
the solution of (ENE) is required. In section 3, we report on the conditioning of the
problem and backward error analysis. These results are employed to propose a first-
order estimate of the forward error in the solution computed by a method that does
not form matrix ATA. In section 4 we introduce a new stable iterative method for
the solution of (ENE). Extensive numerical experiments are described in section 5.
Conclusions are drawn in section 6.

Notation. Given a matrix A \in \BbbR m\times n, we denote by A\dagger its pseudoinverse, by
\kappa (A) = \| A\| \| A\dagger \| its condition number (\| \cdot \| being the Euclidean norm), and by
\sigma min(A), \sigma max(A) its smallest and largest singular values. The Frobenius norm is
defined as

\| A\| F :=

\biggl( \sum 
i,j

| Ai,j | 2
\biggr) 1/2

= tr(ATA)1/2.

Given b \in \BbbR m, c \in \BbbR n, and \alpha , \beta , \gamma > 0, we define the following parameterized Frobe-
nius norm

\| (A, b, c)\| F (\alpha ,\beta ,\gamma ) :=

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \alpha A \beta b
\gamma cT 0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
F

=
\sqrt{} 
\alpha 2\| A\| 2F + \beta 2\| b\| 2 + \gamma 2\| c\| 2.

We denote by In \in \BbbR n\times n the identity matrix of order n, by \otimes the Kronecker product
of two matrices, and by vec the operator that stacks the columns of a matrix into a
vector of appropriate dimension [20].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Two motivating applications. We describe two different applications in
which problems of the form (ELS) arise, motivating our interest in their solution.

2.1. Fletcher's exact penalty function approach. The first applicative con-
text arises in equality constrained minimization. Consider a problem of the form

min
x

f(x) s.t. g(x) = 0

for twice differentiable functions f : \BbbR n \rightarrow \BbbR and g : \BbbR n \rightarrow \BbbR m. The solution of
systems of the form (ENE) is needed to evaluate the following penalty function and
its gradient [15], [14, section 7.2]:

\Phi \lambda (x) = f(x) - g(x)T y\lambda (x),

where y\lambda (x) \in \BbbR m is defined as the solution of the minimization problem

min
y

\| A(x)T y  - \nabla f(x)\| 2 + \lambda g(x)T y

with A(x) the Jacobian matrix of g(x) at x, and \lambda > 0 a given real-valued penalty
parameter.

2.2. Multilevel Levenberg--Marquardt method. The solution of (ENE) is
required in multilevel Levenberg--Marquardt methods, which are specific members of
the family of multilevel optimization methods recently introduced in Calandra et al.
[8] and further analysed in Calandra et al. [7]. The multilevel Levenberg--Marquardt
method is intended to solve nonlinear least squares problems of the form

min
x

f(x) =
1

2
\| F (x)\| 2

with F : \BbbR n \rightarrow \BbbR m a twice continuously differentiable function. In the two-level
setting, the multilevel method allows two different models to compute the step at
each iteration: the classical Taylor model or a cheaper model mH

k , built from a given
approximation fH(xH) = 1

2\| F
H(xH)\| 2 to the objective function

mH
k (xH

k , sH) =
1

2
\| JH(xH

k )sH + FH(xH
k )\| 2 + \lambda k

2
\| sH\| 2 + (R\nabla f(xk) - \nabla fH(xH

0 ))T sH

with JH(xH
k ) the Jacobian matrix of FH at xH

k , \lambda k > 0 a real-valued regularization
parameter, R a full-rank linear restriction operator, and xH

0 = Rxk with xk denoting
the current iterate at a fine level.

While minimizing the Taylor model amounts to solving a formulation based on
the normal equations, minimizing mH

k requires the solution of a problem of the form
(ELS) because of the correction term (R\nabla f(xk)  - \nabla fH(xH

0 ))T sH needed to ensure
coherence between levels. Approximate minimization of the model is sufficient to
guarantee convergence of the method. Thus if the coarse problem is not small, an
iterative method is well suited for minimizing the model.

3. Conditioning of the problem and backward error analysis. We first
propose an explicit formula for the structured condition number of problem (ENE).
This is useful to compute a first-order estimate of the forward error for methods that
do not form matrix ATA explicitly. Contrary to the classical sensitivity analysis of
linear systems, which is based on the assumption that the linear system is subject to
normwise perturbations on the matrix ATA, our result indeed considers perturbations
on matrix A only. We also propose theoretical results related to the backward error.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1. Conditioning of the problem. The conditioning of problem (ENE) is the
sensitivity of the solution x to perturbations in the data A, b, c. We give an explicit
formula for the structured condition number for perturbations on all of A, b, and c.
In the following, we define the condition number of a function; see [28].

Definition 3.1. Let \scrX and \scrY be normed vector spaces. If F is a continuously
differentiable function

F : \scrX \rightarrow \scrY , x \mapsto  - \rightarrow F (x),

the absolute condition number of F at x is the scalar \| F \prime (x)\| := sup\| v\| \scrX =1 \| F \prime (x)v\| \scrY ,
where F \prime (x) is the Fr\'echet derivative of F at x. The relative condition number of F
at x is

\| F \prime (x)\| \| x\| \scrX 
\| F (x)\| \scrY 

.

We consider F as the function that maps A, b, c to the solution x of (ENE),

F :\BbbR m\times n \times \BbbR m \times \BbbR n \rightarrow \BbbR n,

(A, b, c) \mapsto  - \rightarrow F (A, b, c) = A\dagger b+A\dagger (A\dagger )T c.

The Fr\'echet derivative in finite-dimensional spaces is the usual derivative. In par-
ticular, it is represented in coordinates by the Jacobian matrix. If F is Fr\'echet
differentiable at a point (A, b, c), then its derivative is

F \prime (A, b, c) :\BbbR m\times n \times \BbbR m \times \BbbR n \rightarrow \BbbR n,

F \prime (A, b, c)(E,f, g) = JF (A, b, c)(E, f, g),

where JF (A, b, c)(E, f, g) denotes the Jacobian matrix of F at (A, b, c) applied to
(E, f, g). As in [20], we choose the Euclidean norm for the solution and the pa-
rameterized Frobenius norm for the data (as introduced in section 1). According to
Definition 3.1 (cf. also [18]), the absolute condition number of F at the point (A, b, c)
is given by

\| F \prime (A, b, c)\| = sup
\| (E,f,g)\| F (\alpha ,\beta ,\gamma )=1

\| F \prime (A, b, c)(E, f, g)\| , E \in \BbbR m\times n, f \in \BbbR m, g \in \BbbR n.

The parameterized Frobenius norm has been chosen for its flexibility. For instance,
taking large values of \gamma allows us to perturb A and b only, and to include the case
c = 0. This is because the condition \gamma \rightarrow \infty implies g \rightarrow 0 from the constraint
\alpha 2\| E\| 2F + \beta 2\| f\| 2 + \gamma 2\| g\| 2 = 1 in the definition of the condition number.

Let A be perturbed to \~A = A + E, the vector b to \~b = b + f , and vector c to
\~c = c+ g. ATA is then perturbed to

(3.1) \~AT \~A = (A+ E)T (A+ E) = ATA+ATE + ETA,

neglecting the second-order terms. The solution x = (ATA) - 1(AT b + c) is then per-
turbed to \~x = x+ \delta x = ( \~AT \~A) - 1( \~AT\~b+ \~c). Then, \~x solves

(ATA+ATE + ETA)\~x = (AT b+ ET b+AT f + c+ g).

Recalling that for A of full column rank, A\dagger = (ATA) - 1AT and (ATA) - 1 = A\dagger (A\dagger )T ,
we have \delta x = (ATA) - 1ET r  - A\dagger Ex+A\dagger f +A\dagger (A\dagger )T g. We conclude that

F \prime (A, b, c)(E, f, g) = (ATA) - 1ET r  - A\dagger Ex+A\dagger f +A\dagger (A\dagger )T g

for all E \in \BbbR m\times n, f \in \BbbR m, g \in \BbbR n, and r = b  - Ax. We then deduce the following
property.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lemma 3.2. The conditioning of problem (ENE) with Euclidean norm on the
solution and Frobenius norm (parameterized by \alpha , \beta , \gamma ) on the data, is given by

(3.2) \| F \prime (A, b, c)\| = \| [((rT \otimes (ATA) - 1)LT  - xT \otimes A\dagger )/\alpha ,A\dagger /\beta , (ATA) - 1/\gamma ]\| ,

where LT is a permutation matrix consisting of ones in positions (n(k  - 1) + l,
m(l  - 1) + k) with l = 1, . . . , n and k = 1, . . . ,m and of zeros elsewhere [16, 20].

The following theorem gives an explicit and computable formula for the structured
condition number.

Theorem 3.3. The absolute condition number of problem (ENE) with Euclidean
norm on the solution and Frobenius norm (parameterized by \alpha , \beta , \gamma ) on the data, is\sqrt{} 
\| \=M\| with \=M \in \BbbR n\times n given by

(3.3) \=M =

\biggl( 
1

\gamma 2
+

\| r\| 2

\alpha 2

\biggr) 
(ATA) - 2 +

\biggl( 
1

\beta 2
+

\| x\| 2

\alpha 2

\biggr) 
(ATA) - 1  - 2

\alpha 2
sym(B)

with B = A\dagger rxT (ATA) - 1, sym(B) = 1
2 (B+BT ), and x the exact solution of (ENE).

Proof. Let us define M = [((rT \otimes (ATA) - 1)LT  - xT \otimes A\dagger )/\alpha ,A\dagger /\beta , (ATA) - 1/\gamma ].
We recall that

(3.4) \| F \prime (A, b, c)\| = \| M\| = \| MT \| := sup
y \not =0

\| MT y\| 
\| y\| 

.

Let us consider

yTF \prime (A, b, c)(E, f, g) = yT (ATA) - 1ET r  - yTA\dagger Ex+ yTA\dagger f + yTA\dagger (A\dagger )T g

= rTE(ATA) - 1y  - yTA\dagger Ex+ yTA\dagger f + yTA\dagger (A\dagger )T g.

We recall that E =
\sum n

i=1

\sum m
j=1 e

T
i Eej for ei, ej , the ith and jth vectors of the canon-

ical basis. Then, we can rewrite the expression as

[vec(S)/\alpha , yTA\dagger /\beta , yTA\dagger (A\dagger )T /\gamma ] \cdot [\alpha vec(E), \beta f, \gamma g]T := wT [\alpha vec(E), \beta f, \gamma g]T ,

introducing the matrix S such that

Si,j = rT eie
T
j (A

TA) - 1y  - yTA\dagger eie
T
j x.

It follows that w = MT y. We are then interested in the norm of w. We can compute
the squared norm of vec(S) as

\| vec(S)\| 2 =
n\sum 

i=1

m\sum 
j=1

(rT eie
T
j (A

TA) - 1y  - yTA\dagger eie
T
j x)

2

= \| r\| 2\| (ATA) - 1y\| 2 + \| x\| 2\| (A\dagger )T y\| 2

 - yT (A\dagger rxT (ATA) - 1 + (ATA) - 1xrT (A\dagger )T )y.

Then,

\| w\| 2 = yT \=My,

\=M : =

\biggl( 
1

\gamma 2
+

\| r\| 2

\alpha 2

\biggr) 
(ATA) - 2 +

\biggl( 
1

\beta 2
+

\| x\| 2

\alpha 2

\biggr) 
A\dagger (A\dagger )T  - 1

\alpha 2
(B +BT ),

B : = A\dagger rxT (ATA) - 1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From (3.4),

\| F \prime (A, b, c)\| = \| M\| = sup
y \not =0

\| MT y\| 
\| y\| 

= sup
y \not =0

\sqrt{} 
yT \=My

\| y\| 
=

\sqrt{} 
\| \=M\| .

We remind the analogous result for the least squares case. If we define

FLS :\BbbR m\times n \times \BbbR m \rightarrow \BbbR n,

(A, b) \mapsto  - \rightarrow FLS(A, b) = A\dagger b,

the absolute condition number for least squares (or structured conditioning of the
normal equations) is [20]

\| F \prime (A, b)\| = \| A\dagger \| 

\sqrt{} 
1

\beta 2
+

\| x\| 2 + \| A\dagger \| 2\| r\| 2
\alpha 2

.

The term \| A\dagger \| 2 appears here multiplied by the norm of the residual. This is inter-
preted as saying that the sensitivity of the problem depends on \kappa (A) for small or zero
residual problems and on \kappa 2(A) for all other problems [4, 23]. If c = 0 and \gamma \rightarrow \infty ,
the known result for least squares problems is recovered (note that in this case B = 0
as AT r = 0).

Let us assume that (\alpha , \beta , \gamma ) = (1, 1, 1). We define the structured relative condition
number

(3.5) \kappa S =

\sqrt{} 
\| \=M\| \| A, b, c\| F

\| x\| 
=

\| M\| \| A, b, c\| F
\| x\| 

,

where we recall that M = [((rT \otimes (ATA) - 1)LT  - xT \otimes A\dagger ), A\dagger , (ATA) - 1]. We can get
more insight on this condition number. First we remark that it depends on x, b, c,
which is not the case for the standard condition number. Depending on the values
of such parameters, it can then vary in a wide range, that we can bound. We define
M1 = (rT \otimes (ATA) - 1)LT  - xT \otimes A\dagger . It holds that

max\{ \| M1\| , \| A\dagger \| , \| (ATA) - 1\| \} \leq \| M\| \leq 
\sqrt{} 
\| M1\| 2 + \| A\dagger \| 2 + \| (ATA) - 1\| 2.

\| M1\| can be bounded repeating the proof of Corollary 2.2 in [17], which uses the
properties of the Kronecker product:\bigm| \bigm| \bigm| \| r\| \| A\dagger \|  - \| x\| 

\bigm| \bigm| \bigm| \| A\dagger \| \leq \| M1\| \leq (\| r\| \| A\dagger \| + \| x\| ) \| A\dagger \| .

Let us assume that x is the right singular vector associated with \sigma min, that b = 0,
and that \| A\dagger \| < 1. In this case \| Ax\| = \sigma min, \| M1\| \leq 2\| A\dagger \| , and \| M\| \leq 

\surd 
6\| A\dagger \| ,

so that

\kappa S \leq 
\surd 
6\| A\dagger \| 

\sqrt{} 
\| A\| 2F + \| c\| 2 \leq 

\sqrt{} 
6(n+ 1)\kappa (A).

In the case we choose x as the right singular vector associated with \sigma max and b = 0
we obtain \| M1\| \geq \| A\dagger \| (\kappa (A) - 1), \| c\| = \| A\| 2 and we can conclude that

\kappa S \geq \| A\dagger \| (\kappa (A) - 1)
\sqrt{} 

\| A\| 2F + \| c\| 2 \geq (\kappa (A)2  - \kappa (A))
\sqrt{} 
1 + \| A\| 2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Then, we deduce that in some cases \kappa S can be as large as a quantity of order \kappa (A)2,
while in others it can be as low as \kappa (A). Analogous results can be established if b is
in the direction of the left singular vector associated with \sigma min (\sigma max) and its norm is
close to \| A\dagger \| (\| A\| ). We will show in section 5 that both cases are often encountered
in practice.

3.2. Backward error analysis. In this section, we address the computation of
the backward error by considering the following problem. Suppose \~x is a perturbed
solution to (ENE). Find the smallest perturbation (E, f, g) of (A, b, c) such that \~x
exactly solves

(A+ E)T (A+ E)x = (A+ E)T (b+ f) + (c+ g).

That is, given

\scrG := \{ (E, f, g), E \in \BbbR m\times n, f \in \BbbR m, g \in \BbbR n :

(A+ E)T (A+ E)\~x = (A+ E)T (b+ f) + (c+ g)\} ,

we want to compute the quantity

(3.6) \eta (\~x, \theta 1, \theta 2) = min
(E,f,g)\in \scrG 

\| (E, \theta 1f, \theta 2g)\| 2F := min
(E,f,g)\in \scrG 

\| E\| 2F + \theta 21\| f\| 2 + \theta 22\| g\| 2

with \theta 1, \theta 2 positive parameters [20, 29].
We provide an explicit representation of the set of admissible perturbations on

the matrix (Theorem 3.4) and a linearization estimate for \eta (\~x, \theta 1, \theta 2) (Lemma 3.5).
Given v \in \BbbR m, we define

v\dagger =

\Biggl\{ 
vT /\| v\| 2 if v \not = 0,

0 if v = 0.

Note the following properties that are used later:

(Im  - vv\dagger )v = 0, vv\dagger v = v.

Considering just the perturbations of A we next give an explicit representation
of the set of admissible perturbations.

Theorem 3.4. Let A \in \BbbR m\times n, b \in \BbbR m, c, \~x \in \BbbR n, and assume that \~x \not = 0. Let
\~r = b - A\~x and define two sets \scrE ,\scrM by

\scrE = \{ E \in \BbbR m\times n : (A+ E)T (b - (A+ E)\~x) =  - c \} ,
\scrM = \{ v

\bigl( 
\alpha cT  - v\dagger A

\bigr) 
+ (Im  - vv\dagger )(\~r\~x\dagger + Z(In  - \~x\~x\dagger )) :

v \in \BbbR m, Z \in \BbbR m\times n, \alpha \in \BbbR s.t. \alpha \| v\| 2(v\dagger b - \alpha cT \~x) =  - 1\} .

Then \scrE = \scrM .

Proof. The proof is inspired by that of [29, Theorem 1.1]. First, we prove \scrE \subseteq \scrM ,
so we assume E \in \scrE . We begin by noting the identity, for each v and \~x

(3.7) E = (Im  - vv\dagger )E\~x\~x\dagger + vv\dagger E + (Im  - vv\dagger )E(In  - \~x\~x\dagger ).

We choose v = \~r  - E\~x. Then E\~x = \~r  - v and

(3.8) (Im  - vv\dagger )E\~x = (Im  - vv\dagger )\~r.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Moreover,

(3.9)  - c = (A+ E)T (b - (A+ E)\~x) = (A+ E)T (\~r  - E\~x) = (A+ E)T v.

From (3.9), v\dagger E =  - cT

\| v\| 2  - v\dagger A. Hence, from relations (3.7)--(3.9),

E = (Im  - vv\dagger )\~r\~x\dagger  - v

\biggl( 
cT

\| v\| 2
+ v\dagger A

\biggr) 
+ (Im  - vv\dagger )E(In  - \~x\~x\dagger ).

Then E \in \scrM with v = \~r  - E\~x, \alpha =  - 1
\| v\| 2 , and Z = E, as

\alpha \| v\| 2(v\dagger b - \alpha cT \~x) =  - 1

\| v\| 2
(vT b+ cT \~x) =  - 1

\| v\| 2
(vT b - vT (A+ E)\~x)

=  - 1

\| v\| 2
vT (\~r  - E\~x) =  - 1,

where the second equality follows from (3.9).
Conversely, let E \in \scrM . Then,

E\~x = \alpha vcT \~x - vv\dagger A\~x+ \~r  - vv\dagger \~r = \alpha vcT \~x - vv\dagger b+ \~r,(3.10)

ET v = \alpha \| v\| 2c - AT v(3.11)

and, hence,

(A+ E)T (b - (A+ E)\~x) = (A+ E)T (\~r  - E\~x) = (A+ E)T (vv\dagger b - \alpha vcT \~x)

= (A+ E)T v(v\dagger b - \alpha cT \~x) = \alpha \| v\| 2c(v\dagger b - \alpha cT \~x) =  - c,

where the second equality follows from (3.10), the fourth from (3.11), and the last
from the constraint in \scrM . We conclude that E \in \scrE .

Let us remark that if c = 0 we recover the known result for least squares problems
given in [29, Theorem 1.1]. Note also that the parameterization of the set of pertur-
bations \scrE is similar to that obtained for equality constrained least squares problems
in [10], even if there is no constraint in [10].

Because of the constraint in \scrM , it is rather difficult to find an analytical formula
for \eta (\~x, \theta 1, \theta 2). It is, however, easy to find a linearization estimate for \eta (\~x, \theta 1, \theta 2) with
\theta 1, \theta 2 strictly positive, i.e., given

h(A, b, c, x) = AT (b - Ax) + c,

we can find (E, f, g) such that

\=\eta (\~x, \theta 1, \theta 2) = min \| (E, \theta 1f, \theta 2g)\| F s.t.(3.12a)

h(A, b, c, \~x) + [JA, \theta 
 - 1
1 Jb, \theta 

 - 1
2 Jc]

\left[  vec(E)
\theta 1f
\theta 2g

\right]  = 0,(3.12b)

where JA, Jb, Jc are the Jacobian matrices of h with respect to vec(A), b, c [9].

Lemma 3.5. Let \eta (\~x, \theta 1, \theta 2) be defined as in (3.6), \=\eta (\~x, \theta 1, \theta 2) be defined as in
(3.12), and \~r = b - A\~x. Then the linearized backward error satisfies

\=\eta (\~x, \theta 1, \theta 2) =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left[  vec(E)

\theta 1f
\theta 2g

\right]  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| = \| J\dagger h(A, b, c, \~x)\| 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

with J := [In \otimes \~rT  - AT (\~x \otimes Im), \theta  - 1
1 AT , \theta  - 1

2 In]. Moreover, assume that \~r \not = 0. If
4\eta 1\| J\dagger \| \eta (\~x, \theta 1, \theta 2) \leq 1, then

2

1 +
\surd 
2

\=\eta (\~x, \theta 1, \theta 2) \leq \eta (\~x, \theta 1, \theta 2) \leq 2 \=\eta (\~x, \theta 1, \theta 2),

where \eta 1 =
\sqrt{} 
\theta  - 2
1 + \theta  - 2

2 + \| \~x\| 2.

Proof. The first assertion follows from [24, section 2]. Simply adding the term
corresponding to c in the linearization leads to

[JA, \theta 
 - 1
1 Jb, \theta 

 - 1
2 Jc] = [In \otimes \~rT  - AT (\~x\otimes Im), \theta  - 1

1 AT , \theta  - 1
2 In] = J

from which the result follows. The second result can be obtained by repeating the
arguments of [24, Corollary 2].

The linearized estimate is usually called an asymptotic estimate, as it becomes
exact in the limit for \~x that tends to the exact solution x [24]. It also has the advantage
of being easily computable.

3.3. First-order approximation for the forward error. The formula we
have derived in Theorem 3.3 for the structured condition number of (ENE) can be
used to provide a first-order estimate \Delta S of the forward error for a solution \^x obtained
by a method that does not form the matrix ATA explicitly. We define this estimate as
the product of the relative condition number (3.5) and the relative linearized estimate
\=\eta r(\^x) := \=\eta (\^x, 1, 1)/\| (A, b, c)\| F of the backward error in Lemma 3.5:

(3.13) \Delta S :=

\sqrt{} 
\| \=M\| \| (A, b, c)\| F

\| \^x\| 
\=\eta r(\^x).

We show in subsection 5.2.2 that the proposed estimate accurately predicts the for-
ward error in the numerical simulations for the method we propose in section 4 and
that it is more accurate than the classical bounds in the cases in which \kappa S \sim \kappa (A).

In this section we have considered theoretical questions related to the solution of
(ENE). In the following, we consider computing a solution in finite-precision arith-
metic.

4. A stable variant of CGLS for (ENE). There are several mathematically
equivalent implementations of the standard CG method when it is applied to the
normal equations. It is well known that they are not equivalent from a numerical
point of view and some of them are not stable [12, 27]. In particular Bj\"orck, Elfving,
and Strakos [5] compare the achievable accuracy in finite precision of different imple-
mentations, and show that the most stable implementation is the one that is often
referred to as CGLS, which is due to Hestenes and Stiefel [22, section 10], which we
report in Algorithm 4.1.

To a large extent, instability is due to the explicit use of vectors of the form
ATApk [27]. In the stable implementations of CGLS, forming matrix ATA explicitly
is avoided and matrix-vector products are thus computed from the action of A or
AT on a vector; intermediate vectors of the form Apk are used, so that pTkA

TApk is
computed as \| Apk\| 2. Another crucial difference lays in the fact that in CGLS the
residual rk = b - Axk is recurred instead of the full residual of the normal equations
sk = AT (b  - Axk). This avoids propagation of the initial error introduced in s0 by



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 4.1 CGLS method for ATAx = AT b [22].

Input: A, b, x0.
Define r0 = b - Ax0, s0 = AT r0, p1 = s0.
for k = 1, 2, . . . do
tk = Apk
\alpha k = \| sk - 1\| 2/\| tk\| 2
xk = xk - 1 + \alpha kpk
rk = rk - 1  - \alpha ktk
sk = AT rk
\beta k = \| sk\| 2/\| sk - 1\| 2
pk+1 = sk + \beta kpk

end for

the computation AT b, as sk is recomputed at each iteration as AT rk, and rk is not
affected by a significant initial error [5].

Writing (ENE) as
AT r + c = 0, r = b - Ax,

suggests that the CGLS method can also be adapted to provide a stable solution
method for the case c \not = 0. Also in this case we can avoid the operations that are
expected to have the same effect as in the case c = 0, and this rewriting allows us to
design a new method that we name CGLSc, in which the residual rk = b  - Axk is
recurred, and the full residual is recovered as sk = AT rk+c. The method is described
in Algorithm 4.2.

Algorithm 4.2 CGLSc method for ATAx = AT b+ c.

Input: A, b, x0

Define r0 = b - Ax0, s0 = AT r0 + c, p1 = s0.
for k = 1, 2, . . . do
tk = Apk
\alpha k = \| sk - 1\| 2/\| tk\| 2
xk = xk - 1 + \alpha kpk
rk = rk - 1  - \alpha ktk
sk = AT rk + c
\beta k = \| sk\| 2/\| sk - 1\| 2
pk+1 = rk + \beta kpk

end for

The next result is proved in [5], which applies to least squares problems and is
an extension of the corresponding result in Greenbaum [21], valid for Ax = b with A
square and invertible, where the author studies the finite-precision implementation of
the class of iterative methods considered in Lemma 4.1.

Lemma 4.1. Let A \in \BbbR m\times n have rank n. Consider an iterative method to solve
the least squares problem minx \| Ax - b\| 2, in which each step updates the approximate
solution xk and the residual rk of the system Ax = b using

xk+1 = xk + \alpha k pk,

rk+1 = rk  - \alpha k Apk,

where \alpha k \in \BbbR and pk \in \BbbR n. The difference between the true residual b - Axk and the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

recursively computed residual rk satisfies

(4.1)
\| b - Axk  - rk\| 

\| A\| \| x\| 
\leq \epsilon O(k)

\biggl( 
1 + \Theta k +

\| r\| 
\| A\| \| x\| 

\biggr) 
with \epsilon the machine precision, r = b - Ax, and \Theta k = maxj\leq k \| xj\| /\| x\| .

Lemma 4.1 is used in [5] to deduce a bound on the forward error for such methods:

(4.2)
\| x - xk\| 

\| x\| 
\leq \kappa (A) \epsilon O(k)

\biggl( 
3 +

\| r\| 
\| A\| \| x\| 

\biggr) 
+ \kappa (A)

\| r  - rk\| 
\| A\| \| x\| 

.

If it can be shown that there is c1 > 0 such that the computed recursive residual rk
satisfies

(4.3)
\| r  - rk\| 
\| A\| \| x\| 

\leq c1\epsilon +O(\epsilon 2), k \geq S,

then (4.2) gives an upper bound on the accuracy attainable in the computed approx-
imation. Here S denotes the number of iterations needed to reach a steady state,
i.e., a state in which the iterates do not change substantially from one iteration to
the next [5]. In this case we deduce that the method might compute more accurate
solutions than a backward stable method [5].

Remark 4.2. Lemma 4.1 also applies to CGLSc, as rk is recurred. We can then
deduce that, if condition (4.3) holds, the bound (4.2) is also valid and CGLSc will
provide numerical solutions to (ENE) in a stable way. As pointed out in [5], prov-
ing condition (4.3) is not an easy task. Nevertheless, we have found from extensive
numerical experimentations that this condition is satisfied numerically; see section 5.

5. Numerical experiments. We numerically validate the performance of the
method presented in section 4. As we are interested in the possibility of seeking an
approximate solution, we consider standard iterative methods as reference methods:
CG (Algorithm 5.1) and MINRES [26] (which is applied to (1.1)), but to provide
a fair comparison we also consider standard direct methods. We show that CGLSc
performs better than CG and MINRES and that it can compare with direct methods
in terms of solution accuracy. We also evaluate the first-order estimate of the forward
error based on the relative condition numbers derived in subsection 3.3.

5.1. Problem definition and methodology. All the numerical methods have
been implemented in MATLAB. For CG1 and MINRES,2 MATLAB codes available
online have been employed.

For CG, the computation of ATA is avoided and products are computed as
AT(Av); cf. Algorithm 5.1. We consider (ENE), where A \in \BbbR m\times n has been ob-
tained as A = U\Sigma V T and U , V have been selected as orthogonal matrices generated
with the MATLAB commands3 gallery('orthog',m,j), gallery('orthog',n,j) for different
choices of j = 1, . . . , 6. We consider two choices for the diagonal elements of \Sigma for
i = 1, . . . , n:

\bullet C1 : \Sigma ii = a - i for a > 0,
\bullet C2 : \Sigma ii = \sigma i, where \sigma \in \BbbR n is generated with the linspace MATLAB com-
mand, i.e., \sigma = linspace(dw, up, n) with dw, up being strictly positive real
values.

The values of a and dw, up are specified for each test; see Table 1.

1https://people.sc.fsu.edu/\sim jburkardt/m src/kelley/kelley.html
2http://stanford.edu/group/SOL/software/minres/
3https://www.mathworks.com/help/matlab/ref/gallery.html

https://people.sc.fsu.edu/~jburkardt/m_src/kelley/kelley.html
http://stanford.edu/group/SOL/software/minres/
https://www.mathworks.com/help/matlab/ref/gallery.html


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 5.1 CG method for ATAx = AT b+ c.

Input: A, b, c, x0.
Define s0 = AT b+ c - AT (Ax0), p1 = s0.
for k = 1, 2, . . . do
\alpha k = \| sk - 1\| 2/\| Apk\| 2
xk = xk - 1 + \alpha kpk
sk = sk - 1  - \alpha kA

T (Apk)
\beta k = \| sk\| 2/\| sk - 1\| 2
pk+1 = sk + \beta kpk

end for

Table 1
Description of the synthetic test problems considered in Table 2. The free parameters in choices

C1 and C2 are specified. In particular, in the second column if a single scalar is given then it is the
value of a (choice C1); if a couple is given these are the values of \sansd \sansw and \sansu \sansp (choice C2). In the
tests, c = \=c \cdot \sansr \sansa \sansn \sansd (\sansn , \sansone ) for the chosen constant \=c given in the last column.

Pb. a /(\sansd \sansw , \sansu \sansp ) \=c
1 0.5  - 10 - 3

2 1.5 10
3 2 10 - 2

4 2.5 10 - 7

5 3 2
6 (10 - 3, 102)  - 1
7 (10, 104) 10 - 1

8 (10 - 6, 10 - 2) 10 - 7

9 (10 - 1, 103) 102

10 (10 - 3, 104)  - 10 - 2

Table 2
Comparison of the computed forward error and its estimates for the synthetic test problems

listed in Table 1. We report the condition number \kappa (A), the structured condition number \kappa S , and
for both CG and CGLSc the computed forward error (FE) \| x  - \^x\| /\| x\| , the standard bound \Delta C ,
and the structured estimate \Delta S .

CG CGLSc
Pb. \kappa (A) \kappa S FE \Delta C \Delta S FE \Delta C \Delta S

1 9 \cdot 102 1 \cdot 106 2 \cdot 10 - 11 1 \cdot 10 - 10 6 \cdot 10 - 11 5 \cdot 10 - 13 2 \cdot 10 - 10 1 \cdot 10 - 11

2 2 \cdot 103 4 \cdot 103 2 \cdot 10 - 12 4 \cdot 10 - 10 3 \cdot 10 - 12 7 \cdot 10 - 15 3 \cdot 10 - 10 3 \cdot 10 - 13

3 5 \cdot 105 6 \cdot 105 1 \cdot 10 - 7 5 \cdot 10 - 5 1 \cdot 10 - 7 1 \cdot 10 - 12 3 \cdot 10 - 5 5 \cdot 10 - 11

4 4 \cdot 107 4 \cdot 107 7 \cdot 10 - 6 9 \cdot 10 - 2 2 \cdot 10 - 5 4 \cdot 10 - 11 6 \cdot 10 - 2 4 \cdot 10 - 9

5 1 \cdot 109 5 \cdot 108 2 \cdot 10 - 1 1 \cdot 102 1 \cdot 10 - 1 3 \cdot 10 - 8 7 \cdot 102 3 \cdot 10 - 7

6 1 \cdot 105 3 \cdot 1010 3 \cdot 10 - 7 3 \cdot 10 - 6 7 \cdot 10 - 7 2 \cdot 10 - 8 3 \cdot 10 - 6 1 \cdot 10 - 7

7 1 \cdot 104 5 \cdot 105 6 \cdot 10 - 9 3 \cdot 10 - 8 6 \cdot 10 - 9 6 \cdot 10 - 13 2 \cdot 10 - 8 2 \cdot 10 - 12

8 1 \cdot 104 8 \cdot 109 2 \cdot 10 - 9 1 \cdot 10 - 8 1 \cdot 10 - 8 9 \cdot 10 - 10 8 \cdot 10 - 8 7 \cdot 10 - 8

9 1 \cdot 104 3 \cdot 107 5 \cdot 10 - 9 1 \cdot 10 - 8 5 \cdot 10 - 9 5 \cdot 10 - 11 2 \cdot 10 - 8 1 \cdot 10 - 10

10 1 \cdot 107 3 \cdot 1010 2 \cdot 10 - 4 2 \cdot 10 - 2 2 \cdot 10 - 4 3 \cdot 10 - 8 3 \cdot 10 - 2 1 \cdot 10 - 7

The numerical tests are intended to show specific properties of CGLSc. We there-
fore consider matrices of relatively small dimensions (m = 40 and n = 20), in order to
avoid too ill-conditioned problems [5]. For all the performance profiles [11] reported in
the following, we consider a set of 55 matrices of slightly larger dimension (m = 100,
n = 50), which we later call \scrP , to also test the robustness of the methods (but we do
not focus on issues related to large-scale problems). This set is composed of selected
matrices from the gallery MATLAB command (those with condition number lower
than 1010), and synthetic matrices corresponding to both choices C1 and C2 (of size
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Fig. 1. \kappa (A) = 105. Relative error \| x - \^xk\| /\| x\| between the exact solution x and the computed
solution \^xk at iteration k for CG and CGLSc.

100\times 50 rather than 40\times 20). The condition number of the matrices is between 1 and
1010. The optimality measure considered is the relative solution accuracy \| x - \^x\| /\| x\| 
with x the exact solution (chosen to be x = [n  - 1, n  - 2, . . . , 0]T ) and \^x the com-
puted numerical solution. In the tests, c is chosen as a random vector of the form

c = \=c rand(n, 1) for various choices of \=c \in \BbbR (cf. Table 1), and b = Ax  - A\dagger T c. A
simulation is considered unsuccessful if the relative solution accuracy exceeds 10 - 2.

5.2. Comparison of CGLS\bfitc with iterative methods. In this section, we
compare the performance of CGLSc with the reference iterative methods. We first
show its improved performance over CG on selected problems.

5.2.1. Solution accuracy. We first consider the numerical experiment corre-
sponding to choice C1 with a = 0.5 , c = 10 - 1 rand(n, 1), and \kappa (A) = 105. CG and
CGLSc are compared in Figure 1, where we report the relative error \| x - \^xk\| /\| x\| 
versus the number of iterations k. CG achieves an accuracy of order 10 - 7, while the
error in the solution computed by CGLSc is \kappa (A) times smaller.

We now consider a second numerical experiment based on the choice C2 with
up = 0.5, dw = 10 - \sanseight , c = 10 - 14 rand(n, 1), and \kappa (A) = 5\times 107, respectively. The gap
in the results is even larger: CGLSc finds an accurate solution, while CG does not
solve the problem at all; see Figure 2.

We finally compare the two iterative methods plus MINRES on the synthetic set
of matrices \scrP , where c is chosen as \=c rand(n, 1) for different values of \=c. We report
in Figure 3 the performance profile corresponding to these simulations. MINRES has
been applied to (1.1) for the two choices \xi = 1 and \xi = \xi \ast = 1\surd 

2
\sigma min(A) [3]. It is

evident that a good scaling in (1.1) is beneficial for MINRES, but we also need to take
into account that the computation of the optimal scaling parameter may be expensive.
Clearly, CGLSc performs much better than CG and both versions of MINRES.

5.2.2. Forward error bounds. In this section, we wish to compare the clas-
sical analysis for which the condition number of (ENE) is \kappa (A)2 and the backward
error for a computed solution \^x is \| ATA\^x - AT b - c\| /(\| A\| 2\| \^x\| ), with the structured
analysis for which the relative condition number is given by \kappa S in (3.5) and the rel-
ative (linearized) backward error is \=\eta r(\^x) := \=\eta (\^x, 1, 1)/\| (A, b, c)\| F , which is given in



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 20 40 60 80 100 120
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

CG

CGLSc

Fig. 2. \kappa (A) = 5 \times 107. Relative error \| x  - \^xk\| /\| x\| between the exact solution x and the
computed solution \^xk at iteration k for CG and CGLSc.
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Fig. 3. Performance profile in logarithmic scale of CG, CGLSc, and MINRES on the synthetic
set of matrices \scrP . MINRES is applied to (1.1) with \xi = 1 and \xi = \xi \ast . The optimality measure
considered is the relative solution accuracy \| x - \^x\| /\| x\| with x the exact solution and \^x the computed
numerical solution.

Lemma 3.5. For each analysis, the forward error \| x  - \^x\| /\| x\| is predicted by the
product of the condition number times the corresponding backward error, so that the
classical bound will be \Delta C = \kappa (A)2\| ATA\^x - AT b - c\| /(\| A\| 2\| \^x\| ), and the structured
one is \Delta S in (3.13).

In Table 2 we compare the two bounds with the forward error for different prob-
lems of the form C1 and C2, for which we report the condition number of A and
the relative structured condition number \kappa S . For all tests, the proposed first-order
estimate provides an accurate upper bound for the forward error. On the contrary,
the classical analysis gives a rather satisfactory precision when \kappa S \sim \kappa (A)2, but it
is too pessimistic in predicting the error in the case \kappa S \sim \kappa (A). In such cases the
structured bound is much sharper than the standard bound. These results also show
again that in general CGLSc performs better than CG.
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Fig. 4. CGLSc, choice C1 with a = 2 and c = \sansr \sansa \sansn \sansd (\sansn , \sansone ). \| r  - rk\| /(\| A\| \| x\| ) with r = b - Ax
and rk the recurred residual defined in Algorithm 4.2 versus iteration index k with machine precision
\epsilon \approx 10 - 16.

5.2.3. Norm of the residual. In Figure 4, we consider for CGLSc the quan-
tity \| r  - rk\| /(\| A\| \| x\| ) that appears in (4.3) (with r = b  - Ax and rk defined in
Algorithm 4.2). We can deduce that the bound (4.2) holds for k large enough, as
(4.3) is satisfied with c1 = O(10); see Remark 4.2. This test corresponds to choice
C1 with a = 2 and c = rand(n, 1), but the same behavior is observed in many other
simulations.

5.3. Final comparison with direct methods. Motivated by practical ap-
plications outlined in section 2, we have mainly focused on the design of iterative
methods. However, it is also natural to consider direct methods for the solution of
problem (ENE) that are known to be backward stable.

We consider two different methods:
\bullet QR, which solves (1.1) with \xi = 1, employing the QR factorization of [A, b]
[2, 6], as described in Theorem 5.1 below.

\bullet AUG, which solves the augmented system (1.1) with \xi = \xi \ast using an LBLT

factorization [3]. We implement this method using the ldl MATLAB com-
mand.

Theorem 5.1 (Theorem 1.3.3 [4]). Let A \in \BbbR m\times n, m \geq n, b \in \BbbR m, c \in \BbbR n.
Assume that rank(A) = n and let

[A, b] = Q

\biggl[ 
R d1
0 d2

\biggr] 
.

For any \xi \not = 0, the solution to (1.1) can be computed from

RT z =  - c, Rx = (d1  - z), r = Q

\biggl[ 
z
d2

\biggr] 
.

We remark that the full orthogonal factor Q is required to compute r. Even if
the QR factorization can be performed efficiently with Householder transformations,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3
Summary of direct and iterative methods. We report the label used for the method, the formu-

lation of the problem the method is applied to, and a brief description of each method.

Label Formulation Description

QR

\biggl[ 
Im A
AT 0

\biggr] \biggl[ 
r
x

\biggr] 
=

\biggl[ 
b
 - c

\biggr] 
QR factorization of [A, b], Theorem 5.1

AUG

\biggl[ 
\xi Im A
AT 0

\biggr] \biggl[ 
\xi  - 1r
x

\biggr] 
=

\biggl[ 
b

 - \xi  - 1c

\biggr] 
LBLT, \xi = \xi \ast = \sigma min(A)/

\surd 
2

CG ATAx = AT b+ c CG, Algorithm 5.1

CGLSc ATAx = AT b+ c Modified CGLS, Algorithm 4.2

MINRES

\biggl[ 
\xi Im A
AT 0

\biggr] \biggl[ 
\xi  - 1r
x

\biggr] 
=

\biggl[ 
b

 - \xi  - 1c

\biggr] 
Minimum residual method, \xi = 1, \xi = \xi \ast 
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Fig. 5. Performance profile in logarithmic scale on the synthetic set of matrices \scrP considering
CGLSc and the direct methods in Table 3. The optimality measure considered is the relative solution
accuracy \| x - \^x\| /\| x\| with x the exact solution and \^x the computed numerical solution.

numerical experiments do not show a significant difference in the results using r =
b - Ax.

All considered methods are summarized in Table 3. In Figure 5 we compare
CGLSc with the direct methods on the same set of matrices used for the performance
profile of Figure 3. Even if AUG and QR remain slightly more robust and more
efficient, the performance of the proposed iterative method is really close to that of
the two direct backward stable methods. The performance profile shows indeed that
in about 70\% of the problems the difference in the solution accuracy is at most one
digit and that in all cases it is at most three digits.

6. Conclusions. We considered both theoretical and practical aspects related
to the solution of linear systems of the form (ENE). First, we studied the structured
condition number of the system and proposed a related explicit formula for its com-
putation. Then, we considered the numerical solution of (ENE). We found that the
same issues that degrade the performance of the CG method on the normal equations
also arise in this setting. This guided us in the development of a robust iterative
method for solving (ENE), which has been validated numerically. From the numeri-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

cal experiments, we can draw the following conclusions. The proposed method shows
better performance than standard iterative methods in terms of solution accuracy.
The error bounds proposed, based on structured condition numbers of the problems,
are better able to predict forward errors than classical bounds from linear system the-
ory. Finally, the solution accuracy achieved by the proposed method is comparable
to that provided by stable direct methods.
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