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Given a full-rank matrix A \in \BbbR m\times n (m \geq n), we consider a special class of linear systems A T Ax = A T b + c with x, c \in \BbbR n and b \in \BbbR m , which we refer to as the extended normal equations. The occurrence of c gives rise to a problem with a different conditioning from the standard normal equations and prevents direct application of standard methods for least squares. Hence, we seek more insights on theoretical and practical aspects of the solution of such problems. We propose an explicit formula for the structured condition number, which allows us to compute a more accurate estimate of the forward error than the standard one used for generic linear systems, which does not take into account the structure of the perturbations. The relevance of our estimate is shown on a set of synthetic test problems. Then, we propose a new iterative solution method that, as in the case of normal equations, takes advantage of the structure of the system to avoid unstable computations such as forming A T A explicitly. Numerical experiments highlight the increased robustness and accuracy of the proposed method compared to standard iterative methods. It is also found that the new method can compare to standard direct methods in terms of solution accuracy.

where \xi is a scaling parameter that can be chosen to minimize the condition number of the augmented matrix. The optimal value of the scaling parameter is \xi \ast = 1 \surd 2 \sigma min (A) [START_REF] Bj\ | orck, Pivoting and stability in the augmented system method[END_REF]. The vectors x and r are uniquely determined and independent of \xi . Equation (1.1) also gives the first-order optimality conditions for the problems (ELS-primal) min

x,r \bigr] with R \in \BbbR n\times n , we could obtain the solution from

x = A \dagger b + A \dagger (A \dagger ) T c = R - 1 d 1 + (R T R) - 1 c.
At first sight (ENE) evokes a least squares problem in the normal equations form

A T Ax = A T b,
but the vector c makes the situation fundamentally different. Unlike pure least squares problems, a very well-studied topic [START_REF] Bj\ | orck, Numerical Methods for Least Squares Problems[END_REF], [START_REF] Golub | Matrix Computations[END_REF]Chapter 5], [START_REF] Nocedal | Numerical Optimization[END_REF]Chapter 10], problem (ENE) has not been the object of much study in the literature. We mention Bj\" orck [START_REF] Bj\ | orck, Pivoting and stability in the augmented system method[END_REF], who studies the numerical solution of the augmented system by Gaussian elimination.

The solution of problem (ENE) is required in various applications in optimization, such as the multilevel Levenberg--Marquardt methods [START_REF] Calandra | On a multilevel Levenberg-Marquardt method for the training of artificial neural networks and its application to the solution of partial differential equations[END_REF], or certain formulations based on penalty function approaches [START_REF] Estrin | Implementing a smooth exact penalty function for general constrained nonlinear optimization[END_REF], [14, section 7.2], [START_REF] Fletcher | A class of methods for nonlinear programming: III. Rates of convergence[END_REF], which we describe in section 2. Motivated by these important applications, we seek more insight on theoretical and practical aspects of the numerical solution of (ENE). Having in mind the possibility of seeking an approximate solution, we especially focus on iterative methods. We expect to encounter issues similar to those reported in the literature on normal equations.

First, it is well known that the product A T A should not be explicitly formed, because the accuracy attainable by methods for the solution of the normal equations may be much lower than for a backward stable method for least squares. If the matrix is formed, the best forward error bound for the normal equations can be obtained by the classical sensitivity analysis of linear systems. It is of order \kappa 2 (A) \epsilon with \epsilon the machine precision and \kappa (A) = \| A\| \| A \dagger \| the condition number of A in the Euclidean norm [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF][START_REF] Rice | A theory of condition[END_REF]. This is an underwhelming result, as from Wedin's theorem [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]Theorem 20.1] the sensitivity of a least squares problem is measured by \kappa 2 (A) only when the residual is large, and by \kappa (A) otherwise.

However, practical solution methods do not form the product A T A, and the following key observation is rather exploited. The special structure of the normal equations allows us to write

A T Ax -A T b = A T (Ax -b),
which makes it possible to either employ a factorization of A rather than of A T A (in the case of direct methods) or to perform matrix-vector multiplications of the form Ax and A T y rather than A T Ax (in the case of iterative methods). The standard analysis of linear systems is unsuitable for predicting the error for such methods, as it is based on the assumption that the linear system is subject to normwise perturbations on A T A. If the product is not formed explicitly, such global perturbations are not generated in finite precision and a condition number useful for predicting the error should rather take into account structured perturbations, such as perturbations in the matrix A only. A structured analysis is then more relevant and indeed leads to the same conclusions as for least squares problems [START_REF] Gratton | On the condition number of linear least squares problems in a weighted Frobenius norm[END_REF].

It is therefore possible to devise stable implementations of methods for normal equations. In [22, section 10], Hestenes and Stiefel propose a specialized implementation of the conjugate gradient (CG) method for the normal equations, now known as CGLS. This has been deeply investigated in the literature [START_REF] Bj\" Orck | Stability of conjugate gradient and Lanczos methods for linear least squares problems[END_REF][START_REF] Golub | Matrix Computations[END_REF][START_REF] Hestenes | Methods of conjugate gradients for solving linear systems[END_REF][START_REF] Paige | LSQR: An algorithm for sparse linear equations and sparse least squares[END_REF] and CGLS was shown to be more stable than CG applied directly to the standard normal equation with c = 0. However, not all the considerations made for normal equations apply to (ENE). The presence of c has important theoretical and practical consequences.

On one hand, c results in a different mapping for the condition number and a different set of admissible perturbations for the backward error. Consequently, the existing perturbation theory for least squares problems [START_REF] Arioli | A partial condition number for linear least squares problems[END_REF][START_REF] Gratton | On the condition number of linear least squares problems in a weighted Frobenius norm[END_REF][START_REF] Walden | Optimal backward perturbation bounds for the linear least squares problem[END_REF] does not apply. A proper analysis of the structured condition number of the problem should be developed.

From a practical perspective, even though the system matrix is the same, the presence of c in the right-hand side prevents direct application of standard methods for the normal equations. Successful algorithmic procedures used for normal equations can, however, be tailored to obtain stable solution methods.

Contributions. We propose CGLSc, a modification of standard CGLS that results in a stable method for the solution of (ENE). We provide an expression of the structured condition number for (ENE), which allows us to compute first-order estimates of the forward error in the computed solution. We report on the numerical performance of the method on a relevant set of test problems. The experimentation confirms improved stability of the proposed method compared to standard iterative methods such as CG and MINRES [START_REF] Paige | Solution of sparse indefinite systems of linear equations[END_REF], and it is shown to provide solutions almost as accurate as those obtained by stable direct methods. The estimate of the forward error is also validated numerically and shown to be a sharper upper bound than the standard bound from the theory of linear systems.

Structure. In section 2 we present two applications arising in optimization where the solution of (ENE) is required. In section 3, we report on the conditioning of the problem and backward error analysis. These results are employed to propose a firstorder estimate of the forward error in the solution computed by a method that does not form matrix A T A. In section 4 we introduce a new stable iterative method for the solution of (ENE). Extensive numerical experiments are described in section 5. Conclusions are drawn in section 6.

Notation. Given a matrix A \in \BbbR m\times n , we denote by A \dagger its pseudoinverse, by \kappa (A) = \| A\| \| A \dagger \| its condition number (\| \cdot \| being the Euclidean norm), and by \sigma min (A), \sigma max (A) its smallest and largest singular values. The Frobenius norm is defined as

\| A\| F := \biggl( \sum i,j | A i,j | 2 \biggr) 1/2 = tr(A T A) 1/2 .
Given b \in \BbbR m , c \in \BbbR n , and \alpha , \beta , \gamma > 0, we define the following parameterized Frobenius norm

\| (A, b, c)\| F (\alpha ,\beta ,\gamma ) := \bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \alpha A \beta b \gamma c T 0 \biggr] \bigm\| \bigm\| \bigm\| \bigm\| F = \sqrt{} \alpha 2 \| A\| 2 F + \beta 2 \| b\| 2 + \gamma 2 \| c\| 2 .
We denote by I n \in \BbbR n\times n the identity matrix of order n, by \otimes the Kronecker product of two matrices, and by vec the operator that stacks the columns of a matrix into a vector of appropriate dimension [START_REF] Gratton | On the condition number of linear least squares problems in a weighted Frobenius norm[END_REF].

2. Two motivating applications. We describe two different applications in which problems of the form (ELS) arise, motivating our interest in their solution.

2.1. Fletcher's exact penalty function approach. The first applicative context arises in equality constrained minimization. Consider a problem of the form min x f (x) s.t. g(x) = 0 for twice differentiable functions f : \BbbR n \rightar \BbbR and g : \BbbR n \rightar \BbbR m . The solution of systems of the form (ENE) is needed to evaluate the following penalty function and its gradient [START_REF] Fletcher | A class of methods for nonlinear programming: III. Rates of convergence[END_REF], [14, section 7.2]:

\Phi \lambda (x) = f (x) -g(x) T y \lambda (x),
where y \lambda (x) \in \BbbR m is defined as the solution of the minimization problem min y \| A(x) T y -\nabla f (x)\| 2 + \lambda g(x) T y with A(x) the Jacobian matrix of g(x) at x, and \lambda > 0 a given real-valued penalty parameter.

Multilevel

Levenberg--Marquardt method. The solution of (ENE) is required in multilevel Levenberg--Marquardt methods, which are specific members of the family of multilevel optimization methods recently introduced in Calandra et al. [START_REF] Calandra | On a multilevel Levenberg-Marquardt method for the training of artificial neural networks and its application to the solution of partial differential equations[END_REF] and further analysed in Calandra et al. [START_REF] Calandra | On High-Order Multilevel Optimization Strategies[END_REF]. The multilevel Levenberg--Marquardt method is intended to solve nonlinear least squares problems of the form

min x f (x) = 1 2 \| F (x)\| 2
with F : \BbbR n \rightar \BbbR m a twice continuously differentiable function. In the two-level setting, the multilevel method allows two different models to compute the step at each iteration: the classical Taylor model or a cheaper model m H k , built from a given approximation f H (x H ) = 1 2 \| F H (x H )\| 2 to the objective function

m H k (x H k , s H ) = 1 2 \| J H (x H k )s H + F H (x H k )\| 2 + \lambda k 2 \| s H \| 2 + (R\nabla f (x k ) -\nabla f H (x H 0 )) T s H
with J H (x H k ) the Jacobian matrix of F H at x H k , \lambda k > 0 a real-valued regularization parameter, R a full-rank linear restriction operator, and x H 0 = Rx k with x k denoting the current iterate at a fine level.

While minimizing the Taylor model amounts to solving a formulation based on the normal equations, minimizing m H k requires the solution of a problem of the form (ELS) because of the correction term (R\nabla f (x k ) -\nabla f H (x H 0 )) T s H needed to ensure coherence between levels. Approximate minimization of the model is sufficient to guarantee convergence of the method. Thus if the coarse problem is not small, an iterative method is well suited for minimizing the model.

3.

Conditioning of the problem and backward error analysis. We first propose an explicit formula for the structured condition number of problem (ENE). This is useful to compute a first-order estimate of the forward error for methods that do not form matrix A T A explicitly. Contrary to the classical sensitivity analysis of linear systems, which is based on the assumption that the linear system is subject to normwise perturbations on the matrix A T A, our result indeed considers perturbations on matrix A only. We also propose theoretical results related to the backward error.

3.1.

Conditioning of the problem. The conditioning of problem (ENE) is the sensitivity of the solution x to perturbations in the data A, b, c. We give an explicit formula for the structured condition number for perturbations on all of A, b, and c. In the following, we define the condition number of a function; see [START_REF] Rice | A theory of condition[END_REF]. Definition 3.1. Let \scrX and \scrY be normed vector spaces. If F is a continuously differentiable function F : \scrX \rightar \scrY , x \mapsto -\rightar F (x),

the absolute condition number of F at x is the scalar \| F \prime (x)\| := sup \| v\| \scrX =1 \| F \prime (x)v\| \scrY , where F \prime (x) is the Fr\' echet derivative of F at x. The relative condition number of

F at x is \| F \prime (x)\| \| x\| \scrX \| F (x)\| \scrY .
We consider F as the function that maps A, b, c to the solution x of (ENE),

F : \BbbR m\times n \times \BbbR m \times \BbbR n \rightar \BbbR n , (A, b, c) \mapsto -\rightarF (A, b, c) = A \dagger b + A \dagger (A \dagger ) T c.
The Fr\' echet derivative in finite-dimensional spaces is the usual derivative. In particular, it is represented in coordinates by the Jacobian matrix. If F is Fr\' echet differentiable at a point (A, b, c), then its derivative is

F \prime (A, b, c) : \BbbR m\times n \times \BbbR m \times \BbbR n \rightar \BbbR n , F \prime (A, b, c)(E,f, g) = J F (A, b, c)(E, f, g), where J F (A, b, c)(E, f, g) denotes the Jacobian matrix of F at (A, b, c) applied to (E, f, g).
As in [START_REF] Gratton | On the condition number of linear least squares problems in a weighted Frobenius norm[END_REF], we choose the Euclidean norm for the solution and the parameterized Frobenius norm for the data (as introduced in section 1). According to Definition 3.1 (cf. also [START_REF] Geurts | A contribution to the theory of condition[END_REF]), the absolute condition number of F at the point (A, b, c) is given by

\| F \prime (A, b, c)\| = sup \| (E,f,g)\| F (\alpha ,\beta ,\gamma ) =1 \| F \prime (A, b, c)(E, f, g)\| , E \in \BbbR m\times n , f \in \BbbR m , g \in \BbbR n .
The parameterized Frobenius norm has been chosen for its flexibility. For instance, taking large values of \gamma allows us to perturb A and b only, and to include the case c = 0. This is because the condition \gamma \rightar \infty implies g \rightar 0 from the constraint \alpha 2 \| E\| 2 F + \beta 2 \| f \| 2 + \gamma 2 \| g\| 2 = 1 in the definition of the condition number. Let A be perturbed to \Ã = A + E, the vector b to \b = b + f , and vector c to

\ c = c + g. A T A is then perturbed to (3.1) \Ã T \Ã = (A + E) T (A + E) = A T A + A T E + E T A,
neglecting the second-order terms. The solution

x = (A T A) - 1 (A T b + c) is then per- turbed to \x = x + \delta x = ( \Ã T \Ã ) - 1 ( \Ã T \b + \c). Then, \x solves (A T A + A T E + E T A)\x = (A T b + E T b + A T f + c + g).
Recalling that for A of full column rank,

A \dagger = (A T A) - 1 A T and (A T A) - 1 = A \dagger (A \dagger ) T , we have \delta x = (A T A) - 1 E T r -A \dagger Ex + A \dagger f + A \dagger (A \dagger ) T g. We conclude that F \prime (A, b, c)(E, f, g) = (A T A) - 1 E T r -A \dagger Ex + A \dagger f + A \dagger (A \dagger ) T g
for all E \in \BbbR m\times n , f \in \BbbR m , g \in \BbbR n , and r = b -Ax. We then deduce the following property.

Lemma 3.2. The conditioning of problem (ENE) with Euclidean norm on the solution and Frobenius norm (parameterized by \alpha , \beta , \gamma ) on the data, is given by

(3.2) \| F \prime (A, b, c)\| = \| [((r T \otimes (A T A) - 1 )L T -x T \otimes A \dagger )/\alpha , A \dagger /\beta , (A T A) - 1 /\gamma ]\| ,
where L T is a permutation matrix consisting of ones in positions (n(k -1) + l, m(l -1) + k) with l = 1, . . . , n and k = 1, . . . , m and of zeros elsewhere [START_REF] Frayss\' E | Structured backward error and condition number for linear systems of the type A \ast Ax = b[END_REF][START_REF] Gratton | On the condition number of linear least squares problems in a weighted Frobenius norm[END_REF].

The following theorem gives an explicit and computable formula for the structured condition number.

Theorem 3.3. The absolute condition number of problem (ENE) with Euclidean norm on the solution and Frobenius norm (parameterized by \alpha , \beta , \gamma ) on the data, is \sqrt{} \| \= M \| with \= M \in \BbbR n\times n given by

(3.3) \= M = \biggl( 1 \gamma 2 + \| r\| 2 \alpha 2 \biggr) (A T A) - 2 + \biggl( 1 \beta 2 + \| x\| 2 \alpha 2 \biggr) (A T A) - 1 - 2 \alpha 2 sym(B) with B = A \dagger rx T (A T A) - 1 , sym(B) = 1 2 (B + B T )
, and x the exact solution of (ENE).

Proof. Let us define M = [((r T \otimes (A T A) - 1 )L T -x T \otimes A \dagger )/\alpha , A \dagger /\beta , (A T A) - 1 /\gamma ]. We recall that (3.4) \| F \prime (A, b, c)\| = \| M \| = \| M T \| := sup y\not =0 \| M T y\| \| y\| .
Let us consider

y T F \prime (A, b, c)(E, f, g) = y T (A T A) - 1 E T r -y T A \dagger Ex + y T A \dagger f + y T A \dagger (A \dagger ) T g = r T E(A T A) - 1 y -y T A \dagger Ex + y T A \dagger f + y T A \dagger (A \dagger ) T g.
We recall that E = \sum n i=1 \sum m j=1 e T i Ee j for e i , e j , the ith and jth vectors of the canonical basis. Then, we can rewrite the expression as [vec(S)/\alpha , y T A \dagger /\beta , y T A \dagger (A \dagger ) T /\gamma ] \cdot [\alpha vec(E), \beta f, \gamma g] T := w T [\alpha vec(E), \beta f, \gamma g] T , introducing the matrix S such that S i,j = r T e i e T j (A T A) - 1 y -y T A \dagger e i e T j x.

It follows that w = M T y. We are then interested in the norm of w. We can compute the squared norm of vec(S) as

\| vec(S)\| 2 = n \sum i=1 m \sum j=1 (r T e i e T j (A T A) - 1 y -y T A \dagger e i e T j x) 2 = \| r\| 2 \| (A T A) - 1 y\| 2 + \| x\| 2 \| (A \dagger ) T y\| 2 -y T (A \dagger rx T (A T A) - 1 + (A T A) - 1 xr T (A \dagger ) T )y.
Then,

\| w\| 2 = y T \= M y, \= M : = \biggl( 1 \gamma 2 + \| r\| 2 \alpha 2 \biggr) (A T A) - 2 + \biggl( 1 \beta 2 + \| x\| 2 \alpha 2 \biggr) A \dagger (A \dagger ) T - 1 \alpha 2 (B + B T ), B : = A \dagger rx T (A T A) - 1 . From (3.4), \| F \prime (A, b, c)\| = \| M \| = sup y\not =0 \| M T y\| \| y\| = sup y\not =0 \sqrt{} y T \= M y \| y\| = \sqrt{} \| \= M \| .
We remind the analogous result for the least squares case. If we define

F LS : \BbbR m\times n \times \BbbR m \rightar \BbbR n , (A, b) \mapsto -\rightar F LS (A, b) = A \dagger b,
the absolute condition number for least squares (or structured conditioning of the normal equations) is [START_REF] Gratton | On the condition number of linear least squares problems in a weighted Frobenius norm[END_REF] 

\| F \prime (A, b)\| = \| A \dagger \| \sqrt{} 1 \beta 2 + \| x\| 2 + \| A \dagger \| 2 \| r\| 2 \alpha 2 .
The term \| A \dagger \| 2 appears here multiplied by the norm of the residual. This is interpreted as saying that the sensitivity of the problem depends on \kappa (A) for small or zero residual problems and on \kappa 2 (A) for all other problems [START_REF] Bj\ | orck, Numerical Methods for Least Squares Problems[END_REF][START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]. If c = 0 and \gamma \rightar \infty , the known result for least squares problems is recovered (note that in this case B = 0 as A T r = 0). Let us assume that (\alpha , \beta , \gamma ) = (1, 1, 1). We define the structured relative condition number

(3.5) \kappa S = \sqrt{} \| \= M \| \| A, b, c\| F \| x\| = \| M \| \| A, b, c\| F \| x\| ,
where we recall that M = [((r T \otimes (A T A) - 1 )L T -x T \otimes A \dagger ), A \dagger , (A T A) - 1 ]. We can get more insight on this condition number. First we remark that it depends on x, b, c, which is not the case for the standard condition number. Depending on the values of such parameters, it can then vary in a wide range, that we can bound. We define

M 1 = (r T \otimes (A T A) - 1 )L T -x T \otimes A \dagger . It holds that max\{ \| M 1 \| , \| A \dagger \| , \| (A T A) - 1 \| \} \leq \| M \| \leq \sqrt{} \| M 1 \| 2 + \| A \dagger \| 2 + \| (A T A) - 1 \| 2 .
\| M 1 \| can be bounded repeating the proof of Corollary 2.2 in [START_REF] Frayss\' E | Structured Backward Error and Condition Number for Linear Systems of the Type A \ast Ax = b[END_REF], which uses the properties of the Kronecker product: In the case we choose x as the right singular vector associated with \sigma max and b = 0 we obtain \| M 1 \| \geq \| A \dagger \| (\kappa (A) -1), \| c\| = \| A\| 2 and we can conclude that \kappa S \geq \| A \dagger \| (\kappa

\bigm|
(A) -1) \sqrt{} \| A\| 2 F + \| c\| 2 \geq (\kappa (A) 2 -\kappa (A)) \sqrt{} 1 + \| A\| 2 .
Then, we deduce that in some cases \kappa S can be as large as a quantity of order \kappa (A) 2 , while in others it can be as low as \kappa (A). Analogous results can be established if b is in the direction of the left singular vector associated with \sigma min (\sigma max ) and its norm is close to \| A \dagger \| (\| A\| ). We will show in section 5 that both cases are often encountered in practice.

3.2. Backward error analysis. In this section, we address the computation of the backward error by considering the following problem. Suppose \x is a perturbed solution to (ENE). Find the smallest perturbation (E, f, g) of (A, b, c) such that \x exactly solves

(A + E) T (A + E)x = (A + E) T (b + f ) + (c + g).
That is, given \scrG := \{ (E, f, g), E \in \BbbR m\times n , f \in \BbbR m , g \in \BbbR n :

(A + E) T (A + E)\x = (A + E) T (b + f ) + (c + g)\} ,
we want to compute the quantity

(3.6) \eta (\x, \theta 1 , \theta 2 ) = min (E,f,g)\in \scrG \| (E, \theta 1 f, \theta 2 g)\| 2 F := min (E,f,g)\in \scrG \| E\| 2 F + \theta 2 1 \| f \| 2 + \theta 2 2 \| g\| 2
with \theta 1 , \theta 2 positive parameters [START_REF] Gratton | On the condition number of linear least squares problems in a weighted Frobenius norm[END_REF][START_REF] Walden | Optimal backward perturbation bounds for the linear least squares problem[END_REF].

We provide an explicit representation of the set of admissible perturbations on the matrix (Theorem 3.4) and a linearization estimate for \eta (\x, \theta 1 , \theta 2 ) (Lemma 3.5).

Given v \in \BbbR m , we define

v \dagger = \Biggl\{ v T /\| v\| 2 if v \not = 0, 0 if v = 0.
Note the following properties that are used later:

(I m -vv \dagger )v = 0, vv \dagger v = v.
Considering just the perturbations of A we next give an explicit representation of the set of admissible perturbations. 

: (A + E) T (b -(A + E)\x) = - c \} , \scrM = \{ v \bigl( \alpha c T -v \dagger A \bigr) + (I m -vv \dagger )(\r\x \dagger + Z(I n -\x\x \dagger )) : v \in \BbbR m , Z \in \BbbR m\times n , \alpha \in \BbbR s.t. \alpha \| v\| 2 (v \dagger b -\alpha c T \x) = - 1\} .
Then \scrE = \scrM .

Proof. The proof is inspired by that of [START_REF] Walden | Optimal backward perturbation bounds for the linear least squares problem[END_REF]Theorem 1.1]. First, we prove \scrE \subsete \scrM , so we assume E \in \scrE . We begin by noting the identity, for each v and \x Moreover, (3.9)

-c = (A + E) T (b -(A + E)\x) = (A + E) T (\r -E \x) = (A + E) T v.
From (3.9), v \dagger E = -c T \| v\| 2 -v \dagger A. Hence, from relations (3.7)--(3.9),

E = (I m -vv \dagger )\r\x \dagger -v \biggl( c T \| v\| 2 + v \dagger A \biggr)
+ (I m -vv \dagger )E(I n -\x\x \dagger ).

Then E \in \scrM with v = \r -E \x, \alpha = -1 \| v\| 2 , and Z = E, as

\alpha \| v\| 2 (v \dagger b -\alpha c T \x) = - 1 \| v\| 2 (v T b + c T \x) = - 1 \| v\| 2 (v T b -v T (A + E)\x) = - 1 \| v\| 2 v T (\r -E \x) = - 1,
where the second equality follows from (3.9).

Conversely, let E \in \scrM . Then, E \x = \alpha vc T \x -vv \dagger A\x + \r -vv \dagger \r = \alpha vc T \x -vv \dagger b + \r, (3.10)

E T v = \alpha \| v\| 2 c -A T v (3.11)
and, hence,

(A + E) T (b -(A + E)\x) = (A + E) T (\r -E \x) = (A + E) T (vv \dagger b -\alpha vc T \x) = (A + E) T v(v \dagger b -\alpha c T \x) = \alpha \| v\| 2 c(v \dagger b -\alpha c T \x) = - c,
where the second equality follows from (3.10), the fourth from (3.11), and the last from the constraint in \scrM . We conclude that E \in \scrE .

Let us remark that if c = 0 we recover the known result for least squares problems given in [START_REF] Walden | Optimal backward perturbation bounds for the linear least squares problem[END_REF]Theorem 1.1]. Note also that the parameterization of the set of perturbations \scrE is similar to that obtained for equality constrained least squares problems in [START_REF] Cox | Backward error bounds for constrained least squares problems[END_REF], even if there is no constraint in [START_REF] Cox | Backward error bounds for constrained least squares problems[END_REF].

Because of the constraint in \scrM , it is rather difficult to find an analytical formula for \eta (\x, \theta 1 , \theta 2 ). It is, however, easy to find a linearization estimate for \eta (\x, \theta 1 , \theta 2 ) with \theta 1 , \theta 2 strictly positive, i.e., given

h(A, b, c, x) = A T (b -Ax) + c, we can find (E, f, g) such that \= \eta (\x, \theta 1 , \theta 2 ) = min \| (E, \theta 1 f, \theta 2 g)\| F s.t. (3.12a) h(A, b, c, \x) + [J A , \theta - 1 1 J b , \theta - 1 2 J c ] \left[ vec(E) \theta 1 f \theta 2 g \right] = 0, (3.12b)
where J A , J b , J c are the Jacobian matrices of h with respect to vec(A), b, c [START_REF] Chang | Backward perturbation analysis for scaled total leastsquares problems[END_REF]. Lemma 3.5. Let \eta (\x, \theta 1 , \theta 2 ) be defined as in (3.6), \= \eta (\x, \theta 1 , \theta 2 ) be defined as in (3.12), and \r = b -A\x. Then the linearized backward error satisfies \= \eta (\x, \theta 

[J A , \theta - 1 1 J b , \theta - 1 2 J c ] = [I n \otimes \r T -A T (\x \otimes I m ), \theta - 1 1 A T , \theta - 1 2 I n ] = J
from which the result follows. The second result can be obtained by repeating the arguments of [24, Corollary 2].

The linearized estimate is usually called an asymptotic estimate, as it becomes exact in the limit for \x that tends to the exact solution x [START_REF] Liu | Linearization estimates of the backward errors for least squares problems[END_REF]. It also has the advantage of being easily computable.

3.3.

First-order approximation for the forward error. The formula we have derived in Theorem 3.3 for the structured condition number of (ENE) can be used to provide a first-order estimate \Delta S of the forward error for a solution \x obtained by a method that does not form the matrix A T A explicitly. We define this estimate as the product of the relative condition number (3. We show in subsection 5.2.2 that the proposed estimate accurately predicts the forward error in the numerical simulations for the method we propose in section 4 and that it is more accurate than the classical bounds in the cases in which \kappa S \sim \kappa (A).

In this section we have considered theoretical questions related to the solution of (ENE). In the following, we consider computing a solution in finite-precision arithmetic.

A stable variant of CGLS for (ENE).

There are several mathematically equivalent implementations of the standard CG method when it is applied to the normal equations. It is well known that they are not equivalent from a numerical point of view and some of them are not stable [START_REF] Elfving | On the Conjugate Gradient Method for Solving Linear Least Squares Problems[END_REF][START_REF] Paige | LSQR: An algorithm for sparse linear equations and sparse least squares[END_REF]. In particular Bj\" orck, Elfving, and Strakos [START_REF] Bj\" Orck | Stability of conjugate gradient and Lanczos methods for linear least squares problems[END_REF] compare the achievable accuracy in finite precision of different implementations, and show that the most stable implementation is the one that is often referred to as CGLS, which is due to Hestenes and Stiefel [22, section 10], which we report in Algorithm 4.1.

To a large extent, instability is due to the explicit use of vectors of the form A T Ap k [START_REF] Paige | LSQR: An algorithm for sparse linear equations and sparse least squares[END_REF]. In the stable implementations of CGLS, forming matrix A T A explicitly is avoided and matrix-vector products are thus computed from the action of A or A T on a vector; intermediate vectors of the form Ap k are used, so that p T k A T Ap k is computed as \| Ap k \| 2 . Another crucial difference lays in the fact that in CGLS the residual r k = b -Ax k is recurred instead of the full residual of the normal equations s k = A T (b -Ax k ). This avoids propagation of the initial error introduced in s 0 by Algorithm 4.1 CGLS method for

A T Ax = A T b [22]. Input: A, b, x 0 . Define r 0 = b -Ax 0 , s 0 = A T r 0 , p 1 = s 0 . for k = 1, 2, . . . do t k = Ap k \alpha k = \| s k - 1 \| 2 /\| t k \| 2 x k = x k - 1 + \alpha k p k r k = r k - 1 -\alpha k t k s k = A T r k \beta k = \| s k \| 2 /\| s k - 1 \| 2 p k+1 = s k + \beta k p k end for
the computation A T b, as s k is recomputed at each iteration as A T r k , and r k is not affected by a significant initial error [START_REF] Bj\" Orck | Stability of conjugate gradient and Lanczos methods for linear least squares problems[END_REF].

Writing (ENE) as

A T r + c = 0, r = b -Ax,
suggests that the CGLS method can also be adapted to provide a stable solution method for the case c \not = 0. Also in this case we can avoid the operations that are expected to have the same effect as in the case c = 0, and this rewriting allows us to design a new method that we name CGLSc, in which the residual r k = b -Ax k is recurred, and the full residual is recovered as s k = A T r k + c. The method is described in Algorithm 4.2.

Algorithm 4.2 CGLSc method for

A T Ax = A T b + c. Input: A, b, x 0 Define r 0 = b -Ax 0 , s 0 = A T r 0 + c, p 1 = s 0 . for k = 1, 2, . . . do t k = Ap k \alpha k = \| s k - 1 \| 2 /\| t k \| 2 x k = x k - 1 + \alpha k p k r k = r k - 1 -\alpha k t k s k = A T r k + c \beta k = \| s k \| 2 /\| s k - 1 \| 2 p k+1 = r k + \beta k p k end for
The next result is proved in [START_REF] Bj\" Orck | Stability of conjugate gradient and Lanczos methods for linear least squares problems[END_REF], which applies to least squares problems and is an extension of the corresponding result in Greenbaum [START_REF] Greenbaum | Estimating the attainable accuracy of recursively computed residual methods[END_REF], valid for Ax = b with A square and invertible, where the author studies the finite-precision implementation of the class of iterative methods considered in Lemma 4.1.

Lemma 4.1. Let A \in \BbbR m\times n have rank n. Consider an iterative method to solve the least squares problem min x \| Ax -b\| 2 , in which each step updates the approximate solution x k and the residual r k of the system Ax = b using

x k+1 = x k + \alpha k p k , r k+1 = r k -\alpha k Ap k ,
where \alpha k \in \BbbR and p k \in \BbbR n . The difference between the true residual b -Ax k and the recursively computed residual r k satisfies

(4.1) \| b -Ax k -r k \| \| A\| \| x\| \leq \epsilon O(k) \biggl( 1 + \Theta k + \| r\| \| A\| \| x\| \biggr)
with \epsilon the machine precision, r = b -Ax, and \Theta k = max j\leq k \| x j \| /\| x\| . Lemma 4.1 is used in [START_REF] Bj\" Orck | Stability of conjugate gradient and Lanczos methods for linear least squares problems[END_REF] to deduce a bound on the forward error for such methods:

(4.2) \| x -x k \| \| x\| \leq \kappa (A) \epsilon O(k) \biggl( 3 + \| r\| \| A\| \| x\| \biggr) + \kappa (A) \| r -r k \| \| A\| \| x\| .
If it can be shown that there is c 1 > 0 such that the computed recursive residual r k satisfies

(4.3) \| r -r k \| \| A\| \| x\| \leq c 1 \epsilon + O(\epsilon 2 ), k \geq S, then (4. 
2) gives an upper bound on the accuracy attainable in the computed approximation. Here S denotes the number of iterations needed to reach a steady state, i.e., a state in which the iterates do not change substantially from one iteration to the next [START_REF] Bj\" Orck | Stability of conjugate gradient and Lanczos methods for linear least squares problems[END_REF]. In this case we deduce that the method might compute more accurate solutions than a backward stable method [START_REF] Bj\" Orck | Stability of conjugate gradient and Lanczos methods for linear least squares problems[END_REF].

Remark 4.2. Lemma 4.1 also applies to CGLSc, as r k is recurred. We can then deduce that, if condition (4.3) holds, the bound (4.2) is also valid and CGLSc will provide numerical solutions to (ENE) in a stable way. As pointed out in [START_REF] Bj\" Orck | Stability of conjugate gradient and Lanczos methods for linear least squares problems[END_REF], proving condition (4.3) is not an easy task. Nevertheless, we have found from extensive numerical experimentations that this condition is satisfied numerically; see section 5.

Numerical experiments.

We numerically validate the performance of the method presented in section 4. As we are interested in the possibility of seeking an approximate solution, we consider standard iterative methods as reference methods: CG (Algorithm 5.1) and MINRES [START_REF] Paige | Solution of sparse indefinite systems of linear equations[END_REF] (which is applied to (1.1)), but to provide a fair comparison we also consider standard direct methods. We show that CGLSc performs better than CG and MINRES and that it can compare with direct methods in terms of solution accuracy. We also evaluate the first-order estimate of the forward error based on the relative condition numbers derived in subsection 3.3.

Problem definition and methodology.

All the numerical methods have been implemented in MATLAB. For CG1 and MINRES,2 MATLAB codes available online have been employed.

For CG, the computation of A T A is avoided and products are computed as A T (Av); cf. Algorithm 5.1. We consider (ENE), where A \in \BbbR m\times n has been obtained as A = U \Sigma V T and U , V have been selected as orthogonal matrices generated with the MATLAB commands3 gallery('orthog',m,j), gallery('orthog',n,j) for different choices of j = 1, . . . , 6. We consider two choices for the diagonal elements of \Sigma for i = 1, . . . , n: \bullet C1 : \Sigma ii = a - i for a > 0, \bullet C2 : \Sigma ii = \sigma i , where \sigma \in \BbbR n is generated with the linspace MATLAB command, i.e., \sigma = linspace(dw, up, n) with dw, up being strictly positive real values. The values of a and dw, up are specified for each test; see Table 1. The numerical tests are intended to show specific properties of CGLSc. We therefore consider matrices of relatively small dimensions (m = 40 and n = 20), in order to avoid too ill-conditioned problems [START_REF] Bj\" Orck | Stability of conjugate gradient and Lanczos methods for linear least squares problems[END_REF]. For all the performance profiles [START_REF] Dolan | Benchmarking optimization software with performance profiles[END_REF] reported in the following, we consider a set of 55 matrices of slightly larger dimension (m = 100, n = 50), which we later call \scrP , to also test the robustness of the methods (but we do not focus on issues related to large-scale problems). This set is composed of selected matrices from the gallery MATLAB command (those with condition number lower than 10 10 ), and synthetic matrices corresponding to both choices C1 and C2 (of size 100 \times 50 rather than 40 \times 20). The condition number of the matrices is between 1 and 10 10 . The optimality measure considered is the relative solution accuracy \| x -\x\| /\| x\| with x the exact solution (chosen to be x = [n -1, n -2, . . . , 0] T ) and \x the computed numerical solution. In the tests, c is chosen as a random vector of the form c = \= c rand(n, 1) for various choices of \= c \in \BbbR (cf. Table 1), and b = Ax -A \dagger T c. A simulation is considered unsuccessful if the relative solution accuracy exceeds 10 - 2 .

Algorithm 5.1 CG method for

A T Ax = A T b + c. Input: A, b, c, x 0 . Define s 0 = A T b + c -A T (Ax 0 ), p 1 = s 0 . for k = 1, 2, . . . do \alpha k = \| s k - 1 \| 2 /\| Ap k \| 2 x k = x k - 1 + \alpha k p k s k = s k - 1 -\alpha k A T (Ap k ) \beta k = \| s k \| 2 /\| s k - 1 \| 2 p k+1 = s k + \beta k p k end for

Comparison of CGLS\bfitc with iterative methods.

In this section, we compare the performance of CGLSc with the reference iterative methods. We first show its improved performance over CG on selected problems. 5.2.1. Solution accuracy. We first consider the numerical experiment corresponding to choice C1 with a = 0.5 , c = 10 - 1 rand(n, 1), and \kappa (A) = 10 5 . CG and CGLSc are compared in Figure 1, where we report the relative error \| x -\x k \| /\| x\| versus the number of iterations k. CG achieves an accuracy of order 10 - 7 , while the error in the solution computed by CGLSc is \kappa (A) times smaller.

We now consider a second numerical experiment based on the choice C2 with up = 0.5, dw = 10 - \sanseig , c = 10 - 14 rand(n, 1), and \kappa (A) = 5 \times 10 7 , respectively. The gap in the results is even larger: CGLSc finds an accurate solution, while CG does not solve the problem at all; see Figure 2.

We finally compare the two iterative methods plus MINRES on the synthetic set of matrices \scrP , where c is chosen as \= c rand(n, 1) for different values of \= c. We report in Figure 3 the performance profile corresponding to these simulations. MINRES has been applied to (1.1) for the two choices \xi = 1 and \xi = \xi \ast = 1 \surd 2 \sigma min (A) [START_REF] Bj\ | orck, Pivoting and stability in the augmented system method[END_REF]. It is evident that a good scaling in (1.1) is beneficial for MINRES, but we also need to take into account that the computation of the optimal scaling parameter may be expensive. Clearly, CGLSc performs much better than CG and both versions of MINRES.

Forward error bounds.

In this section, we wish to compare the classical analysis for which the condition number of (ENE) is \kappa (A) 2 and the backward error for a computed solution \x is \| A T A\x -A T b -c\| /(\| A\| 2 \| \x\| ), with the structured analysis for which the relative condition number is given by \kappa S in (3.5) and the relative (linearized) backward error is \= \eta r (\x) := \= \eta (\x, 1, 1)/\| (A, b, c)\| F , which is given in Lemma 3.5. For each analysis, the forward error \| x -\x\| /\| x\| is predicted by the product of the condition number times the corresponding backward error, so that the classical bound will be \Delta C = \kappa (A) 2 \| A T A\x -A T b -c\| /(\| A\| 2 \| \x\| ), and the structured one is \Delta S in (3.13).

In Table 2 we compare the two bounds with the forward error for different problems of the form C1 and C2, for which we report the condition number of A and the relative structured condition number \kappa S . For all tests, the proposed first-order estimate provides an accurate upper bound for the forward error. On the contrary, the classical analysis gives a rather satisfactory precision when \kappa S \sim \kappa (A) 2 , but it is too pessimistic in predicting the error in the case \kappa S \sim \kappa (A). In such cases the structured bound is much sharper than the standard bound. These results also show again that in general CGLSc performs better than CG. 

Norm of the residual.

In Figure 4, we consider for CGLSc the quantity \| r -r k \| /(\| A\| \| x\| ) that appears in (4.3) (with r = b -Ax and r k defined in Algorithm 4.2). We can deduce that the bound (4.2) holds for k large enough, as (4.3) is satisfied with c 1 = O(10); see Remark 4.2. This test corresponds to choice C1 with a = 2 and c = rand(n, 1), but the same behavior is observed in many other simulations.

Final comparison with direct methods.

Motivated by practical applications outlined in section 2, we have mainly focused on the design of iterative methods. However, it is also natural to consider direct methods for the solution of problem (ENE) that are known to be backward stable.

We consider two different methods: \bullet QR, which solves (1.1) with \xi = 1, employing the QR factorization of [A, b] [2, 6], as described in Theorem 5.1 below. \bullet AUG, which solves the augmented system (1.1) with \xi = \xi \ast using an LBL T factorization [START_REF] Bj\ | orck, Pivoting and stability in the augmented system method[END_REF]. We implement this method using the ldl MATLAB command. .

For any \xi \not = 0, the solution to (1.1) can be computed from

R T z = - c, Rx = (d 1 -z), r = Q \biggl[ z d 2 \biggr] .
We remark that the full orthogonal factor Q is required to compute r. Even if the QR factorization can be performed efficiently with Householder transformations, Table 3 Summary of direct and iterative methods. We report the label used for the method, the formulation of the problem the method is applied to, and a brief description of each method. 3. The optimality measure considered is the relative solution accuracy \| x -\x\| /\| x\| with x the exact solution and \x the computed numerical solution.

Label

numerical experiments do not show a significant difference in the results using r = b -Ax.

All considered methods are summarized in Table 3. In Figure 5 we compare CGLSc with the direct methods on the same set of matrices used for the performance profile of Figure 3. Even if AUG and QR remain slightly more robust and more efficient, the performance of the proposed iterative method is really close to that of the two direct backward stable methods. The performance profile shows indeed that in about 70\% of the problems the difference in the solution accuracy is at most one digit and that in all cases it is at most three digits. 6. Conclusions. We considered both theoretical and practical aspects related to the solution of linear systems of the form (ENE). First, we studied the structured condition number of the system and proposed a related explicit formula for its computation. Then, we considered the numerical solution of (ENE). We found that the same issues that degrade the performance of the CG method on the normal equations also arise in this setting. This guided us in the development of a robust iterative method for solving (ENE), which has been validated numerically. From the numeri-cal experiments, we can draw the following conclusions. The proposed method shows better performance than standard iterative methods in terms of solution accuracy. The error bounds proposed, based on structured condition numbers of the problems, are better able to predict forward errors than classical bounds from linear system theory. Finally, the solution accuracy achieved by the proposed method is comparable to that provided by stable direct methods.
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 1 Fig. 1. \kappa (A) = 10 5 . Relative error \| x -\x k \| /\| x\| between the exact solution x and the computed solution \x k at iteration k for CG and CGLSc.
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 2 Fig. 2. \kappa (A) = 5 \times 10 7 . Relative error \| x -\x k \| /\| x\| between the exact solution x and the computed solution \x k at iteration k for CG and CGLSc.
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 3 Fig.3. Performance profile in logarithmic scale of CG, CGLSc, and MINRES on the synthetic set of matrices \scrP . MINRES is applied to (1.1) with \xi = 1 and \xi = \xi \ast . The optimality measure considered is the relative solution accuracy \| x -\x\| /\| x\| with x the exact solution and \x the computed numerical solution.
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 4 Fig. 4. CGLSc, choice C1 with a = 2 and c = \sansr \sansa \sansn \sansd (\sansn , \sansone ). \| r -r k \| /(\| A\| \| x\| ) with r = b -Ax and r k the recurred residual defined in Algorithm 4.2 versus iteration index k with machine precision \epsilon \approx 10 - 16 .
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 5 Fig. 5. Performance profile in logarithmic scale on the synthetic set of matrices \scrP considering CGLSc and the direct methods in Table3. The optimality measure considered is the relative solution accuracy \| x -\x\| /\| x\| with x the exact solution and \x the computed numerical solution.
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				\surd 6\| A \dagger \| ,
	so that	\kappa S \leq	\surd 6\| A \dagger \| \sqrt{} \| A\| 2 F + \| c\| 2 \leq	\sqrt{} 6(n + 1)\kappa (A).

  1 , \theta 2 ) = := [I n \otimes \r T -A T (\x \otimes I m ), \theta - 1 1 A T , \theta - 1 2 I n ].Moreover, assume that \r \not = 0. If 4\eta 1 \| J \dagger \| \eta (\x, \theta 1 , \theta 2 ) \leq 1, then

		2 1 + \surd	2	\= \eta (\x, \theta 1 , \theta 2 ) \leq \eta (\x, \theta 1 , \theta 2 ) \leq 2 \= \eta (\x, \theta 1 , \theta 2 ),
	where \eta 1 =	\sqrt{} \theta - 2 1 + \theta - 2 2 + \| \x\| 2 .
	Proof. The first assertion follows from [24, section 2]. Simply adding the term
	corresponding to c in the linearization leads to
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= \| J \dagger h(A, b, c, \x)\| with J

Table 1

 1 Description of the synthetic test problems considered in Table2. The free parameters in choices C1 and C2 are specified. In particular, in the second column if a single scalar is given then it is the value of a (choice C1); if a couple is given these are the values of \sansd \sansw and \sansu \sansp (choice C2). In the tests, c = \= c \cdot \sansr \sansa \sansn \sansd (\sansn , \sansone ) for the chosen constant \= c given in the last column.

	Pb.	a /(\sansd \sansw , \sansu \sansp )	\= c
	1	0.5	- 10 - 3
	2	1.5	10
	3	2	10 - 2
	4	2.5	10 - 7
	5	3	2
	6	(10 - 3 , 10 2 )	- 1
	7	(10, 10 4 )	10 - 1
	8	(10 - 6 , 10 - 2 ) 10 - 7
	9	(10 - 1 , 10 3 )	10 2
	10	(10 - 3 , 10 4 )	- 10 - 2

Table 2

 2 Comparison of the computed forward error and its estimates for the synthetic test problems listed in

Table 1 .

 1 We report the condition number \kappa (A), the structured condition number \kappa S , and for both CG and CGLSc the computed forward error (FE) \| x -\x\| /\| x\| , the standard bound \Delta C , and the structured estimate \Delta S .

					CG			CGLSc	
	Pb.	\kappa (A)	\kappa S	FE	\Delta C	\Delta S	FE	\Delta C	\Delta S

https://people.sc.fsu.edu/ \sim jburkardt/m src/kelley/kelley.html

http://stanford.edu/group/SOL/software/minres/

https://www.mathworks.com/help/matlab/ref/gallery.html

Acknowledgments. The authors wish to thank Nick Higham, Theo Mary, and the anonymous referees for the really useful comments and suggestions that helped to improve the current version of the manuscript.

The work of the authors was partially supported by the 3IA Artificial and Natural Intelligence Toulouse Institute, French ``Investing for the Future -PIA3"" program under grant ANR-19-PI3A-0004 and by the TOTAL R\&D under grant DS3416. ' eger, F-64000 Pau, France (Henri.