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Abstract 

Drug repurposing is a strategy employed to circumvent some of the bottlenecks involved in 

drug development, such as the cost and time needed for developing new molecular entities. 

Noroviruses cause recurrent epidemics and sporadic outbreaks of gastroenteritis associated with 

significant mortality and economic costs but no treatment is approved to date. Herein, a library of 

molecules previously used in man was screened to find compounds with anti-noroviral activity. 

Antiviral testing for four selected compounds against murine norovirus infection revealed that rutin 

has anti-murine norovirus activity in cell-based assays.  

  



Main text 

 The development cost of new drugs has exploded over the last decades and is now estimated 

to be at least $2 billion per drug [27]. At the same time, the number of new molecular entities 

approved by FDA has saturated to about 25 per year [25]. The success rate of new molecular entities 

is estimated to be 10% from Phase II to market, and 50% from Phase III to market. These values 

increase to 25% and 64% for repositioned drugs [36]. Therefore, an increased effort is being made 

towards drug repurposing [32, 40, 48], with demonstrated success in part due to the fact that 

different diseases can have related biological origin [36, 37, 46]. Since toxicology and pharmacokinetic 

data of repurposed molecules are already available, the development process is accelerated and the 

risk of failures is lowered.  

 Noroviruses (NoV) cause almost 80% of non-bacterial gastroenteritis in humans and spread 

quickly in confined environments, leading to 71,000 hospitalizations and 800 deaths every year in 

the USA [4, 20, 34, 41]. The impact is even greater in resource poor nations, where an estimated 

200,000 children under 5 years of age die every year from NoV infections [34]. However, no specific 

treatments to control or prevent norovirus illness are approved by the FDA to date. Norovirus vaccine 

efforts are in phase I clinical trials [45], however vaccines cannot be used in some at risk populations, 

such as immunocompromised patients [17]. Moreover, any effective vaccine design needs to 

overcome the large genetic diversity and rapid mutation rate of HuNoVs [26]. Thus, the development 

of low-molecular weight drugs with anti-norovirus activity has emerged as another strategy to treat 

or prevent norovirus infections. To date, three of the nine proteins encoded by the (+)-sense, single-

stranded RNA genome have been researched extensively for their potential as antiviral targets [3]: 

the capsid protein VP1 [12, 35], the protease [24, 30, 44], and the RNA-dependent RNA-polymerase 



(RdRp) [8, 38, 51]. In the absence of a robust HuNoV cell culture system [23], murine NoV (MNV) has 

proved to be an attractive and widely used surrogate virus for HuNoV, including for drug 

development efforts [39].  

 To identify molecules that potentially could be repurposed as a broad spectrum norovirus 

antiviral, we chose molecules that have already been used in humans and docked them in silico into 

the MNV RdRp protein (PDB ID: 3UPF [31]). The “ZINC In Man” library was downloaded in SMILES 

format (http://zinc.docking.org/browse/subsets/special) [21, 22]. The 11421 molecules were 

converted to 15990 3D structures with LigPrep [5] by preparing different stereoisomers or 

protonation states. This in silico library was first docked with Glide-SP on chain B of the MNV RdRp [2, 

13, 19]. The 2500 best molecules (i.e. with the lowest scores) were kept and docked with the extra-

precision mode (XP) of Glide [14] on the same grid. The 37 molecules, which can be represented as 90 

states (stereoisomers or tautomers), was next docked on the three chains of the MNV RdRp with the 

QM-Polarized Ligand Docking approach and the scores were averaged [1, 7]. This set of 90 molecules 

was also docked into the human norovirus RdRp (PDB ID: 1SH2 [33]). The docking outcome was then 

analyzed, and we removed the molecules which appeared not promising for testing as a potential 

drug due to their ubiquity in cells (for example NADH or sugars). Sixteen molecules with the lowest 

score for MNV RdRp and the accompanying scores for HuNoV RdRp are presented in Table 1.  

Based on the scores for murine and human NoV RdRp and the price of the molecules, four 

compounds were selected for experimental testing in cell culture: ZINC28639308 (AD132644), 

ZINC11726792 (Sinefungin), ZINC72206342 (Rutin), ZINC04216682 (Kasugamycin). The predicted 

dissociation constants of these molecules with the MNV RdRp are 1.4, 66, 78 and 588 nM, 

respectively. Rutin hydrate (Sigma, Cat. No. R5143) and kasugamycin hydrochloride from 

streptomyces kasugaensis (Sigma, Cat. No. K4013) were freshly prepared in DMSO as a 10 mM stock 

http://zinc.docking.org/browse/subsets/special


solution or in water as a 1 mM stock solution, respectively. Sinefungin (Sigma, Cat. No. S8559) and 

AD132644 (AnalytiCon Discovery, Cat. No. NP-005514) were dissolved in water as a 26.22 mM stock 

solution, or in DMSO as a 10 mM stock solution, respectively, and stored at 4oC. Since no reproducible 

HuNoV cell culture model was available [11, 23], we tested the antiviral activity of these compounds 

against MNV in the murine macrophage cell line RAW 267.4 (ATCC; Manassas, VA). Cells were 

maintained as described previously [47], and the plaque-purified MNV-1 clone (GV/MNV1/2002/USA) 

MNV-1.CW3 (referred herein as MNV-1) was used at passage 6. Our first goal was to determine the 

cellular toxicity of the selected compounds in RAW 264.7 cells using the WST-1 assay (Roche, San 

Francisco, CA), which measures mitochondrial dehydrogenase activity [16]. Concentrations that 

maintained cell viability at or above 80% were considered non-toxic. Concentrations equal or above 

100 M for rutin (Figure 1a), 0.5 M for kasugamycin (Figure 1b), 1 mM for sinefungin (Figure 1c), and 

5 M for AD132644 (Figure 1d) maintain cellular viability.  

In order to identify whether the selected drugs exhibited antiviral efficacy against NoV, RAW 

264.7 cells were infected with MNV-1 (MOI of 2.0) in the presence of rutin, kasugamycin, sinefungin, 

and AD132644 at previously determined non-toxic concentrations, or equal amounts of vehicle 

control (i.e., H2O or DMSO) (Figure 2). RAW 264.7 cells were plated at 5 x 105 per well in 12-well plates 

the day before. Infection occurred for 1 h on ice, after which the viral inoculum was removed by 

washing cells with ice-cold PBS three times before adding media containing one of the four drugs at 

indicated concentrations. Eight hours later, viral titers were determined by plaque assay as described 

previously [15]. A statistically significant difference between rutin and vehicle-treated cells was 

observed at 1 M and 100 M of drug (Figure 2a). However, no antiviral effect was observed at any of 

the concentrations tested for kasugamycin (Figure 2b), sinefungin (Figure 2c), and AD132644 (Figure 

2d). Taken together, these data suggest that rutin but not kasugamycin, sinefungin and AD132644 



have antiviral efficacy against MNV-1 in cell culture.  

Rutin is a flavonoid which belongs to the family of vitamin C2 and is found in many vegetables (olive, 

asparagus), fruits (raspberry, plum) or cereals (buckwheat) (http://phenol-

explorer.eu/contents/polyphenol/296). It is a compound with known antioxidant [49], anti-

inflammatory [18] and anti-cancer effects [9, 28] and some of its derivatives are commercialized 

under the name Venoruton. To get more insight on the mechanism of action of rutin, we performed 

RNA synthesis assays using recombinantly expressed and purified MNV-1 and GII.4 HuNoV RdRps [50]. 

Surprisingly, rutin exhibited no inhibitory activity against either RdRp at all concentrations tested up 

to 5 M (see Supporting Information).  In the same assay, benzodiathiadine, a potent non-nucleoside 

inhibitor of the HCV RdRp [10], inhibited RNA synthesis by the HCV RdRp at low micromolar 

concentrations (data not shown). To determine whether rutin acts as a prodrug, its activity was tested 

in a mammalian cell-based assay where transiently expressed RdRp stimulates retinoic acid-inducible 

gene I (RIG-I)-dependent reporter luciferase production via the beta interferon promoter [42]. Again 

no inhibition was observed at all concentrations tested (data shown in Supporting Information).  

Therefore, we next hypothesized that rutin may be targeting another viral protein. Recent 

studies have reported that rutin is efficient for the inhibition of enterovirus 3C protease [29], which is 

a picornavirus, the most closely related virus family to caliviruses. Thus, we docked rutin in the 

norovirus protease (PDB ID: 3UR6 [24]): the predicted Kd was found to be of 588 nM (docking score of 

-8.5). Therefore, we performed FRET-based rutin inhibition assays with the MNV-1 and GII.4 HuNoV 

proteases [6] at concentrations of up to 100 M. Unfortunately, no inhibition of protease activity by 

rutin was observed (data shown in Supporting Information).  

Taken together, the in vitro assays demonstrated that the antiviral activity of rutin is not 

mediated by the viral polymerase or protease, suggesting the antiviral activity is mediated by one or 



more of the remaining viral proteins and/or unknown cellular proteins. MNV encodes nine proteins, 

which all could be potential targets [43]. However, it is unlikely that rutin targets the major capsid 

protein VP1, as no similarities were observed between rutin and other known small molecules 

targeting the VP1 capsid protein (such as suramin, heparin, citrate or fucose analogs) [3]. Another 

potential explanation is that rutin is a prodrug of the active compound, for example via its sugar part 

(rutinose), which is synthesized in the cell. Moreover, amongst the non-nucleoside analog RdRp 

inhibitors are styrylchromones [3], which share with rutin a chromone moiety. Styrylchromones [38] 

are capable of inhibiting MNV replication in cell culture through an unknown mechanism, but which is 

hypothesized to be via targeting the RdRp. However, since the cell-based RdRp assay tests 

demonstrated no inhibition, it is unlikely that rutin acts as a prodrug on the MNV RdRp. At this point, 

we cannot rule out that rutin interacts with one of the remaining six viral proteins NS1-5, VF1 or VP2.  

Time of addition experiments were performed and results are presented in Figure 3. We observed 

that no differences are found when 100M of rutin are added one hour before infection, at the time 

of infection, one hour or four hours later. However, when 1M of rutin is added, the % of virus titer 

drops from 76 to 39 depending if addition is made before infection or four hours after. These data 

lead us to hypothesize that rutin may act at the level of replication or later in the life cycle, but not at 

the stage of adhesion or internalization. Alternatively, the antiviral activity of rutin may be mediated 

through interaction with one or more cellular proteins needed during infection. This appears to be the 

most likely explanation as rutin inhibited MNV infection at a concentration of 1 M (Figure 2a), a 

concentration far below the cytotoxic concentration of rutin, 100 M (Figure 1a). However, 

identification of targets will require additional studies in the future. 

 In summary, we report that rutin, a flavonoid derivative, has antiviral efficacy against MNV-1 

in cell culture. No inhibition was observed in in vitro assays with the viral polymerase or protease. The 



exact mechanism of action of rutin that leads to antiviral effects remains to be identified; nonetheless, 

we hypothesize that rutin may act at the level of replication or later in the life cycle. 
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Figure Legends: 

 

Figure 1. Cell viability following drug treatment. Cells were treated for 8 hours with indicated 

concentrations of (a) rutin; (b) kasugamycin; (c) sinefungin; (d) AD132644. Cells treated with vehicle 

were set to 100%. Drug concentrations resulting in cell viability above 80% were considered safe to 

use and are indicated by the dashed line. Data are presented as means ± SE of three independent 

experiments. 

  



 

 Figure 2. Antiviral efficacy of predicted RdRp inhibitors. Raw 264.7 cells were infected with MNV-1 

(MOI of 2.0) for 8 hours in the presence of indicated concentrations of (a) rutin; (b) kasugamycin; (c) 

sinefungin; (d) AD132644. Viral titers were determined by plaque assay. Infected cells in the presence 

of the vehicle control were set to 100%. There is a statistically significant difference between the rutin 

and vehicle control group (P<0.05, t test), but no significant difference between kasugamycin, 

sinefungin and AD132644 treatment and control groups. Data are presented as means ± SE of three 

independent experiments.  

  



Table 1. Select candidates with highest docking scoresa after computational screening. 

ZINC ID 
MNV 

Scoreb 

HNV 

Scorec 

Price 

($)/mol 
Popular name 

ZINC28639308 -12.1 -10.5 38 AD132644 

ZINC11726792 -9.8 -9.6 17 Sinefungin 

ZINC72206342 -9.7 -9.2 0.001 Rutin 

ZINC08143614 -9.7 -7.2 1.32 Ouabain 

ZINC04216676 -9.1 -8.4 not avail. Kaempferitrin 

ZINC26143524 -9.1 -6.8 163 Tezosentan 

ZINC33359852 -8.9 -8.1 27 Lymecycline 

ZINC04097715 -8.8 -9.9 4 Antirrhinin 

ZINC04216682 -8.5 -10.4 0.01 Kasugamycin 

ZINC03869383 -8.4 -8.9 1 (none) 

ZINC01902827 -8.1 -9.1 15 Fidexaban 

ZINC01910616 -8.1 -8.6 5 Dabigatran 

ZINC03993831 -7.9 -8.7 81 Tomopenem 

ZINC08214483 -7.9 -10.9 0.03 Amikacin 

ZINC53684226 -7.4 -8.9 2 APAD 

ZINC04557129 -7.3 -8.2 7 (none) 

a Docking scores are estimations of the binding free energy in kcal/mol. 

b Mean docking scores for murine norovirus (MNV) RdRp between the three chains of PDB 3UPF.  

c Docking scores for human norovirus (HNV) Norwalk virus RdRp from PDB 1SH2.  
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