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Abstract 

Viruses constantly face the pressure of antibody, either from innate immune response of the host 

or from administered antibody for treatment. We explore the interplay between the biophysical 

properties of viral proteins and the population and demographic variables in the viral escape. The 

demographic and population genetics aspect of the viral escape have been explored before, 

however one important assumption was the a priori distribution of fitness effects (DFE). Here, 

we relax this assumption by instead considering a realistic biophysics-based genotype-phenotype 

relationship for RNA viruses escaping antibody stress. In this model the DFE is itself an 

evolvable property that depends on the genetic background (epistasis) and the distribution of 

biophysical effects of mutations, which is informed by biochemical experiments and theoretical 

calculations in protein engineering. We quantitatively explore in silico the viability of viral 

populations under antibody pressure and derive the phase diagram that define the fate of the 

virus population (extinction or escape from stress) in a range of viral mutation rates and antibody 

concentrations. We find that viruses are most resistant to stress at an optimal mutation rate 

(OMR) determined by the competition between supply of beneficial mutation to facilitate escape 

from stressors and lethal mutagenesis caused by excess of destabilizing mutations. We then show 

the quantitative dependence of the OMR on genome length and viral burst size. We also 

recapitulate the experimental observation that viruses with longer genomes have smaller 

mutation rate per nucleotide.  

 

Keywords: Viral evolution; optimal mutation rate; neutralizing antibody; folding stability. 

Statement: This work describes the fate of virus under antibody pressure by combining 

population dynamics simulation and biophysical calculations of mutational effects. We show that 
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there exists a mutation rate that allows the virus to escape a maximum amount of stress. This 

optimal mutation rate is a balance between supplying beneficial mutation to facilitate escape 

from stressors and lethal mutagenesis caused by excess of destabilizing mutations that prevent 

viral proteins from folding into their native conformation.  
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Introduction 

Viruses face the stress of various environments1. It has been hypothesized that an adaptive 

strategy among viral populations to fight this pressure is to modulate their mutation rates2 and 

previous works have studied the existence of an optimal mutation rate for viruses3. An upper 

bound to the rate of mutation exists due to lethal mutagenesis whereby mutational load leads to a 

population decline4-6. Lethal mutagenesis is the presumed mode of action of some anti-retroviral 

drugs, such as ribavirin, that increase the mutation rate to lethal levels7,8. A lower bound for 

mutation rate has been hypothesized for several reasons. First, there is the requirement for an 

elevated mutation rate to increase the supply of beneficial mutations. These mutations could help 

the virus to adapt to the changing environmental stress that can come from the immune response 

of the host cell. This scenario is supported by the observed hypermutability of bacteria isolated 

from natural populations9,10. Another potential explanation of the lower bound on the mutation 

rate is the high cost of maintaining replication fidelity2,11,12, although such cost remains to be 

experimentally demonstrated. The existence of an optimal mutation rate due to the balance for 

the requirement for beneficial mutations and the avoidance of the lethal mutagenesis have been 

postulated in the past3. There have been several theoretical models on how such an optimal 

mutation rate could arise3,12-15. However, these models are largely phenomenological and lack 

molecular realism. Where this balance occurs and what is the underlying molecular (or cellular) 

mechanism is still being debated both from theoretical and experimental standpoints because the 

structure of the fitness landscape, and consequently the distribution of fitness effects (DFE), is 

unclear. Assuming the DFE a priori is challenging because the DFE itself can change during 

evolution, as demonstrated in experiments16 and in forward evolutionary simulations on 

biophysics-based fitness landscapes (in the context of protein folding and binding landscape17,18 

or in the context of transcription factor binding 19). 
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 We present here an alternative approach by projecting the fitness landscape on the 

biophysical properties of the capsid. There is experimental support on what the mapping to 

fitness and protein properties could be in the context of viruses20. The biophysics-based fitness 

landscape has also been used to explain the measured DFE among viruses21 and evolution of 

mutation rates18,22. More importantly, the distribution of changes induced by random mutations 

on key biophysical properties such as folding stability are well-defined and established23,24. Thus, 

the DFE does not need to be an assumption in the evolutionary model. Several groups including 

our own recently showed that a biophysical approach could account for the influences of 

mutations on proteins and could have an effect on the distribution of fitness effects and the 

dynamics of adaptation5,6,17,21,25,26. Our goal here is to provide the simplest model, although 

sophisticated enough at the level of biophysics, to determine the underlying molecular 

mechanism to investigate the contribution of biophysics to evolution. We investigate in this 

report the balance between two competing forces (the lethal mutagenesis and the maintenance of 

supply of beneficial mutations) during the evolution of viral populations under antibody stress by 

providing biophysical details into the molecular effects of mutations.  

Methods 

Biophysical model of viral evolution 

To determine the interplay between the viral mutation rate, its demography, and the biophysical 

properties of viral proteins, we have decided to mimic in silico a typical “serial passaging” 

experiment (Figure 1-a). During these experiments, a fraction of an initial viral stock is added to 

a medium containing cells and other stressors (e.g. drugs or antibodies). The virus can then infect 

the cells under an external pressure (the drugs or the antibodies) and new viral particles are 

released, giving rise to a new stock. These steps constitute a single passage. After multiple 
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passages, the virus titer can then be measured or the virus can be sequenced and compared to the 

initial viral stock. Our primary concern here is to model experimental evolution of viruses that 

use serial passaging; a premise is that the results from these kinds of studies are applicable to the 

evolution of natural populations. What is the appropriate demographic description of natural 

viral evolution can be debated. There is a claim that periodic bottlenecking resembles the inter-

host infection, whereby only a few viral particles are transmitted between hosts.  

We start the computational model with a stock of N viral particles, from which 104 

particles are randomly chosen to infect cells according to their fitness (sampling size)27. The 

fitness of a virus is considered to be proportional to its probability of infection Pinf which itself is 

assumed to be a function of the folding stability of all viral proteins and of the affinity to the 

antibody. Thus, this model applies to lytic cycles but not to lysogenic cycles where the 

integration of the viral genome in the host genome would require other parameters in the fitness 

function. We also assume that the multiplicity of infection (MOI) is equal to 1, meaning that 

each viral particle can encounter at least one host cell. If a cell is infected, M new particles are 

released. In our definition, the “burst size” M is the number of progenies after a successful 

infection of a mammalian cell. During replication, each new particle can be mutated at a 

specified per genome rate .  

In our model, the fitness is expressed as the probability of infecting a cell (Pinf). We 

assumed that for a viral particle to infect a cell, the viral proteins must be folded (to be 

functional) and be free from the neutralizing antibody (while all proteins encoded by the viral 

genome must be folded, only one is considered to bind to the antibody). Considering a 

thermodynamic equilibrium between the capsid, the antibody and the complex (with an 
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equilibrium constant of Kd), one can write if p viral proteins are encoded by the viral genome 

(with G=Gfolded-Gunfolded and =1/RT): 

Pinf =
ebDG1
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assuming a two-state folding thermodynamics28. Here we distinguish between epitope-containing 

capsid protein, which we denote as the first viral protein, and the rest of viral proteins which 

have to be folded to function but do not interact with antibody. The first factor represents the 

probability that the epitope-containing capsid protein is folded and not sequestered by the 

antibody Ab. Assuming that the antibody can bind only to the folded capsid protein, there are 

three distinct species: folded and free capsid, folded and bound capsid, and unfolded capsid. 

Thus, the fraction of folded and bound is determined by the ratio of the Boltzmann probability of 

being folded and the total probability of being in any of the three states. The second factor is the 

probability that the remaining p-1 viral proteins are in their native (functional) states under 

thermodynamic equilibrium. Thus, we do not rely on an assumption regarding the distribution of 

fitness effects as it has often been done before. Instead, we rely on a biophysical model of the 

fitness, for which data can be derived from theory or experiments. Here, the viral fitness depends 

on two biophysical traits of the viral proteins –the Gibbs free energy of folding of each protein 

(G) and the binding constant of the capsid protein to the antibody (Kd)– and on the external 

pressure (the concentration of antibody in the medium [Ab]). 

 In this model, we don’t explicitly consider the capsid assembly, which would require 

additional assumptions on the strength of the interaction between individual capsid domains. The 

equation also assumes that the antibody could target only one of the capsid domains. The 
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motivation for the latter assumption is that each antibody is large and it probably occludes other 

antibodies from binding. 

Biophysical effects of mutations 

When a mutation occurs in the viral genome, we estimate its effect on the folding Gibbs free 

energy in the following way: Gmutant = Gwildtype + G. The free energy of folding of the wild 

type (Gwildtype) for all proteins is set initially to -5.0 kcal/mol, which is close to the average 

folding stability of real proteins29. This initial choice is not relevant to the overall results because 

the population will equilibrate to the folding stability dictated by mutation-selection balance30. 

The biophysical effect G is drawn from a normal distribution with a mean value of 

DDGmean = -0.13 DGmean( )+0.23 kcal/mol and a standard deviation of Gsd = 1.7 kcal/mol (ref. 

6,23). These values are derived from the distribution of experimentally measured G and G 

values collated in the ProTherm database29,31. The linear dependence between Gmean and G is 

also derived from the ProTherm database31. It models the sequence depletion whereby arising 

mutations are on average more destabilizing when the wild-type protein is more stable, because 

there are fewer sequences that could lead to stabilization. That is, the more stable the protein is, 

the more likely it is to find destabilizing mutations32. 

Whereas all mutations can affect the free energy of folding, it is not the case for the 

binding affinity. The average number fraction of residues that participate in protein-protein 

interactions is approximately ~15% according to a bioinformatics study33. Thus, we assumed that 

the probability that a mutation hits a residue belonging to the epitope of the viral capsid epitope- 

containing protein is 0.15. We also assumed that the perturbation of the protein-protein 

interaction is statistically analogous to mutational effect on the folding Gibbs free energy (i.e. the 

distribution of Gbinding is the same as the one for Gfolding): 
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Kd,mutant = Kd,wildtype exp bDDGbinding( )     (2) 

This equation reflects the assumption that the energetics that drive protein-protein interaction are 

largely similar to energetics that drive protein folding. Thus, the central part of our algorithm is 

an assumption regarding the distribution of biophysical effects of mutations. The average 

influence of G and of Kd on Pinf is shown in Supporting Information (see Figure S1).  

Model system 

Our model is not explicitly sequence-dependent because the effects of mutations are inferred 

from the distributions of Gfolding and Gbinding, but we account for the number of proteins and 

the genome length. We have used values for the murine norovirus for which three proteins are 

important during infection: VP1 (541 amino-acids), VP2 (208 amino-acids) and VPg (124 amino-

acids)34. The remaining proteins are only expressed once the virus has penetrated into the cell 

and were not considered in the model (thus, a value of p=3 was used, see Eq. 1). Realistic values 

of burst size for RNA viruses are in the range of 50 to ~1700 (ref. 35); however, to save 

computational time a value of M=100 was used unless otherwise noted. 

Results 

Evolution under antibody stressor 

We first show the dynamics of the viral population aimed at mimicking the serial passaging 

experiments (Figure S2). Starting with 105 viral particles and no external pressure ([Ab]=0), the 

viral count first increases and quickly equilibrates. Since we start the simulations with very 

stable proteins (Gfolding=-5 kcal/mol), Pinf is close to 1 and all cells are infected; thus, the viral 

stock quickly increases. However, the dynamics of this initial equilibration is irrelevant because 

the following results are a consequence of the evolutionary dynamics already under equilibrium. 
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After some time, the population starts migrating towards mutation-selection balance by acquiring 

deleterious mutations and stays stable for the 100 first passages (Figure S2). Upon addition of 

antibody (at passage 101), the viral count dramatically drops, but then some particles find 

beneficial mutations that eventually lead to viral escape from antibody. After around 10 

passages, the viral count reaches again a new steady state (Figure S2). When the external 

antibody pressure is too high, the population goes extinct (see Figure 2). We consider the 

population extinct when the titer is below the “bottleneck” count, which is the number of 

particles passaged to the next generation (104 particles). For a burst size of M=100, a population 

goes extinct when less than 100 cells are infected since it will give rise to less than 104 released 

virus particles. Expectedly, as the concentration of antibody is increased, the viral titer keeps 

dropping and equilibrating. However, the cycle of administration of the antibody affects the 

population dynamics of the viruses. Progressive increase of the antibody concentration allows 

the population to adapt before being stressed by another increase of the amount of antibody. 

Thus the population can tolerate higher antibody concentration. 

The novelty of our model lies in the non-fixed distribution of fitness effects. Thus, the 

distribution of the selection coefficient (defined as the probability of infection before and after 

mutation, s= Pinf

after - Pinf

before ) at different passages is different. We present in Figure 2-b the 

distribution of selection coefficient for the last passage with [Ab]=103, the first passage with 

[Ab]=106, and the last passage with [Ab]=106 from Figure 2-a. When the concentration of 

antibody increases (from purple pentagons to blue triangles), the system is no more equilibrated. 

Thus, the fraction of lethal mutations decreases (see insert on the left) and the fraction of 

beneficial mutations increases (see insert on the right). After 20 passages without changing the 

environment (from blue triangles to red circles), the system had enough opportunity to adapt and 
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the distribution of selection coefficient recovers its shape prior to the subsequent change of 

antibody concentration. 

To generalize this result, we explored the onset of extinction for various combinations of 

mutation rate and antibody concentration. For a given value of the mutation rate , we 

determined the highest concentration of antibody that still leads to viral escape. First, we 

performed evolutionary simulations to allow the population to reach mutation-selection balance 

at the chosen mutation rate but at zero antibody concentration. This equilibration phase was 

performed for 20 passages since we observed that this value is enough to equilibrate the virus 

stock (see for example Figure S2 where it can be seen that the steady-state has been reached at 

passage 20). Then, we stressed the population at the chosen antibody concentration. Extinction or 

survival is evaluated after 5 passages; we found that 5 passages are enough to observe the 

survival of a viral population at a given antibody concentration. If the virus has escaped, the viral 

stock increases at each step and there is no need to go beyond 5 passages. 

The value of antibody concentration at which the virus escapes is an indication of how 

much pressure it can endure and still survive. By varying the mutation rate , we determined the 

phase diagram outlining the conditions at which we observed extinction and escape of the virus 

under antibody stress (see Figure 3). Under antibody pressure, increasing the mutation rate 

increases the likelihood of acquiring mutations that lower the binding free energy of the protein-

antibody interaction, and then lead to escape. However, at sufficiently high mutation rates, 

further increase in mutation rate lead to lethal mutagenesis, because arising mutations decrease 

folding stability, and subsequently fitness by lowering the fraction of folded proteins Pf as given 

by Eq.1 (ref. 5,6,17,21,25). Under very low mutation rate, proteins are more stable, but the chance of 

acquiring escape mutation is decreased. Thus, there is a balance between lethal mutagenesis and 
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maintenance of supply of escape mutations which is quantified by the phase diagram in Figure 3. 

We find that under our model (which provides biophysically realistic estimates of the molecular 

effects of mutations) there exists a mutation rate at which virus can sustain highest stress. This 

mutation rate for an RNA virus in our model is found to be around log10(g)=0.92 or 8.3 

mutations per genome per replication (for a burst size of M=100). This value is somewhat above 

the range of experimentally observed mutation rates for RNA virus (see Table S1 in Supporting 

Information and Discussion below). It must be pointed out that the existence of a mutation rate 

allowing a maximal amount of stress does not prove that the population can reach this mutation 

rate, neither that this mutation rate is always optimal in a broad range of conditions; such a study 

will be the subject of a following paper. The lethal mutagenesis threshold is calculated to be 

log10(g)=1.69 or 48.8 mutations per genome per replication, which is higher than previously 

reported maximum value of lethal mutagenesis5,6,21: one must note that in these previous models, 

the burst size corresponding to conservative or semi-conservative replication was fixed at M=2. 

Thus, the lethal mutagenesis occurs here at a higher value of the mutation rate due to much 

greater burst size compared to previous models.  

Influence of the genome size 

We next determined the effect of the genome size on the optimal mutation rate. In addition to the 

norovirus model with three genes detailed previously, we also performed simulations with only 

one of the genes. The phase diagrams of the four models are presented in Supporting Information 

(Figure S3). The peak in the phase diagram with respect to the mutation rate per genome is 

almost constant; however, for the mutation rate per nucleotide, an influence of the size of the 

genome is observed. For 124 amino acids, it is found to be log10(n)=-2.0; for 208 amino acids, it 

is log10(n)=-1.75; for 541 amino acids, it is log10(n)=-2.4; finally for 873 amino acids, it is 
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log10(n)=-2.5. Thus, it appears that the longer the genome is, the lower the optimal mutation 

rate. This result reproduces experimental trend, as shown in Figure 4 where we report 

experimentally observed (ref. 35 and Table S1) and computed mutation rates allowing maximal 

stress for RNA virus. Two viruses reported in reference 35 are excluded in Table S1 and Figure 4 

because these are bacteriophages and not interact with antibody. Nonetheless, there is an 

equivalent pressure for bacteriophages that manifests as an evolutionary “arms race model” 36,37. 

Thus, we envision that there is also an optimal mutation rate for these systems, but the 

underlying biophysics (such as protein-DNA interaction) could be different. Note that the longest 

genome we simulated is 873 amino-acids long, and we did not extend our study to longer 

genomes because of computational cost to perform simulations with longer genomes. 

Influence of the burst size 

Larger burst sizes increase the number of viral particles, which effectively lowers the chance of 

extinction. Thus, we also explored the effect of burst size on the phase diagram (Figure 5 and 

Figure S4). At higher burst sizes, the onset of lethal mutagenesis is delayed and the viral 

population is able to tolerate higher concentration of antibody: when a single viral particle gives 

rise to more progeny, the chances to find a stabilizing mutation increase, and a higher maximal 

mutation rate for the lethal mutagenesis is achieved. Interestingly, the effect of burst size on the 

onset of lethal mutagenesis (from 12.0 to 48.8 mutations per genome replication) is greater than 

its effect on the optimal mutation rate (Figure 5). Indeed, it appears that the burst size (M) has a 

small influence on the value of this mutation rate (g) –ranging from 4.2 to 8.3 mutations per 

genome replication.  
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Discussion and Conclusion 

We presented here a simple biophysics-based model of dynamic of viral evolution that 

quantitatively explores the balance between lethal mutagenesis and the requirement for 

beneficial mutations that allows escape from antibody. Contrary to previous models of viral 

evolution that a priori assume a fixed distribution of fitness effects of mutations4,38, we instead 

base our assumptions on the biophysical genotype-phenotype relationship and distribution of 

biophysical effects of mutations. As a consequence, the distribution of selection coefficient 

depends on the status of the system (is it equilibrated or not) and on the environment, reflecting 

epistasis in the viral fitness landscape. The distribution of biophysical effects can be explored 

computationally23 and experimentally29 for some proteins. First, using this biophysics-based 

model of evolution, we find that the survival and viability of the viral population under antibody 

stress is optimal between 4.2 and 8.3 mutations per genome per replication (for a burst size 

between 5 and 100). This value can indeed be explained as a balance between lowering the 

binding affinity with the antibody and keeping the viral proteins stable enough. At low mutation 

rate, there is only a small likelihood of finding a mutation that could strongly perturb the binding 

of the capsid protein to the antibody (strongly beneficial mutation). On the other hand, when the 

mutation rate is too high, some mutations could perturb the binding of the capsid to the antibody 

while other mutations could compromise the folding stability of any viral protein. 

The mutation rate of RNA virus is commonly estimated to be approximately 1 mutation 

per genome per replication39,40. We report in Table S1 the experimentally observed mutation 

rates of some RNA viruses35. The average mutation rate per genome for these RNA viruses is 

g=0.37, ranging from 0.024 to 1.2 mutations per genome per replication. Our model of viral 

evolution is simple and does not account for other biological factors that could influence 
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mutation rates or their fitness effects (for example, cellular quality control response of host cells, 

the cost of protein production, selection for optimal codon or secondary RNA structures). Thus, 

while our model predicts a mutation rate that allows a maximal amount of stress, the exact values 

of these mutation rates may differ from the experimental values of actual viral mutation rates 

given in Table S1. There is a broad (approximately 2 orders of magnitude) variation in the 

measured and estimated values of mutation rates (Table S1)35, presumably due to confounding 

factors such as effective population and genome length. Indeed, in agreement with earlier 

experimental works35,41, we found that the mutation rate per nucleotide that allows a maximal 

amount of stress decreases when the genome length increases (Figure 4). We also showed the 

dependence of the mutation rate which allows maximal stress on burst size (Figure 5, see also 

Figure S4). The dependence of the optimal mutation rate on burst size is due to the increased 

likelihood at higher burst sizes of finding a variant that acquired a beneficial mutation. In a 

similar vein, the higher burst size results in an effective increase in fitness because of higher 

number of progenies. 

 Under mutation-selection balance, the evolution against the antibody should proceed 

towards the near-neutral regime30. In the review article of Wang & Bull42, they pointed out that 

fitness has three components: burst size, adsorption rate at which viruses could interact with 

cells, and lysis time (time interval between infect and burst). In our model, we account for 

adsorption rate (which is proportional to the probability of infection) and burst size, but not lysis 

time. Our main goal here is to immediately connect to biophysics, thus we mapped the fitness to 

the adsorption rate (Pinf). A possible compensation between lysis time and burst size will require 

additional assumptions42, which will be the subject of future works. It must also be pointed out 

that the current report assumes monoclonal antibodies. A very interesting extension of the study 
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will be to include other critical players: host cells, viruses, and B-cells in the germinal centers43. 

Indeed, a biophysics-based evolutionary model of the immune response could uncover its 

physical basis. In the future, other stressors could also be considered in the model presented here 

(such as inhibitors and pH) because effects of mutations on these quantities can be estimated. 
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Table S1: Experimentally observed mutation rates and burst size of some RNA viruses. 

Figure S1. Influence of biophysical parameters G and Kd on Pinf.. 
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Figure S4. Influence of the burst size (M) on the phase diagram. 
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Figures 

 

 

Figure 1. Experimental and computational methodologies to study evolution of viral escape. The 

computational workflow starts with a stock of N viral particles (with explicit sequences) from 

which 104 are randomly chosen and infect cells according to fitness (which is assumed to map to 

the probability of infection Pinf). If the cell is infected, M new particles are released and each one 

of them is mutated according to a mutation rate , forming a new stock of particles. (a) 

Experimental workflow. (b) Computational Workflow. 
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Figure 2. Viral evolution under an increasing pressure. In panel (a), the viral count first increases 

because we start the simulations with very stable proteins and Pinf is close to 1. The viral count 

then quickly equilibrates. When antibody is “added”, the viral count dramatically drops under the 

pressure. As the concentration of antibody is increased, the viral titer keeps dropping and 

equilibrating. When [Ab] is too high, the viral count drops to the extinction. In panel (b), we can 

observe that the distribution of selection coefficient is not fixed depending on the conditions (see 

text for details). (a) Trajectory of viral evolution with an increasing pressure of [Ab]=103. (b) 

Evolution of the distribution of selection coefficient. 
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Figure 3. Phase diagram of virus survival under antibody stressor. At each mutation rate, the 

highest amount of antibody that still leads to viral escape after five passages is determined, 

indicating how much pressure the virus can endure and still survive. The optimal mutation rate 

for an RNA virus is found to be around log10(g)=0.92 or 8.3 mutations per genome per 

replication. 
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Figure 4. Influence of the genome length on the viral mutation rate. Computed mutation rates 

with maximal stress (our model) are in blue open-circle whereas experimentally observed 

mutation rates are in purple filled-circle. 
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Figure 5. Influence of the burst size on the optimal mutation rate (blue open-triangle) and on the 

lethal mutagenesis threshold (purple filled-square). The lethal mutagenesis threshold is defined 

as the value for which the virus cannot perform 20 passages of equilibration with [Ab]=0. 

 

 


