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Abstract: We present the third generation of our scoring function for the prediction of protein-

ligand binding free energy. This function is now a hybrid between a knowledge-based potential 

and an empirical function. We constructed a diversified set of ~1000 complexes from the 

PDBBinding-CN database for the training of the function and we show that this number of 

complexes generate enough data to build the potential. The occurrence of 420 different types of 

atomic pair wise interactions is computed in up to five different ranges of distances to derive the 

knowledge-based part. All parameters were optimized and we were able to considerably improve 

the accuracy of the scoring function with a Pearson correlation coefficient against experimental 

binding free energies of up to 0.57, which ranks our new scoring function as one of the best 

currently available and the second-best in term of standard deviation (SD=1.68). The function is 

then further improved by inclusion of different terms taking into account repulsion and loss of 

entropy upon binging, and we show it is capable of recovering native binding pose up to 80% of 

times. All programs, tools and protein sets are released in Supporting Information or as open-

source programs.  
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Introduction 

Predicting the free energy of binding between a protein and a ligand is a crucial part of 

computational structure-based drug design. In the context of the development of a new de novo 

drug design tool called OpenGrowth1 which uses a combinatorial approach to fragment-based 

design, there was a need to construct a new accurate function that would be also fast and simple. 

Indeed, during the development of a scoring function, one usually wants to increase the balance 

between accuracy and speed, and compromises have to be found. For example, for a use in high-

throughput virtual screening, speed is the prime objective and accuracy is often lost during the 

development. As a consequence, results obtained after docking large libraries may be inaccurate 

and always need to be refined. Moreover, the actual mathematical form of a scoring function is 

also of a crucial importance: if a given function has a complicated form and is hard to implement 

in various programs, it is likely that it will not be used. This point is often neglected in the literature, 

but we consider that a new function must also use a form allowing an easy implementation or be 

released as an open-source. 

Scoring functions in the literature can be roughly divided into three categories: physical-

based, empirical, and knowledge-based2 (even though this classification is not rigid and one may 

add a descriptor-based category3). Each of these scoring methods try in some way to approximate 

the binding free energy whose explicit form is unknown. However, they usually contain parameters 

accounting for the complex association in vacuum and for the solvation/desolvation process. 

Physical-based scoring functions account for van der Waals and electrostatic interactions, and 

other terms can be added to take into account hydrogen bonds or solvation effects (GoldScore is 

such a function4). They often attempt to integrate high level of theory in the predictions (such as 

quantum mechanics) and they can also take advantage of the progress of modern force fields (such 
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as CHARMM, Amber, OPLS) or solvation models. However, a limited success has been achieved 

so far by using this kind of approach5. The main reason of this failure is the lack of description of 

the entropic part of the binding process. Another reason is that it may be difficult to obtain reliable 

parameters when there are not enough experimental data available. 

The empirical or regression-based scoring functions compute the free energy of binding by 

summing terms accounting for different energy factors such as hydrogen bond, metal contact or 

buried surface area for example. Each energetical contribution is fixed and is coming from a 

multiple linear regression analysis done over a set of complexes with known binding affinity, and 

is then multiplied by a term taking into account geometrical information in the protein-ligand 

complex. Therefore, both structural and energetical information about the complexes are needed 

to develop the function (ChemScore is an example of this kind of function6,7). 

Finally, knowledge-based scoring functions take advantage of structural information in a 

database of protein-ligand crystallographic structures. Using the pairwise approximation, the total 

score S can be expressed as a sum over all contacts whose energies 𝐹(𝜎𝑝, 𝜎𝑙) are usually derived 

from the inverse Boltzmann-like analysis:  

𝑆 = ∑ ∑ ∆𝐹(𝜎𝑝, 𝜎𝑙) = ∑ ∑ −𝑅𝑇𝑙𝑛
𝑝(𝜎𝑝,𝜎𝑙)

𝑝𝑟𝑒𝑓
𝑙𝑝𝑙𝑝   (1) 

where p are the protein atoms of type 𝜎𝑝, l are the ligand atoms of type 𝜎𝑙, 𝑝(𝜎𝑝, 𝜎𝑙) is the frequency 

of the contact between the atoms of type 𝜎𝑝 and 𝜎𝑙 in the training database, and 𝑝𝑟𝑒𝑓 is the 

frequency of this same contact in a reference state. One of the first knowledge-based protein-ligand 

potential (SMoG96) was developed in 1996 by De Witte and Shakhnovich8 and was then improved 

in 2001 (SMoG20019) by taking into account different shells of contact and a better description of 

the reference state. The detailed theory behind these functions is well described in the SMoG96 

and SMoG2001 papers8,9 and we point the interested reader to these articles and to the Supporting 
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Information where it is summed up. In the current work, we want to present the development of a 

new function that uses the same analytical form for the knowledge-based potential than 

SMoG2001. Indeed, when compared with more modern scoring functions10, it appeared that 

SMoG2001 is not accurate enough, mainly due to the fact that it misses long-range interactions. 

To derive this new function (SMoG2016), all the different parameters have been updated and new 

contributions have been added. 

Methods and results 

Construction of the Databases 

Li et al. have analyzed the Brookhaven Protein Data Bank and have created subsets of it. One of 

them, called the “core set”, is made of 195 complexes with accurate structural and energetic 

information11. This set contains complexes which are diverse enough (they span 10 orders of 

magnitude of binding and form 65 clusters of protein sequences). Since the accuracy of 21 

currently available scoring functions has been tested against this core set10, it is natural to use this 

set as a testing set to be able to provide an unbiased comparison of our new scoring function with 

existing ones. Thus, this testing set was solely used at the end of the development to compare the 

final form of the new scoring function with other functions. The full set can be downloaded online 

(http://www.pdbbind.org.cn/) and the list of complexes contained in this set is provided in 

Supporting Information. Another protein-ligand set prepared by the same authors is called the 

“general dataset” and consists of 10,662 complexes (version 2014)11. To refine the training set, we 

sorted it in the following way: (1) all the complexes with a resolution higher than 3 Å were 

removed; (2) all the complexes with ligands with a molar mass greater than 1000 g/mol were 

removed; (3) only the structures with available experimental binding free energy (∆G) were kept; 

(4) all complexes from the testing set were removed. The first two criteria pruned the set to 9,553 
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complexes; after applying the last two criteria, we ended up with 5,948 complexes. Then, two 

kinds of sorting were applied to ensure that the remaining complexes are diversified enough: (1) 

the Tanimoto scores between all pairs of ligands (1.8*107 scores) were calculated using 

OpenBabel12 with the default FP2 fingerprint (the Tanimoto score measures the similarity between 

two molecules, a score of 1 meaning very similar molecules and a score of 0 meaning very different 

molecules13); (2) sequence similarity analysis between all pairs of proteins were performed with 

the “Pairwise Sequence Alignment” tool of ClustalW214. We then removed complexes for which 

either the protein or the ligand were too similar to other complexes in the current set. Finally, we 

removed all complexes with covalent ligands (defined as complexes for which the shortest distance 

between all heavy atoms of the protein and all heavy atoms of the ligand is smaller than 1.75 Å) 

as well as complexes for which intra-ligand distances were too small and complexes containing 

boron, nickel or manganese because we couldn’t find reliable Lennard-Jones parameters for these 

elements. We ended up with a set of 1,038 diverse complexes which form our training set, in which 

all pairs of ligands have a Tanimoto score lower than 0.95 (chosen arbitrary) and all pairs of 

proteins has a sequence similarity inferior to 90% (same value as the one used by Li et al. to cluster 

the proteins while preparing PDBbind-CN11). The list of the complexes forming this set is provided 

in SI. For the development of the knowledge-based potential, we randomly split the set of 1,038 

complexes in one set of 938 complexes and one of 100: the first set served to train the function 

and the second one to test it in order to select the optimal parameters. The Pearson correlation 

coefficient between scores and experimental binding free energies (G=RT*ln(Kd), with R the gas 

constant and T=293.15K) was used to evaluate the accuracy of the function. To ensure that the 

choice of parameters does not depend on the training set, we performed the random splitting 20 

times and we report the average correlation coefficient over the 20 testing sets. Errors are estimated 
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with the standard deviation (SD), calculated as (where a and b are the intercept and slope of the 

linear regression, xi are the experimental data and yi the computed scores)10: 

𝑆𝐷 = √
[𝑦𝑖 − (𝑎 + 𝑏 ∗ 𝑥𝑖)]2

𝑁 − 1
 

Atom types 

In SMoG2001, a set of 13 atom types was used for the ligands; one major drawback was 

the absence of any type for the halides. Moreover, sulphur and phosphorus had been gathered in a 

unique type. We thus decided to use a more precise set of atom types by upgrading the types from 

SMoG20019. Different variations of the atom types were tested by first preparing the potential on 

the training set then calculating the correlation coefficient in the testing set. The shell 

configurations of SMoG2001 (see below) were used during this stage. An increase in the 

correlation coefficient in the testing set was considered a sign of a favorable modification. A 

compromise had to be found between using excessive number of atom types for a better description 

but with low statistics or fewer atom types with better statistics. For example, we tried to use four 

different atom types for each halide, but it appeared that there are not enough halides in the 

database to obtain good statistics. Consequently, only one atom type accounting for all the halides 

is implemented in SMoG2016. Since the tools to derive the scoring function are released as open-

source programs, a user could easily decide to use different atom types for all the halides. We 

ended up with a set of 14 atom types for the ligand, listed in Table 1. Note that we didn’t include 

types for the following atoms (among others): Si, Al, Pt, As, Ru, V, Se, Cu, Fe, Hg (since they are 

rarely found in ligands). Depending on the code used to assign the atom types, different results 

may be obtained (for example, Li et al. have obtained different scores for the same complexes with 

the ChemScore function depending on the software used10). To avoid discrepancies, we release the 
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code used to assign the types together with this article (it uses the OpenBabel library code and a 

combination of internal rules12). 

Table 1. Ligand atom types. 

Type Description 

1 Non-polar sp3 carbon 

2 Non-polar sp2 or sp carbon 

3 Carbonyl carbon, thioketone carbon, guanidine sp2 carbon 

4 Other polar carbon (connected to atoms different than C or H) 

5 Hydrogen bond donor nitrogen (e.g. secondary amine or pyrrol) 

6 Hydrogen bond acceptor nitrogen (e.g. pyridine) 

7 Amide nitrogen 

8 Carbonyl oxygen (aldehyde, ketone, amide, ester) 

9 Hydrogen bond donor oxygen (hydroxyl) 

10 Hydrogen bond acceptor oxygen (ether, sp3 in ester) 

11 Charged oxygen (carboxylate, phosphate, nitro) 

12 Phosphorus 

13 Sulfur 

14 Halides 

0 H, Si, Al, Pt, As, Ru, V, Se, Cu, Fe, Hg 

13 atom types were used for the protein in SMoG2001. To be more accurate, we have 

decided to improve the set designed by Chen et al. during the construction of a potential for protein 

folding15. This set originally contained 23 types “chosen to reflect either physico-chemical 

similarity or positional equivalence”15, which we increased to 30 atom types for the protein (only 

heavy atoms are considered, see Figure 1). 
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Figure 1. Protein atom types (4 for the main chain + 25 for the side chains + 1 for metals). 

Shells configuration 

As stated previously, SMoG2001 used two shells of distance for the contact between 

atoms: 0-3.5Å and 3.5-4.5Å. Using the testing set of 195 complexes, it leads to a correlation of 

R=0.418, whereas more recent scoring functions lead to correlation around R≈0.60 in the same 

testing set. To improve the function, we tested 272 new sets of intervals, using from 2 to 5 shells. 

All results are reported in SI: the best average correlation coefficient on the 20 testing sets was 

found to be 0.401 and is achieved with seven shell configurations (highlighted in orange in Tables 

S2/S3/S4). They all share a first shell that ends at 3.0Å (probably taking into account hydrogen 

bonds) and a last shell that ends at 8.5 or 9.0Å (taking into account long range effects). Four out 

of the seven configurations are made with three shells (the second shell ending between 5.0 and 

6.0Å, probably taking into account desolvation) and the remaining three have four or five shells. 

We note that other configurations provide very similar results, for example 23 configurations lead 

to an average correlation of 0.400. In order to weight the contributions to the score from the 
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different shells, it appeared that dividing the score of each shell by the middle distance of the shell 

improved slightly the correlation (for example for a shell 5.0-9.0Å, we divided the score by 7.0). 

Contact between atoms 

In SMoG2001, two shells of contact were used using a step function ∆(𝑟) (see left panel 

of Figure 2). For example, if 𝑟 < 3.5Å then ∆(𝑝) = 1 for the first shell and ∆(𝑝) = 0 for the 

second shell. We started the development of a new scoring function to use it in a drug design 

software where the position of the ligand is optimized at every step. As such, it seemed more 

natural to use a continuous function that will result in a continuous binding free energy changes 

upon movements of the ligand atoms. We have thus used a function such as the one presented on 

the right panel of Figure 2 for each shell (we used a value of ∆𝑟 = 0.2 Å for the previous 

comparison between all the shell configurations). We note that other approaches have been used 

to obtain continuous functions for contact, such as smoothing intervals by gaussians as used in the 

DSX function16. The influence of r (which defines the slope at each border) on the correlation 

for the seven shells that lead to the highest average correlation was then assessed and was found 

to be very low (see SI) and the average correlation coefficient never exceeded 0.401. Finally, we 

retained the shell configuration 0-3.0-5.0-8.5 Å and the value ∆𝑟 = 0.2 Å, and call it KBP2016. 

Having fewer shells leads to better statistics, we thus preferred to keep a configuration with three 

shells over those with four or five shells. As stated above, very similar results would be obtained 

with the four configurations made with three shells. We retained the one where the second shell 

ends at 5.0 Å (and not 5.5 or 6.0) because if we assume that this shell serves to describe the 

desolvation effect, a distance of 5.0 Å for the first solvation shell is more plausible than 5.5 or 6.0 

Å. 
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Figure 2. Contact function for the scoring functions. 

Validation of the Training Set Size 

During the construction of the training set, we went from 10,662 to 1,038 complexes. One 

may wonder if this process resulted in a loss of available data that could have led to a more accurate 

potential. To validate the procedure, we randomly picked different number of complexes from the 

20 training sets of 938 complexes, trained the scoring function on these subsets and then computed 

the correlation coefficient against the 20 testing sets. Results are reported in Figure 3: when the 

training can be performed, the correlation coefficient converges very quickly and 300 complexes 

are enough to reach <R>≈0.4. However, when the training set is too small, it may not be possible 

to train the function because some contacts never occur. For each value of the training set size, we 

report in Figure 3 the number of successful trainings (out of the 20 performed), and we can see 

that at least 800 complexes are needed to train the 20 potentials. When a training cannot be 

performed on a given set, adapting the atomtypes by reducing their number will solve the issue. 

Thus, our training set is large enough to derive the statistics needed to build the potential. One of 

the main advantages of knowledge-based potential is that only structural information is needed. 

As such, at the beginning of the development of knowledge-based potentials it was predicted that 

the accuracy of these functions would increase with the number of available crystallographic 

structures. However, we show here that we have reached a state where improvements with more 



 

11 

complexes in the training set will be very low. This is probably also due to the fact that our training 

set has explicitly been constructed to contain very diverse complexes. Thus, we expect that our 

scoring function will be useful for very diverse proteins (except when covalent ligands are 

involved), even if exceptions will always occur17. 

 

Figure 3. Correlation in the testing set with different size of the training set. Under each point is 

reported the number of successful training (out of the 20 performed). The last point corresponds 

to the correlation obtained when the potential is trained and tested on the full training set of 

1,038 complexes. 

Repulsion term 

A main drawback of the SMoG2001 scoring function is that there is no term accounting 

for repulsion: the knowledge-based potential does not make a difference between a contact at 0.5 

Å and at 3 Å for example. This is not a problem when the goal is only to score the interaction from 

a crystallographic structure because the repulsion has usually already been minimized in such a 

structure. However, when new ligands are generated inside the active site of a protein (which is 

the goal of our de novo drug design program OpenGrowth1), there is no way to avoid clashes. To 

circumvent this problem, a hard-wall potential was used in SMoG2001: when the distance between 

two atoms was smaller than the sum of the van der Waals radii multiplied by a scaling factor, then 
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a steric clash was found and the structure was discarded. However, this approximation is too crude. 

We have thus decided to add a repulsion term to the knowledge-based potential KBP2016 using 

the repulsive part of a Lennard-Jones potential (the 𝐴𝑖𝑗 term is computed with the Amber van der 

Waals parameters18): 

  𝐸𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 = ∑
𝐴𝑖𝑗

𝑟𝑖𝑗
12𝑖,𝑗    (2) 

The pair-wise energy is added to the knowledge-based score with a multiplicative coefficient 

 determined empirically. To determine this coefficient, we have proceeded in two ways. First, 

we used the L-BFGS optimization algorithm implemented in the dlib C++ library19 to find the 

value of  that maximizes the correlation of the function KBP2016+*Erepulsion with experimental 

binding free energies. Here, we used the full training set of 1,038 complexes to perform the 

optimization. With =0 the correlation is R=0.406 and increases to R=0.426 with =0.535. We 

also computed the correlation over the 20 randomly generated testing sets for the function 

KBP2016+*Erepulsion with different values of  We found that =0.485 gives the highest 

average correlation (<R>=0.416), i.e. a very similar value than the optimized one. 

 Secondly, we have mimicked a docking procedure. For each ligand in the full training set, 

we have looked for all the rotor bonds (as defined by OpenBabel). When a rotatable bond was 

found, we prepared rotamers by rotating the fragments on each side of the rotatable bond by steps 

of 10°. This was only done if the fragment to rotate contained between 4 and 20 atoms in total. 

The hybrid score KBP2016+*Erepulsion was then computed for each rotamer with different values 

of . To relax the hard-wall potential approximation of SMoG2001, here both intermolecular and 

intramolecular interactions are calculated with the Lennard-Jones equation (equation (2)). We note 

𝜃𝑜𝑝𝑡 the value of the rotation angle for which the rotamer score is the lowest, and we looked at 
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how often 𝜃𝑜𝑝𝑡 = 0° (meaning that the rotamer with the lowest energy is the original one, which 

is the expected behavior). We also allowed small deviations, and looked at how often 𝜃𝑜𝑝𝑡 ∈

{−10°, 10°} (meaning that the rotation that leads to the lowest score is -10°, 0° or +10°), or 𝜃𝑜𝑝𝑡 ∈

{−20°, 20°}. The degeneracy of the lowest energy was also calculated for each case: ideally, there 

should be only one rotamer with the lowest energy. Results are presented in Table 2. For each 

target angle (0°, {−10°, 10°}, or {−20°, 20°}) and for various  values, we report the percentage 

of success i.e. the percentage of times the rotamer with the lowest score falls into the target angle 

range. Amongst the rotamers that fall into the target angle range, we calculated the fraction that 

has a degeneracy of 1 (meaning that only 1 out of the 36 rotamers has the lowest score). We 

observed that higher  values increase the success rate to find the optimal rotamer and are more 

likely to have a degeneracy of 1 (with up to ~80% of success when variations of +/-20° are allowed, 

and with a degeneracy of 1 ~80% of the times), however convergence seems to be reached for 

=0.35. Even if direct comparisons between protein rotamers and ligand rotamers cannot be done, 

we want to point out that these results are in the same range as the Dunbrack’s rotamers library 

where the overall prediction rate is 73%20. For the remaining of the study, we have used a value 

of =0.535 since it allows to obtain both the optimal prediction of binding free energies and the 

best structure predictions. It is interesting to note that similar optimal values are found by two 

different means (optimal correlation in the sets and docking-like procedure). 

Table 2. Influence of the  coefficient on the probability to find the correct rotamer. For each 

target angle, we report the percentage of times the rotamer with the lowest score falls into the 

target angle range (%(success)). Amongst the rotamers which falls into the target angle range, we 

also report the fraction for which only 1 out of the 36 rotamers has the lowest score (%(g=1)). 

 
𝜽𝒐𝒑𝒕 = 𝟎° 𝜽𝒐𝒑𝒕 ∈ {−𝟏𝟎°, 𝟏𝟎°} 𝜽𝒐𝒑𝒕 ∈ {−𝟐𝟎°, 𝟐𝟎°} 

%(success) %(g=1) %(success) %(g=1) %(success) %(g=1) 

0.00 31 45 44 62 49 65 

0.05 45 63 62 73 70 76 
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0.10 49 65 66 74 74 77 

0.15 51 67 67 75 75 78 

0.20 52 68 69 76 77 78 

0.25 53 68 70 76 78 78 

0.30 54 69 71 76 79 79 

0.35 55 69 72 77 79 79 

0.40 54 69 71 77 79 79 

0.45 54 69 72 77 79 79 

0.50 54 69 71 77 79 79 

0.55 53 69 72 77 79 79 

0.60 54 69 72 77 78 79 

0.65 54 69 73 77 78 79 

0.70 54 69 73 77 78 79 

0.75 53 68 72 77 78 78 

0.80 53 68 72 77 78 78 

0.85 53 68 72 77 78 78 

0.90 52 68 72 77 78 78 

0.95 52 68 73 77 78 79 

1.00 52 68 72 77 78 79 

When Li et al. developed their testing set and compared several scoring functions against 

it, they proposed the use of a simple descriptor (variations of the solvent-accessible surface area 

upon binding) and showed that its correlation against experimental binding free energies is 

R=0.606 i.e. the second-best currently available at that time10. One can thus wonder why we 

developed a new scoring function. We performed the same structural analysis as with KBP2016 

(full results are presented in SI): when using no repulsion term, SASA21 is capable of recovering 

the native binding pose only 24% of times (48% if we allow deviations up to +/-20°) and thus 

should not be used directly for growing or docking ligands (as already pointed out by Li et al.10). 

If a repulsion term is included (similarly to what was done with KBP2016), the optimal value is 

obtained with =0.80. On average, all percentages of success (whatever the target angle) are lower 

by 5% than with the KBP2016 hybrid function. Thus, the hybrid KBP2016 function provides better 
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structural prediction than the hybrid SASA. Moreover, since the mathematical form of KBP2016 

is simple, it is faster to compute a KBP2016 score than computing SASA (test performed with 

the freeSASA library21). 

Additional terms 

We also tried to add to the new scoring function (in addition to the Lennard-Jones repulsion 

term) empirical terms to account explicitly for hydrogen bonds, desolvation, ligand constraint (i.e. 

enthalpic deformation) or fixation penalty (i.e. loss of ligand entropy upon binding). These terms 

aim to account for energy terms that the knowledge-based potential fails to incorporate. We added 

these terms one by one by optimizing their weights on the full training set with the L-BFGS 

algorithm implemented in the dlib C++ library19. To take into account hydrogen bonds, we 

implemented the function proposed by X-CScore22. For desolvation, the difference of Solvent 

Surface Accessible Area (∆SASA) upon binding was used21,23: 

∆𝑆𝐴𝑆𝐴 = 𝑆𝐴𝑆𝐴(𝑐𝑜𝑚𝑝𝑙𝑒𝑥) −  𝑆𝐴𝑆𝐴(𝑝𝑟𝑜𝑡𝑒𝑖𝑛) −  𝑆𝐴𝑆𝐴(𝑙𝑖𝑔𝑎𝑛𝑑)   (3) 

Ligand constraints were evaluated by optimizing the geometry of the ligands and taking the 

difference of energy between the optimized geometry and the geometry of the ligand in the 

complex. Different levels of geometry were considered, from force fields (UFF, MMFF94, GAFF 

or Ghemical), to semi-empiral (PM6) or DFT (M06-2X/6-31+G** in PCM). 

For the hydrogen bond, desolvation and ligand constraint, no conclusive results were 

obtained since the optimal weight of each term was very close to 0 and the correlation coefficient 

with experimental data barely increased. For example, for the ligand constraint the correlation 

coefficient increased by less than 0.001 unit. For the desolvation, it increased by 0.006 unit, and 

due to the additional computational cost we decided not to include such a term in the new scoring 

function. Consequently, these terms were not added in the new scoring function. Regarding the 
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entropic fixation penalty, it was included via the number of rotatable bonds in the ligands24. We 

considered two approaches: either directly adding the number of rotatable bonds (as used in 

AutoDock25) or the function developed in X-CScore22 where ∆𝐺𝐹𝑖𝑥𝑎𝑡𝑖𝑜𝑛 = ∑ 𝛼𝑖𝐴𝑡𝑜𝑚𝑠 . If the atom 

𝑖 is not involved in any rotor, 𝛼𝑖 = 0; if the atom 𝑖 is involved in one or more than two rotors 𝛼𝑖 =

0.5; if the atom 𝑖 is involved in two rotors, 𝛼𝑖 = 1. We added either the number of rotor or the X-

CScore rotor function to the new scoring function by optimizing the weight of each term over the 

training set. Thus, the new hybrid function has the form: KBP2016+*Erepulsion+*Rotor. We 

observed that these terms add a small improvement to the scoring function since the correlation 

increases, from 0.426 to 0.439 (the same correlation is obtained for both the number of rotatable 

bonds or the X-CScore function). Considering the more arbitrary form of the X-CScore function, 

we decided to retain the number of rotors as a measure of the ligand fixation penalty (i.e. loss of 

conformational ligand entropy) with =1.913. 

When a ligand binds a protein, not only there is a loss of conformational entropy, but there 

is also a loss of translational entropy (by loss, we do not mean “complete loss” but more 

“significant decrease”). Following standard statistical mechanics26, the translation entropy St of a 

molecule with mass m can be written as: 

𝑆𝑡 = 𝑅 ∗ [
5

2
+ 𝑙𝑛 (

𝑘𝐵𝑇

𝑃
) +

3

2
∗ 𝑙𝑛 (

2𝜋𝑚𝑘𝐵𝑇

ℎ2 )]   (4) 

Thus, the variation of translational entropy can be written as: ∆𝑆𝑡 ≈ 𝑢 + 𝛾 ∗ ln (
𝑚𝐿∗𝑚𝑃

𝑚𝐶
), where 

𝑚𝐿, 𝑚𝑃 and 𝑚𝐶 are respectively the mass of the ligand, the protein and the complex and we 

investigated if an additional term ln (
𝑚𝐿∗𝑚𝑃

𝑚𝐶
) may further improve the scoring function27. When 

using the same procedure as before (with the L-BFGS optimization algorithm on the full training 

set), we found that the correlation slightly increases from 0.439 to 0.445 and a similar result is 
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obtained when using only ln(𝑚𝐿) (as expected, since 𝑚𝐶 ≈ 𝑚𝑃). With a term 𝛾 ∗ 𝑚𝐿 the 

correlation increases by less than 0.001 meaning that the new term is not due to another way of 

considering enthalpic interactions (whereby the bigger the ligand, the higher the number of 

contacts and the more favorable the binding), but more likely has an origin in translational entropy. 

Since similar results are obtained with ln (
𝑚𝐿∗𝑚𝑃

𝑚𝐶
) and with ln(𝑚𝐿), we decided to keep an 

additional term 𝛾 ∗ ln(𝑚𝐿), with =-21.974.  The dependence of the binding entropy on molecular 

mass has been controversial28, and we will discuss the validity of this assumption in the following 

as well as the sign of . 

Final form of the SMoG2016 function 

At the end, our new scoring function SMoG2016 has the following form, where KBP2016 

is the knowledge-based potential, Rotor is the number of rotatable bonds in the ligand and ml is 

the ligand mass: 

𝑆𝑀𝑜𝐺2016 = 𝐾𝐵𝑃2016 + 0.535 ∗ ∑
𝐴𝑖𝑗

𝑟𝑖𝑗
12𝑖,𝑗 + 1.913 ∗ 𝑅𝑜𝑡𝑜𝑟 − 21.974 ∗ ln (𝑚𝐿) (5) 

Raw scores coming from knowledge-based potentials have no units and can be in a large range. 

Thus, the scores can be scaled by the following function to place them in a realistic range of 

kcal/mol (where the 〈 〉 means an average on the training set of 1038 complexes): 

𝐹𝑖𝑛𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 =
〈𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑖𝑒𝑠〉

〈𝑅𝑎𝑤 𝑠𝑐𝑜𝑟𝑒𝑠〉
∗ 𝑅𝑎𝑤 𝑠𝑐𝑜𝑟𝑒 = 0.032 ∗ 𝑅𝑎𝑤 𝑠𝑐𝑜𝑟𝑒 (6) 

To illustrate the improvement made from SMoG2001 to SMoG2016, we present in Figure 4 and 

Figure 5 the correlations between experimental data and these two scoring functions in the testing 

set of 195 complexes from Li et al.. The correlation coefficient increased from R=0.418 to R=0.570 

(with KBP2016, R=0.587). Moreover, the SMoG2016 plot clearly appears less dispersed, as 
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illustrated by a decrease in standard deviation 3.39 to 1.68 when going from SMoG2001 to 

SMoG2016. We also present in Figure 6 the correlation of SMoG2016 in the training set. 

 
Figure 4. Correlation between SMoG2001 score and experimental binding free energies in the 

testing set (195 complexes). 

 
Figure 5. Correlation between SMoG2016 score and experimental binding free energies in the 

testing set (195 complexes). 
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Figure 6. Correlation between SMoG2016 score and experimental binding free energies in the 

training set (1,038 complexes). 

Program description 

The function SMoG2016 is available in a program made in C++ which uses the OpenBabel 

library (v2.4.1)12. The user can directly use the scoring function with a mol2 or sdf ligand file and 

with a pdb protein file as inputs. Over the full training set, it takes from 1.4 to 114 ms to compute 

a score, with an average of 15.6ms (on a single core of an AMD Opteron 6376 CPU @ 2.3GHz). 

It is also possible to create a new potential from a set of complexes that was previously constructed 

(it takes ~20 minutes to train the potential over 1,038 complexes). All parameters files (such as 

those for the knowledge-based potential) are available together with the source code under the 

name SMoG2016.tar.gz at the address https://sourceforge.net/projects/opengrowth/files/.  

Discussion and conclusion 

During the development of the knowledge-based potential, we have shown that it is highly 

important to take into account long-range contacts. Using three shells (with the configuration 0-

3.0-5.0-8.5Å) proved to be the most efficient way to reproduce experimental data since using more 
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shells would result in less accurate statistics. The three shells correspond to physically 

understandable terms: short range interactions (hydrogen bonds), desolvation and medium range 

interactions, long range interactions (such as electrostatic). The approach we have used (average 

correlation coefficient over 20 testing sets) ensures that our decision for the shell configurations 

are not biased and are independent of the training set. The correlation coefficient in the testing set 

of 195 complexes increased from R=0.418 with SMoG2001 to R=0.570 in SMoG2016 after 

inclusion of additional parameters to the KBP2016 function. The use of a standard test set allows 

us to compare our new scoring function to existing ones: according to the Pearson correlation 

coefficient, it is ranked the 7th one over 25 scoring functions (21 compared by Li et al.10, ID-

Score29, the new hybrid AutoDock/AutoDockVina function17, SMoG20019 and SMoG2016). 

However, we note that the function with the highest correlation coefficient (ID-Score29) is based 

on a huge number of descriptors (50) which can make its transferability and portage to new 

programs complicated. For the secondly ranked function, the testing set used is included in the 

training set which may explain their strong results (as pointed out by the authors17). The functions 

ranked 3rd and 4th are respectively X-CScore30 and the variation of solvent-accessible surface area 

SAS (a simple descriptor used by Li et al.), and we have shown that the structure prediction of 

SAS is outperformed by SMoG2016, even when an additional term taking into account repulsion 

is added to SAS. Based on the standard deviation criteria, SMoG2016 (SD=1.68) is ranked the 

2nd best after ID-Score (SD=1.63), whereas all functions compared by Li et al. have standard 

deviations higher than 1.78 (see Table 3). Interestingly, SMoG2016 is better ranked than other 

famous scoring functions such as GlideScore (both SP and XP), both in term of Pearson correlation 

coefficient and standard deviations. We also note that it is the highest ranked knowledge-based 
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function. Finally, the fact that our function is very simple, very fast and available as open-source 

will make it a valuable tool in drug design. 

One of the reasons why knowledge-based scoring functions have attracted a lot of attention 

at their early ages is that only structural information are needed, and no experimental binding free 

energies are needed to derive the different energy contributions used. Thus, it was expected that 

they would become more and more accurate when enough structural data (X-Ray or NMR) would 

become available. However, it seems that we have reached a state where improvements for generic 

potential can now only be very small. Indeed, we report in Table 3 the correlation coefficient of 

various scoring functions in the same testing set, as well as standard deviations and the year of 

publication. Besides a few exceptions, it seems that the community has converged towards a 

plateau at 0.6 (in terms of correlation coefficient). Several hypotheses can be suggested to explain 

why we have reached this limit. The simplicity of the models (either knowledge-based potentials, 

empirical scores or physics-based functions) is the first explanation that comes to mind. 

Widespread conformational changes in proteins upon binding or some crucial terms may still be 

missing in the binding free energy estimations, very likely entropic terms. By using another 

approach based on descriptors, Li et al. were able to overcome the R=0.6 limitation with ID-Score. 

Such a function is very useful for scoring but may be more complicated to use when docking or 

growing new compounds in the active site. The reason why we have reached a limit may also be 

that it may be crucial for a given family of protein to include one type of energetic term, whereas 

for another one the incorporation of another term will be more important. Thus, we believe that it 

may now be more suitable in some cases to derive potentials for specific family of proteins 

whenever possible (albeit at the expense of transferability). This will be possible because a 

knowledge-based potential can be calculated from any database of crystallographic or NMR 
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structures and there is no need of consistent experimental data on binding free energies. Finally, 

another possible explanation for the limit reached with the correlation coefficient is the use of a 

single point approach to estimate a value that is a thermodynamic average over many 

conformations. To overcome this approximation, it may be needed to use a new approach and 

perform averages on more protein structures, which will only be of interest if the scoring function 

is fast enough. 

Table 3. Comparison of performances of 25 scoring functions. Data from 20 of the functions are 

coming from Li et al.10. R=Pearson correlation coefficient against the testing set of 195 

complexes. SD=Standard Deviation. n.a.=not available. 

Function R SD Year Ref. 

ID-Score 0.753 1.63 2013 29 

AutoDockHybrid 0.640 n.a. 2016 17 

X-Score 0.614 1.78 2002 30 

SAS 0.606 1.79 2014 10 

ChemScore@SYBYL 0.592 1.82 1998 7 

ChemPLP@GOLD 0.579 1.84 2009 31 

SMoG2016 0.570 1.68 2016 This work 

PLP1@DS 0.568 1.86 2000 32,33 

G-Score@SYBYL 0.558 1.87 1997 4 

ASP@GOLD 0.556 1.88 2005 34 

ASE@MOE 0.544 1.89 n.a. n.a. 

ChemScore@GOLD 0.536 1.90 2003 7 

D-Score@SYBYL 0.526 1.92 2001 35 

Alpha-HB@MOE 0.511 1.94 n.a. n.a. 

LUDI3@DS 0.487 1.97 1998 36,37 

GoldScore@GOLD 0.483 1.97 1997 4 

Affinity-dG@MOE 0.482 1.98 n.a. n.a. 

LigScore2@DS 0.456 2.02 2005 38 

GlideScore-SP 0.452 2.03 2006 39,40 

SMoG2001 0.418 3.39 2001 9 

Jain@DS 0.408 2.05 2006 27 

PMF@DS 0.364 2.11 2006 41–44 

GlideScore-XP 0.277 2.18 2004 45 

London-dG@MOE 0.242 2.19 n.a. n.a. 

PMF@SYBYL 0.221 2.20 1999 41–44 
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Even though experimental binding free energies are not needed to derive a knowledge-

based potential, we took advantage to the fact that they are now more easily available thanks to 

the work of the Wang’s group with the database of complexes PDBbind-CN11. These data lead us 

to try to improve even further the new function by including additional terms empirically. 

Surprisingly, it appeared that addition of some terms seemingly important such as hydrogen bonds, 

desolvation or ligand deformation energy failed to improve the correlation with experimental data. 

We were surprised by the lack of significant improvement upon adding ligand constraint to take 

into account the enthalpic deformation of the ligand upon binding (even when this constraint is 

calculated at a high level of DFT such as M06-2X/6-31+G** in PCM), and we currently have no 

explanations for this observation. As already pointed out, the use of a simple descriptor (SAS) 

can provide a correlation of up to 0.606, we were thus also surprised to observe that the inclusion 

of a term based on SAS on the hybrid function improved the correlation coefficient by only 0.006 

units. This can be seen as a confirmation that the desolvation is already taken into account in the 

knowledge-based potential, as pointed out by Ishchenko and Shakhnovich9. Similarly, the fact that 

a term describing explicitly hydrogen bonds didn’t improve the scoring function may be due to the 

fact that the first shell ends at 3.0 Å and thus describes mainly this kind of interactions. On the 

other hand, taking into account the loss of entropy (both conformational and translational) upon 

binding proved to be useful: correlation coefficient increased from 0.426 to 0.439 in the training 

set after including a rotor contribution, and from 0.439 to 0.445 after including a term for 

translational entropy. We didn’t consider the inclusion of rotational and vibrational entropy yet 

since this would require higher computational cost and would slow our function. The inclusion of 

entropy can be related to the work of Jenck on enzymatic reaction and the so-called Circe 

effect46,47: one of the reason why enzymes can accelerate reactions is through the destabilization 
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of the substrate in the active site, decreasing the actual energy barrier needed for the reaction to 

occur. Additionally, it was proposed that the destabilization occurs mainly via the entropy loss of 

the ligand upon binding. Thus, entropy plays a major role in KM. It is safe to assume that the same 

behavior will occur for all proteins ligands and that entropy loss is the most important term in Kd 

or G, which explains why its inclusion in the scoring function was successful. 

Gilson et al. discussed the dependence of energetic terms on ligand mass and concluded 

that “molecular mass has a negligible effect upon the standard free energy of binding for 

biomolecular systems”28. Even though some energetic decomposition may lead to terms that 

depend on the mass, they should in the end cancel out. However, we observed an improvement of 

the scoring function when a term *ln(mL) was included with an optimal value of =-21.974 i.e. 

<0. It is important to recall here that knowledge-based potentials directly give rise to binding free 

energies (and not binding energies)48. Thus, the variation of entropy upon binding is already 

partially taken into account via KBP2016, with probably a too high weight for the translational 

entropy. The negative value of  means that a part of the translational entropy has to be removed 

from KBP2016 to avoid over counting. 

Finally, we note that the quality of a scoring function is usually judged according to two 

parameters: (1) its ability to predict the most accurate free energy of interaction, (2) its docking 

accuracy, i.e. its ability to predict the preferred orientation of the ligand inside the active site5. Our 

main goal in developing SMoG2016 was the former since the initial purpose of this function is to 

include it in the OpenGrowth software1. However, we have shown that after inclusion of a 

repulsive Lennard-Jones, we are capable of finding the most favorable rotamer ≈80% of the times 

(if we allow small variations on the optimal angle), and ≈80% of the times the most favorable 

rotamer is the only one to have the lowest energy (degeneracy of 1) (see Table 2). 
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Supporting Information 

Description of the SMoG2001 scoring function. Evaluation of different shells for the knowledge-

based potential. Influence of the slope of the contact function. Influence of the α parameter on the 

correlation for hybrid scores with SASA. List of complexes contained in the testing set (195 

complexes). List of complexes contained in the training set (1,038 complexes). 
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