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Analysis of a cross-diffusion model for rival gangs interaction in a
city

Alethea B. T. Barbaro∗ Nancy Rodriguez † Havva Yoldaş ‡ Nicola Zamponi §

October 5, 2020

Abstract

We study a two-species cross-diffusion model that is inspired by a system of convection-diffusion
equations derived from an agent-based model on a two-dimensional discrete lattice. The latter model
has been proposed to simulate gang territorial development through the use of graffiti markings. We
find two energy functionals for the system that allow us to prove a weak-stability result and identify
equilibrium solutions. We show that under the natural definition of weak solutions, obtained from
the weak-stability result, the system does not allow segregated solutions. Moreover, we present
a result on the long-term behavior of solutions in the case when the product of the mass of the
densities are less than one. This result is complemented with numerical experiments.
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1 Introduction

This article is devoted to the study of a two-population model with cross-diffusion:{
∂tρA(t, x, y) = 1

4∇ · (∇ρA(t, x, y) + 2βcρA(t, x, y)∇ρB(t, x, y)) , x, y ∈ Ω, t > 0,

∂tρB(t, x, y) = 1
4∇ · (∇ρB(t, x, y) + 2βcρB(t, x, y)∇ρA(t, x, y)) , x, y ∈ Ω, t > 0,

(1)

complemented with the initial data

ρA(0, x, y) = ρinA (x, y) and ρB(0, x, y) = ρinB (x, y), x, y ∈ Ω, (2)

and the homogeneous Neumann boundary conditions

∂νρA(t, x, y) = ∂νρB(t, x, y) = 0 x, y ∈ ∂Ω, t > 0. (3)

In system (1)-(3), β and c are positive parameters and Ω ⊂ R2 a bounded domain. Such a system can
arise, for example, by considering the following two-species segregation model involving two densities
of agents, ρA and ρB, along with respective marking densities gA and gB, introduced in [1]:

∂tgA(t, x, y) = cρA(t, x, y)− gA(t, x, y), x, y ∈ Ω, t > 0,

∂tgB(t, x, y) = cρB(t, x, y)− gB(t, x, y), x, y ∈ Ω, t > 0,

∂tρA(t, x, y) = 1
4∇ · (∇ρA(t, x, y) + 2βρA(t, x, y)∇gB(t, x, y)) , x, y ∈ Ω, t > 0,

∂tρB(t, x, y) = 1
4∇ · (∇ρB(t, x, y) + 2βρB(t, x, y)∇gA(t, x, y)) , x, y ∈ Ω, t > 0,

(4)

with homogeneous Neumann boundary conditions. System (4) models the dynamics of two competing
groups that mark their territory, e.g. with graffiti, and whose movement strategies is a combination of
passive diffusion and directed movement towards the gradients of the marking densities of the competing
groups. To arrive at the reduced system (1)-(3) from system (4), we assume that the marking densities
equilibrate much more rapidly than the population densities. Hence we assume

∂tgA(t, x, y) = ∂tgB(t, x, y) = 0.

However, we remark that system (1)-(3) can also be seen as a more general model of cross diffusion
system where the inter-specific interactions can lead to segregation.

The notion of cross-diffusion was initially motivated by Morisita’s theory of environmental density
[19, 20], which brings to the forefront the influence that a population pressure has on the dispersal of
a population due to the interface between individuals. In [21], Shigesada, Kawasaki, and Teramoto
introduced a behavioral model for the movement of individuals based on Morisita’s observations. Ac-
cording to Morisita’s theory, the movement of individuals is influenced by the following three factors:
(i) random movement; (ii) population pressure due to mutual interference between individuals; and (iii)
movement toward favorable places. The population pressure due to the competing population leads to
the cross-diffusion. To see this from a mathematical point of view, we consider our two populations,
ρA and ρB. Under the assumption of Fickian diffusion, we obtain a system of two equations:{

∂tρA = divJA(ρA, ρB),

∂tρB = divJB(ρA, ρB),

where JA, JB are the flows of the populations A and B, respectively. The flow proposed by Shigesada,
Kawasaki, and Teramoto has the form:

JA = ∇ · ((cA + aAAρA + aABρB)ρA) and JB = ∇ · ((cB + aBAρA + aBBρB)ρB)
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with aAA, aAB, aBA, aBB, cA, cB ≥ 0.
Soon after, Busenberg and Travis introduced some epidemic models with migration that also include

cross-diffusion in [5]. In their model, the authors assume that the population flow Ji, i ∈ {A,B} , are
proportional to the gradient of a potential function, Ψ, that only depends on the total population
P = ρA + ρB. The proportion is assumed to be the portion of the subpopulation i, which leads to the
following form of the flow:

Ji = a
ρi
P
∇Ψ(P ), for i ∈ {A,B} .

In [16], Gurtin and Pipkin introduced the potential function Ψ(s) = s2/2, which yields that:

Ji = aρi∇(ρA + ρB), for i ∈ {A,B} . (5)

In [14], Galiano and Selgas considered a more general version of the Gurtin and Pipkin model, where
potential function depends on a general linear combination of the population densities, with the addition
of random movement and environmental effects. The most general version of the system they consider
is:

Ji(ρA, ρB) = ρi∇(aiAρA + aiBρB + biV ) + ci∇ρi,

where V is the environmental potential. In [14], the existence of weak solutions for non-negative initial
data in L∞ was proved in two parameter cases. The first was under the condition that

4aAAaBB − (aAB + aBA)2 > a0,

for some a0 > 0. This condition implies an ellipticity condition on the matrix (aij)i,j∈{A,B} and can be
relaxed. The authors were also be able to prove the existence of solutions in the case when a = aij for
all i, j ∈ {A,B}, with a > 0.

System (1)-(3), which we consider here, is a special case of this general model, where only passive
diffusion and cross-diffusion are considered. Thus, the populations does not take into account the
population pressure due to their own group. In particular, we assume that aAA, aBB, bA, bB are all
equal to zero. Thus, this case falls outside of the two cases considered in [14]. It is worth noting that
systems with local self- and cross-diffusion have found many applications, for example in, illicit trade of
drugs [12]; epidemic models with diffusion of polymorphic populations [5]; models for overcrowding effect
with nonuniform ease of dispersal for different individuals [16]; opinion dynamics [22]; and biochemical
reactions [23].

Many analytical results for cross-diffusion systems are available in the literature. For example, in [6]
Chen et al. consider a reaction-cross-diffusion model for an arbitrary number of competing populations
which, in the case of linear transition rates, extends the two-species SKT model presented in [21]. Exis-
tence of global-in-time weak solutions to the model in a bounded domain with homogeneous Neumann
boundary conditions is shown via an entropy method and an approximation scheme. Crucial conditions
on the diffusion matrix are either weak cross-diffusion or detailed balance. Another cross-diffusion sys-
tem where the diffusion matrix depends linearly on the densities is the two-species ion transport model
through narrow membrane channels studied by Burger et al. in [4]. There the authors prove global
existence of weak solutions to the equations in a bounded domain with no-flux boundary conditions via
an entropy method, as well as global existence of strong solutions near the equilibrium. The result is
generalized in [15] to the case of an arbitrary number of species with different specific electrical charges
and mixed Dirichlet-Neumann boundary condition. The systems considered in [4] and [15] also present
a degeneracy in the entropy structure, that is, some gradient estimates are lost when the densities
approach some critical region. Other degenerate cross-diffusion models have been recently studied in
literature; for example, a large class of population models with degenerate cross-diffusion was analyzed
in [24], while the combination of degenerate cross-diffusion and nonlocal interaction is a feature of both
models considered in [3] and [11]. The problem of degenerate cross-diffusion in a moving domain was
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considered in [2], while the interplay between singularity and degeneracy was a major feature of the
model studied in [7]. Reaction-cross-diffusion systems with Laplacian structure have been considered
by Desvillettes et al. in [8, 9, 10].

Cross-diffusion equations can be seen as a large class of nonlinear, strongly coupled evolution PDEs
with the structure:

∂tρ = div (A(ρ)∇ρ) ≡
n∑
i=1

∂xi(A(ρ)∂xiρ), x ∈ Rn, t > 0. (6)

The unkown of the system, ρ = ρ(t, x) ∈ Rn, usually represents a vector of densities or concentrations.
Therefore, it should be nonnegative to be consistent with the physics; sometimes it is also required
to be (uniformly) bounded for the same reason. Quite often, in cross-diffusion systems coming from
the applied sciences the matrix A(ρ) ∈ Rn×n, the so-called diffusion matrix, is neither symmetric nor
positive semidefinite, which means that the standard coercivity-based approaches to the analysis of (6)
are ineffective. Moreover maximum/minimun principles are also usually unavailable due to the fact
that A is full and lacks a suitable structure. For these reasons, the analytical study of cross-diffusion
equations is in general quite challenging.

A useful method, the so-called boundedness-by-entropy method, in the analysis of (reaction-)cross-
diffusion systems has been developed by Jüngel and collaborators (see e.g. [17] for a comprehensive
review) after an idea found in Burger et al. [4]. This method is suitable for systems of evolution PDEs
presenting a formal gradient flow structure, or an entropy structure. Specifically, it works for systems
which can be written in the following form:

∂tρ = div

(
M∇δH[ρ]

δρ

)
, t > 0, (7)

where M is a positive semidefinite (often also symmetric) matrix and δH[ρ]
δρ is the Frechét derivative

of the convex functional H, which is in called the mathematical entropy of the system. In many cases
H[ρ] has the form

H[ρ] =

ˆ
Ω
h(ρ)dx,

where h a scalar convex function called entropy density, then the object δH[ρ]
δρ can be identified, via

Riesz representation theorem, with the gradient of h:

δH[ρ]

δρ
' Dh(ρ),

which is referred to as entropy variable. A first consequence of this formulation is that the functional
H is a Lyapounov functional for (7), that is; it is nonincreasing in time along the solutions of (7):

d

dt
H[ρ(t)] = −

ˆ
Ω
∇Dh(ρ) ·M∇Dh(ρ)dx ≤ 0, t > 0,

since M is positive semidefinite by assumption1. Furthermore, if Dh : D → Rn is a globally invertible
mapping, than the physical variable ρ can be written in terms of the entropy variable w = Dh(ρ)
via ρ = (Dh)−1(w). As a consequence ρ ∈ D whenever w ∈ Rn. So, if (7) can be written and
solved in terms of w, then the constraint ρ(x, t) ∈ D will hold whenever w(x, t) is finite (that is, for

1Here we assumed homogeneous Neumann boundary conditions and no reaction terms, that is the right-hand side
of (6) is zero. If any of these conditions are not verified, the quantity d

dt
H[ρ(t)] might be positive. However, suitable

compatibility conditions usually ensure that the entropy H[ρ(t)] remains at every time upper bounded via a Gronwall
argument.
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a.e. x, t, provided that w is integrable). In particular, if D ⊂ Rn is bounded, then ρ ∈ L∞ with
bounds that only depend on D; similarly, if D ⊂ Rn+, then ρ has nonnegative components. These
ideas can be exploited to formulate a existence argument which proceeds roughly in three steps: (i)
writing an approximate scheme which yields a sequence of approximate solutions to (7); (ii) deriving an
entropy balance inequality which yields gradient estimates for the approximate solution; (iii) showing
via suitable compactness result that the approximate sequence has a converging subsequence and taking
the limit in the approximate system to recover a weak solution to (7).

Unfortunately, this program cannot be straightforwardly carried out when studying (1)-(3) because
of its extremely degenerate structure. Indeed, a standard entropy (formal gradient flow) structure
requires the existence of a convex entropy functional, which cannot be the case for (1)-(3). Precisely, a
necessary condition for a cross-diffusion system (6) to admit a convex entropy is the normal ellipticity of
the differential operator ρ 7→ div (A(ρ)∇ρ), that is, the property that the real part of every eigenvalue
of A(ρ) is nonnegative [18, Lemma 3.2]. This property is not verified by (1)-(3); as a matter of
fact, the diffusion matrix A(ρ) in (1)-(3) has one positive and one negative eigenvalue in the region
{(ρA, ρB) ∈ R2

+ | ρAρB > 1}. Consistently with this fact, the only Lyapounov functional that is known
for (1)-(3) is nonconvex. Furthermore, the property that the mapping Dh : R2

+ → R2 being invertible
also fails for (1)-(3), since such a mapping is not even one-to-one.

A search for a workaround to counter these difficulties and obtain nonetheless some global-in-time
existence result for (1)-(3) has been unsuccessful, and only a local-in-time existence result is available
for (1)-(3), which comes from Amann’s theory [18, Thr. 3.1] and holds under the assumption that the
initial datum is W 1,p with p > d = 2 and takes values in the region {(ρA, ρB) ∈ R2

+ | ρAρB < 1}.
However, we are also able to provide a weak-stability result, which is a key step in the proof of the
global well-poseness and provides evidence that the system is not likely to be ill-posed. Unfortunately,
finding an approximation to (1)-(3) for which we can prove existence and then apply the weak stability
result has been a challenge and remains an open problem.

The paper is organized as follows: In Section 2, we give two energy functionals that the system
(1)-(3) attains. These energy functionals are the key tools that help us obtain complementary estimates
on the solutions. We also present these complementary a-priori estimates in Section 2. A Maxwell-
Boltzmann entropy functional holds under some constraints on the solutions, mainly that ρAρB < 1.
Moreover, in Section 4, we are interested in understanding the stationary states of (1)-(3), as they
outline the possible long-term behavior of the evolution problem. Section 3 is dedicated to the existence
analysis. An important question to consider is whether segregated steady states, which are physical
in many situations, arise. Based on the natural definition of weak solutions, obtained from the weak
stability result, we show that all steady states must be constant. This implies that perhaps the use of
the entropy structure is not suitable to study segregated solutions. An alternative is that the model
actually does not capture the physical property of segregation. Our final result is on the long-term
behavior of solutions to (1)-(3), in the case when the product of the population densities ρA, ρB are
small; see Section 5. We complement these results with some numerical simulations in Section 6.

2 Energy functionals and a-priori estimates

For the sake of simplicity we assume in this section that 2βc = 1. Note that this does not influence
the existence analysis as it follows from a simple rescaling of the system. In the following we denote
ρ = (ρA, ρB), and Ω ⊂ R2 is an open, bounded set with Lipschitz boundary.
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2.1 Two energy functionals

In this section we present two energy functionals that will be useful in obtaining bounds for ρA and
ρB. Let us define the first energy functional H[ρ]:

H[ρ] =

ˆ
Ω
h(ρA(x), ρB(x))dx, (8)

where
h(ρA, ρB) = ρA log ρA − ρA + ρB log ρB − ρB + ρAρB.

System (1)-(3) is a formal gradient flow with respect to H:

∂tρ = div

(
M∇δH[ρ]

δρ

)
, with M =

(
ρA 0
0 ρB

)
, (9)

where δH[ρ]
δρ is the Frechét derivative of H, which can be identified, via Riesz representation theorem,

with the gradient of h:

δH[ρ]

δρ
' Dh(ρA, ρB) = (log ρA + ρB, log ρB + ρA)>.

The matrix M is positive semidefinite in R2
+ ≡ [0,∞)2. Testing (9) against Dh(ρA, ρB) yields the

energy balance equation:

dH[ρ]

dt
+

ˆ
Ω

{
ρA|∇ (log ρA + ρB)|2 + ρB|∇ (log ρB + ρA)|2

}
dx = 0. (10)

On the other hand, system (1)-(3) also admits another gradient-flow structure under some restrictions
on its solution. Let us define the open set:

D =
{

(ρA, ρB) ∈ R2
+ | ρAρB < 1

}
,

and the Maxwell-Boltzmann entropy functional:

HMB[ρ] =

ˆ
Ω
hMB(ρA(x), ρB(x))dx,

where
hMB(ρA, ρB) = ρA log ρA − ρA + ρB log ρB − ρB.

Then (1)-(3) can be rewritten as

∂tρ = div

(
M′
HMB[ρ]

δρ

)
, with M′ =

(
ρA ρAρB
ρAρB ρB

)
, (11)

where
δHMB[ρ]

δρ
' DhMB(ρA, ρB) = (log ρA, log ρB)>.
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We remark that M′ is positive semi-definite on D. Testing (11) against DhMB(ρA, ρB) yields the
balance equation for HMB[ρ]:

d

dt
HMB[ρ] =

ˆ
Ω

(log ρA∂tρA + log ρB∂tρB)dx

= −
ˆ

Ω
(ρ−1
A ∇ρA · (∇ρA + ρA∇ρB) + ρ−1

B ∇ρB · (∇ρB + ρB∇ρA))dx

= −
ˆ

Ω
(ρ−1
A |∇ρA|

2 + ρ−1
B |∇ρB|

2 + 2∇ρA · ∇ρB)dx

= −4

ˆ
Ω

(|∇√ρA|2 + |∇√ρB|2 + 2
√
ρAρB∇

√
ρA · ∇

√
ρB)dx

= −4

ˆ
Ω

(
√
ρAρB|∇(

√
ρA +

√
ρB)|2 + (1−√ρAρB)(|∇√ρA|2 + |∇√ρB|2))dx.

Summarizing up gives the following:

d

dt
HMB(ρ) + 4

ˆ
Ω

(
√
ρAρB|∇(

√
ρA +

√
ρB)|2 + (1−√ρAρB)(|∇√ρA|2 + |∇√ρB|2))dx = 0. (12)

We point out that (12) is only useful if ρAρB ≤ 1, otherwise we obtain terms we cannot control.
Moreover, (12) represents an improvement of the previous entropy inequality, as the factor 1−√ρAρB
is larger than (1−√ρAρB)2 when √ρAρB < 1.

2.2 A-priori estimates

In this section, we give a-priori estimates on the agent densities ρA and ρB. The estimates are obtained
from energy balance equations (10) and (12).

Throughout the section we assume that the initial datum ρin ∈ L2(Ω), where Ω ∈ R2 is an open,
bounded domain with Lipschitz boundary. As a consequence HMB[ρin] ≤ H[ρin] <∞. Also, we denote
ΩT ≡ Ω× (0, T ) for every T > 0.

Lemma 2.1 (mass conservation). System (1)-(3) conserves mass. In particular we have the following
estimate:

‖ρi‖L∞(0,T ;L1(Ω)) = ‖ρini ‖L1(Ω), i ∈ {A,B}. (13)

Proof. Integrating (1)-(3) in Ω yields
ˆ

Ω
ρi(t)dx =

ˆ
Ω
ρini dx, i ∈ {A,B}, t > 0. (14)

Thus (13) holds.

2.2.1 Estimates from “natural” energy balance equation (10).

Lemma 2.2. We obtain the following estimates for ρ:

‖(1−√ρAρB)∇√ρi‖L2(ΩT ) ≤ C, i ∈ {A,B}, (15)

‖(1 +
√
ρAρB)∇ (

√
ρA +

√
ρB)‖L2(ΩT ) ≤ C̃, (16)

‖(√ρAρB − 1)2‖L4/3(0,T ;W 1,4/3(Ω)) ≤ CT , (17)
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where C, C̃, CT > 0 are some constants, CT depending on T > 0. Moreover, the following estimates
hold true for √ρA +

√
ρB:

‖√ρA +
√
ρB‖L2(0,T ;H1(Ω)) ≤ C̃T , (18)

‖√ρA +
√
ρB‖L4(ΩT ) ≤ ĈT , (19)

where C̃, ĈT > 0 some constant depending on T > 0.

Proof. Integrating (10) in the time interval [0, T ] with T > 0 arbitrary leads to

H[ρ(T )] + 4

ˆ
ΩT

(
|∇√ρA +

√
ρAρB∇

√
ρB|2 + |∇√ρB +

√
ρAρB∇

√
ρA|2

)
dxdt ≤ H[ρin]. (20)

However, since 2(x2 + y2) ≥ (x± y)2 for every x, y ∈ R, we deduce

2|∇√ρA +
√
ρAρB∇

√
ρB|2 + 2|∇√ρB +

√
ρAρB ∇

√
ρA|2 ≥ |(1 +

√
ρAρB)∇ (

√
ρA +

√
ρB)|2

≥ |∇ (
√
ρA +

√
ρB)|2,

and

2|∇√ρA +
√
ρAρB∇

√
ρB|2 + 2|∇√ρB +

√
ρAρB∇

√
ρA|2 ≥ |(1−

√
ρAρB)∇ (

√
ρA −

√
ρB)|2,

and so (15)-(16) hold.
The definition of H and (20) lead to

‖ρA log ρA‖L∞(0,T ;L1(Ω)) + ‖ρB log ρB‖L∞(0,T ;L1(Ω)) ≤ C. (21)

Then (18) follows. The following Gagliardo-Nirenberg inequality holds since Ω ⊂ R2:

‖u‖L4(Ω) ≤ CGN‖u‖
1/2
L2(Ω)

‖u‖1/2
H1(Ω)

, for all u ∈ H1(Ω). (22)

Choosing u =
√
ρA +

√
ρB in the above inequality and integrating it in time leads to

ˆ T

0
‖√ρA +

√
ρB‖4L4(Ω)dt ≤ C

4
GN

(
sup
t∈[0,T ]

‖√ρA(t) +
√
ρB(t)‖2L2(Ω)

)ˆ T

0
‖√ρA(t) +

√
ρB(t)‖2H1(Ω)dt,

which, thanks to (13), (18), leads to (19).
From (15), (19) and the identity

1

2
∇[(
√
ρAρB − 1)2] = (

√
ρAρB − 1)∇√ρAρB

=
√
ρB(
√
ρAρB − 1)∇√ρA +

√
ρA(
√
ρAρB − 1)∇√ρB

we deduce that
‖∇[(

√
ρAρB − 1)2]‖L4/3(ΩT ) ≤ CT .

Since (
√
ρAρB−1)2 ≤ C(1 +ρ2

A+ρ2
B), from the above estimate and (19), as well as Poincaré’s Lemma,

we obtain (17).

Lemma 2.3 (estimate on ρAρB). We have the following estimate for the product of the agent densities
ρA and ρB

‖ρAρB‖L3/2(ΩT ) ≤ CT , (23)

where CT > 0 is a constant depending on T > 0.
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Proof. We give the proof by using the so-called H−1 method, i.e. by testing (1)-(3) against ψ ≈
(−∆)−1(ρA + ρB). For t ∈ (0, T ) define the function ψ(t) as the only solution to{

−∆ψ(t) = ρA(t) + ρB(t)− 〈(ρA(t) + ρB(t))〉, in Ω,

∂νψ(t) = 0 on ∂Ω,
(24)

and ˆ
Ω
ψ(t)dx = 0,

where
〈ρ〉 ≡

ˆ
Ω

ρ

|Ω|
dx.

We remark that 〈ρ(t)〉 = 〈ρin〉 is constant in time thanks to (14). Let us first compute the following:

d

dt

ˆ
Ω

1

2
|∇ψ|2dx =

ˆ
Ω
∇ψ · ∇∂tψdx =

ˆ
Ω
ψ∂t(−∆ψ)dx =

ˆ
Ω
ψ∂t(ρA + ρB)dx.

Therefore, testing each equation in (1)-(3) against ψ and summing the equations leads to

d

dt

ˆ
Ω

1

2
|∇ψ|2dx = −

ˆ
Ω

(∇ρA + ρA∇ρB +∇ρB + ρB∇ρA) · ∇ψdx

= −
ˆ

Ω
∇ (ρA + ρB + ρAρB) · ∇ψdx

= −
ˆ

Ω
(ρA + ρB + ρAρB) (ρA + ρB − 〈ρA + ρB〉)dx.

Thanks to the mass conservation (14), the energy balance (10) and the fact that ρAρB ≤ C+h(ρA, ρB),
we deduce

d

dt

ˆ
Ω

1

2
|∇ψ|2dx+

ˆ
Ω

(ρA + ρB + ρAρB) (ρA + ρB)dx ≤ C,

and integrating the above inequality in [0, T ] yields
ˆ

Ω
|∇ψ(T )|2dx+

ˆ T

0

ˆ
Ω

(ρA + ρB + ρAρB) (ρA + ρB)dxdt ≤ CT +

ˆ
Ω
|∇ψ(0)|2dx.

Testing (24) against ψ(t) and exploiting Poincaré’s Lemma (remember that
´

Ω ψ(t)dx = 0) leads to

‖∇ψ(t)‖2L2(Ω) ≤
ˆ

Ω
(ρA(t) + ρB(t))ψ(t)dx ≤ ‖ρA(t) + ρB(t)‖L2(Ω)‖ψ(t)‖L2(Ω)

≤ CP ‖ρA(t) + ρB(t)‖L2(Ω)‖∇ψ(t)‖L2(Ω)

which means
‖∇ψ(t)‖L2(Ω) ≤ CP ‖ρA(t) + ρB(t)‖L2(Ω), t ∈ [0, T ].

In particular, since ρin ∈ L2(Ω) by assumption, it follows that ‖∇ψ(0)‖L2(Ω) ≤ C, so we conclude that
ˆ

Ω
|∇ψ(T )|2dx+

ˆ T

0

ˆ
Ω

(ρA + ρB + ρAρB) (ρA + ρB)dxdt ≤ CT .

It follows ˆ
ΩT

(ρA + ρB)ρAρB dxdt ≤ CT ,

which, by Young’s inequality, ρA + ρB ≥ 2
√
ρAρB, leads to (23).
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Lemma 2.4 (estimate on the fluxes). We have the following estimate for the fluxes

‖∇ρA + ρA∇ρB‖L4/3(ΩT ) + ‖∇ρB + ρB∇ρA‖L4/3(ΩT ) ≤ CT . (25)

where CT is a constant depending on T > 0.

Proof. Since

∇ρA + ρA∇ρB = 2
√
ρA (∇√ρA +

√
ρAρB∇

√
ρB)

= 2
√
ρA (∇(

√
ρA +

√
ρB) + (

√
ρAρB − 1)∇√ρB) ,

from (16), (15), (19) it follows

‖∇ρA + ρA∇ρB‖L4/3(ΩT ) ≤ 2‖√ρA‖L4(ΩT )

(
‖∇(
√
ρA +

√
ρB)‖L2(ΩT ) + ‖(√ρAρB − 1)∇√ρB‖L2(ΩT )

)
≤ CT .

Since a similar argument can be done for ∇ρB + ρB∇ρA, we obtain (25).

Lemma 2.5 (estimate on ∂tρA and ∂tρB). We have the following estimate on the time derivative of
ρA and ρB:

‖∂tρA‖L4/3(0,T ;W 1,4(Ω)′) + ‖∂tρB‖L4/3(0,T ;W 1,4(Ω)′) ≤ CT . (26)

where CT is a constant depending on T > 0.

Proof. Given any test function ψ, bound (25) yields

〈∂tρA, ψ〉 = −
ˆ T

0

ˆ
Ω
∇ψ · (∇ρA + ρA∇ρB) dxdt ≤ C‖∇ψ‖L4(ΩT ),

which means that ∂tρA is bounded in L4/3(0, T ;W 1,4(Ω)′). In the same way one proves the same bound
for ∂tρB and obtain (26).

2.2.2 Additional estimates from Maxwell-Boltzmann energy balance equation (12).

In this subsection we assume that the solution ρ to (1)-(3) satisfies ρ ∈ D a.e. in ΩT . This means that
(12) holds. On the other hand, we wish to point out that ρ fulfills also (10), which implies that the
estimates derived in the previous subsection are additionaly satisfied.

Lemma 2.6. We have the following estimates on ρ:

|(1−√ρAρB)1/2∇√ρi‖L2(0,T ;L2(Ω)) ≤ CT , i ∈ {A,B}, (27)

‖(1−√ρAρB)3/2‖L4/3(0,T ;W 1,4/3(Ω)) ≤ C̃T , (28)

where CT , C̃T > 0 are some constants depending on T > 0.

Proof. Integrating (12) in the time interval [0, T ] leads to the following

HMB[ρ(T )] + 4

ˆ
ΩT

(
√
ρAρB|∇(

√
ρA +

√
ρB)|2 + (1−√ρAρB)(|∇√ρA|2 + |∇√ρB|2))dxdt = HMB[ρin],

(29)
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and thus (27). From (19), (27) and the identity

−2

3
∇[(1−√ρAρB)3/2] = (1−√ρAρB)1/2∇√ρAρB

=
√
ρB(1−√ρAρB)1/2∇√ρA +

√
ρA(1−√ρAρB)1/2∇√ρB

we deduce that
‖∇[(1−√ρAρB)3/2]‖L4/3(ΩT ) ≤ CT .

From the above estimate and the L∞(ΩT ) bound coming from the assumption ρAρB ≤ 1 a.e. in Ω we
obtain (28).

Remark 2.7. Estimate (27) is an improvement on (15) (since the gradient of √ρi is less degenerate in
the region {ρAρB = 1}). Similarly, estimate (28) is better than (17) as the bounds for ∇√ρA, ∇

√
ρB

are less degenerate.

Remark 2.8. Note that (4) satisfies the following:

dH
dt

+
1

4

ˆ
Ω

[
ρA|∇ (log ρA + 2βgB)|2 + ρB|∇ (log ρB + 2βgA)|2

]
dx+ 2β

ˆ
Ω

(ρAgB + ρBgA) dx

= 4βc

ˆ
Ω
ρAρBdx

≤ 2βc

ˆ
Ω

(
ρ2
A + ρ2

B

)
dx

= 2βc
(
‖√ρA‖4L4(Ω) + ‖√ρB‖4L4(Ω)

)
.

3 Existence analysis

In this section we provide results on local-in time existence of strong solutions, define the notion of
weak solutions and perform a weak stability analysis.

We consider the scaled equations with homogeneous Neumann boundary conditions in a bounded,
open Ω ⊂ R2 with Lipschitz boundary:{

∂tρA = div (∇ρA + ρA∇ρB) , in Ω× (0,∞),

ρA(0) = ρinA , in Ω.
(30){

∂tρB = div (∇ρB + ρB∇ρA) , in Ω× (0,∞),

ρB(0) = ρinB , in Ω,
(31)

with

∂νρA = ∂νρB = 0 on ∂Ω× (0,∞). (32)

An analytical study of (30)–(32) is the content of the next part.

3.1 Local-in-time existence of strong solutions.

The diffusion matrix of (30) and (31) is given by

A(ρ) =

(
1 ρA
ρB 1

)
, ρA, ρB ≥ 0,
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has eigenvalues λ±(ρ) = 1±√ρAρB. Therefore, λ+(ρ) ≥ λ−(ρ) > 0 for ρ = (ρA, ρB) ∈ D, where

D =
{
ρ ∈ R2

+ | ρAρB < 1
}
.

Applying [18, Thr. 3.1] to (30), (31) yields the following

Lemma 3.1 (Local-in-time existence). Let ρinA , ρ
in
B ∈ W 1,p(Ω;R2) for some p > 2. Assume that there

exists ε0 > 0 such that

min
{
ρinA (x), ρinB (x), 1− ρinA (x)ρinB (x)

}
≥ ε0 a.e. x ∈ Ω.

Then there exists a unique maximal solution ρ to (30)–(32) satisfying ρ ∈ C0([0, T ∗),W 1,p(Ω;R2)) ∩
C∞((0, T ∗);R2), with 0 < T ∗ ≤ ∞, and there exists ε1 > 0 such that

min {ρA(t, x), ρB(t, x), 1− ρA(t, x)ρB(t, x)} ≥ ε1 x ∈ Ω, t ∈ (0, T ∗).

This means that the solution exists as long as its value remins far away from the border of the
region D. Unfortunately, it is not clear how to guarantee such property for arbitrary large times.

3.2 Weak solutions

We first give a definition of a weak solution to (30)–(32).

Definition 3.2 (Weak solution). A Lebesgue-measurable function ρ : Ω× (0, T )→ R2
+ is called a weak

solution to (30)–(32) if (and only if) the following properties are satisfied.

(i) It has the regularity:

ρA, ρB and ρAρB ∈ L∞(0, T ;L1(Ω)), ∂tρA, ∂tρB ∈ L4/3(0, T ;W 1,4(Ω)′), (33)

(1 +
√
ρAρB)∇[

√
ρA +

√
ρB] ∈ L2(Ω× (0, T )), (34)

√
ρAρB − 1

1 +
√
ρA +

√
ρB
∈ L2(0, T ;H1(Ω)), (35)

f(
√
ρA,
√
ρB) ∈L2(0, T ;H1(Ω)), for all f ∈ C1(R2

+) such that

|f(uA, uB)| ≤ C(1 + u2
A + u2

B), and |Df(uA, uB)| ≤ C|uAuB − 1|, for all uA, uB ≥ 0.
(36)

(ii) The following weak formulation of (30)–(32) holds for all T > 0:
ˆ T

0
〈∂tρA, φ〉dt+ 2

ˆ T

0

ˆ
Ω
∇φ · √ρA · ζAdxdt = 0 for all φ ∈ L4(0, T ;W 1,4(Ω)), (37)

ˆ T

0
〈∂tρB, φ〉dt+ 2

ˆ T

0

ˆ
Ω
∇φ · √ρB · ζBdxdt = 0 for all φ ∈ L4(0, T ;W 1,4(Ω)), (38)

ρA(t)→ ρinA , ρB(t)→ ρinB strongly in W 1,4(Ω)′ as t→ 0, (39)

where the quantities ζA, ζB ∈ L2(Ω× (0, T )) are identified by the relations, holding in the sense
of distributions,

ζA + ζB = (1 +
√
ρAρB)∇(

√
ρA +

√
ρB), (40)
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Ψ(
√
ρAρB)(ζA − ζB) = ∇ [Ψ(

√
ρAρB)(1−√ρAρB)(

√
ρA −

√
ρB)]

− (
√
ρA −

√
ρB)∇ [Ψ(

√
ρAρB)(1−√ρAρB)] ,

(41)

2
Φ(
√
ρAρB)
√
ρA

g(
√
ρA +

√
ρB)ζA = ∇ [Φ(

√
ρAρB)g(

√
ρA +

√
ρB)(log ρA + ρB)]

− 1

2
(log ρA + ρB)g(

√
ρA +

√
ρB)

Φ′(
√
ρAρB)

√
ρAρB − 1

∇[(
√
ρAρB − 1)2]

− (log ρA + ρB)Φ(
√
ρAρB)g′(

√
ρA +

√
ρB)∇[

√
ρA +

√
ρB],

(42)

2
Φ(
√
ρAρB)
√
ρB

g(
√
ρA +

√
ρB)ζB = ∇ [Φ(

√
ρAρB)g(

√
ρA +

√
ρB)(log ρB + ρA)]

− 1

2
(log ρB + ρA)g(

√
ρA +

√
ρB)

Φ′(
√
ρAρB)

√
ρAρB − 1

∇[(
√
ρAρB − 1)2]

− (log ρB + ρA)Φ(
√
ρAρB)g′(

√
ρA +

√
ρB)∇[

√
ρA +

√
ρB],

(43)

with g(s) = (1 + s4)−1 for s ≥ 0, for every Ψ,Φ ∈ C1 ∩W 1,∞(R+) such that there exists C > 0:

|Ψ(s)| ≤ C|s− 1|, |Φ(s)| ≤ Cs, |Φ′(s)| ≤ Cs|s− 1|, for all s > 0.

(iii) The mass of each species is conserved:ˆ
Ω
ρA(t)dx =

ˆ
Ω
ρinA dx,

ˆ
Ω
ρB(t)dx =

ˆ
Ω
ρinB dx, t > 0, (44)

and the integrated energy balance is satisfied:

H[ρ(T )] + 4

ˆ
ΩT

(|ζA|+ |ζB|2)dxdt ≤ H[ρin], for all T > 0. (45)

Remark 3.3. We point out that, if √ρA,
√
ρB ∈ L2(0, T ;H1(Ω)), which is the nondegenerate case, then

ζA = ∇√ρA +
√
ρAρB∇

√
ρB, ζB = ∇√ρB +

√
ρAρB∇

√
ρA, as one would expect.

3.3 Weak stability analysis

In this section, we prove the following result.

Lemma 3.4 (Weak stability). Let ρin = (ρinA , ρ
in
B ) : Ω → R2

+ such that ρinA , ρinB ∈ L2(Ω). Moreover,
let ρn = (ρnA, ρ

n
B) be a sequence of weak solutions to (30)–(32) having ρin as initial datum according

to Definition 3.2. Assume furthermore that
√
ρnA,

√
ρnB ∈ L2(0, T ;H1(Ω)) for every n ∈ N. Then

ρn converges (up to subsequences) strongly in L1(Ω × (0, T )) for every T > 0 to a weak solution
ρ = (ρA, ρB) : Ω× (0,∞)→ R2

+ to (30)–(32) in the sense of Definition 3.2.

Remark 3.5. The Lemma implies that the weak solutions described in Definition 3.2 are limit points
of standard, nondegenerate weak solutions to the system: notice that the assumption

√
ρnA,

√
ρnB ∈

L2(0, T ;H1(Ω)) for every n ∈ N, which is not true in general for weak solutions as for Def. 3.2.
Remark 3.6. Another perspective into Lemma 3.4 is the notion that the entropy structure of the
system is robust, that is, the estimates provided by the entropy balance inequality are sufficient to
show compactness of a suitable sequence of approximated solutions and prove that a limit point of such
approximating sequence is a weak solution to the system in the sense of Def. 3.2. Unfortunately, no
approximating sequence with the required regularity is known, this is why the global-in-time existence
of weak solutions to the system is an open problem.

13



Proof. By assumption, for every T > 0, the approximate solution ρn satisfies
ˆ T

0
〈∂tρnA, φ〉dt+ 2

ˆ T

0

ˆ
Ω
∇φ ·

√
ρnA (∇

√
ρnA +

√
ρnAρ

n
B∇

√
ρnB)dxdt = 0, for all φ ∈ C1

c (ΩT ), (46)
ˆ T

0
〈∂tρnB, φ〉dt+ 2

ˆ T

0

ˆ
Ω
∇φ ·

√
ρnB (∇

√
ρnB +

√
ρnAρ

n
B∇

√
ρnA)dxdt = 0, for all φ ∈ C1

c (ΩT ), (47)

ρnA(t)→ ρinA , ρnB(t)→ ρinB strongly in W−1,4/3(Ω) as t→ 0, (48)

as well as (20), and therefore also (16)–(26).

Notation. Given a sequence fn in some Banach space X, that is weakly (or weak-*) convergent in X,
we denote with fn the weak (or weak-*) limit of f . Moreover, we define R+ = [0,∞).

The proof is divided into four steps.

Step 1: strong convergence of ρnA + ρnB.
Let f ∈W 1,∞(R+,R+) function such that |f ′(x)| ≤ C|1− x| for x ≥ 0. Let us define the vector fields

UnA = (ρnA,−∇ρnA − ρnA∇ρnB),

UnB = (ρnB,−∇ρnB − ρnB∇ρnA),

V n = (f(
√
ρnAρ

n
B), 0, 0, 0).

(49)

From (19), (25) we deduce that for i ∈ {A,B}, Uni is bounded in L4/3(ΩT ), while (1)-(3) means that
div(t,x) U

n
i = 0 (a fortiori div(t,x) U

n
i is relatively compact in W−1,r(ΩT ) for every r > 1). On the

other hand V n is bounded in L∞(ΩT ) and the antisymmetric part curl(t,x)V
n of its Jacobian can be

estimated as

|curl(t,x)V
n| ≤ C|∇f(

√
ρnAρ

n
B)| ≤ C|f ′(

√
ρnAρ

n
B)|(

√
ρnA|∇

√
ρnB|+

√
ρnB|∇

√
ρnA|)

≤ C(
√
ρnA|
√
ρnAρ

n
B − 1||∇

√
ρnB|+

√
ρB|
√
ρnAρ

n
B − 1||∇

√
ρnA|),

which means, thanks to (15), (19), that curl(t,x)V
n is bounded in L4/3(ΩT ), and a fortiori relatively

compact in W−1,r(ΩT ) for some r > 1. Therefore, the Div-Curl Lemma [Theorem 10.21 in [13]] implies
that

Un · V n = Un · V n a.e. in ΩT .

Therefore, for i ∈ {A,B} and for every f ∈W 1,∞(R+,R+),

ρni f(
√
ρnAρ

n
B) = ρni f(

√
ρnAρ

n
B), a.e. in ΩT , such that |f ′(x)| ≤ C|1− x| for x ≥ 0. (50)

Let us consider (50) with f(x) = min{k, F (x)} where k ≥ 1 is arbitrary and F ∈ L1
loc(R+,R+) such

that F ′ ∈ L∞(R+), F (x) ≤ C(1 + x), |F ′(x)| ≤ C|1− x| for x ≥ 0. Let us now estimate the quantity

‖ρni (min{k, F (
√
ρnAρ

n
B)} − F (

√
ρnAρ

n
B))‖L1(ΩT )

≤ lim inf
n→∞

‖ρni (min{k, F (
√
ρnAρ

n
B)} − F (

√
ρnAρ

n
B))‖L1(ΩT )

≤ sup
n∈N
‖ρni ‖L2(ΩT )‖min{k, F (

√
ρnAρ

n
B)} − F (

√
ρnAρ

n
B)‖L2(ΩT ),
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where we used Fatou’s Lemma in the first inequality. From (19) it follows

‖ρni (min{k, F (
√
ρnAρ

n
B)} − F (

√
ρnAρ

n
B))‖2L1(ΩT ) ≤ C sup

n∈N

ˆ
ΩT∩{F (

√
ρnAρ

n
B)>k}

∣∣F (
√
ρnAρ

n
B)
∣∣2 dxdt

≤ C

k
sup
n∈N

ˆ
ΩT∩{F (

√
ρnAρ

n
B)>k}

∣∣F (
√
ρnAρ

n
B)
∣∣3 dxdt

≤ C

k
sup
n∈N

ˆ
ΩT

(
1 +

√
ρnAρ

n
B

)3
dxdt,

which, thanks to (23), implies

‖ρni (min{k, F (
√
ρnAρ

n
B)} − F (

√
ρnAρ

n
B))‖L1(ΩT ) ≤

C√
k
, i ∈ {A,B}, k ≥ 1.

In a similar way one shows that

‖ρni (min{k, F (
√
ρnAρ

n
B)} − F (

√
ρnAρ

n
B))‖L1(ΩT ) ≤

C√
k
, i ∈ {A,B}, k ≥ 1.

From the above inequalities and (50) we deduce

‖ρni F (
√
ρnAρ

n
B)− ρni F (

√
ρnAρ

n
B)‖L1(ΩT )

≤ ‖ρni (min{k, F (
√
ρnAρ

n
B)} − F (

√
ρnAρ

n
B))‖L1(ΩT ) + ‖ρni (min{k, F (

√
ρnAρ

n
B)} − F (

√
ρnAρ

n
B))‖L1(ΩT )

≤ C√
k
, i ∈ {A,B}, k ≥ 1,

implying that for i ∈ {A,B},

ρni F (
√
ρnAρ

n
B) = ρni F (

√
ρnAρ

n
B), a.e. in ΩT , (51)

and for every such F ∈ L1
loc(R+,R+),

F ′ ∈ L∞(R+), F (x) ≤ C(1 + x), |F ′(x)| ≤ C|1− x| for x ≥ 0. (52)

Let us now choose F = Fδ in (51)-(52), where 0 < δ < 1 and

Fδ(s) =


0, s ≤ 1,

(s− 1)2, 1 < s ≤ 1 + δ,

s+ δ2 − 1− δ, s > 1 + δ.

Let us estimate (similar idea as before)

‖ρni (Fδ(
√
ρnAρ

n
B)− (

√
ρnAρ

n
B − 1)+)‖2L1(ΩT ) ≤ sup

n∈N
‖ρni ‖2L2(ΩT )‖Fδ(

√
ρnAρ

n
B)− (

√
ρnAρ

n
B − 1)+‖2L2(ΩT )

≤ Cδ,

where the last step comes from the fact that |Fδ(s)− (s− 1)+| ≤ Cδ for every s ≥ 0. We can deduce
that (51)-(52) holds with F (s) = (s− 1)+, that is

ρni (
√
ρnAρ

n
B − 1)+ = ρni (

√
ρnAρ

n
B − 1)+, i ∈ {A,B} a.e. in ΩT . (53)
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In a similar way, by writing (51)-(52) with F = Gδ, 0 < δ < 1,

Gδ =


s− δ2 − 1 + δ, 0 ≤ s ≤ 1− δ,
−(s− 1)2, 1− δ < s ≤ 1,

0, s > 1.

One deduces that

ρni (
√
ρnAρ

n
B − 1)− = ρni (

√
ρnAρ

n
B − 1)−, i ∈ {A,B}, a.e. in ΩT . (54)

Summing (53) and (54) allows us to conclude

ρni
√
ρnAρ

n
B = ρni

√
ρnAρ

n
B, i ∈ {A,B}, a.e. in ΩT . (55)

Let k ∈ N arbitrary. Define the vector field

Zn = (min{(
√
ρnA +

√
ρnB)2, k2}, 0, 0, 0), n ∈ N.

Clearly Zn is bounded in L∞(ΩT ), while

|curl(t,x)Z
n| ≤ C|∇[min{(

√
ρnA +

√
ρnB)2, k2}]| ≤ Ck|∇(

√
ρnA +

√
ρnB)|,

so thanks to (16) curl(t,x)Z
n is bounded in L2(ΩT ) and therefore relatively compact in W−1,r(ΩT ) for

some r > 1. The Div-Curl Lemma allows us once again to deduce

Uni · Zn = Uni · Zn i ∈ {A,B}, a.e. in ΩT ,

which is equivalent to

ρni min{(
√
ρnA +

√
ρnB)2, k2} = ρni min{(

√
ρnA +

√
ρnB)2, k2} i ∈ {A,B}, a.e. in ΩT . (56)

Let us define vn,k =
√
ρnA +

√
ρnB − min{

√
ρnA +

√
ρnB, k} = (

√
ρnA +

√
ρnB − k)+. For t ∈ [0, T ] and

k ≥ 2 let us estimate

‖vn,k(t)‖2L2(Ω) =

ˆ
Ω

(√
ρnA(t) +

√
ρnB(t)− k

)2

+

dx

≤
ˆ

Ω∩{
√
ρnA(t)+

√
ρnB(t)>k}

(√
ρnA(t) +

√
ρnB(t)

)2

dx

≤ 1

log k

ˆ
Ω∩{
√
ρnA(t)+

√
ρnB(t)>k}

(√
ρnA(t) +

√
ρnB(t)

)2

log

(√
ρnA(t) +

√
ρnB(t)

)
dx

≤ C

log k

ˆ
Ω

(ρnA(t) + ρnB(t))(1 + log(ρnA(t) + ρnB(t)))dx.

From (13), (21) it follows

‖vn,k‖L∞(0,T ;L2(Ω)) ≤
C√
log k

, n, k ∈ N, k ≥ 2. (57)

From Gagliardo-Nirenberg inequality (22) applied with u = vn,k it follows

ˆ T

0
‖vn,k‖4L4(Ω)dxdt ≤ C

(
sup
t∈[0,T ]

‖vn,k‖2L2(Ω)

)ˆ T

0
‖vn,k‖2H1(Ω)dxdt,
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which, thanks to (57), leads to

‖vn,k‖4L4(ΩT ) ≤
C

log k
‖
√
ρnA +

√
ρnB‖

2
L2(0,T ;H1(Ω)).

Bound (18) and the definition of vn,k allow us to deduce

‖
√
ρnA +

√
ρnB −min{

√
ρnA +

√
ρnB, k}‖L4(ΩT ) ≤

C

(log k)1/4
, n, k ∈ N, k ≥ 2,

which, together with Cauchy-Schwartz inequality

‖(
√
ρnA +

√
ρnB)2 − (min{

√
ρnA +

√
ρnB, k})

2‖L2(ΩT )

≤ ‖
√
ρnA +

√
ρnB −min{

√
ρnA +

√
ρnB, k}‖L4(ΩT )‖

√
ρnA +

√
ρnB + min{

√
ρnA +

√
ρnB, k}‖L4(ΩT )

and (19), allows us to conclude

‖(
√
ρnA +

√
ρnB)2 − (min{

√
ρnA +

√
ρnB, k})

2‖L2(ΩT ) ≤
C

(log k)1/4
, n, k ∈ N, k ≥ 2. (58)

LetM(ΩT ) = C(ΩT )′ the space of Radon measures on ΩT . Since (ρnA + ρnB)(
√
ρnA +

√
ρnB)2 is bounded

in L1(ΩT ) (thanks to (19)), then (up to subsequences) it is weak-* convergent in M(ΩT ). Since (56)
holds, we can write

‖(ρnA + ρnB)(
√
ρnA +

√
ρnB)2 − (ρnA + ρnB) (

√
ρnA +

√
ρnB)2‖M(ΩT )

≤ ‖(ρnA + ρnB)[(
√
ρnA +

√
ρnB)2 − (min{

√
ρnA +

√
ρnB, k})2]‖M(ΩT )

+ ‖(ρnA + ρnB) [(
√
ρnA +

√
ρnB)2 − (min{

√
ρnA +

√
ρnB, k})2]‖M(ΩT ) =: J1 + J2. (59)

Let us bound the terms J1, J2. Since the norm inM(ΩT ) is weak-* lower semicontinuous, it follows

J1 ≤ lim inf
n→∞

‖(ρnA + ρnB)[(
√
ρnA +

√
ρnB)2 − (min{

√
ρnA +

√
ρnB, k})

2]‖M(ΩT )

≤ sup
n∈N
‖(ρnA + ρnB)[(

√
ρnA +

√
ρnB)2 − (min{

√
ρnA +

√
ρnB, k})

2]‖M(ΩT ).

Since L1(ΩT ) ↪→M(ΩT ), it follows

J1 ≤ C sup
n∈N
‖(ρnA + ρnB)[(

√
ρnA +

√
ρnB)2 − (min{

√
ρnA +

√
ρnB, k})

2]‖L1(ΩT )

≤ C sup
n∈N
‖ρnA + ρnB‖L2(ΩT )‖(

√
ρnA +

√
ρnB)2 − (min{

√
ρnA +

√
ρnB, k})

2‖L2(ΩT ).

Since (19), (58) hold, we obtain

J1 ≤
C

(log k)1/4
, n, k ∈ N, k ≥ 2.

In a similar way one can show

J2 ≤
C

(log k)1/4
, n, k ∈ N, k ≥ 2.

From the previous two bounds and (59) one concludes

‖(ρnA + ρnB)(
√
ρnA +

√
ρnB)2 − (ρnA + ρnB) (

√
ρnA +

√
ρnB)2‖M(ΩT ) ≤

C

(log k)1/4
, k ≥ 2,
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which means

(ρnA + ρnB)(
√
ρnA +

√
ρnB)2 = (ρnA + ρnB) (

√
ρnA +

√
ρnB)2 inM(ΩT ).

For every f ∈M(ΩT ), φ ∈ C(ΩT ), let 〈f, φ〉 be the dual product between f , φ (i.e. 〈f, φ〉 is the result
of the application of the linear, bounded functional f to φ). It follows

lim
n→∞

ˆ
ΩT

(ρnA + ρnB)(
√
ρnA +

√
ρnB)2dxdt = 〈(ρnA + ρnB)(

√
ρnA +

√
ρnB)2, 1〉

=

ˆ
ΩT

(ρnA + ρnB) (
√
ρnA +

√
ρnB)2 dx dt.

(60)

On the other hand, summing (55) in i ∈ {A,B}, multiplying it times 2 and integrating it in ΩT leads
to

lim
n→∞

ˆ
ΩT

(ρnA + ρnB)2
√
ρnAρ

n
Bdxdt =

ˆ
ΩT

(ρnA + ρnB) 2
√
ρnAρ

n
Bdxdt. (61)

Taking the difference between (60) and (61) yields

lim
n→∞

ˆ
ΩT

(ρnA + ρnB)2dxdt =

ˆ
ΩT

(
ρnA + ρnB

)2
dxdt,

which means (thanks to [13, Thr. 10.20] ) that ρnA + ρnB is strongly convergent in L2(ΩT ).

Step 2: strong convergence of ρnAρ
n
B. Let

φ(s) =

{
e1+1/(s2−1) 0 ≤ s < 1

0 s ≥ 1
.

For every r > 0, u ∈ R2
+, let us define the function

f(r,u)(ρ) = φ

(
|ρ− u|
r

)
, ρ ∈ R2.

We define also

Γcr = {(ρ1, ρ2) ∈ R2
+ | ρ1ρ2 = 1},

F =
{
f(r,u) | r ∈ Q ∩ (0,∞), u ∈ (Q ∩ [0,∞))2, Br(u) ∩ Γcr = ∅

}
.

We point out that F is a countable family of C∞c (R2) functions whose gradient vanishes in a neigh-
bourhood of Γcr. This fact, together with (15), easily implies that

‖f(r,u)(ρ
n)‖L2(0,T ;H1(Ω)) ≤ C(r, u, T ). (62)

Moreover,

1

2
∂tf(r,u)(ρ

n) =
1

2

∂f(r,u)(ρ
n)

∂ρA
∂tρ

n
A +

1

2

∂f(r,u)(ρ
n)

∂ρB
∂tρ

n
B

= div

(
∂f(r,u)(ρ

n)

∂ρA

√
ρnA(∇

√
ρnA +

√
ρnAρ

n
B∇
√
ρnB) +

∂f(r,u)(ρ
n)

∂ρB

√
ρnB(∇

√
ρnB +

√
ρnAρ

n
B∇
√
ρnA)

)
−∇

∂f(r,u)(ρ
n)

∂ρA
·
√
ρnA(∇

√
ρnA +

√
ρnAρ

n
B∇
√
ρnB)−∇

∂f(r,u)(ρ
n)

∂ρB
·
√
ρnB(∇

√
ρnB +

√
ρnAρ

n
B∇
√
ρnA)

=: div
(
J n(r,u)

)
+ Ξn(r,u).
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Once again, the assumptions on f(r,u) as well as (15) imply that

‖J n(r,u)‖L2(ΩT ) + ‖Ξn(r,u)‖L1(ΩT ) ≤ C(r, u, T ),

which leads to

‖∂tf(r,u)(ρ
n)‖L1(0,T ;W−1,1(Ω)) ≤ C(r, u, T ). (63)

We are therefore allowed to apply Aubin-Lions Lemma (and the uniform L∞(ΩT ) bound for f(r,u)(ρ
n))

to deduce the strong convergence of f(r,u)(ρ
n) in Lq(ΩT ) for every q <∞. In particular,

For all f(r,u) ∈ F , there exists (ρnk(r,u))k∈N ⊂ (ρn)n∈N such that f(r,u)(ρ
nk(r,u)) is a.e. convergent in ΩT .

However, since F is countable, a Cantor diagonal argument allows us to find a subsequence (not
relabeled) of ρn such that

For all f(r,u) ∈ F , f(r,u)(ρ
n)→ ξ(r,u) a.e. in ΩT .

Let (x, t) ∈ ΩT be a point where such convergence holds true. Since (from Step 1) ρnA + ρnB is (up to
subsequences) strongly convergent in L2(ΩT ), we can assume w.l.o.g. that ρn(x, t) is bounded in R2.
There are two cases.

Case 1: There exists f(r1,u1) ∈ F such that ξ(r1,u1)(x, t) > 0.
Since f(r,u)(ρ) = φ(|u−ρ|/r), and φ |[0,1] is one-to-one and continuous, then |ρn(x, t)−u1| → d1 ∈ [0, r).
By continuity there exist f(r2,u2), f(r3,u3) ∈ F such that u1, u2, u3 are not aligned and ξ(r2,u2)(x, t),
ξ(r3,u3)(x, t) > 0. Since f(r,u)(ρ) is a one-to-one function of |ρ − u| for |ρ − u| ≤ 1, the limits di =
limn→∞ |ρn(x, t) − ui|, i = 1, 2, 3, exist finite. As a consequence, each accumulation point of ρn(x, t)
will fall at the intersection of three circles (∂Bdi(ui), i = 1, 2, 3) with mutually not aligned centers,
which can only consist of at most one point. This means that all accumulation points concide with this
point, i.e. the sequence ρn(x, t) is convergent to that point. A fortiori ρnA(x, t)ρnB(x, t) is also convergent.

Case 2: For all f(r,u) ∈ F it holds ξ(r,u)(x, t) = 0.
Consider a generic subsequence ρnm(x, t) of ρn(x, t). Since it is bounded, is has a sub-subsequence
ρnmk (x, t) that is convergent to some limit ` ∈ R2

+. However, since f(r,u)(`) = 0 for every f(r,u) ∈ F ,
the only possibility is that ` ∈ Γcr. In particular limk→∞ ρ

nmk
A ρ

nmk
B (x, t) = 1. Being the subsequence

ρnm(x, t) abitrary, this means that ρnAρ
n
B(x, t)→ 1 as n→∞.

Summarizing up, we have proved that ρnAρ
n
B is a.e. convergent in ΩT . Bound (23) implies that ρnAρ

n
B

is strongly convergent in L3/2−η(ΩT ) for every η ∈ (0, 1/2]. Furthermore, we have also showed that
ρnA → ρA, ρnB → ρB a.e. in E, where

E =
{

(x, t) ∈ ΩT | lim
n→∞

ρnA(x, t)ρnB(x, t) 6= 1
}
.

This also implies (together with (19)) that ρnA → ρA, ρnB → ρB strongly in L2−η(E), for every η ∈ (0, 1].

We also point out that |
√
ρnA ±

√
ρnB| =

√
ρnA + ρnB ± 2

√
ρnAρ

n
B is a.e. convergent in ΩT , and so is

|ρnA − ρnB| = |
√
ρnA +

√
ρnB||

√
ρnA −

√
ρnB|.

Step 3: strong convergence of ρnA, ρ
n
B. Now we must prove that ρnA, ρ

n
B are a.e. convergent also in

Ec =
{

limn→∞ ρ
n
Aρ

n
B = 1

}
. To this aim, let ψ ∈ C2(R) be a cutoff such that

ψ(s) =


0 s < 1

3 ,

1 s > 2
3 ,

nondecreasing 1
3 ≤ s ≤

2
3 .

(64)
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Moreover define

g(s) =
1

1 + s4
, s ≥ 1, (65)

fA(ρn) = ψ(
√
ρnAρ

n
B)g(

√
ρnA +

√
ρnB)(log ρnA + ρnB), (66)

fB(ρn) = ψ(
√
ρnAρ

n
B)g(

√
ρnA +

√
ρnB)(log ρnB + ρnA). (67)

Since ψ(s)s−α is bounded for every α ≥ 0 and | log s| ≤ C(s−1/8 + s), it holds

|fA(ρn)| ≤
ψ(
√
ρnAρ

n
B)g(

√
ρnA +

√
ρnB)

(ρnAρ
n
B)1/4

((ρnB)1/4(ρnA)1/4| log ρnA|+ (ρnA)1/4(ρnB)5/4)

≤ C
(ρnB)1/4[(ρnA)1/8 + (ρnA)5/4] + (ρnA)1/4(ρnB)5/4

1 + (ρnA)2 + (ρnB)2

≤ C,

(68)

which means that fA(ρn) is bounded in L∞(Ω×(0, T )). Similarly one shows the same bound for fB(ρn).
Let us now consider

∇fA(ρn) = I1 + I2 + I3,

where

I1 := ψ(
√
ρnAρ

n
B)g(

√
ρnA +

√
ρnB)∇(log ρnA + ρnB)

I2 := ψ(
√
ρnAρ

n
B)(log ρnA + ρnB)∇g(

√
ρnA +

√
ρnB),

I3 := g(
√
ρnA +

√
ρnB)(log ρnA + ρnB)∇ψ(

√
ρnAρ

n
B).

First we give an estimate to I1. From (20) it follows

‖I1‖L2(ΩT ) = 2

∥∥∥∥∥ψ(
√
ρnAρ

n
B)√

ρnAρ
n
B

g(
√
ρnA +

√
ρnB)
√
ρnB(∇

√
ρnA +

√
ρnAρ

n
B∇
√
ρnB)

∥∥∥∥∥
L2(ΩT )

≤ 2

∥∥∥∥∥ψ(
√
ρnAρ

n
B)√

ρnAρ
n
B

∥∥∥∥∥
L∞(ΩT )

‖g(
√
ρnA +

√
ρnB)
√
ρnB‖L∞(ΩT )‖∇

√
ρnA +

√
ρnAρ

n
B∇
√
ρnB‖L2(ΩT )

≤ CT .

Now, we consider I2. Since g′/g is bounded in R+ while fA(ρn) is bounded in L∞(ΩT ),

‖I2‖L2(ΩT ) =

∥∥∥∥∥fA(ρn)
g′(
√
ρnA +

√
ρnB)

g(
√
ρnA +

√
ρnB)
∇(
√
ρnA +

√
ρnB)

∥∥∥∥∥
L2(Ω)

≤ C‖∇(
√
ρnA +

√
ρnB)‖L2(ΩT ) ≤ CT

where the last inequality comes from (16).
Finally, let us consider I3. Since |ψ′(s)| ≤ Cs1/4|1− s| for s ≥ 0 one obtains

‖I3‖L2(ΩT ) =
∥∥g(
√
ρnA +

√
ρnB)(log ρnA + ρnB)ψ′(

√
ρnAρ

n
B)∇(

√
ρnAρ

n
B)
∥∥
L2(ΩT )

≤
∥∥∥g(
√
ρnA +

√
ρnB)(log ρnA + ρnB)(

√
ρnAρ

n
B)1/4|1−

√
ρnAρ

n
B|(
√
ρnA|∇

√
ρnB|+

√
ρnB|∇

√
ρnA|)

∥∥∥
L2(ΩT )

≤
∥∥∥g(
√
ρnA +

√
ρnB)(

√
ρnA +

√
ρnB)(log ρnA + ρnB)(ρnAρ

n
B)1/8

∥∥∥
L∞(ΩT )

×
∥∥(1−

√
ρnAρ

n
B)(|∇

√
ρnA|+ |∇

√
ρnB|)

∥∥
L2(ΩT )

≤ CT ,
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where we used (15), (19). We conclude that ∇fA(ρn) is bounded in L2(ΩT ). Similarly, one can show
that ∇fB(ρn) is bounded in L2(Ω× (0, T )), too. This means that the vector fields

Y n
i = (fi(ρ

n), 0, 0, 0), i ∈ {A,B},

are bounded in L∞(Ω) and the antisymmetric part of their Jacobian is bounded in L2(ΩT ), thus
relatively compact inW−1,r(ΩT ) for some r > 1. Once again, the Div-Curl Lemma (applied to UnA−UnB
defined in (49) and Y n

A − Y n
B ) leads to

(ρnA − ρnB)(fA(ρn)− fB(ρn)) = (ρnA − ρnB) (fA(ρn)− fB(ρn)),

which means

(ρnA − ρnB)ψ(ρnAρ
n
B)

1 + (
√
ρnA +

√
ρnB)4

(
log

ρnA
ρnB

+ ρnB − ρnA

)
= (ρnA − ρnB)

ψ(ρnAρ
n
B)

1 + (
√
ρnA +

√
ρnB)4

(
log

ρnA
ρnB

+ ρnB − ρnA

)
.

(69)

Let

µn = min{ρnA, ρnB} =
1

2
(ρnA + ρnB)− 1

2
|ρnA − ρnB|,

Mn = max{ρnA, ρnB} =
1

2
(ρnA + ρnB) +

1

2
|ρnA − ρnB|,

and

σn =


1, ρnA > ρnB,

0, ρnA = ρnB,

−1, ρnA < ρnB.

Since both ρnA+ρnB and |ρnA−ρnB| are a.e. convergent in Ω× (0, T ), then also µn, Mn are a.e. convergent
in Ω× (0, T ) (and strongly convergent in L4−η(Ω× (0, T )) for every η > 0) towards some nonnegative
functions µ, M (respectively). On the other hand |σn| ≤ 1 a.e. in Ω× (0, T ) and so σn ⇀∗ σ weakly*
in L∞(Ω× (0, T )).

Let us point out that

(ρnA − ρnB)

(
log

ρnA
ρnB

+ ρnB − ρnA
)

= (Mn − µn)

(
log

Mn

µn
+ µn −Mn

)
which implies that (ρnA − ρnB)

(
log

ρnA
ρnB

+ ρnB − ρnA
)
is a.e. convergent on {µ > 0}. On the other hand,

since ψ(ρnAρ
n
B) > 0 only on {ρnAρnB ≥ 1/3} = {1/µn ≤ 3Mn}, it follows (via Lagrange’s theorem) that

for a suitable point λn ∈ [µn,Mn]

ψ(
√
Mnµn)(Mn − µn) log

Mn

µn
= ψ(

√
Mnµn)

(Mn − µn)2

λn
≤ ψ(

√
Mnµn)

(Mn − µn)2

µn
≤ C|Mn|3.

Since Mn, µn are bounded in L2(Ω× (0, T )), it follows (by dominated convergence) that

(ρnA − ρnB)ψ(ρnAρ
n
B)

1 + (
√
ρnA +

√
ρnB)4

(
log

ρnA
ρnB

+ ρnB − ρnA
)
→ (M − µ)ψ(Mµ)

1 + (
√
M +

√
µ)4

(
log

M

µ
+ µ−M

)
strongly in L1(ΩT ).

A similar argument allows us to obtain

ψ(Mnµn)

1 + (
√
Mn +

√
µn)4

(
log

Mn

µn
+ µn −Mn

)
→ ψ(Mµ)

1 + (
√
M +

√
µ)4

(
log

M

µ
+ µ−M

)
strongly in L1(ΩT ).
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As a consequence,

ρnA − ρnB = σn(Mn − µn) ⇀ σ(M − µ) weakly in L1(Ω× (0, T )),

ψ(ρnAρ
n
B)

1 + (
√
ρnA +

√
ρnB)4

(
log

ρnA
ρnB

+ ρnB − ρnA
)

= σn
ψ(Mnµn)

1 + (
√
Mn +

√
µn)4

(
log

Mn

µn
+ µn −Mn

)
⇀ σ

ψ(Mµ)

1 + (
√
M +

√
µ)4

(
log

M

µ
+ µ−M

)
weakly in L1(Ω× (0, T )).

From the above relations and (69) as well as the fact that

Mµ = 1, log
M

µ
+ µ−M = 0 ⇔ M = µ = 1,

we deduce that |σ|2 = 1 in {M > µ, Mµ = 1}. However, since |σn| ≤ 1 a.e. in ΩT , n ∈ N, this means
that

(σn)2 ≤ 1 = |σ|2 = (σn)2 a.e. in {M > µ, Mµ = 1}.

However, being x 7→ x2 strictly convex, it follows from [13, Thr. 10.20] that σn → σ a.e. in {M >
µ, Mµ = 1}. This allows us to deduce that ρnA−ρnB = σn(Mn−µn) is a.e. convergent in {Mµ = 1} = Ec,
and so are ρnA = 1

2(ρnA + ρnB) + 1
2(ρnA − ρnB) and ρnB = 1

2(ρnA + ρnB) − 1
2(ρnA − ρnB) (because we already

know that ρnA + ρnB is a.e. convergent in ΩT ). Since we already knew that ρnA, ρ
n
B are a.e. convergent

in E, we conclude that ρnA, ρ
n
B are a.e. convergent in ΩT and therefore by dominated convergence (and

(19)) ρnA, ρ
n
B are also strongly convergent in L2−δ(ΩT ) for every δ ∈ (0, 1].

Step 4: limit in the equations. Now we show that (37), (38) hold for the limit functions ρA, ρB.
We first study the convergence of the expressions

ζnA = ∇
√
ρnA +

√
ρnAρ

n
B∇
√
ρnB, and ζ

n
B = ∇

√
ρnB +

√
ρnAρ

n
B∇
√
ρnA.

Since ζnA, ζ
n
B are bounded in L2(ΩT ), it holds (up to subsequences)

ζnA ⇀ ζA, ζnB ⇀ ζB weakly in L2(ΩT ).

We want to show that (40)–(43) hold. Let us consider

ζnA + ζnB = (
√
ρnAρ

n
B + 1)∇(

√
ρnA +

√
ρnB).

We know that ∇(
√
ρnA +

√
ρnB) is bounded in L2(Ω × (0, T )) and that

√
ρnA +

√
ρnB →

√
ρA +

√
ρB

strongly in L2(Ω× (0, T )), therefore

∇(
√
ρnA +

√
ρnB) ⇀ ∇(

√
ρA +

√
ρB) weakly in L2(ΩT ).

Moreover, thanks to (16), JnA+JnB is bounded in L2(ΩT ), while
√
ρnAρ

n
B →

√
ρAρB strongly in L3−δ(ΩT )

for every δ ∈ (0, 2] (thanks to (23)). Therefore

ζnA + ζnB ⇀ (
√
ρAρB + 1)∇(

√
ρA +

√
ρB) weakly in L2(ΩT ).

Therefore, (40) holds. Let us now turn our attention to

ζnA − ζnB = (1−
√
ρnAρ

n
B)∇(

√
ρnA −

√
ρnB).
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Let us consider a generic function Ψ ∈ C1 ∩W 1,∞(R+) such that |Ψ(s)| ≤ C|s− 1| for s ≥ 0. It holds

Ψ(
√
ρnAρ

n
B)(ζnA − ζnB) = ∇[Ψ(

√
ρnAρ

n
B)(1−

√
ρnAρ

n
B)(
√
ρnA −

√
ρnB)]

− (
√
ρnA −

√
ρnB)∇[(1−

√
ρnAρ

n
B)Ψ(

√
ρnAρ

n
B)].

However, due to (19), (23) we have

Ψ(
√
ρnAρ

n
B)(1−

√
ρnAρ

n
B)(
√
ρnA −

√
ρnB) ⇀ Ψ(

√
ρAρB)(1−√ρAρB)(

√
ρA −

√
ρB) weakly in L12/7(ΩT ),

while, thanks to (15), (19) we have

∇[(1−
√
ρnAρ

n
B)Ψ(

√
ρnAρ

n
B)] ⇀ ∇[(1−√ρAρB)Ψ(

√
ρAρB)] weakly in L4/3(ΩT ),

so it follows that

Ψ(
√
ρAρB)(ζA − ζB) = weak lim

n→∞
Ψε(
√
ρnAρ

n
B)(ζnA − ζnB)

= ∇[Ψε(
√
ρAρB)(1−√ρAρB)(

√
ρA −

√
ρB)]− (

√
ρA −

√
ρB)∇[(1−√ρAρB)Ψε(

√
ρAρB)],

implying that (41) holds.
Let now consider Φ ∈ C1 ∩W 1,∞(R+) such that |Φ(s)| ≤ Cs for s ≥ 0 and s ∈ [0,∞) 7→ Φ′(s)

s(s−1) ∈ R
is continuous and bounded. The function Φ(

√
ρnAρ

n
B)g(

√
ρnA +

√
ρnB)/

√
ρnA (with g defined in (65)) is

bounded in L∞(ΩT ) since

0 ≤
Φ(
√
ρnAρ

n
B)√

ρnA
g(
√
ρnA +

√
ρnB) =

Φ(
√
ρnAρ

n
B)√

ρnAρ
n
B

√
ρnB

1 + (
√
ρnA +

√
ρnB)4

≤ C.

Therefore, it is strongly convergent (in Lq(Ω) for every q < ∞) to ψ(
√
ρAρB)g(

√
ρA +

√
ρB)/

√
ρA, so

that

Φ(
√
ρnAρ

n
B)√

ρnA
g(
√
ρnA +

√
ρnB)ζnA ⇀

Φ(
√
ρAρB)
√
ρA

g(
√
ρA +

√
ρB)ζA weakly in L2(ΩT ). (70)

On the other hand, (66) implies

Φ(
√
ρnAρ

n
B)√

ρnA
g(
√
ρnA +

√
ρnB)ζnA = Φ(

√
ρnAρ

n
B)g(

√
ρnA +

√
ρnB)∇(log ρnA + ρnB)

= ∇[Φ(
√
ρnAρ

n
B)g(

√
ρnA +

√
ρnB)(log ρnA + ρnB)]

− (log ρnA + ρnB)g(
√
ρnA +

√
ρnB)∇Φ(

√
ρnAρ

n
B)

− (log ρnA + ρnB)Φ(
√
ρnAρ

n
B)∇g(

√
ρnA +

√
ρnB)

= ∇[Φ(
√
ρnAρ

n
B)g(

√
ρnA +

√
ρnB)(log ρnA + ρnB)]

− (log ρnA + ρnB)g(
√
ρnA +

√
ρnB)

Φ′(
√
ρnAρ

n
B)

2(
√
ρnAρ

n
B − 1)

∇(
√
ρnAρ

n
B − 1)2

− (log ρnA + ρnB)Φ(
√
ρnAρ

n
B)g′(

√
ρnA +

√
ρnB)∇(

√
ρnA +

√
ρnB).

(71)

The term Φ(
√
ρnAρ

n
B)g(

√
ρnA+

√
ρnB)(log ρnA+ρnB) can be estimated as in (68) to show that it is bounded

in L∞(Ω), so thanks to the strong convergence of ρn and the continuity of the involved functions we
deduce

∇[Φ(
√
ρnAρ

n
B)g(

√
ρnA +

√
ρnB)(log ρnA + ρnB)] ⇀ ∇[Φ(

√
ρAρB)g(

√
ρA +

√
ρB)(log ρA + ρB)]

weakly in Lq(0, T ;W−1,q(Ω)), for all q ∈ (1,∞).
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Moreover

∇(
√
ρnAρ

n
B − 1)2 ⇀ ∇(

√
ρAρB − 1)2 weakly in L4/3(ΩT ).

Furthermore, repeating the estimates in (68) with Φ′(
√
ρnAρ

n
B)/2(

√
ρnAρ

n
B − 1) in place of ψ(

√
ρnAρ

n
B)

allows us to deduce that the factor (log ρnA + ρnB)g(
√
ρnA +

√
ρnB)Φ′(

√
ρnAρ

n
B)/2(

√
ρnAρ

n
B − 1) is bounded

in L∞(ΩT ), and therefore

(log ρnA + ρnB)g(
√
ρnA +

√
ρnB)

Φ′(
√
ρnAρ

n
B)

2(
√
ρnAρ

n
B − 1)

→ (log ρA + ρB)g(
√
ρA +

√
ρB)

Φ′(
√
ρAρB)

2(
√
ρAρB − 1)

strongly in Lq(ΩT ), for all q <∞.

Finally, repeating the estimates in (68) with g replaced by g′ allows us to deduce that (log ρnA +
ρnB)Φ(

√
ρnAρ

n
B)g′(

√
ρnA +

√
ρnB) is bounded in L∞(ΩT ), so

(log ρnA + ρnB)Φ(
√
ρnAρ

n
B)g′(

√
ρnA +

√
ρnB)→ (log ρA + ρB)Φ(

√
ρAρB)g′(

√
ρA +

√
ρB)

strongly in Lq(ΩT ), for all q <∞,

while we already know that

∇(
√
ρnA +

√
ρnB) ⇀ ∇(

√
ρA +

√
ρB) weakly in L2(ΩT ).

Taking the limit n→∞ in (71) yields (42). Relation (43) is obtained in a similar way.
From (26) it follows

∂tρ
n
i ⇀ ∂tρi weakly in L4/3(0, T ;W−1,4/3(Ω)), i ∈ {A,B},

and via the compact Sobolev embedding W 1,4/3(0, T ;W 1,4(Ω)′) ↪→ Cweak([0, T ],W 1,4(Ω)′)

ρni → ρi in Cweak([0, T ],W 1,4(Ω)′), i ∈ {A,B}. (72)

Since ζni ⇀ ζi weakly in L2(ΩT ), i ∈ {A,B}, while
√
ρnA →

√
ρA,

√
ρnB →

√
ρB strongly in L4−δ(ΩT )

for every δ ∈ (0, 3], it follows that one can take the limit in (46), (47) and conclude that ρ ≡ (ρA, ρB)
satisfies (37), (38).

Let us now make sure that (39) is satisfied by ρ. Given any constant in time φ ∈ W 1,4(Ω)
and any t ∈ (0, T ), from (26) (and the fundamental theorem of calculus, which holds since ρn ∈
W 1,4/3(0, T ;W 1,4(Ω)′) and therefore t 7→ 〈ρn(t), φ〉 is in W 1,4/3(0, T )) it follows∣∣∣∣ˆ

Ω
ρni (t)φdx−

ˆ
Ω
ρini φdx

∣∣∣∣ ≤ ˆ t

0
|〈∂tρni (t′), φ〉|dt′ ≤ ‖∂tρni ‖L4/3(0,t;W 1,4(Ω)′)‖φ‖L4(0,t;W 1,4(Ω))

≤ Ct1/4‖φ‖W 1,4(Ω).

Since (72) holds, it follows that
´

Ω ρ
n
i (t)φdx→

´
Ω ρi(t)φdx as n→∞, so∣∣∣∣ˆ

Ω
ρi(t)φdx−

ˆ
Ω
ρini φdx

∣∣∣∣ ≤ Ct1/4‖φ‖W 1,4(Ω), for all φ ∈W 1,4(Ω),

which means

‖ρi(t)− ρini ‖W 1,4(Ω)′ ≤ Ct1/4.

Being t ∈ (0, T ) arbitrary and C > 0 independent of t, we deduce that (39) holds. Therefore, ρ is a
weak solution to (30)–(32) according to Definition 3.2. This finishes the proof.
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4 Stationary states

In this section, we study the steady states of (1)-(3), i.e. the constant-in-time solutions to (1)-(3). First,
we provide a definition.

Definition 4.1 (Steady state). A steady state of (1)-(3) is a weak solution to (1)-(3) in the sense of
Def. 3.2 that is constant in time.

In the following we prove that the only allowed steady states for the system are constant.

Proposition 4.2. Let Ω ∈ R2 open, bounded and connected with Lipschitz boundary. Every steady
state of (1)-(3) is constant in Ω.

Proof. According to the definition of a weak solution, the integrated entropy balance (45) must hold.
Being a steady state constant in time, this implies that ζA = ζB = 0 a.e. in Ω. From (40) it follows
immediately that √ρA +

√
ρB = k1 is constant in Ω. In particular, ρA, ρB ∈ L∞(Ω). From (41) we

deduce

∇ [Ψ(
√
ρAρB)(1−√ρAρB)(

√
ρA −

√
ρB)]− (

√
ρA −

√
ρB)∇ [Ψ(

√
ρAρB)(1−√ρAρB)] = 0

for every Ψ ∈ C1 ∩W 1,∞(R+) such that |Ψ(s)| ≤ C|s− 1|, for s > 0.
Since √ρA +

√
ρB is constant it also holds trivially that

∇ [Ψ(
√
ρAρB)(1−√ρAρB)(

√
ρA +

√
ρB)]− (

√
ρA +

√
ρB)∇ [Ψ(

√
ρAρB)(1−√ρAρB)] = 0.

Putting the two previous equations together yields

∇ [Ψ(
√
ρAρB)(1−√ρAρB)

√
ρi]−

√
ρi∇ [Ψ(

√
ρAρB)(1−√ρAρB)] = 0, i ∈ {A,B}. (73)

Multiplying the equation above times Ψ(
√
ρAρB)(1 − √ρAρB)

√
ρj ∈ H1(Ω) (thanks to (36) and the

boundedness of ρA, ρB) and summing for i, j = A,B, i 6= j, lead to

∇
[
Ψ(
√
ρAρB)2(1−√ρAρB)2√ρAρB

]
= 2Ψ(

√
ρAρB)(1−√ρAρB)

√
ρAρB∇ [Ψ(

√
ρAρB)(1−√ρAρB)] ,

which is equivalent to

Ψ(
√
ρAρB)(1−√ρAρB)∇ [Ψ(

√
ρAρB)(1−√ρAρB)

√
ρAρB]

= Ψ(
√
ρAρB)(1−√ρAρB)

√
ρAρB∇ [Ψ(

√
ρAρB)(1−√ρAρB)] a.e. in Ω,

for every Ψ ∈ C1 ∩W 1,∞(R+) such that |Ψ(s)| ≤ C|s− 1|, for s > 0. Let us now choose

Ψ(s) =

{
(s− 1)2, s ≤ 2,

2s− 3, s > 2.

The function η(s) = Ψ(s)(1−s) is strictly decreasing in R+, so it is invertible. Defining v = η(
√
ρAρB),

ξ(u) = uη−1(u) for u ∈ (−∞, 1], we deduce

v∇ξ(v)− ξ(v)∇v = ∇ξ̃(v) = 0 a.e. in Ω,

where ξ̃(u) ≡
´ u
c (wξ′(w) − ξ(w))dw, u ≤ 1. It follows that ξ̃(v) is constant in Ω. However, ξ̃′(u) =

uξ′(u) − ξ(u) = u2 d
du

(
ξ(u)
u

)
= u2 d

duη
−1(u) < 0 for u ≤ 1. Therefore, ξ̃ is one-to-one, implying that

v = η(
√
ρAρB) is constant. Being η also a one-to-one function, we deduce that √ρAρB = k2 is constant

in Ω. We distinguish two cases, according to the value of k2.
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Case 1: k2 6= 1. In this situation (73) immediately yields that ρA, ρB are constant, provided that one
chooses Ψ such that Ψ(k2) 6= 0.

Case 2: k2 = 1. In this case we must consider (42), (43), which immediately imply that log ρA + ρB,
log ρB + ρA are constant in Ω. Therefore, also their difference is constant, i.e.

ρA − ρB + log
ρB
ρA

= k3 a.e. in Ω.

Since ρAρB = 1 by assumption, it follows

F (ρA) ≡ ρA −
1

ρA
− 2 log ρA = k3 a.e. in Ω.

However, F ′(s) = 1 + 1
s2
− 2

s = (s−1)2

s2
> 0 for s 6= 1, which means that F is strictly monotone.

We conclude that ρA is constant, implying that also ρB is constant. This finishes the proof of the
Proposition.

The result might mean that the class of solutions we considered is perhaps too small, as segregated
states are ruled out. On the other hand, the definition arises naturally from the weak stability argument
and only employs the entropy structure of the equations. It is entirely possible that different analytical
tools might yield segregated steady states.

4.1 Linear stability analysis

We now consider the stability of the steady states of the system (1)-(3), copied here for reference:{
∂tρA(t, x, y) = 1

4∇ · (∇ρA(t, x, y) + 2βcρA(t, x, y)∇ρB(t, x, y)) ,

∂tρB(t, x, y) = 1
4∇ · (∇ρB(t, x, y) + 2βcρB(t, x, y)∇ρA(t, x, y)) .

In order to better understand the system, we perform a linear stability analysis around the uniformly
distributed steady state, {

ρ̄A(x) = N1, 0 ≤ x ≤ L,
ρ̄B(x) = N2, 0 ≤ x < L,

(74)

where N1, N2 > 0 are the equilibrium densities and L ∈ R+.
To this end, we consider perturbations of the form ε = δie

αteikx with δi � 1 where i ∈ {A,B}.

ρA(x) = ρ̄A + δAe
αt+ikx, 0 ≤ x ≤ L, (75)

ρB(x) = ρ̄B + δBe
αt+ikx, 0 ≤ x < L. (76)

Lemma 4.3. The uniform steady state solution (74) of system (1)-(3) is linearly stable if the following
condition holds true:

βc ≤ 1

2
√
ρ̄Aρ̄B

. (77)

Proof. We plug solutions (75) into system (1)-(3):{
∂
∂t(ρ̄A + δAe

αt+ikx) = 1
4∇ ·

(
∇(ρ̄A + δAe

αt+ikx) + 2βc(ρ̄A + δAe
αt+ikx)∇(ρ̄B + δBe

αt+ikx)
)
,

∂
∂t(ρ̄B + δBe

αt+ikx) = 1
4∇ ·

(
∇(ρ̄B + δBe

αt+ikx) + 2βc(ρ̄B + δBe
αt+ikx)∇(ρ̄A + δAe

αt+ikx)
)
,
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and obtain {
αδAe

αt+ikx = 1
4∇ ·

(
(ikδAe

αt+ikx) + 2βc(ρ̄A + δAe
αt+ikx)(ikδBe

αt+ikx)
)
,

αδBe
αt+ikx = 1

4∇ ·
(
(ikδBe

αt+ikx) + 2βc(ρ̄B + δBe
αt+ikx)(ikδAe

αt+ikx)
)
.

This implies {
αδA = −k2

4 δA − k2

2 δBβcρ̄A +O(δAδB),

αδB = −k2
4 δB − k2

2 δAβcρ̄B +O(δAδB).

Writing the linear part of this in matrix-vector form (M − αI)~δ = 0, we have[
−(k

2

4 + α) −k2

2 βcρ̄A
−k2

2 βcρ̄B −(k
2

4 + α)

] [
δA
δB

]
=

[
0
0

]
.

Hence, it follows from the characteristic polynomial(
k2

4
+ α

)2

− k4

4
(βc)2ρ̄Aρ̄B = 0,

that
Therefore, the uniform steady state solution will be linearly stable when βc ≤ 1

2
√
ρ̄Aρ̄B

.

5 Long-time behavior

In this section we give our result on the long-time behaviour of solutions. We denote
 

Ω
≡ |Ω|−1

ˆ
Ω
.

Theorem 5.1 (Convergence to steady state). Let ρ : Ω× (0, T )→ R2
+ be a weak solution to (30)–(32)

according to Definition 3.2. Define the constant steady state associated to ρ as

ρ∞ ≡ (ρ∞A , ρ
∞
B ), ρ∞i =

 
Ω
ρi(t) dx =

 
Ω
ρini dx i ∈ {A,B}, t > 0,

and assume that ρ∞i > 0 for i ∈ {A,B}. Define the relative entropy functional as

H(ρ | ρ∞) =

ˆ
Ω
h∗(ρ | ρ∞) dx,

where

h∗(ρ | ρ∞) = h(ρ)− h(ρ∞)− h′(ρ∞) · (ρ− ρ∞),

h(ρ) = ρA log ρA + ρB log ρB + ρAρB.

Then H(ρ(t) | ρ∞)→ 0 as t→∞.
Furthermore, if ρ∞A ≤ 1 and ρ∞B ≤ 1, then ρ(t)→ ρ∞ strongly in L1(Ω) as t→∞.

Remark 5.2. In the physical variables, the constraint on the steady state is ρ∞i ≤ (2βc)−1, i ∈ {A,B}.

27



Proof. The proof is divided into two parts. First we prove that limt→∞H(ρ(t) | ρ∞) = 0, then we show
that, if both masses are not larger than 1, then ρ(t)→ ρ∞ as t→∞ strongly in L1(Ω).

Step 1: Show that limt→∞H(ρ(t) | ρ∞) = 0.
Remark 5.3. In the following we will identify the quantities ζA, ζB with∇√ρA+

√
ρAρB∇

√
ρB, ∇

√
ρB+√

ρAρB∇
√
ρA, respectively. Albeit this identification is not known to hold exactly for nondegenerate

weak solutions (as the latter expressions are not clearly defined), the present theorem could be proved
also by using the properties (40)–(43) and proceeding in a similar way as in the proof of Prop. 4.2. We
chose to omit technical details for the sake of a simple exposition.

From (20) it follows that
ˆ ∞

0

ˆ
Ω

(
(1 +

√
ρAρB)2|∇(

√
ρA +

√
ρB)|2 + (1−√ρAρB)2|∇(

√
ρA −

√
ρB)|2

)
dxdt ≤ C.

As a consequence there exists an increasing sequence of time instants tn →∞ such that

(1 +
√
ρAρB)∇(

√
ρA +

√
ρB) |t=tn→ 0, (1−√ρAρB)∇(

√
ρA −

√
ρB) |t=tn→ 0 strongly in L2(Ω),

(78)

as n→∞.
Define ρni ≡ ρi(tn) for i ∈ {A,B}, n ∈ N. In particular, ∇(

√
ρnA +

√
ρnB) is bounded in L2(Ω).

However by mass conservation
√
ρnA +

√
ρnB is bounded in L2(Ω), and so

√
ρnA +

√
ρnB is bounded in

H1(Ω). By Sobolev embedding (in 2 space dimensions)
√
ρnA +

√
ρnB is bounded in Lp(Ω) for every

p <∞.
From (78) we deduce that ∇(

√
ρnA +

√
ρnB) → 0 strongly in L2(Ω). Poincaré-Wirtinger Lemma

yields √
ρnA +

√
ρnB −

 
Ω

(
√
ρnA +

√
ρnB)dx→ 0 strongly in Lp(Ω), for all p <∞. (79)

From (78) we also deduce

(1−
√
ρnAρ

n
B)∇ρni → 0 strongly in L2(Ω), i ∈ {A,B}. (80)

The above relation and the uniform Lp bound for ρni lead to (also, thanks to the definition of weak
solution (3.2), (

√
ρnAρ

n
B − 1)3

√
ρni ∈ H1(Ω) is an admissible test function, i ∈ {A,B})

1

5
∇
(
(
√
ρnAρ

n
B − 1)5

)
= (
√
ρnAρ

n
B − 1)4

(√
ρnA∇

√
ρnB −

√
ρnB∇

√
ρnA
)
→ 0 strongly in L2−ε(Ω), (81)

for every ε > 0. Again, by Poincaré Lemma one deduce that

(
√
ρnAρ

n
B − 1)5 −

 
Ω

(
√
ρnAρ

n
B − 1)5dx→ 0 strongly in Lp(Ω), for all p <∞. (82)

Since ρnA, ρ
n
B are bounded in Lp(Ω) for every p <∞, then up to subsequences

 
Ω

(
√
ρnA +

√
ρnB)dx→ c1,

 
Ω

(
√
ρnAρ

n
B − 1)5dx→ c̃2.

From the above relation and (79), (82) we get√
ρnA +

√
ρnB → c1, (

√
ρnAρ

n
B − 1)5 → c̃2 strongly in Lp(Ω), for all p <∞.
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However, being x ∈ R 7→ (x− 1)5 ∈ R globally invertible, it follows√
ρnA +

√
ρnB → c1,

√
ρnAρ

n
B → c2 := 1 + c̃

1/5
2 strongly in Lp(Ω), for all p <∞. (83)

As a consequence

ρnA + ρnB = (
√
ρnA +

√
ρnB)2 − 2

√
ρnAρ

n
B → c2

1 − 2c2 strongly in Lp(Ω), for all p <∞.

The above relation and mass conservation implies

ρnA + ρnB → ρ∞A + ρ∞B strongly in Lp(Ω), for all p <∞. (84)

Moreover,

|
√
ρnA −

√
ρnB|

2 = (
√
ρnA +

√
ρnB)2 − 4

√
ρnAρ

n
B → c2

1 − 4c2 strongly in Lp(Ω), for all p <∞,

and so

|ρnA − ρnB| = (
√
ρnA +

√
ρnB)|

√
ρnA −

√
ρnB| → c3 := c1

√
c2

1 − 4c2 strongly in Lp(Ω), for all p <∞.
(85)

In particular, since 2 max{x, y} = x + y + |x − y|, 2 min{x, y} = x + y − |x − y| for every x, y ≥ 0, it
follows

Mn := max{ρnA, ρnB} →M, µn := min{ρnA, ρnB} → µ, strongly in Lp(Ω), for all p <∞, (86)

and M , µ are constants. Notice that
√
Mµ = limn→∞

√
ρnAρ

n
B a.e. in Ω.

From (80), (81) it follows

∇
[
(
√
ρnAρ

n
B − 1)5ρni

]
→ 0 strongly in L2−ε(Ω), i ∈ {A,B},

that is

(
√
ρnAρ

n
B − 1)5ρni → θi strongly in L2−ε(Ω), i ∈ {A,B},

for some constants θA, θB. We distinguish two cases:

Case 1: Mµ 6= 1.
In this case ρni is a.e. convergent in Ω to a constant which, due to mass conservation and uniform

Lp(Ω) bounds, must be equal to ρ∞i . It follows

ρni → ρ∞i strongly in Lq(Ω), for all q <∞, i ∈ {A,B}. (87)

Case 2: Mµ = 1.
In this case let us observe that relation (78) can be rewritten as√

ρnA∇ (log ρnA + ρnB)→ 0,
√
ρnB∇ (log ρnB + ρnA)→ 0, strongly in L2(Ω). (88)

Let ψ like in (64). Since

∇(ψ(
√
ρnAρ

n
B)(log ρnA + ρnB)) = ψ′(

√
ρnAρ

n
B)(log ρnA + ρnB)∇

√
ρnAρ

n
B + ψ(

√
ρnAρ

n
B)∇(log ρnA + ρnB)

=
√
ρnB

ψ′(
√
ρnAρ

n
B)√

ρnAρ
n
B(1−

√
ρnAρ

n
B)

√
ρnA(log ρnA + ρnB)(1−

√
ρnAρ

n
B)∇

√
ρnAρ

n
B

+
√
ρnB
ψ(
√
ρnAρ

n
B)√

ρnAρ
n
B

√
ρnA∇(log ρnA + ρnB)
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from (78), (88) it follows that

∇(ψ(
√
ρnAρ

n
B)(log ρnA + ρnB))→ 0 strongly in L2−ε(Ω), for all ε > 0.

Being
´

Ω ψ(
√
ρnAρ

n
B)(log ρnA + ρnB)dx bounded, we deduce

ψ(
√
ρnAρ

n
B)(log ρnA + ρnB)→ c4 strongly in L2−ε(Ω), for all ε > 0.

In a similar way,

ψ(
√
ρnAρ

n
B)(log ρnB + ρnA)→ c5 strongly in L2−ε(Ω), for all ε > 0.

In particular, since
√
ρnAρ

n
B → 1 a.e. in Ω, then

log
ρnA
ρnB

+ ρnB − ρnA → c6 := c4 − c5 a.e. in Ω.

Let σn =
ρnA−ρ

n
B

|ρnA−ρ
n
B |

on {Mn > µn}, σn = 0 on {ρnA = ρnB}. We just proved

σn
(

log
Mn

µn
+ µn −Mn

)
→ c6 a.e. in Ω.

However, we know from (86) that log Mn

µn + µn −Mn → log M
µ + µ−M a.e. in Ω, with M , µ constants

such that
√
Mµ = 1, so

log
Mn

µn
+ µn −Mn → 2 logM +

1

M
−M a.e. in Ω.

Since the function x ∈ (0,∞) 7→ 2 log x+ 1
x − x ∈ R is one-to-one (strictly decreasing), it vanishes only

at x = 1. If M = µ = 1 then ρnA− ρnB → 0 a.e. in Ω and so (87) holds. Let us therefore assume M > µ.
In this case

σn → c7 := c6

(
2 logM +

1

M
−M

)−1

a.e. in Ω.

It follows that ρnA − ρnB = σn(Mn − µn) is a.e. convergent in Ω towards a constant, i.e. (87) holds.
The uniform Lp(Ω) bound, valid for every p < ∞, implies limn→∞H(ρ(tn) | ρ∞) = 0. However, since
t 7→ H(ρ(t) | ρ∞) is nonincreasing in time, we conclude that limt→∞H(ρ(t) | ρ∞) = 0.

Step 2: Show that limt→∞ ρ(t) = ρ∞ strongly in L1(Ω).
Assume ρ∞A , ρ∞B ≤ 1.
We aim to prove that there exists R > 0, γ > 0 such that if ρA + ρB ≥ R then

h∗(ρ | ρ∞) ≥ γ(ρA + ρB), (89)

h∗(ρ | ρ∞) > 0 for all ρ ∈ R2
+\{ρ∞}. (90)

If (89), (90) hold, then from Step 1 one easily concludes that limt→∞ ρ(t) = ρ∞ strongly in L1(Ω).
Let us start with (89). We have

h∗(ρ | ρ∞) = ρA log

(
ρA
ρ∞A

)
+ ρ∞A − ρA + ρB log

(
ρB
ρ∞B

)
+ ρ∞B − ρB + (ρA − ρ∞A )(ρB − ρ∞B )

= (ρA + ρB) log(ρA + ρB) + ρAρB +

[
ρA

ρA + ρB
log

(
ρA

ρA + ρB

)
+

ρB
ρA + ρB

log

(
ρB

ρA + ρB

)
−(1 + ρ∞B )

ρA
ρA + ρB

− (1 + ρ∞A )
ρB

ρA + ρB

]
(ρA + ρB) + ρ∞A + ρ∞B + ρ∞A ρ

∞
B ,
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from which (89) follows straightforwardly (as all the terms in the square brackets are bounded).
Let us now show (90). We begin by proving that h∗(ρ | ρ∞) > 0 for min{ρA, ρB} = 0. Since

h∗(0 | ρ∞) > 0 trivially, let us consider the case ρA = 0, ρB > 0 (the complementary case ρB = 0,
ρA > 0 is treated in an analogous way). We need to study the function

f(ρB) ≡ h∗(ρ | ρ∞)|ρA=0 = ρ∞A + ρB log

(
ρB
ρ∞B

)
+ ρ∞B − ρB − ρ∞A (ρB − ρ∞B ), ρB > 0.

Clearly f is a convex function that is positive for ρB = 0 and tends to infinity when ρB →∞. Its point
of absolute minimum is ρB = ρ∞B exp(ρ∞A ), which means

f(ρB) ≥ f(ρ∞B exp(ρ∞A )) = ρ∞A + ρ∞B (1 + ρ∞A − exp(ρ∞A )) , ρB ≥ 0.

The function s ∈ [0, 1] 7→ exp(s)− 1− 2s ∈ R is strictly convex, vanishes at zero and equals e− 3 < 0
at 1. It follows that it is negative in (0, 1], that is, exp(s) < 1 + 2s for 0 < s ≤ 1. We deduce

f(ρB) ≥ f(ρ∞B exp(ρ∞A )) > ρ∞A (1− ρ∞B ) ≥ 0, ρB ≥ 0.

Therefore, h∗(ρ | ρ∞) > 0 for min{ρA, ρB} = 0.
Let us assume by contradiction that a point ρ′ ∈ R2

+\{ρ∞} exists such that h∗(ρ′ | ρ∞) ≤ 0. From
(89) we deduce that h∗(ρ | ρ∞) > 0 for ρA+ρB ≥ R, so ρ′A+ρ′B < R. Furthermore, since h∗(ρ | ρ∞) > 0
for min{ρA, ρB} = 0, it follows that ρ′A > 0 as ρ′B > 0. We deduce that the function ρ 7→ h∗(ρ | ρ∞)
achieves local minimum inside the open region {ρA > 0, ρB > 0, ρA + ρB < R} in a point ρ̃ 6= ρ∞; in
particular Dh∗(ρ̃ | ρ∞) = 0, i.e. Dh(ρ̃) = Dh(ρ∞). Let us now show that the only solution ρ ∈ (0,∞)2

to Dh(ρ) = Dh(ρ∞) is ρ = ρ∞. The equation rewrites as

log ρA + ρB = log ρ∞A + ρ∞B , log ρB + ρA = log ρ∞B + ρ∞A ,

which leads to

ρA = ρ∞A exp(ρ∞B − ρB), g(ρB) = log ρ∞B + ρ∞A , g(s) ≡ log(s) + ρ∞A exp(ρ∞B − s).

Since ρ∞A ≤ 1 and ρ∞B ≤ 1 it holds

g′(s) =
1

s
− ρ∞A exp(ρ∞B − s) ≥

1− s exp(1− s)
s

> 0 for s > 0, s 6= 1,

since s 7→ s exp(1 − s) achieves its strict maximum as s = 1. This means that g is strictly increasing
and therefore the equation g(ρB) = log ρ∞B + ρ∞A has exactly one solution (i.e. ρB = ρ∞B ).

We conclude that (90) holds. This finishes the proof.

6 Numerical results

In this section we present numerical simulations illustrating Theorem 5.1. In Figure 1 panel (c) we
observe the long-term solutions to system (1)-(3) with initial data ρA(0, x) = .5+e−(x−1)2 and ρB(0, x) =
.1 + e−(x+1)2 which is seen in panel (a). As expected from Theorem 5.1, the solutions converge to the
constant equilibrium solutions. Note that ρA has an initial mass that is larger than the mass of ρB and
thus the constant equilibriums solution observed at time t = 500 is larger.

Figure 2 illustrates the time evolution of the two energy functionals. We observe that they both
seem to stabilize at a minimum by the time t = 50.
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(a) Initial Densities (b) Densities at t = 1.245 (c) Densities at t = 500

Figure 1: Numerical solutions to system (1)-(3) with initial densities given by ρA(0, x) = .5 + e−(x−1)2

and ρB(0, x) = .1 + e−(x+1)2 . Panel (b) illustrates transient dynamics and panel (c) the long-time
behavior of the solution.

(a) Natural Energy (b) Maxwell-Boltzmann Energy

Figure 2: Energy decay with time

Figure 3 illustrates similar results as discussed above. A difference is that the initial densities have
a similar mass such that ρA(0, x) = .5 + e−(x−1)2 and ρB(0, x) = .5 + e−(x+1)2 as observed in panel (a)
of Figure 3. Thus, the final states of the densities are the same, as seen in panel (c).

(a) Initial Densities (b) Densities at t = 1.245 (c) Densities at t = 500

Figure 3: Numerical solutions with initial densities ρA(0, x) = .5+e−(x−1)2 and ρB(0, x) = .5+e−(x+1)2

Finally, we illustrate a result in two-dimensions in Figure 4. These results are consistent with
Theorem 5.1. On a final note, the numerical schemes seem to break when initial densities have large
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mass.

(a) ρA(0, x) (b) ρA(1, x) (c) ρA(30, x)

(d) ρB(0, x) (e) ρB(1, x) (f) ρB(30, x)

Figure 4: Numerical solutions in two-dimension with initial densities ρA(0, x) = .1 + e−|x−2|2 and
ρB(0, x) = .1 + e−|x+2|2

Acknowledgements

A. Barbaro was supported by the NSF through grant No. DMS-1319462. N. Rodríguez was partially
funded by the NSF DMS-1516778. H. Yoldaş was supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement No
639638). N. Zamponi acknowledges support from the Alexander von Humboldt foundation. The authors
gratefully acknowledge the American Institute of Mathematics (AIM), where this project began.

References

[1] Abdulaziz Alsenafi and Alethea B. T. Barbaro. A convection–diffusion model for gang territoriality.
Physica A: Statistical Mechanics and its Applications, 510:765–786, 2018.

[2] Athmane Bakhta and Virginie Ehrlacher. Global existence of bounded weak solutions to degenerate
cross-diffusion equations in moving domain. arXiv preprint, arXiv: 1508.06449, 2015.

[3] Judith Berendsen, Martin Burger, and Jan-Frederik Pietschmann. On a cross-diffusion model for
multiple species with nonlocal interaction and size exclusion. Nonlinear Analysis, 159:10–39, 2017.

[4] Martin Burger, Marco Di Francesco, Jan-Frederik Pietschmann, and Bärbel Schlake. Nonlinear
cross-diffusion with size exclusion. SIAM Journal on Mathematical Analysis, 42(6):2842–2871,
2010.

33



[5] Stavros N. Busenberg and Curtis C. Travis. Epidemic models with spatial spread due to population
migration. Journal of Mathematical Biology, 16(2):181–198, 1983.

[6] Xiuqing Chen, Esther S. Daus, and Ansgar Jüngel. Global existence analysis of cross-diffusion
population systems for multiple species. Archive Rational Mechanics and Analysis, 227(2):715–
747, 2018.

[7] Esther S. Daus, Pina Milišić, and Nicola Zamponi. Analysis of a degenerate and singular volume-
filling cross-diffusion system modeling biofilm growth. SIAM Journal on Mathematical Analysis,
51(4):3569–3605, 2019.

[8] Laurent Desvillettes, Thomas Lepoutre, and Ayman Moussa. Entropy, duality, and cross diffusion.
SIAM Journal on Mathematical Analysis, 46(1):820–853, 2014.

[9] Laurent Desvillettes, Thomas Lepoutre, Ayman Moussa, and Ariane Trescases. On the entropic
structure of reaction-cross diffusion systems. Communications in Partial Differential Equations,
40(9):1705–1747, September 2015.

[10] Laurent Desvillettes and Ariane Trescases. New results for triangular reaction cross diffusion
system. Journal of Mathematical Analysis and Applications, 430(1):32–59, 2015.

[11] Marco Di Francesco, Antonio Esposito, and Simone Fagioli. Nonlinear degenerate cross-diffusion
systems with nonlocal interaction. Nonlinear Analysis, 169:94–117, 2018.

[12] Joshua M. Epstein. Nonlinear dynamics, mathematical biology, and social science. Reading, MA:
Addison-Wesley, 1997.

[13] Eduard Feireisl and Antonín Novotný. Singular limits in thermodynamics of viscous fluids. 2nd
edition. Cham: Birkhäuser, 2nd edition edition, 2017.

[14] Gonzalo Galiano and Virginia Selgas. On a cross-diffusion segregation problem arising from a
model of interacting particles. Nonlinear Analysis: Real World Applications, 18:34–49, 2014.

[15] Anita Gerstenmayer and Ansgar Jüngel. Analysis of a degenerate parabolic cross-diffusion system
for ion transport. Journal of Mathematical Analysis and Applications, 461(1):523–543, 2018.

[16] Morton E. Gurtin and A. C. Pipkin. A note on interacting populations that disperse to avoid
crowding. Quarterly of Applied Mathematics, 42:87–94, 1984.

[17] Ansgar Jüngel. The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity,
28(6):1963–2001, 2015.

[18] Ansgar Jüngel. Cross-diffusion systems with entropy structure. Proceedings of Equadiff 2017
Conference, 2017.

[19] Masaaki Morisita. Habitat preference and evaluation of environment of an animal: experimental
studies on the population density of an ant-lion, Glenuroides japonicus M’L. (1). Physiology and
Ecology, 5(1):1–16, 1952.

[20] Masaaki Morisita. Measuring of habitat value by the ’environmental density’ method. in Statistical
Ecology. Vol. 1. Spatial Patterns and Statistical Distributions, 1. Pennsylvania State Univ. Press.
University Park, 1:379–401, 1969.

[21] Nanako Shigesada, Kohkichi Kawasaki, and Ei Teramoto. Spatial segregation of interacting species.
Journal of Theoretical Biology, 79(1):83–99, 1979.

34



[22] Katarzyna Sznajd-Weron and Józef Sznajd. Opinion evolution in closed community. International
Journal of Modern Physics C, 11(06):1157–1165, 2000.

[23] Vladimir K. Vanag and Irving R. Epstein. Cross-diffusion and pattern formation in reac-
tion–diffusion systems. Physical Chemistry Chemical Physics, 11(6):897–912, 2009.

[24] Nicola Zamponi and Ansgar Jüngel. Analysis of degenerate cross-diffusion population models with
volume filling. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 34(1):1–29, 2017.

35


	Introduction
	Energy functionals and a-priori estimates
	Two energy functionals
	A-priori estimates
	Estimates from ``natural'' energy balance equation (10).
	Additional estimates from Maxwell-Boltzmann energy balance equation (12).


	Existence analysis
	Local-in-time existence of strong solutions.
	Weak solutions
	Weak stability analysis

	Stationary states
	Linear stability analysis

	Long-time behavior
	Numerical results

