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Safe Impacts with Soft Contacts Based on Learned Deformations

Niels Dehio and Abderrahmane Kheddar

Abstract— Safely generating impacts with robots is challeng-
ing due to subsequent discontinuous velocity and high impact
forces. We aim at increasing the impact velocity (i.e., the robot’s
relative speed prior to contact) such that impact-tasks like
grabbing and boxing are made with the highest allowable
speed performance when needed. Previous works addressed
this problem for rigid bodies’ impacts. This letter proposes
a control paradigm for generating impacts with deformable
contacts that incorporates hardware and task constraints. Based
on data-driven learning of the shock-absorbing soft dynamics
and a novel mapping of joint-space limits to contact-space, we
devise a constrained model-predictive control to maximize the
intentional impact within a feasible, safe level. Our approach is
assessed with real-robot experiments on the redundant Panda
manipulator, demonstrating high pre-impact velocities of a rigid
end-effector on soft objects and an end-effector soft suction-
pump on rigid or deformable objects.

I. INTRODUCTION

Our work’s long-term context is to enable efficient robotic
fast grabbing, tossing, and boxing objects in automated
industrial sorting chains. In such applications, the robot shall
reach, pick and toss or place (box) objects of different sizes,
shapes, and materials from one location to another as fast as
possible. The “Amazon Picking Challenge” [1] demonstrated
the state of the art grasping capabilities in 2015 and revealed
that robots could not compete with humans in terms of
successful grasps per hour. Ultimately, gaining speed would
not occur only in the “reach”, “go-to place/box”, or “toss”,
motion phases as proposed in [2], [3], for example, but also
in the “contact transition” phases for grasping and placing
or releasing the object. Witness in such works (and many
others) that almost all robots slow down drastically (up to
zero relative velocity) motion when establishing contact with
the environment, e.g., to grasp an object. We instead aim to
generate maximum impacts intentionally, thereby speeding
up the overall operation time in industrial processes.

There are roughly two categories of objects or environ-
ments to contact: rigid and soft. We have already addressed
the rigid case in [4], [5]; see also other works dealing
with rigid robotic impact in their references section. In
this letter, we focus on maximizing the impact velocity
considering deformable contacts. The softness will consume
large parts of the kinetic energy and allows higher pre-
impact velocities w.r.t rigid bodies. Our main contribution
is a model predictive control scheme that optimizes future
deformations to be initiated with the highest possible velocity
based on learned, constrained deformation dynamics. For
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Fig. 1: Panda manipulators equipped with a rigid flat end-
effector (left) and with a pump plus flexible suction cup
(right). In the experiments, we identify the deformation
dynamics for the soft dice (left) and the sucker (right) in
order to generate maximum impact.

the first time, our formulation maps joint-space hardware
limits of a redundant kinematic chain onto the contact-space.
Including these inequality constraints into the deformation
dynamics, ensures safe operation over a sufficiently long
preview-horizon. Compared to related works, our approach’s
novelty is the explicit computation of the maximum safe
impact velocity. It applies to three distinct scenarios:

1) rigid end-effector impacting a soft object,
2) end-effector equipped with soft material (e.g., suction

cup) impacting a rigid object, and
3) end-effector equipped with soft material impacting a

soft object.
We assessed our approach in various real-robot experi-

ments with Panda manipulators, (c.f Fig 1 and shown in the
video https://youtu.be/juynq6x9JJ8), and indeed
observed high impact velocities without violating hardware
limits and remaining in the elastic deformation domain.

II. RELATED WORKS

Soft material undergoing contact forces implies local or
global shape changes (deformation) and deformation dynam-
ics [6]. Related works (i) propose deformation models and
(ii) devise control schemes that facilitate these models.

Deformation Models: Due to its importance, extensive
literature on contact dynamics is available to the community;
among them, [7] provides an excellent early overview and [8]
a recent survey. The finite element method (FEM) is a widely
known numerical method to solve partial differential equa-
tions such as those inherent to model continuum mechanics.
It simulates material deformations by dividing a non-rigid



body into many small parts called finite elements, which
behavior is well determined, and assembled into a mesh.
This technique emerged in mechanical engineering and has
been adopted in the field of robotics, see e.g., [9], [10], [11].

In recent work, [12] proposed a method for soft con-
tact model identification. The approach in [13] combines
estimation and control of the material’s contact normal
stiffness in a single framework. While these works focus on
contact point forces and point deformations only, [14] models
the entire surface’s deformation probabilistically. However,
this model does not incorporate resulting contact forces.
Similarly, [15] proposes a deformation model for the soft
human skin, thereby integrating contact forces proportional
to deformations.

Control Schemes: The control of contact transitions with
soft material was studied extensively over the last decades,
mainly to avoid bouncing, e.g., [16] for soft and rigid
contacts. The approaches in [17] and [18] rely on a mass-
spring interaction model and derive a continuous control law
to stabilize the transition between non-contact and contact
phase, without requiring force measurements. The analysis
and experiments are, however, limited to a planar 2 DOF
robot. More recently, the approaches described in [19],
[20] and [21] propose parameter optimization for the more
complex mass-spring-damper interaction model. Non-linear
tangential forces arising from soft interaction have been
controlled with a simple toy robot in simulation [22]. Ap-
proaches with floating-base legged robots typically try to
impose robust control that compensates for non-modeled soft
contact properties, for example, with a quadruped in [23] and
with a humanoid in [24], [25].

Whereas the above works focus on implementing robust
control schemes, [26] proposed an impact-aware planning
method. Yet, none of these works is explicitly aware of (or
tries to optimize) the maximum possible impact velocity.
Also, to the authors’ knowledge, related works on impact or
task-space model-predictive control did not consider struc-
tural hardware limits defined in joint-space. The first step in
this direction has been proposed in [27], [28] for a non-
redundant robot leg with three degrees of freedom. Our
novel approach overcomes these two shortcomings: First,
we propose to map hardware limits onto the contact-space.
Second, we maximize the pre-impact end-effector velocity
subject to constrained deformation dynamics considering
a reasonable long preview horizon for predicting accurate
behaviors. Exploiting the shock-absorbing soft material, our
contribution enables us to generate maximum but safe im-
pacts intentionally.

III. DYNAMIC MODEL

Manipulator dynamics in joint-space are given by

τ + JT f =Mq̈ + h (1a)
subject to

¯
q ≤ q ≤ q̄ (1b)

˙
¯
q ≤ q̇ ≤ ˙̄q (1c)

¨
¯
q ≤ q̈ ≤ ¨̄q (1d)

¯
τ ≤ τ ≤ τ̄ (1e)

where M denotes the joint space inertia, q̈ are the joint
accelerations, h comprises gravity and Coriolis forces, J con-
stitutes the end-effector Jacobian which we assume to be
full-rank in this letter, and f is a possible contact force.
Symbols ?̄,

¯
? denote upper and lower limits of a quantity ?,

respectively. The structural hardware limits must be fulfilled
to generate a feasible and safe robot motion.

For the following analysis, let us constrain the end-effector
not to change its current direction of motion and force.
Define an orthonormal basis O=[o1,o2...6] (with OTO = I)
such that the first vector o1 corresponds to the normalized
end-effector velocity. Decompose the end-effector Jacobian J

JA = oT
1 J, JB = oT

2...6J (2)

where the one-dimensional JA is associated with the end-
effector’s direction of motion and JB contains the five other
rows. We can decompose the task-space quantities velocity
ẋ = Jq̇, acceleration ẍ = Jq̈ + J̇q̇, and force f similarly.
In this paper, we enforce ẋB = 0, ẍB = 0, and fB = 0
before and during soft contact situations. We will drop the
subscript ()A and keep only ()B to simplify the notation.

A. Deformation Dynamics

Soft material deforms under externally applied forces
(stress). As a consequence, contact forces are functions of
surface deformations [6]. In the following, we limit our
analysis to soft materials and associated models with non-
varying contact dynamics over time, i.e., obeying Hook’s law
of deformation. Furthermore, we assume that contact friction
constraints are always satisfied during the penetration phase;
i.e., there is no slipping (as this is what should be planned
for the operations we target). As is common in many related
works, we model only a one-dimensional deformation in the
contact normal direction.

Consider a reference position x of a robotic end-effector.
With respect to this reference, relative positions and veloci-
ties are denoted as z, ż, respectively. This notation is advan-
tageous when considering deformations caused by the robot
and choosing as reference x the end-effector position that
coincides with the soft material’s initial contact position. In
that case, z describes the deformation and ż the deformation
rate of change. No deformation corresponds to z = 0.

The material’s constant, finite stiffness and damping are
given by parameters α,β, which will be identified with the
approach described in Sec. V. We employ the mass-spring-
damper system defining the resulting force f as a linear
combination of contact deformation z, and it’s derivative ż

f = αz + βż = Esi (3)

which can be equivalently formulated with the deformation-
dependent state s = [zT , żT ]T and a constant matrix E =
[α,β] representing the material’s properties. The continuous-
time state-space representation of the linear system dynamics
with control input u writes

ṡ = Acs + Bcu (4)



Given the second-order differential equation z̈ = Λ−1f =
Λ−1αz + Λ−1βż obtained from (3) by left-multiplication
with the inverse of the effective mass1 Λ, results in

Ac =

[
0 I

Λ−1α Λ−1β

]
and Bc =

[
0
I

]
(5)

Considering a negligible change in the operational apparent
mass (see later the effective mass variation curve in Fig. 4),
we assume a constant mass Λ for small changes in the robot
configuration due to relatively small indentations, and hence,
constant Ac.

The discrete-time state-space representation yields

si+1 = Adsi + Bdui (6)

where subscript i denotes steps at time t = i∆t and
employing the matrix exponential with sample time ∆t[

Ad Bd

0 I

]
= exp

(
∆t

[
Ac Bc

0 0

])
(7)

Because of the spring-damper elements, the control input ui

does not equal the actual system acceleration. We notice that
the discretized acceleration z̈i is linear in terms of state si
and control input ui. Refer to the appendix VII-A for the
derivation of matrices C and D

z̈i = Csi + Dui (8)

B. Constrained Deformation Dynamics

The above deformation dynamics are constrained when
considering a penetration by the robot’s end-effector, whose
motion is limited by the hardware features. Task-space (or
contact-space) bounds are typically configuration-dependent
and result from mapping hardware limits, which are provided
in joint-space (1b)-(1e). Considering the full six-dimensional
task-space associated with the Jacobian J, this mapping
procedure is computationally demanding and currently un-
suitable for real-time control. As described above, we con-
strain the end-effector motion to a single axis (the contact
normal, e.g., the z-axis parallel to the direction of gravity),
simplifying and accelerating the computation.

We are interested in the configuration-dependent task-
space bounds with respect to end-effector (= deformation-)
velocity, acceleration, and force in contact normal direction:
• The lower bound on the task-space velocity ˙

¯
z becomes

˙
¯
z = min

q̇
Jq̇ (9)

s. t. JBq̇ = 0

˙
¯
q ≤ q̇ ≤ ˙̄q

The upper velocity bound ˙̄z is obtained by replacing the
min with max operator. The final deformation velocity
constraint yields ˙

¯
z ≤ ż ≤ ˙̄z.

• The contact-space acceleration and force bounds are
coupled and cannot be treated separately. By choosing

1Given the one-dimensional Jacobian J and the joint-space inertia M,
the effective mass is computed as Λ = (JM−1JT )−1, see [29].

scalar weights ωf , ωz̈, we can obtain a feasible tuple
(or vertex) consisting of an extreme z̈ and f through

min
q̈,z̈,f

ωf f + ωz̈z̈ (10)

s. t.
[
JB , 0, 0
J, −I, 0

]q̈
z̈
f

 =

[
−J̇Bq̇cur
−J̇q̇cur

]
 ¨

¯
q

¯
τ − h

0

≤
 I, 0, 0

M, 0, −JT
A

0, 0, I

 q̈
z̈A
fA

≤
 ¨̄q
τ̄ − h
∞


Solving this linear program multiple times for dif-
ferent weights, we collect a list of extreme vertices,
representing a convex polytope. Refer to [30] for an
efficient algorithm to select useful weights. The vertices
are converted into a halfspace representation given by
matrix P (halfplanes) and vector p (offset)

P

[
z̈
f

]
≤ p (11)

• The contact deformation z satisfies scalar lower and
upper bounds

¯
z ≤ z ≤ z̄. These bounds, however, do

not relate to the robot’s hardware limits. In order not to
break the contact and not to damage the material, these
bounds are specified by 0, and the maximum allowed
penetration depending on the soft material properties
(elastic domain constraint).

Due to these contact-space constraints, not all possible de-
formation trajectories are physically achievable with particu-
lar robot hardware, which is an often-ignored fact. However,
knowledge of the constrained deformation dynamics is of
utmost importance for the model-preview proposed in the
next section.

IV. SOFT IMPACT-AWARE PREVIEW CONTROL

In this section, we first formulate a problem for planning
an optimized penetration-trajectory assuming the contact
event will happen in the next iteration. In the next step, we
reformulate this optimization problem to include also the pre-
impact end-effector velocity as a decision variable, which is
maximized. By tracking this upper bound with a velocity
controller, we can intentionally generate feasible and safe
impacts with maximum pre-impact velocity.

A. Penetration Trajectory Planning

Let us formulate an optimization problem to plan a
feasible and safe soft penetration over a preview horizon
of h steps, starting from the exact moment of the contact
transition z1 = 0 and with the pre-impact velocity żimp. The
following constrained problem solver outputs a trajectory of
optimized control inputs u1, . . . ,uh and, hence, indirectly
through feedforward simulation also the evolution of de-
formation states s1, . . . , sh, as well as predicted accelera-
tions z̈1, . . . , z̈h, and contact forces f1, . . . , fh. Concatenating
the decision variables into a vector U = [u1, . . . ,uh]

T , we



propose the quadratic program:

min
U

1

2
UTWU + UTw (12)

subject to s1 =

[
0

żimp

]
, si =

[
zi
żi

]
si+1 = Adsi + Bdui

¯
z ≤ zi = [I, 0] si ≤ z̄

˙
¯
z ≤ żi = [0, I] si ≤ ˙̄z

P

[
z̈i
fi

]
= P

[
Csi + Dui

Esi

]
≤ p

żh = 0

The optimization problem consists of multiple constraints:
• The state is composed of contact deformation and its

rate of change: si = [zTi , ż
T
i ]T .

• Deformation dynamics are satisfied: si+1=Adsi+Bdui.
• Predicted positions zi, velocities żi, accelerations z̈i,

and forces fi are restricted to a feasible region, defined
by the task-space bounds derived in the previous sec-
tion. There is no need to constrain the control inputs ui.

• The trajectory terminates safely by enforcing a zero
velocity in the terminal state żh = 0.

The COPRA library2 allows us to formulate (12) as a
quadratic problem conveniently. The quadratic cost to be
optimized is given by the symmetric and positive-definite
matrix W and a vector w. For example, minimizing
the error between the current and desired contact force
allows force tracking without force sensor information∑h

i=1 ωfi ‖fdes − [E 0] si‖2. Another reasonable objective is
to minimize the control effort

∑h
i=1 ‖ui‖2.

B. Determining the maximum Pre-Impact Velocity

The optimization problem (12) depends linearly on the
pre-impact velocity. Hence, it can be reformulated w.r.t. żimp

min
U

UTWU + UT [y + Yżimp] (13)

subject to XU = k−Kżimp

ZU ≤ v −Vżimp

with matrices X,Z,K,V and vectors k,v implementing the
constraints in (12) and with w = y + Yżimp for the cost.
However, as we want to explicitly optimize the pre-impact
velocity, we need to consider żimp as an additional decision

variable Ũ =
[
żTimp,U

T
]T

. Reformulating (13) and adding
a new objective through matrix R and vector r yields (refer
to the appendix VII-B for the derivation)

min
Ũ

ŨTW̃Ũ + ŨT w̃ (14)

subject to [K,X] Ũ = k

[V,Z] Ũ ≤ v

with

W̃ =

[
RRT+YW−1YT , Y

YT , W

]
and w̃ =

[
r
y

]
2https://github.com/jrl-umi3218/copra

Model-Preview (Sec. IV.-B.)

Mapping Deformation 
Bounds (Sec. III.-B.)

Learning Material 
Parameters (Sec. V.-B.)

Model Discretization        
(Sec. III.-A.)

Robot

QP-Controller with
End-Effector Task and Posture Task

Hardware Limits (Sec. III.)

Fig. 2: Illustration of the proposed control scheme (before
making contact) for intentional impact maximization.

Note that W̃ is symmetric and positive-definite for any non-
zero matrix R (with appropriate dimensions, in our case
RRT is scalar), as shown in appendix VII-C. We extended
the COPRA library to implement the new optimization
problem.

Given the maximum feasible pre-impact velocity żimp,
there may exist infinite solutions in terms of subsequent
control inputs u1, . . . ,uh that all result in a feasible, safe
penetration behavior. In fact, this kind of redundancy is
resolved by imposing a secondary objective in the nullspace
of the primary objective (pre-impact velocity maximization).
In (14), this secondary objective is already given by the
previous W, Y, and y (i.e., minimizing the force error
and/or control effort). The primary objective is achieved
by selecting a small R > 0 (only required for positive-
definiteness of W̃) and choosing r→ −∞. It is well-known
that a weighted combination of two quadratic costs realizes a
nullspace projection if choosing weights with different orders
of magnitudes.

We can also ignore the secondary objective and treat (14)
as a linear program with the cost [−1, 01, . . . , 0h] Ũ, which is
faster to compute. In practice, the concrete choice of control
inputs is irrelevant as we are only interested in the maximum
pre-impact velocity. Hence, we do not need to impose a
specific secondary cost.

C. Final Control Scheme

Without knowledge of contact location or contact time, our
idea is to expect the impact event to happen in the next time
step, in the direction of end-effector motion. Consequently,
we solve (14) in each control cycle to obtain the maximum
safe pre-impact velocity. The robot hardware and the task
achievement are secured as long as the end-effector motion
respects this pre-impact velocity bound. Accordingly, we
generate the maximum safe intentional impact by tracking
the optimized żimp with the end-effector.



Note that the mapping between task-space and joint space
is assumed locally constant during the preview. This implies
that the Jacobian, joint-space inertia, gravity compensation
term, and Coriolis forces are assumed with small variation
during the penetration process, which is a feasible assump-
tion for small deformations and a short horizon. Further, note
that our approach is perfectly suited for position-controlled
robots as joint torque measurements are not required.

The final control scheme (c.f Fig 2) requires the material’s
stiffness and damping. The next section explains how to
identify these parameters autonomously. Recursive learning
allows us to update the material model during the penetration
phase online.

V. LEARNING MATERIAL DEFORMATION PROPERTIES

The soft material properties need to be learned (and
updated) in a data-driven way unless precise knowledge is
apriori available [12]. In order to collect the required data, the
robot has to penetrate the deformable contact surfaces. Such
exploratory motion can be generated without knowledge of
the actual deformation model by tracking a pre-planned
deformation trajectory that excites the soft contact properties.

A. Offline-Learning

Given the robot’s joint configuration, in each i-th control
cycle, the contact state si is recorded via forward kinematics,
and the contact force fi is obtained through a wrist-mounted
force-torque sensor or via external joint torque measurements
(fi =

(
JT
i

)+
τ i). All K recorded data points are concate-

nated into matrix form

S =
[
s1, s2, . . . , sK

]
and F =

[
f1, f2, . . . , fK

]
(15)

In view of (3), employing linear least-square regression
with scalar model error

e =
1

K

∥∥∥FT − ST [α,β]
T
∥∥∥2

(16)

allows us to estimate the material’s stiffness and damping
Ê =

[
α̂, β̂

]
through

Ê =
[
α̂, β̂

]
= FS† = FST

(
SST

)−1
(17)

where ()† denotes the Moore-Penrose pseudoinverse that
minimizes the Euclidean norm (the model error e). A regu-
larization term may be added to ensure numerical stability.

For new states S, the corresponding contact forces F̂ are
predicted through simple multiplication with the learned Ê

F̂ =
[̂
f1, f̂2, . . . , f̂K

]
= ÊS (18)

We can expect f = f̂ , and hence F = F̂, when assuming
zero sensor noise and the correct choice of Ê (and, of course,
assuming that the linear model represents the reality).

B. Online-Learning via Recursive Formulation

Given a large amount of training data, (17) can only be
applied for off-line learning because of the time-consuming
matrix inversion. We here extend [12] by employing a
recursive formulation that is suitable for model updates in
real-time. Given a new data point consisting of si and fi, we
update in each control cycle i > 0 the intermediate terms
(denoted in subscripts)(

SST
)
i

=
(
SST

)
i−1

+ sis
T
i (19)(

FST
)
i

=
(
FST

)
i−1

+ fis
T
i (20)

with initialization
(
SST

)
0

= 0 and
(
FST

)
0

= 0. Note that
the dimensionality of these intermediate terms is low and
stays constant. The material model is improved within the
real-time control loop by(

Ê
)
i

=
(
FST

)
i

(
SST

)−1

i
(21)

These recursive updates are computationally not demanding
and yield identical results with (17).

VI. REAL-ROBOT EXPERIMENTS

Setup: The experimental platform is a 7 degrees-of-
freedom Panda manipulator from FrankaEmika, controlled
at 1 ms update rate based on our existing QP-control frame-
work [31]. We attached a 3D-printed end-effector with a
flat circular contact surface (diameter 0.13 m). The robot’s
hardware limits are specified on the manufacturer’s website3.
For reproducibility, we ordered a similar dice as chosen
by [12] and also selected the vertical axis as the direction
of motion, typical for bin-picking scenarios. The soft dice
weights 0.1 kg and has 0.16 m edge length. In additional
experiments, we attach to the end-effector a pump with two
different flexible suction cups (length 0.03 m and 0.05 m)
and use various other rigid and soft objects, c.f Fig 1.

Learning Procedure: Material properties are learned by
tracking a predefined (sinusoidal) penetration trajectory using
position-control and high gains followed-up by five prede-
fined impacts with varying pre-impact velocities (ranging
from 0.15 m/s to 0.35 m/s). The final database for the
dice contains more than ten seconds of penetration data.
Fig 3 plots the deformation states zi, żi observed through
forward kinematics and associated contact forces fi obtained
via Panda’s built-in force sensor signal. We also identify the
soft material parameters for two different flexible suction
cups attached to the pump and the soft objects (please refer
also to the video https://youtu.be/juynq6x9JJ8).

Generating Impact: We compute six vertices/halfplanes
for (11) in each iteration employing the algorithm described
in [30], which is sufficient to obtain an accurate estimate of
the force-acceleration dependency. The optimization prob-
lem (14) is parameterized with h = 20 steps and the dis-
cretization sample time ∆t = 25 ms, resulting in the preview
horizon T = 0.5 s and 204 inequality constraints. We solve

3https://frankaemika.github.io/docs/control_
parameters.html#constants
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Fig. 3: Recorded data points for dice model identification.
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(solid black lines). All values are represented in task-space.
The dark-blue curve shows the maximum feasible pre-impact
velocity at a given time step that is tracked (before making
contact) and green the desired contact force of 60 N (after
making contact). Planned trajectories are plotted at 0, 0.3,
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For comparison, the baseline approach with contact event at
1.38 s is shown with dashed cyan lines. The x-axis denotes
time in all sub-figures.



it in every control cycle at 1 Khz. These different frequencies
are legitimate, as the optimization result constitutes an upper
bound on the pre-impact velocity and should be as up-
to-date as possible. A primary end-effector velocity task
tracks the maximum possible pre-impact velocity. Besides, a
secondary task minimizes the joint-accelerations to account
for the redundancy, thereby avoiding elbow self-motion,
which could affect the end-effector’s effective mass (Fig 2).
We select 2 N as a threshold for contact detection. Afterward,
we switch to an admittance controller [31] that tracks the
reference force 60 N. We decided not to track the planned
trajectory, as the admittance controller also incorporates the
force sensor signal and thereby accounts for material model
inaccuracies. More research is needed to incorporate the
force measurements into the state space representation (4).

We conduct multiple maximum impact-experiments with
various soft objects, starting in different configurations, with
varying desired final contact forces. We here discuss only
one experiment with the soft dice due to space limitations –
please refer to the video for the other experiments. The robot
end-effector starts approximately 0.46 m above the contact.
Analyzing the logged data, hardware limits are satisfied in
all trials. After 0.75 s, we detect the contact with a pre-
impact end-effector velocity of 0.898 m/s. Steady-state is
reached after approximately 0.8 s of deformation, thereby
confirming the chosen preview duration. The final estimated
force is close to the desired force. Fig 4 also shows the
planned trajectories at a few exemplary iterations (every 0.3 s
and at the contact event). As discussed above, these are
not necessarily unique: the admittance controller realizes a
(slightly) different motion that takes longer to converge.

For baseline comparison, we choose a near-zero contact
velocity approach by setting the contact location as a static
target. Fig 4 reveals that both controllers accelerate similarly
at the beginning of the experiment. As expected, the baseline
controller slows down and contacts the surface after 1.38 s.
It is important to note that the baseline-admittance task
converges faster due to the different initial conditions. How-
ever, the exact contact location may not always be known a
priori. We conclude from this experiment that contacting a
soft material with the maximum feasible impact may not
necessarily result in the overall fastest task achievement.
Safe, time-optimal planning and control of combined pre-
impact and post-impact behavior for deformable contacts are
left for future work.

VII. CONCLUSION AND FUTURE WORK

In order to speed up industrial automation processes that
require contact such as grabbing, contact transitions should
be accelerated, and hence, contact formations shall be made
with impact under robot and task integrity. When evaluating
the effect of the pre-impact end-effector velocity for soft
contacts, constrained deformation dynamics must be con-
sidered, describing the system behavior after making high-
velocity contact. This is a significant difference compared
to impacts with a rigid material, where we have shown

in our previous work that, although conservative, a single-
step ahead prediction is sufficient for safe impact-aware
control [5].

In this letter, we learn a contact force model for de-
formable contacts based on exploratory penetration data
with impacts that is recursively updated during penetration
phases. Next, we propose to map hardware limits onto the
contact-space to obtain constrained deformation dynamics.
This allows us to plan constrained task-space trajectories for
intentional impacts: In the experiments, we maximize pre-
impact velocities without compromising the robot limitation
while avoiding reaching the plastic domain. Our novel con-
trol scheme is independent of whether the soft material is
attached to the end-effector (e.g., a deformable suction cup)
or part of the environment (e.g., a deformable sponge) and
operates at a 1 KHz update rate on the redundant Panda
manipulator.

We are currently extending our multi-arm object manip-
ulation approach [32] to cope with multiple soft impacts.
Future work will also tackle the planning of pre-impact
robot nullspace postures, which can significantly influence
the effective mass at the end-effector [29].

APPENDIX

A. Task-space acceleration z̈i depends linearly on si and ui

Let us denote the matrix elements of matrices Ad,Bd as

Ad =

[
d1,1 d1,2

d2,1 d2,2

]
and Bd =

[
e1

e2

]
Hence, żi+1 = d2,1zi+d2,2żi+e2ui. The acceleration z̈i is
linear in terms of deformation state si and control input ui

z̈i =
1

∆t
(żi+1 − żi) =

1

∆t

[
d2,1zi + (d2,2 − 1) żi + e2ui

]
=
[
d2,1

∆t ,
d2,2−1

∆t

] [zi
żi

]
+
[
e2

∆t

]
ui = Csi + Dui

B. Reformulation of quadratic costs

In the following, we reformulate the quadratic cost with
(14) and without (12) the velocity żimp as a decision variable

1

2
ŨT

[
RRT+YW−1YT , Y

YT , W

]
Ũ + ŨT

[
r
y

]
=

1

2
żTimp

[
RRT+YW−1YT

]
żimp +

1

2
UTWU + UTYżimp

+żTimpr + UTy

=
1

2
UTWU + UT [y + Yżimp]

+
1

2
żTimp

[
RRT+YW−1YT

]
żimp + żTimpr

where the terms 1
2 żTimp

[
RRT+YW−1YT

]
żimp and żTimpr

are constant if żimp is treated constant during optimization.

C. Matrix W̃ is symmetric and positive-definite

Consider a Cholesky decomposition of matrix W = LLT

where L is a lower triangular matrix. Accordingly, it yields
also W−1 = (LT )−1L−1. We here proof that matrix W̃



defined in (14) is symmetric and positive-definite by showing
its Cholesky decomposition for any non-zero matrix R

W̃ =

[
R, Y(LT )−1

0, L

] [
R, Y(LT )−1

0, L

]T
=

[
RRT + Y(LT )−1L−1YT , Y(LT )−1LT

LL−1YT , LLT

]
=

[
RRT + YW−1YT , Y

YT , W

]
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Schäffer, “Dynamic walking on compliant and uneven terrain using
dcm and passivity-based whole-body control,” in IEEE/RAS Int. Conf.
on Humanoid Robots, 2019.

[26] T. Stouraitis, L. Yan, J. Moura, M. Gienger, and S. Vijayakumar,
“Multi-modal trajectory optimization for impact-aware manipulation,”
arxiv, 2020. [Online]. Available: https://arxiv.org/abs/2006.13374

[27] R. Orsolino, M. Focchi, C. Mastalli, H. Dai, D. G. Caldwell, and
C. Semini, “Application of wrench-based feasibility analysis to the
online trajectory optimization of legged robots,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3363–3370, 2018.

[28] R. Orsolino, M. Focchi, S. Caron, G. Raiola, V. Barasuol, D. G. Cald-
well, and C. Semini, “Feasible region: An actuation-aware extension
of the support region,” IEEE Transactions on Robotics, vol. 36, no. 4,
pp. 1239–1255, 2020.

[29] N. Mansfeld, B. Djellab, J. R. Veuthey, F. Beck, C. Ott, and S. Had-
dadin, “Improving the performance of biomechanically safe velocity
control for redundant robots through reflected mass minimization,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017, pp. 5390–5397.

[30] T. Bretl and S. Lall, “Testing static equilibrium for legged robots,”
IEEE Transactions on Robotics, vol. 24, no. 4, pp. 794–807, 2008.

[31] K. Bouyarmane, K. Chappellet, J. Vaillant, and A. Kheddar, “Quadratic
programming for multirobot and task-space force control,” IEEE
Transactions on Robotics, vol. 35, no. 1, pp. 64–77, 2019.

[32] N. Dehio, J. Smith, D. L. Wigand, G. Xin, H.-C. Lin, J. J. Steil,
and M. Mistry, “Modeling and Control of Multi-Arm and Multi-
Leg Robots: Compensating for Object Dynamics during Grasping,”
in IEEE Int. Conf. on Robotics and Automation, 2018, pp. 294–301.


