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Abstract: We study semi-classical asymptotics for problems with localized right-hand sides by consid-

ering a Hamiltonian H(x, p) positively homogeneous of degree m ≥ 1 on T ∗R2 \ 0. The energy shell

is E = 1, and the right-hand side fh is microlocalized: (1) on the vertical plane Λ = {x = x0}; (2)
on the “cylinder” Λ = {(X,P ) =

(
ϕω(ψ), ω(ψ)

)
; ϕ ∈ R, ω(ψ) = (cosψ, sinψ)}. Most precise results

are obtained inn the isotropic case H(x, p) = |p|m

ρ(x)
, with ρ a smooth positive function. In case (2), Λ

is the frequency set of Bessel function J0(
|x|
h ), and the solution uh of (H(x, hDx)−E)uh = fh when

m = 1, already provides an insight in the structure of “Bessel beams”, which arise in the theory of

optical fibers.

1. Introduction

Let M = Rn, H(x, hDx;h) a h-PDO whose symbol H belongs to the usual class S0
m(M ×Rn),

Skm(M ×Rn) = {a(x, p;h) ∈ C∞ : |∂αx ∂βp a| ≤ hkCαβ〈p〉m−|β|}

with asymptotic expansion H(x, p;h) ∼ H0(x, p)+hH1(x, p)+ · · ·, and E 6= 0 be a non critical energy

level for Hamiltonian H0. We will denote by z = (x, p) or by z = (x, ξ) a point in T ∗M . On the other

hand, let fh be a Lagrangian semi-classical distribution locally of the form

(1.1) fh(x) = (2πh)−N/2
∫

RN

eiϕ(x,θ)/ha(x, θ;h) dθ

where ϕ is a non-degenerate phase function in the sense of Hörmander defining the Lagrangian man-

ifold Λ (see Sect.3), and a ∈ Sk0 (M × RN ) for some k. For brevity we will often denote such a

(normalized) integral simply by
∫ ∗

(· · ·). We shall assume Hamiltonian vector field vH0
be transverse

to Λ. The general problem of “semi-classical Green functions” consists in solving (H − E)uh = fh,

with uh = E+fh outgoing at infinity. Here are some examples of fh (expressed in a single chart):

Examples 1.1:

(1) Λ = {x = x0} = T ∗
x0
M , x0 ∈M (that we call the “vertical plane”) is the conormal bundle to

{x0}, so that

(1.2) fh(x) =

∫ ∗

ei(x−x0)p/ha(x, p;h) dp

We say simply that fh is a “localized function” at x0. This is the basic example since, according to

[MelUhl], Λ can alway be taken locally to such a form, and H(x, hDx;h) to hDxn .
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(2) More generally, a conormal distribution fh(x) =
∫ ∗
eix

′p′/ha(x, p′;h) dp′, x = (x′, x′′), p =

(p′, p′′), with respect to N = {x′ = 0}, i.e. Λ = T ∗
NRn = {(x′′, p′)}. Actually fh can be expressed

with a new amplitude a(x′′, p′;h) not depending on x′, see [Hö,Lemma 18.2.1].

(3) WKB functions in Fourier representation

f(x;h) =

∫ ∗

ei(xp+S(p))/ha(x, p;h) dp

here Λ = {(−∂pS(p), p) : p ∈ Rn}.
(4) Functions related to Bessel functions, which apply to several physical problems, microlocalized

on

(1.3) Λ = {x = X(ϕ,ψ) = ϕω(ψ), p = P (ϕ,ψ) = ω(ψ), ϕ ∈ R}

which is called the “cylinder” ; here ω ∈ Sn−1 is the unit vector parametrized by ψ, see Sect. 5.

“Regular” distributions (playing the role of conormal distributions after x′ variable has been removed

from the amplitude in Example (2), which was automatically verified, and most amenable to our

constructions), are of the form

fh(x) = (2πh)−1/2

∫ 2π

0

eiω(ψ)·x/ha(ω(ψ) · x,ψ) dψ

When n = 2, a = 1, fh(x) =
√

2π
h J0

( |x|
h

)
is Bessel function of order 0, a radially symmet-

ric solution of Helmholtz equation −h2∆v − v = 0 in R2. When n = 3, a = 1 we get instead

fh(x) = −
√

2π
h|x|J1/2

( |x|
h

)
, see [DoMaNaTu].

(5) fh identifies with a “Bessel beam” when

Λ = {(x, p) ∈ T ∗R3 : x =

(
ϕω(ψ)

φ

)
, p =

(
λ(φ)ω(ψ)

ϕλ′(φ) + k

)
, ω(ψ) =

(
cosψ

sinψ

)
, φ, ϕ ∈ R}

k ∈ R and λ is a smooth positive function. Such Lagrangian distributions, with the notation x =

(x′, x3), take the form

fh(x) = (2πh)−1/2eikx3/h

∫ 2π

0

eiλ(x3)〈x
′,ω(ψ)〉/ha(λ(x3)〈x′, ω(ψ)〉+ kx3, x3, ψ) dψ

When a = a(τ, α, φ) = ã(α, φ) and is even in α, we have

fh(x) =

√
2π

h
ã(|x′|, x3)eikx3/hJ0

(λ(x3)|x′|
h

)
+O(h)

which justifies the name “Bessel beams”, see [DoMaNa2].

(6) Airy-Bessel beams, which are known also as Berry-Balasz solution ([BeBa], [DoMaNa1]) of

the paraxial approximation of wave equation in 3-D, with initial manifold

Λ = {(x, p) ∈ T ∗R3 : x =

(
ϕω(ψ)

φ2/2

)
, p =

(
λω(ψ)

φ

)
, ω(ψ) =

(
cosψ

sinψ

)
, φ, ϕ ∈ R}
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(7) Lagrangian distributions with a complex phase in the sense of Melin-Sjöstrand, see [MeSj]

equivalently a complex germ in the sense of Maslov, which are superposition of coherent states

f(x0,ξ0)(x;h) =
1
hn

exp(−ω2 · (x− x0)
2/2h) exp(ixξ0/h), and Λ is a strictly positive Lagrangian mani-

fold.

Examples (1) and (4) will be extensively studied when n = 2 and H0 is positively homogeneous

of degree m ≥ 1 (m = 1 in Example (4)). Since fh in Example (5) looks like a plane wave in direction

x3, this could be considered as a more or less straighforward generalization of Example (4) when

n = 2, once the eikonal coordinate has been found. Examples (6) and (7) however requires some

special treatment and will not be considered either.

Thus our main problem is to represent the asymptotic solution of

(1.4) (H(x, hDx;h)−E)uh(x) = fh(x), uh(x) = E+fh(x;h) =

∫ ∞

0

e−it(H−E)/hfh(x) dt

in the most explicit form. Here e−it(H−E)/h is the propagator, so we need consider Cauchy problem

(1.5) hDtvh + (H(x, hDx)−E)vh = 0, vh|t=0 = fh

Global existence of an outgoing solution at infinity provided suitable hypotheses on Hamilton

vector flow, such as Lagrangian intersection, the non-trapping (in x-space) and the non-return condi-

tions, is quite involved. The main strategy in case of conormal distributions, has already been set up

in [MelUhl] and received a more systematic treatment in relatively recent works [Ca], [Bo], [KlCa],

when H(x, hDx) is semi-classical Helmholtz (Schrödinger) operator −h2∆ + V (x), V ≤ 0 and fh a

localized function at x0. In this case, the non-return condition is a condition on the set (relation on

T ∗
x0
M)

(1.6) R = {(p, η) : p2 + V (x0) = η2 + V (x0) = 0; ∃t > 0 : X(t, p) = 0, P (t, p) = η}

where
(
X(t, p), P (t, p)

)
= exp tvH(x0, p) is the trajectory issued from (x0, p) ∈ T ∗M . The dimension

of R as a submanifold of Tx0
M is taken into account. Outgoing solutions uh, are characterized by

Sommerfeld radiation condition of the form

(1.7)
x

|x|∇xw(x) + i
√

−V (x0)w(x) → 0, |x| → ∞, n ≥ 2

where w = limh→0wh, wh(x) = hn/2uh(hx), is the unique solution of (−∆ + V (x0))w = f , and

fh(x) = h−n/2f
(
x
h

)
. It relates in a non trivial way the behavior of uh at infinity with the value of the

potential V at x0. Sommerfeld radiation condition requires careful estimates on Uh(t) = eitH/h, or

Uh(t)fh, along with a discussion according to the relative magnitude of t and h. The proof consists in

testing Uh(t)fh against some fixed φ ∈ S(Rn), and show that 〈uh, φ〉 → 〈w,φ〉 as h→ 0. In particular

one needs to know asymptotics of uh in a h-dependent neighbhd of Λ.

In this paper instead, given Hamiltonian H and initial Lagrangian manifold Λ, we content our-

selves to present, in the sense of formal asymptotics, a “close form” for the solution of (1.4) in term
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of Maslov canonical operator for bi-Lagrangian distributions. By formal asymptotics [Ler] we mean

that, in principle, our approximate solution has no reason to be equal to E+f(x;h) mod O(h). In

practice however numerical simulations show that Maslov canonical operator provides an excellent

agreement with the “exact solution”.

1.1 Lagrangian intersection and microlocal Green functions.

As in [MelUhl] our constructions make use of symbolic calculus adapted to Lagrangian intersec-

tion. So we need first to translate some notions relative to asymptotics with respect to smoothness

(or “standard pseudo-differential calculus”), to the framework of asymptotics with respect to small

parameter h (or “h-pseudo-differential calculus”), in particular to allow for general phase functions,

without homogeneity in the momentum variable.

Let ι0 : Λ0 → T ∗M be a smooth embedded Lagrangian manifold, and ι1 : Λ1 → T ∗M be a

smooth embedded Lagrangian manifold with smooth boundary ∂Λ1 (isotropic manifold). Following

[MelUhl] we say that (Λ0,Λ1) is an intersecting pair of Lagrangian manifolds iff Λ0 ∩ Λ1 = ∂Λ1 and

the intersection is clean, i.e.

∀z ∈ ∂Λ1 TzΛ0 ∩ TzΛ1 = Tz∂Λ1

(in particular Λ0 and Λ1 cannot be transverse). On the set of intersecting pairs of Lagrangian

manifolds we define an equivalence relation by saying that (Λ0,Λ1) ∼ (Λ′
0,Λ

′
1) iff near any z ∈ ∂Λ1,

z′ ∈ ∂Λ′
1, there is a symplectic map κ such that κ(z) = z′, and a neighbhd V ⊂ T ∗M of z such that

κ(Λ0 ∩ V ) ⊂ Λ′
0, κ(Λ1 ∩ V ) ⊂ Λ′

1. We will call the equivalence class a Lagrangian pair. The following

result readily extends [MelUhl, Prop.1.3] :

Lemma 1.1: All intersecting pairs of manifolds in T ∗M are locally equivalent. More precisely near

each z ∈ T ∗M , there exists a canonical map κ : T ∗M → T ∗Rn such that κ(z) = (0, ξ0), ξ0 = (ξ′, 0) ∈
Rn, κ(Λ0∩V ) ⊂ T ∗

0R
n, and κ(Λ1∩V ) ⊂ Λ+, Λ

0
+ being the flow-out of T ∗

0R
n by the Hamilton vector

field vξn = ((0, · · · , 0, 1), 0) of ξn, passing through x = 0, ξ0 = (ξ′, 0) i.e.

(1.7) Λ0
+ = {(x, ξ) ∈ T ∗Rn : x = (0, xn), ξ = (ξ′, 0), xn > 0}

As a warm-up, let us construct uh = E+fh mod O(h∞) for hDxn , and fh as in (1.2) with a

compactly supported. By a gauge transformation and a shift of the support of ξn 7→ a(x, ξ) in (1.1)

we may assume E = 0. So we just need to compute a primitive of fh(x). Let T > 0 and θT ∈ C∞(R)

vanishing near +∞ and θT (t) = 1 for t ≤ T . We consider

(1.8) u(x, h) =
i

h

∫ ∞

0

θT (t) dt

∫ ∗

ei(x
′ξ′+(xn−t)ξn)/ha(x′, xn − t, ξ;h) dξ

Provided xn ≤ T/2 (say) integration by parts and a non-stationary phase argument in variables (t, ξn)

show that

(1.9) hDxnuh(x) = fh(x) +O(h∞)

Note that by [Hö,Lemma 18.2.1] we could already assume a = a(ξ;h). This will be crucial for the

compatibility condition (see below).
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1.2 Hypothesis and main results.

Our main goal is to represent uh = E+fh as in (1.4) as a superposition

(1.10) uh(x) =
i

h

∫ ∞

0

dt
[
Kh

Λt
b](x)

where [Kh
Λt
b](x) is Maslov canonical operator associated with Λt = exp tvH(Λ), and b an amplitude

depending linearly from the amplitude a defining fh. Occasionally we want also to replace
∫∞

0
dt
[
Kh

Λt
b]

by some “bi-canonical operator” [Kh
Λ,Λ+

(σ, σ+)] acting on pairs of symbols (σ, σ+) depending linearly

on b, resp. the boundary-part and the wave-part symbol of uh, which we call a bi-Lagrangian (semi-

classical) distribution.

We shall generally consider intersecting pairs (Λ,Λ+), Λ+ ∩ Λ = ∂Λ+, where

(1.11) Λ+ = {(x, ξ) ∈ T ∗M,∃t ≥ 0,∃z = (y, η) ∈ Λ ∩ ΣE, (x, ξ) = exp tvH0
(z)}

is the flow-out of Λ by vH0
in ΣE , provided vH0

is transverse to Λ along ∂Λ+ = Λ∩ΣE . For Example

(4) however, we cannot avoid points where transverse intersection fails (we call glancing points by

analogy with the problem of diffraction by obstacles but we are not considering here in detail, see

however Sect.5), so we simply miss information on uh nearby. We always assume that there is no

finite motion on ΣE, which allows to argue as in (1.8)

(1.12) |X(t, θ)| → ∞ as t→ ∞

For simplicity we restrict to the case where ∂Λ+ is a compact, isotropic submanifold without boundary,

which is certainly the case when H0(x, p) is elliptic. This restriction however is not essential [MelUhl]

and we hope to extend our results when H(x, hDx;h) is the wave operator.

The non-return set R in (1.6) is irrelevant if we content ourselves with the asymptotics of uh(x)

microlocally in a compact set outside ∂Λ+. For instance if Λ = T ∗
x0
M we shall compute uh(x), locally

uniformly in any compact set K ⊂M \{x0}, as h→ 0. A first improvement would consist in removing

only a hδ-neighbhd of x0 for some 0 < δ < 1, this we have sketched in [AnDoNaRo1,Thm.2].

For simplicity, we shall ignore throughout Maslov indices, see e.g. [Ar], [So], [Iv], [BaWe, Sect.4],

[DoNaSh], [DoRo], [EstHagHedLitt].

Remark 1: By Maupertuis-Jacobi correspondence, all our arguments can be translated to other types

of operators, including Helmholtz operator, or the water-waves operator, see e.g. [DoRo], [DoMiRo],

[ReMiKaDo]. In particular we recover the situation of [Ca] with energy surface p2 + V (x) = 0 from

(1.15), if we choose V (x) = −(Eρ(x))2/m < 0, and Λ = Tx0
M .

• General case.

In Sect.3, we translate the setting of classical Pseudo-differential Calculus elaborated in [MelUhl]

to the semi-classical one, and make some statements more precise. We assume Lagrangian intersection,

i.e. vH is nowhere tangent to Λ. So by Lemma 1.1, near any z ∈ ∂Λ+ we are reduced microlocally

to the case where Λ = T ∗
0R

n, Λ+ = Λ0
+ and H0 is the “model Hamiltonian” ξn. Constructing the
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higher order terms, H(x;hDx;h) − E can be taken microlocally near ∂Λ+ to its normal form hDxn

by conjugation with a h-FIO. We have

Theorem 1.2: Under the hypotheses above, we can write uh(x) in the from (1.10), and (H(x, hDx)−
E)uh(x) = fh(x) + O(h2). Moreover there are symbols (σ, σ+), where in local coordinates σ(ξ;h) =
1
ξn
b(ξ;h), σ+(ξ;h) = 2iπb(ξ′, 0;h) verifying the compatibility condition

(1.13) limξn→0 ξnσ(ξ
′, ξn;h) = σ+(ξ′, 0)

and such that, microlocally outside ∂Λ+, uh can be represented by the “bi-canonical operator”, as

uh(x) = [Kh
Λ,Λ+

(σ, σ+)](x). Moreover we have the commutation relation (see (3.30))

(1.14) H(x, hDx;h)
[
Kh

Λ,Λ+
(σ, σ+)

]
(x;h) =

[
Kh

Λ,Λ+
((H − E)σ, 0)

]
(x;h) +O(h2) = fh +O(h2)

The accuracy O(h2) could certainly be improved to O(h∞).

• Hamiltonian H0 is homogeneous of degree m with respect to p and Λ the “vertical plane

Tx0
M .

The previous result is not very useful from the point of vue of applications, since it does not

provide a “closed form” for uh. Much more information is available when Hamiltonian H0 is homo-

geneous with respect to p, due to the relations 〈P (t, ψ), Ẋ(t, ψ)〉 = mE and 〈P (t, ψ),Xψ(t, ψ)〉 = 0

between components of the solutions of Hamilton-Jacobi equations (Huygens principle). We have

chosen coordinates (λ,ψ) on Λ, ψ being a n − 1-vector of coordinates along ∂Λ+, and λ a “radial

coordinate” related with the energy parameter τ in H = E− τ . Lagrangian intersection always on Λ,

for if ∂pH(x0, p) = 0, Euler identity gives 0 = 〈∂pH(x0, p), p〉 = mE which contradicts E 6= 0.

Note that such a symbol is not suitable for Pseudo-differential Calculus when m is not an even

integer, because of the singularity at p = 0, but this is harmless if (x0, 0) /∈ WFh(fh).

A particular case of these Hamiltonians is the “conformal metric” given by

(1.15) H(x, p) = |p|m 1

ρ(x)

where ρ be a smooth positive function on M , m ≥ 1.

Recall that a focal point for a Lagrangian embedding ι : Λ̃ → T ∗M (where Λ̃ is either Λ,

Λt = exp tvH(Λ), or Λ+) is a point z ∈ Λ̃ such that dπx : Λ̃ → M has rank < n. The set of focal

points is denoted by F(Λ̃). Recall also that there exists a covering of Λ̃ by canonical charts U where

rank dπx(z) ≥ k for all z ∈ U . These U for which k = n are called regular charts, and those for which

k < n singular charts.

At least for 0 < |x − x0| small enough i.e. 0 < t is enough, using at most 2 canonical charts

(depending if Xψ(t, ψ) = 0 or not) we can construct vh solution of Cauchy problem (1.5), and hence

uh by integration with respect to t. To this end, we introduce eikonal coordinates (see Sect.2), and

present the solution of Hamilton-Jacobi equation parametrizing Λ+ as a linear function in x (see

(4.5)):

Φ(x, t, ψ, λ) = mEt+ λ〈P (t, ψ), x−X(t, ψ)〉
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The “θ-variables” are thus (t, ψ, λ). Note that by Hamilton-Jacobi construction we recall in Sect.2, Φ

is defined unambiguously only on Λ+. Another choice of Φ is given in (4.4). This yields (see (3.8) and

(4.14)) an (inverse) density on Λ+, given by F
[
Φ, dµ+

]
= mE det(P,Pψ), and non vanishing precisely

when Φ(t, x, ψ, λ) is a non-degenerate phase function, see Propositions 4.1 and 4.4. This holds at least

for small t. For larger t, the non-vanishing of mE det(P,Pψ) will only be assumed.

Once the phase function and the density have been found, we solve as usual the transport

equations in divergence form, at least at first order in h, and present uh = E+fh as an oscillatory

integral of the form

(1.16) uh(x) =
i

h

∫ ∞

0

dt

∫
eiΦ(x,t,ψ,λ)/hb(x, t, ψ, λ) dψ dλ

To compute (H(x, hDx) − E)uh(x) we distinguish between the regular chart where Xψ 6= 0 and the

singular chart (Xψ = 0), where uh is expressed in Fourier representation. Altogether we have :

Theorem 1.3: Assume n = 2 for simplicity. Let r0 > 0 such that

∀t > 0, ∀ψ ∈ [0, 2π] :
[
|X(t, ψ)| < r0 =⇒ det(P (t, ψ), Pψ(t, ψ)) > 0

]

(this holds for t > 0 small). Then under the hypotheses above we can write uh(x) in the form (1.10)

locally uniformly in 0 < |x| < r0, for h small enough. We can decompose

(1.17)

∫ ∞

0

dt
[
Kh

Λtb](x) =

∫ ∞

0

dt
[
Kh

Λt(χ1b)](x) +

∫ ∞

0

dt
[
Kh

Λt(χ2b)](x)

where χ1 + χ2 = 1 is a partition of unity subordinated to a chart U1 where Xψ 6= 0 and a (singular)

chart U2 where Xψ = 0, χ2 ≡ 1 near Xψ = 0. For such x’s we have (H(x, hDx) − E)uh(x) =

fh(x) +O(h3/2).

We do not attempt here to formulate the result in terms of bi-canonical Maslov operator as in

Theorem 1.2. In Sect.2.3 we discuss (somewhat informally) the case where x has several pre-images

under πx : Λ+ →M .

Remark 2: An alternative but similar way for solving (1.5) is to conjugate hDt +H(x, hDx)− E by

Weyl operator

Th(t, ψ)(x, hDx) = exp
[
i
(
〈P (t, ψ), x〉 − 〈X(t, ψ), hDx〉

)
/h
]

See also [Iv,Sect.2.3], [GraZa], [Rob].

By constructing (1.5) we mean also determine the Lagrangian singularities of uh. They are

revealed when reducing the number of “θ-variables” in the oscillating integral
∫∞

0
dt
[
Kh

Λt
b](x). We

get virtually any kind of Lagrangian singularity, but because of homogeneity of H with respect to p,

it is convenient to introduce another type of points, which clarifies the construction of uh.

Definition 1.4: Let H be positively homogeneous of degree m with respect to p. We call a point

z = (x, p) such that −∂xH(z) 6= 0 an ordinary point if 〈−∂xH(z), p〉 6= 0, and a special point otherwise.

If −∂xH(z) = 0 we call z a residual point.
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Example 1.2: For Tricomi Hamiltonian, H(x, p) = x2p
2
1 + p22, the residual points are those for p1 = 0,

the special points those for p1 6= 0 but p2 = 0, and the ordinary points those for p1p2 6= 0.

We denote by S(Λ+) the set of special points on Λ+. Note that for Hamiltonian (1.15) z =

(x, p) ∈ S(Λ+) means that vH is tangent to the level curves of ρ at z.

We shall partition points z ∈ Λ+ according to the following values: (1) z is a focal (or non-focal)

point; (2) z is a special (or ordinary, or residual) point. Thus each canonical chart splits again into

ordinary, special or residual points. Assume n = 2 for simplicity.

Let x = X(t, ψ), and 〈−∂xH(x, p), ∂pH(x, p) 6= 0 at (x, p) = z(t) = (X(t, ψ), P (t, ψ)). Then

(1.21) ∂tΦ(t, x, ψ, λ = 1) = 0 =⇒ ∂2tΦ(t, x, ψ, λ = 1) 6= 0

so that we can perform asymptotic stationary phase in t to simplify (1.10) at x = X(t, ψ). This holds

when H is of the form (1.15) and z(t) is an ordinary point. Of course, several values of parameters

(t, ψ) can contribute. Then Φ(x, t, ψ, λ = 1) reduces to a phase function Ψ(x,ψ) and we can further

reduce the number of variables in a standard way, according to the fact that z(t) is a focal point or

not. When 〈−∂xH(x, p), ∂pH(x, p) = 0 but −∂xH(x, p) 6= 0, the situation looks like (1.8) and we

have

(1.22) ∂tΦ(t, x, ψ, λ) = ∂λΦ(t, x, ψ, λ) = 0 =⇒ detΦ′′
(t,λ),(t,λ)(t, x, ψ, λ) 6= 0

where λ is constrained to be equal to 1 on the critical set CΦ, so that we can perform asymptotic

stationary phase with respect to (t, λ). Then πx : Λ → T ∗Rn has rank 1 if z(t) is a special point or

rank 2 otherwise, see Proposition 4.3(ii). Note that Λ+ never turns vertical, since ∂pH(x, p) 6= 0 on

H = E.

In this generality, we only succeed (see Proposition 4.3) to describe the contribution to (1.10)

(by asymptotic stationary phase) of short times t (“near field”), i.e. so long as F
[
Φ, dµ+

]
=

mE det(P,Pψ) 6= 0, But this is actually sufficient to compute uh microlocally near Λ, when x 6= x0.

• Special case of the “conformal metric” H0(x, p) =
|p|m

ρ(x)
and Λ the “vertical plane”.

Using that P (t, ψ) is parallel to ∂pH(x, p) we get more complete results in this case. If ρ is

bounded, a sufficient condition for (1.12) is that energy E is non trapping, see [GeSj]. In that case,

for all R > 0, there is g ∈ C∞(T ∗M) (so called escape function) such that vHg(x, p) ≥ 0 and

vHg(x, p) = 1 for x ∈ B(0, R). The following stronger condition excludes natural potentials having a

limit as |x| → ∞, as shows the example ρ(x) = ρ0 + 〈x〉− ε. However it turns out to be convenient

from the point of vue of classification of Lagrangian singularities.

Definition 1.5 We say that ρ has the defocussing condition iff

(1.25) G(ρ)(x, p) = 〈∇2ρ(x) · p, p〉+ |∇ρ(x)|2
mρ(x)

|p|2 > 0

In particular the only critical point of ρ is a non degenerate minimum. Under defocussing

condition (1.25), if z(s) is a special point along some bicharacteristic γ issued from Λ, then for all
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t > s, z(t) ∈ γ is an ordinary point. We expect (1.25) provides an information on the “return set”

in (1.6), e.g. R = ∅. It also implies that special and residual points are “exceptional” compared to

ordinary points, in the same way singular points are “exceptional” with respect to regular points.

This allows a natural subdivision of canonical charts into ordinary and special (residual) points, so

we can speak of a regular-ordinary chart, or regular-special chart and so on. The main results are

summarized in Proposition 4.8.

Remark 1.1: In case (1.15) with m = 1 and fh = 0 (scattering problem), the asymptotic solution of

H(x, hDx)uh = Euh has been constructed in [DoMaNaTu1], Example 6, in term of Bessel functions.

• Λ is the “cylinder” (1.3), m = 1.

To the former “θ-variables” (t, ψ, λ), one has now to add ϕ as a parameter. Note that Λ has a

Lagrangian singularity at ϕ = 0. This is the most technical part of the paper, and the results are

only partial, because we are ignoring glancing points.

The initial condition constraints somehow ρ to be radial on ∂Λ+, namely∇ρ
(
ϕω(ψ)

)
, ω⊥(ψ)〉 = 0.

Thus z = (x, p) ∈ ∂Λ+ is a special point iff ∇ρ(ϕω(ψ)) = 0 but ϕ 6= 0. Because of this constraint,

implying a relation between ϕ and energy parameter τ , we are led to assume m = 1.

Due to (unavoidable) glancing points, we cannot formulate a global result in term of Maslov

canonical operator as in Theorem 1.3. In full generality, for an Hamiltonian positively homogeneous

of degree 1 in the p variables, we cannot go much further than computing the phase and density on

Λ+, so results are most complete in case of the conformal metric. This simplifies further in case of a

radially symmetric conformal metric. We refer to Sect.5 for detailed statements

1.3 Outline of the paper.

In Sect.2 we first construct eikonal coordinates on Λ+ when H0(x, p) is positively homogeneous

of degree m, and Λ is either the vertical plane, or the cylinder. Then we discuss some well-known

facts about the extension of the solution of Cauchy problem (1.5) for large t. In particular we examine

the case where there are several branches of Λ+ lying over x, i.e. πx(X(t, ψ), P (t, ψ)) = x, leading

to Van-Vleck formula. Following [CdV], [GuSt] we then focus to the case when H0 defines a metric,

according to m = 1 (Finsler metric, or Randers symbol), or m > 1. Finally we make some general

remarks concerning Maupertuis-Jacobi correspondence (H, E) ∼ (H,E), leaving open the problem of

constructing simultaneously Maslov canonical operator (1.10) relative to both Hamiltonians.

In Sect.3 we prove Theorem 1.2. We start to recall some basic facts on Maslov theory. Then

we sketch its generalisation to bi-Lagrangian distributions, following mainly [MelUhl], where H is

taken microlocally to its normal form hDxn on a non critical energy surface. Thus we can construct

uh(x) microlocally outside ∂Λ+, and locally uniformly with respect to h. We end up by computing

explicitely uh when n = 2, H = −h2∆ and fh is compactly supported, and verify that uh can be

written as the sum of 2 terms, microlocally supported on Λ and Λ+ respectively.

We start in Sect.4 to recall from [DoMaNa2], [DoNaSh] the matrix ñ× ñ matrix M(φ̃, ψ̃) defined

on a local chart of a Lagrangian manifold Λ̃, whose determinant turns out to be the (inverse) density

on Λ̃. It will be most useful in Sect.5. Then we define the phase function from which compute directly
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the (inverse) density F [Φ, dµ+]|CΦ
on Λ+. Lateron we restrict to the 2-D case. In Sect.4.3, assuming

this density is non zero, or equivalently, that Φ is a non-degenerate phase function in the sense of

Hörmander, we investigate some configurations of Λ+ in T ∗M (according to Xψ = 0 or Xψ 6= 0) and

describe more closely the corresponding Lagrangian singularities (focal points) in the chart where

Xψ 6= 0. We relate focal points with ordinary, special or residual points. In Sect.4.4 we complete the

1:st order asymptotics by considering the transport equations, and prove Theorem 1.3. In Sect.4.5 we

specialize further to the case of the “conformal metric”, using also the defocussing condition (1.25),

which allows a more complete description of focal points.

Sect.5 is the most technical and sketchy part, since we do not take glancing point into account.

We hope to consider this in a future work. In Sect.5.1 we give necessary and sufficient for a point

of the “cylinder” (1.3) be glancing with respect to vH0
. In particular we show that a glancing point

at t = 0 is also a special point. Then we describe the parametrization of ∂Λ+(τ) provided this is

a close manifold without boundary. We compute the matrix M(t, ϕ, ψ, τ) we introduced already in

Sect.4, and show that we should take m = 1 for its determinant identifies with the density on Λ+.

All computations should be carried in the extended phase-space T ∗(M ×Rt).

In Appendix we prove the density is non vanishing near focal points in the case of the “conformal

metric”.

1.4 Some open problems.

• Semi-classical structure of the Green function outside a hδ-ngnbhd of Λ.

• Other types of initial Lagrangian manifolds, e.g. Bessel or Airy-Bessel beams.

• Structure of the Green function near residual points, in particular glancing points, where Lagrangian

intersection fails to be transverse.

• Hyperbolic equations (∂Λ+ non compact)

• Case of multiple characteristics, involving Lagrangian manifolds with boundary ∂Λ+ and corner

cΛ+ [MelUhl].

• Complex phases as in Remark 4.2.

Acknowledgements: This work was supported by the grant PRC No 1556 CNRS-RFBR 2017-2019.
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2. Hamiltonians and phase functions

In this Sect. we consider integral manifolds for positively homogeneous Hamiltonians on T ∗M \0,
which is the first step in constructing semi-classical Green kernels. The material is quite standard,

but more specific points will be discussed in Sect. 4 and 5.

2.1 Eikonal coordinates

We shall deal with positively homogeneous Hamiltonians of degreem ≥ 1 with respect to p on the

cotangent bundle T ∗M \ 0 (M = Rn for simplicity), and eventually restrict to “conformal metrics”

to get most explicit results. One of the main differences is that ∂Λ+ is no longer compact. In this

Sect. we write H for H0.

Examples 2.1:

(1)m = 2 if H(x, p) is a geodesic flow associated with a Riemannian metric ds2 = gij(x) dx
i⊗dxj .

In the Riemannian case, when E = 1, geodesics are parametrized by arc-length.

(2) m = 1 if H(x, p) is a “Randers symbol”, associated with a Finsler metric [Tay], [DoRo2] and

reference therein.

(3) H is of the form (1.15) with m ≥ 1. Hamilton equations (ẋ, ṗ) = vH(x, p) then read

(2.2) ẋ = ∂pH = m|p|m−1 1

ρ(x)

p

|p| , ṗ = −∂xH = |p|m∇ρ(x)
ρ(x)2

Our most complete results hold for such Hamiltonians with n = 2.

First we recall some general facts on canonical coordinates near Lagrangian manifolds, see [Do-

MaNaTu1], [DoNaSh]. Let ι : Λ̃+ → T ∗M be a smooth embedded Lagrangian manifold. The 1-form

p dx is closed on Λ̃, so locally exact, and p dx = dS on any simply connected domain U (so called

canonical chart). Such a S is called an eikonal (or action) and is defined up to a constant. If

p dx = dS 6= 0 on U , S can thus be chosen as a coordinate on U .

• Case of the “vertical plane”. Here Λ+ is the flow-out of H with initial data on Λ = T ∗
x0
M , see

Example 1.1. Let also ψ ∈ Rn−1 be smooth coordinates on ∂Λ+, which we complete by τ , the dual

coordinate of t, so that ∂Λ+ is given in Λ by τ = 0, and in Λ+ by t = 0.

In the special case H(x, p) = |p|m

ρ(x)
, we have P (ψ, τ) = |P |τω(ψ), with

(2.3) |P |τ = (Hρ(0))1/m =
(
(E − τ)ρ(0)

)1/m

Sections are defined as follows: for small τ , let Λ+(τ) be the Lagrangian manifold in the energy shell

τ + H(x, p) = E issued from Λ at t = 0. We consider the isotropic manifold ∂Λ+(τ) = Λ ∩ Λ+(τ),

viewing Λ+(τ) as a manifold with boundary. When τ = 0, we simply write Λ+(0) = Λ+.

We assume that ι : Λ+ → T ∗M is an embedding. For t ≥ 0, let Λt = exp tvH(Λ), we have the

group property Λt+t′ = exp tvH(Λt′) for all t, t
′ ≥ 0. We define in a similar way the family of isotropic

manifolds ∂Λt(τ) = exp t∂Λ+(τ) = Λt ∩ Λ+(τ).

We compute the eikonal S on Λ+(τ) by integrating along a path in Λ (where dx = 0), connecting

the base point (say (x0, 0)) to (x0, P (ψ)) ∈ ∂Λ+(τ), ψ ∈ Rn−1, followed by the integral curve
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x = X(t, ψ), p = P (t, ψ) of vH starting at (x0, P (ψ)), where dS = p dx|Λ+(τ) = 〈P (t, ψ), dX(t, ψ)〉.
Because Λ+(τ) is Lagrangian, S doesn’t depend on that choice. Since S(x0, ψ) = Const. = S0 on Λ,

we get

(2.4)

S(t, ψ) = S(x0, ψ) +

∫ (t,ψ)

(0,ψ)

p dx|Λ+
= S(x0, ψ) +

∫ (t,ψ)

(0,ψ)

P (s, ψ, τ) dX(s, ψ, τ)

= S0 +

∫ t

0

〈P (s, ψ, τ), Ẋ(s, ψ, τ)〉 ds

By Hamilton equations and Euler identity 〈P (s, ψ, τ), Ẋ(s, ψ, τ)〉 = 〈P, ∂pH〉 = mH = m(E − τ).

Now S(t, ψ) = S0 +m(E − τ)t = S0 +mHt is the action on Λ+, and the eikonal coordinate is just

S(t, ψ) = mHt up to a constant S0. From the identity dS = d
(
m(E − τ)t

)
= m (E − τ)dt (which

does not involve dτ since we stay on Λ+(τ)) we get

(2.5) m (E − τ)dt = 〈P (t, ψ, τ), dX(t, ψ, τ)〉 = 〈P (t, ψ, τ), Ẋ(t, ψ, τ)〉 dt+ 〈P (t, ψ, τ),Xψ(t, ψ, τ)〉 dψ

it follows (Huygens’ principle) that

(2.6) 〈P (t, ψ, τ), Ẋ(t, ψ, τ)〉 = mH, 〈P (t, ψ, τ), ∂ψX(t, ψ, τ)〉 = 0

We will denote for short (X,P ) =
(
X(t, ψ, τ), P (t, ψ, τ)

)
or X(t, ψ), P (t, ψ) when τ = 0. This is

called the leading front.

• Case of the cylinder. Here Λ+(τ) is the flow-out of H at energy E − τ with initial data on (1.3).

Computing the action we find p dx|Λ = dϕ. As in (2.4) along Λ+(τ) we have

S(t, ϕ, ψ, τ) = S(0, ϕ, ψ, τ) +

∫ (t,ϕ,ψ)

(0,ϕ,ψ)

p dx|Λ+
= S(0, ϕ, ψ, τ) +

∫ (t,ϕ,ψ)

(0,ϕ,ψ)

P (s, ϕ, ψ, τ) dX(s, ϕ, ψ, τ) =

= S0 + ϕ+

∫ t

0

〈P (s, ϕ, ψ, τ), Ẋ(s, ϕ, ψ, τ)〉 ds

As before, 〈P, Ẋ〉 = mH, so on Λ+(τ)

(2.10) S(t, ϕ, ψ, τ) = ϕ+m(E − τ)t+ S0

Identifying the differential of S we get (omitting again variables)

(2.11) 〈P, Ẋ〉 = mH, 〈P, ∂ψX〉 = 0, 〈P, ∂ϕX〉 = 1

At this point it is important to notice that ϕ is a variable on Λ, but only a parameter on Λ+(τ)

because ∂Λ+(τ) is n−1-dimensional. In case (1.15), as well as in the case of other special geometries,

ψ turns out to be a variable both on Λ and Λ+(τ). However, ϕ,ψ are independent variables on Λt =

exp tvH(Λ). In Sect.5 we develop a slightly different point of vue, extending the phase-space to T ∗(M×
R), which amount to introduce variable τ as the dual variable of t, and change 〈P (t, ψ, τ), dX(t, ψ, τ)〉
to 〈P (t, ψ, τ), dX(t, ψ, τ)〉 + τ dt accordingly. This enables to treat initially ϕ as a variable, which is
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eventually constrained by a relation between τ, ψ, ϕ (in case of (1.15) this relation connects only τ

with ϕ).

2.2 Hamilton-Jacobi equation for small t and phase functions

Because of focal points in general we cannot readily find a phase-function Ψ(x) such that

H(x, ∂xΨ(x)) = E, so we obtain it as a critical value (with respect to an auxiliary time-variable

t) of a phase Φ(x, t). To do this we solve Hamilton-Jacobi equation (HJ) in the extended phase space

T ∗(M ×R), which is the suitable framework to vary (t, τ) as well (τ being set eventually to 0). So

we look for a phase function Φ(x, t) satisfying

(2.12) ∂tΦ+H(x, ∂xΦ) = E, Φ|t=0 = φ

with given φ (to be chosen lateron), and prescribed ∂tΦ(x0, 0) = τ0, ∂xΦ(x0, 0) = η0 satifying τ0 +

H(x0, η0) = E. By Hamilton Eq., τ = τ0 is a constant of the motion. It is well-known (Hamilton-

Jacobi theory) [Hö,Thm6.4.5] that (2.12) as a unique solution for small t. This is the generating

function of the Lagrangian manifold the extended phase-space

(2.13) Λ̃+ = {p = ∂xΦ(x, t), τ = ∂tΦ(x, t), x, t ∈M ×R+} ⊂ T ∗(M ×R)

constructed along the integral curves of vH starting at t = 0 from the Lagrangian manifold Λφ in

T ∗M given by p = ∂xφ. Its section at fixed t, τ is the Lagrangian manifold

ΛΦ,t,τ = {p = ∂xΦ(x, t), x ∈M ×R} ⊂ T ∗M

which is simply the flow out Λt(τ) of {p = φ′(x)} in H(x, p) = E − τ at time t. We choose the initial

condition to be the standard pseudo-differential phase function of the form φ(x) = xη. Here η is a

parameter, we choose so that φ′|Λ = P (ψ̃) where ψ̃ are coordinates on Λ, that could be taken of the

form ψ̃ = (ψ, τ), ψ being coordinates on ∂Λ+. Actually our construction of Φ in Sect.4.2 or 5.2 will

not directly rely on Hamilton-Jacobi theory, but rather on the eikonal coordinate (2.4) or (2.10).

The phase Φ(x, t) has the property (for a general Hamiltonian) that along each of these curves

(2.17) Φ(x(t), t) = φ(x) +

∫ t

0

[
〈∂H
∂p

(x(s), p(s)), p(s)〉+ τ(s))
]
ds

which is φ(x) + (mH + τ)t for H positively homogeneous of degree m. This is also the action∫ (t,x)

(0,x0)
L(q(s), q̇(s)) ds =

∫ (t,x)

(0,x0)
〈p, dq〉 −H dt, where the integral is computed along an integral curve

of vH from x0 to x, see e.g. [Ar2,Sect.46].

2.3 The phase functions “in the large” and the semi-classical Cauchy problem

We discuss the case of the vertical plane Λ = T ∗
x0
M , which reduces to standard variational

problems in the space variable. See also [LiYau] for advanced results on the parabolic Schrödinger

equation.

Let θ parametrize the initial condition φ in (2.12). In our case we can take θ = (ψ, λ) as

local coordinates on Λ near ∂Λ+ (eventually t will be added to the “θ”-variables since we require
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τ = ∂tΦ = 0). Assume that for τ = 0 the initial surface, ∂Λ+ ⊂ ΣE is compact and of the form

(x, p) = (X(ψ) = 0, P (ψ) = η)), ψ ∈ Sn−1. We consider the map (t, ψ) 7→ x = πx exp tvH(x0, P (ψ)),

or which is the same, (t, η) 7→ x = exp tvH(x0, η)) = Exptx0
η.

So far we have described the phase function when “moving along” Λ+ for small t. Thus the

critical point of (t, θ) 7→ Φ(x, t, θ), is such that x = X(t, θ), A “dual” point of vue is to fix x and find

the set of (t, θ) with x = X(t, θ) with (x, t, θ) ∈ CΦ. In the Riemannian case (m = 2) this is related

to the problem of geodesic completeness, which holds locally. Namely if |x| is small enough, there is

a unique (t, ψ) such that x = Exptx0
η. This holds globally if the Riemaniann manifold (m = 2) is

geodesically convex. Otherwise, the “inverse map” x 7→ (t, η) may be multivalued.

It is well known [CdV, pdf p.132] that the global geodesic convexity can be relaxed (locally) to

a non-degeneracy condition. Namely, let H be associated with a Lagrangian L(x, ẋ) strictly convex

with respect to ẋ, in particular if H is positively homogeneous of degree m > 1 with respect to p.

Let k ⊂ Rn
p be a compact set, which will be identified with the support of a(p;h) in (1.2). For

fixed (x, t) we make the generic assumption :

(2.18) For all η ∈ k such that x = Exptx0
η, the map Rn → Rn, ξ 7→ Exptx0

ξ is a local diffeomorphism

near η : in other terms, x0 and x are not conjugated along any trajectory that links them together

within time t, with initial momentum ξ.

The set of such (x, t) is an open set Ωx,t ⊂ Rn+1, and its complement has Lebesgue measure 0.

Fixing (x, t), (2.18) implies by Morse theory that η 7→ x = Exptx0
η has a discrete set of pre-images

η ∈ k.

Fixing x, consider now the pre-images of (t, η) 7→ x = Exptx0
η. It can happen that the integral

manifold of vH has several sheets over x, so several values of t contribute to the same x = X(t, ψ).

However, under the non-trapping condition |X(t, ψ)| → ∞ as t → ∞, there is again, generically, a

finite number of such tj . Namely, it suffices that (2.18) holds with a time T such that for t ≥ T ,

X(t, ψ) will never coincide again with x. Moreover these tj are non-degenerate critical points of

t 7→ Φ(x, t, η). This holds in particular when x0 and x are connected by (possibly several) minimal

geodesics for the Riemannian metric associated to H, each indexed by some ηα.

At least for small t we seek for a solution of (1.5) of the form

(2.20) vh(t, x) =

∫ ∗

eiΦ(t,x,p)/hb(t, x, p;h) dp

where the phase function Φ is as above with initial condition Φ|t=0 = xp, and the symbol b(t, x, p;h)

verifies b(0, x, p;h) = a(x, p;h), and solves some transport equations along the integral curves of

vH . One may address the problem of a semi-classical “close form” of (2.20), i.e. of performing the

integration with respect to p, so that the final expression is of WKB type. Under Assumption (2.18)

the answer to this problem is given by Van Vleck formula [CdV, pdf p.132] which gives uh as a finite

sum

(2.21)
∑

α

A(ηα)√
Jacx0

(ηα)
eiΦ(t,x,ηα)/he−iπ ind(γα)/2
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(at leading order in h) indexed by all ηα ∈ suppA such that Exptx0
η = x. Here A is the principal

part of a (where we have eliminated the dependence in x), Jacx0
(ηα) is the Jacobian of Exptx0

at

ηα and ind(γα) Morse index of the integral curve s 7→ exp svH(x0, ηα), s ∈ [0, t]. In other words,

under Assumption (2.18) it suffices to use only non singular charts on Λ+ over x, and the solution is

expressed in term of finitely many oscillating functions.

When Assumption (2.18) is not met, i.e. x = x∗ is conjugated to x0, then there is at least one

focal point (x∗, p∗) over x∗ in Λ+. The construction of the canonical operator (see Sect.3) necessarily

uses a singular chart in a neighborhood of (x∗, p∗), and the solution in a neighborhood of x∗ involves

not only simple oscillating functions corresponding to nonsingular charts as in (2.21) (if any) but also

an integral of an oscillating function over some of the momenta (or “θ′′-variables). The total number

of singular and nonsingular charts over x∗ however remains finite, and so (generically) only a finite

sum of integrals and simple oscillating functions contribute (one summand per each chart). See Sect.3

for more details.

2.4 Distances and generating functions

When Λ is the vertical plane, the phase function Φ is related to the “distance” to x0 for the

“metric” implied by H0, which is of special interest. We make here some general remarks, mainly

following [CdV], [GuSt].

In Sect.4-5 we shall discuss how to parametrize, by a non degenerate phase function, the flow of

vH out of some Lagrangian plane, when H is positively homegeneous of degree m. It includes the

case m = 1 which plays an important role because of Finsler metrics. So we begin with a general

discussion on corresponding symplectic maps.

LetH be a positively homogeneous Hamiltonian of degreem with respect to p, defined on T ∗M\0,
and Γ ⊂ T ∗M \ 0 × T ∗M \ 0 be the graph of exp vH (time-1 flow). Recall from [GuSt, formula (5.6)

pdf p.138 and Thm 5.4.1] that

(2.29) (exp vH)
∗(p dx)− p dx = (m− 1)dH

Integrating over a path γE ⊂ {H = E}, we recover the fact that
∫
γE

(exp vH)∗(p dx) =
∫
γE
p dx.

So when m = 1, not only the 2-form, but also the 1-form p dx are preserved by vH . In this case,

vH is actually the lift of a vector field on M . When m > 1, formula (2.29) gives a generating function

for Γ under the following assumption :

(2.30) Let πM×M : T ∗(M×M) →M×M be the natural projection, and assume πM×M : Γ →M×M is

a diffeomorphism, i.e. for all (x, y) ∈M×M , there is a unique ξ ∈ T ∗
xM such that y = exp vH(x, ξ).

Then we say that Γ is horizontal. In case of a geodesic flow (m = 2) (2.30) holds true when

M is geodesically convex. Provided (2.30), Γ has a generating function χ, i.e. dχ = pr∗2(p dx) −
pr∗1(p dx), where pri : T

∗(M ×M) = T ∗M × T ∗M → T ∗M is the projection onto the i:th factor, and

pr1 ◦(πM×M |Γ)−1 is a diffeomorphism M ×M → T ∗M . Moreover we can then represent χ as

(2.31) χ =
(
pr1 ◦(πM×M |Γ)−1

)∗
(m− 1)H
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In case of the geodesic flow (m = 2) χ(x, y) = 1
2
dist(x, y)2. Formula (2.29) is related to exact

symplectic twist maps as follows. An exact symplectic twist map [Ar], [Ka], [GuSt], [CdV7] F :

T ∗M → T ∗M is a symplectic map with a generating function S1 : M ×M → R, (x,X) 7→ S1(x,X)

which satisfies

(2.32) F ∗(p dx)− p dx = P dX − p dx = dS1(x,X)

(p, x) and (P,X) are related by p = −∂xS1, P = ∂XS1. In notation S1 the subscript 1 refers to

time-1 flow. In case H(x, p) = p2 (flat metric on Rn), comparing (2.32) with (2.29), i.e. dS1 = dH,

we get S1(x,X) = 1
4 (x − X)2, and more generally, if H(x, p) = |p|m, with m > 1, S1(x,X) =(

m−1
m

)m/(m−1)|x−X|m/(m−1).

Again, S1 is not well defined when m = 1. More generally F (x, y) coincides with χ(x, y) above

for the geodesic flow.

For Hamilton-Jacobi (HJ) equation we have the following Proposition, extending (2.15) for large t.

Assume H is associated with a Lagrangian convex with respect to ẋ. Let x0, y0 ∈M be non conjugate

points along an extremal curve γ0(t) such that x0 = γ0(0) and y0 = γ(t0), and (x0, ξ0), (y0, η0) the

corresponding points in T ∗M .

Proposition 2.2 [CdV,Thm 14, pdf p.45]: Let (t0, x0, y0) be as above. Then for any (x, y) close to

(x0, y0), and t close to t0, there is a unique extremal curve γ such that x = γ(0) and y = γ(t). Let

S̃(t, x, y) be the action along these curves (minimizing the Lagrangian action) This is a generating

function for the Hamiltonian flow near (x0, ξ0), verifying HJ equation

(2.33) ∂tS̃ +H(y, ∂yS̃) = 0

This is verified in the Riemannian case S̃(t, x, y) = F (x, y)/2t = dist2(x, y)/2t where F is the

exact symplectic twist map considered above, and can be identified with the phase in the Heat kernel.

We can check (2.33) trivially when H = 1
2
p2. This holds also under assumption (2.30). Clearly under

Hypothesis (2.18), (2.33) extends (2.15) for large times.

So far we have assumed some convexity of H with respect to p. The case m = 1 (Finsler metric

and Randers symbols) is investigated in [Ta] : it turns out that similar results hold when the square

of Finsler metric or Randers symbol enjoys some convexity property, so for a “conformal metric” the

case m = 1 makes no difference. In Sect.5 we shall require m = 1, but Φ is no longer associated with

a distance on M .

2.5 Maupertuis-Jacobi correspondence

Geodesic flows are often used in Maupertuis-Jacobi correspondence. Let M be a smooth man-

ifold, and H0,H0 ∈ C∞(T ∗M) two Hamiltonians, possessing a common regular energy surface

Σ = {H′ = E} = {H0 = E}. Then H0,H0 have the same integral curves (X (τ),P(τ)) = (X(t), P (t))

on Σ, up to a reparametrization of time. Hamiltonian vector fields are related by vH0
= G(x, p)vH0

,

parametrizations by dt = G(τ)dτ for some smooth (positive) function G. We say that (H0, E) and

(H,E) satisfy Maupertuis-Jacobi correspondence and write (H, E) ∼ (H,E).
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Example 2.3: H(x, p) = p2 + V at energy E and HE(x, p) =
p2

E−V (x) at energy 1 satisfy Maupertuis-

Jacobi correspondence. Take in particular H(x, p) = p2

1+x2 and H(x, p) = p2 − x2, we have (H, 1) ∼
(H, 1) and P (t, ψ) = ω(ψ) cosh f(t), X(t, ψ) = ω(ψ) sinh f(t), where f satisfies the ODE f ′(t) =

2
cosh2 f(t)

, f(0) = 0. Integrating, we find f + 1
2
sinh(2f) = 4t, so f(t) > 0 for all t > 0. Another

example with a frequency vector is H(x, p) = p2

1+ν2·x2 .

Example 2.4: H(x, p) = |p|m 1
ρ(x)

above; H is for instance the water-wave Hamiltonian H(x, p) =

|p|(1 + µ(x)p2) tanh(D(x)|p|), see [DoRo], [DoMiRo], [ReDoKaMi].

Semi-classical Green functions for (H, E) and (H,E), i.e. solutions of (1.4) with different Hamilto-

nians are mapped diffeomorphically to each other. It could be interesting to compare the construction

of corresponding Maslov canonical operators at each step (phase function, density and so on. . . )
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3. Maslov canonical operators and bi-Lagrangian distributions

Our purpose is to describe the solution globally, including unfolding of Lagrangian singularities.

Among many references to the subject we make use in particular of [M], [Hö], [Du], [Iv], [BaWe],

[CdV], [GuSt], [GrSj], [DoZh], [DoNaSh], [DoRo].

First we recall the asymptotic stationary phase formula for a quadratic phase function [Hö,Lemma

7.7.3]. Let A be a symmetric non-degenerate matrix, then

(3.1)

∫
ei〈Ax,x〉/2hu(x) dx =

(
det
(
A/(2iπh

))−1/2
k−1∑

0

(h/(2i))j〈A−1D,D〉ju(0)/j! +O(hk)

Since we shall ignore for simplicity Maslov indices, this formula has the advantage of hiding phase

factors like e−iπn/4, which we could restore by choosing an appropriate branch of the square root in

the complex plane. A similar formula [Hö,Theorem 7.7.5] holds for 〈Ax, x〉/2 replaced by f with a

non-degenerate critical point at x0 and Hessian matrix A.

3.1. Lagrange immersions and non-degenerate phase functions:

A smooth function Φ : (x, θ) 7→ Φ(x, θ), θ ∈ RN , defined near (x0, θ0) with ξ0 = ∂xΦ(x0, θ0) is

called a non-degenerate phase function in the sense of Hörmander iff the (n+N)×N matrix (Φ′′
θx,Φ

′′
θθ)

has rank N on the critical set

(3.3) CΦ = {(x, θ) ∈M ×RN :
∂Φ

∂θ
(x, θ) = 0}

Then

(3.4) ιΦ : CΦ → ΛΦ = {(x,Φ′
x(x, θ) : (x, θ) ∈ CΦ}

is a local Lagrangian embedding (diffeomorphism).

It is easy to prove [Iv,(1.2.7)] that

(3.5) N − rankΦ′′
θθ = n− rankdπΛ(ιΦ(x, θ))

Let also πΛΦ
: ΛΦ →M (or simply πx) be the natural projection. If k = rankdπΛ(ιΦ(x0, θ0)), we

say that ΛΦ has rank k in a neighbhd U of (x0, ξ0), and call U a local chart of rank (≥)k near (x0, ξ0).

If k = n, U is called a “regular” chart, and Λ is called “projectable” or “horizontal” on U . On the

other extreme, if k = 0, U is called a “maximally singular” chart, and Λ is called “vertical” on U .

If at some z = (x, ξ) ∈ T ∗M , TzΛΦ is transverse to the vertical plane Vz = {(0, δξ)} (i.e. z is a

regular point) then (3.5) shows that Φ′′
θθ is of maximal rank N .

When k < n we start to add some extra variables: namely there exists a partition of variables

x = (x′, x′′) such that the (N + n− k)× (N + n− k) matrix

(3.6) Hess(x′′,θ)(Φ) =

(
Φ′′
x′′x′′ Φ′′

x′′θ

Φ′′
θx′′ Φ′′

θθ

)
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is non degenerate. So the map (x′′, θ) 7→ Φ(x, θ) − x′′ξ′′ has a non-degenerate critical point θc =

θ(x′, ξ′′), x′′c = x′′(x′, ξ′′) with the critical value S(x′, ξ′′) = Φ(x′, x′′c , θ) − x′ξ′′c . The projection π̃ :

ΛΦ → T ∗
xR

n, (x, ξ) 7→ π̃(x, ξ) = (x′, ξ′′) becomes of maximal rank n. Hence Λ near x is parametrized

by S(x′, ξ′′).

Remark 3.1: The above non-degeneracy condition on Φ is equivalent to (non-degeneracy in the sense of

Hörmander) dx,θΦ(x0, θ0) 6= 0, and d(x,θ)∂θ1Φ, · · · , d(x,θ)∂θNΦ are linearly independent on the critical

set CΦ. The property stated above means that, if Φ is non-degenerate in the sense of Hörmander,

then it is always possible to find coordinates such that πξ : (x, ξ) 7→ ξ has rank n. Actually, there are

coordinates such that (x, θ) 7→ Φ(x, θ)− xξ has a non-degenerate critical point, so that

(3.7) Hessx,θ(Φ) =

(
Φ′′
xx Φ′′

xθ

Φ′′
θx Φ′′

θθ

)

is non degenerate and ΛΦ is of the form ΛΦ = {(−φ′(ξ), ξ)}, see [Hö,Proposition 25.1.5]. This follows

from the fact that while πx : (x, ξ) 7→ x is invariantly defined under diffeomorphisms in M , this

is not the case for the horizontal projection πξ : (x, ξ) 7→ ξ. For the generating function Φ of Λ+

constructed in Sect.4, Hessx,θ(Φ) is actually degenerate in the “natural” coordinates of the problem,

while Hessx′′,θ(Φ) is not, see Remark 4.2.

Let us recall the expression for the (inverse) density on CΦ. Let y = (y1, · · · , yn) be some local

coordinates on Cφ and |dy| corresponding Lebesgue measure. Then the non vanishing, real function

(3.8) F [Φ, dµ+] =
dy ∧ dΦ′

θ

dx ∧ dθ
=
dy ∧ dΦ′

θ1
∧ · · · ∧ dΦ′

θN

dx ∧ dθ1 ∧ · · · ∧ dθN

is well-defined near CΦ as the quotient of two volume forms, see [HöIV,p.14], [NaStSh], [DoNaSh,

(2.8)]. Restricted to Cφ, its absolute value defines the (inverse) density on Cφ. Computed on the

complexified tangent space to CΦ, the variations of the argument of F [Φ] can define also the variations

of Maslov index (see [DoNaSh]), which we shall ignore in this paper. We can also write the absolute

value of (3.8) on CΦ in the form, see [GrSj, Sect.11]

|F [Φ, dµ+]|CΦ
=
∣∣∣ det

( ∂y
∂x

∂y
∂θ

∂2Φ
∂x∂θ

∂2Φ
∂θ2

) ∣∣∣
CΦ

It is actually independent of the choice of coordinates on CΦ but it does depend on the choice of local

coordinates x.

3.2 Maslov canonical operator acting on Lagrangian distributions.

Let uh be a semi-classical Lagrangian distribution (or oscillatory integral) i.e. locally

(3.9) uh(x) =

∫ ∗

eiΦ(x,θ)/hb(x, θ;h) dθ

where Φ(x, θ) is a non-degenerate phase function in the sense above, and b(x, θ;h) = b0(x, θ) +

hb1(x, θ) + · · · an amplitude. With uh we associate as in (3.4) the Lagrangian submanifold ΛΦ.
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It is proved in [Hö,Proposition 25.1.5] that, using that (3.7) is non degenerate, we can choose

local coordinates ξ ∈ Rn on ΛΦ, take h-Fourier transform Fh,x→ξuh(ξ) = (2πh)−n/2
∫
e−ixξ/hu(x) dx

and expand by stationary phase. The half-density in the local chart (CΦ, ιΦ) is the given by
√
dµΦ =

|detΦ′′|−1/2|dξ|1/2 (denoting Φ′′ = Hessx,θ(Φ) for short), and the (oscillating) principal symbol of uh

in ΛΦ by

(3.11) eiφ(ξ)/hA0(ξ) = eiφ(ξ)/heiπ sgnΦ′′/4b0(x(ξ), θ(ξ))
√
dµΦ

Here φ is the “reduced phase function” such that Λ = {(−φ′(ξ), ξ)}. Alternatively when (3.6) is non

degenerate, one can express the (oscillating) principal symbol of uh taking partial Fourier transform

vh(x
′, ξ′′;h) = Fh,x′′→ξ′′uh(x

′, ξ′′) = (2πh)(k−n)/2
∫
e−ix

′′ξ′′/h dx′′
∫
eiΦ(x′,x′′,θ)/hb(x′, x′′, θ;h) dθ

leading again to an expression of WKB type as in (3.11), and locally

ΛΦ = ΛS = {(x, ξ) : x′′ = −∂ξ′′S(x′, ξ′′), ξ′ = ∂x′S(x′, ξ′′)}

Thus we obtained a reduced phase functions, with least possible number of variables θ, i.e. at most

n. When k = n, then uh assumes simply a WKB form in x variables.

Conversely, let ι : Λ → T ∗M be a Lagrangian immersion. We know ([Hö, Theorem 21.2.16])

that there exists a covering of Λ by canonical charts U , such that Λ is parametrized in each U by a

non-degenerate phase function. The Lagrangian immersions ι and (3.4) have the same image on U

and CΦ is a submanifold of dimension n. In particular, ιΦ : CΦ → Λ is a diffeomorphism onto its

image. These phases can be chosen coherently, and define a class of “reduced phase functions” φ,

parametrizing ι locally. This gives the fibre bundle of phases Lh, including Maslov indices, equipped

with transition functions. We are also given local smooth half-densities |dµΦ|1/2 on Λ, defining the

fibre bundle of half-densities Ω1/2, equipped with transition functions. The collection of these objects

make a fibre bundle Ω1/2 ⊗ Lh over Λ. A section of Ω1/2 ⊗ Lh will be written as
[
Kh

(Λ,µ)a
]
(x;h),

where Kh
(Λ,µ) is called Maslov canonical operator. At leading order

[
Kh

(Λ,µ)a
]
reduces to its oscillating

symbol (3.11). The set of such Lagrangian distributions microlocally supported on Λ will be denoted

by I(M ; Λ).

We apply Maslov canonical operator for constructing solutions to homogeneous equation

(H(x, hDx;h)−E)uh = 0

microlocally supported on some Λ+ in the characteristic foliation of ΣE . Here H(x, hDx;h) is a h-

PDO with principal symbol H(x, p), and we assume E = 0. If uh is a Lagrangian distribution locally

of the form (3.9), the same holds for Huh.

The phase Φ (with time t in Hamilton equations as one of the θ-parameters) is determined by

HJ equation (2.15), with initial data on t = 0, which gives (locally) the Lagrangian embedding (3.4)

with image Λ+. In particular, CΦ ⊂ {∂tΦ = 0}. We prescribe the amplitude such that b|t=0 = a. The

construction of
[
Kh

(Λ+,µ)
a
]
goes as follows. The amplitude of H(x, hDx;h)uh(x) has leading term

H0

(
x, ∂xΦ(x, θ)

)
b0(x, θ)
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Moreover if H(x, p;h) has sub-principal symbol H1(x, p), and H0(x, p) = 0 on Λ+, H(x, hDx;h)uh(x)

has principal symbol

(3.12) h
(1
i
LvH0

|Λ+
+H1

)
b0|dµΦ|1/2

where LvH0
denotes Lie derivative along vH0

acting on half-densities u|dy|1/2 as

(3.13) Lv(u|dy|1/2) =
(
vj(y)

∂u

∂yj
+

1

2
(div v(y))u(y)

)
|dy|1/2

in local coordinates. For Schrödinger operator H(x, hDx) = −h2∆ + V (x), Λ+ is “horizontal”, and

LvH0
|Λ+

(
b0|dµΦ|1/2

)
takes the form

(∑

j

Φ′
j(x)

∂b0
∂xj

+
1

2
∆Φ(x)b0(x)

)
|dx|1/2, and a similar expression

when Λ+ is “vertical”, see e.g. [DoRo,(b.14)]. Then (3.9) solves Huh = 0 mod O(h2).

Note that on Λ+, LvH0
= d/dt. Provided Φ is a non-degenerate phase-function, (3.12) admits a

global solution, computed on each canonical chart. For instance on a regular chart, this is just WKB

construction. In a totally singular chart instead, we solve (3.12) in Fourier representation, and more

generally in the mixed representation.

The function b0(x(ξ), θ(ξ)) is smooth in ξ, but of course when expressed in x-variable, singularities

may occur do to singular Jacobians at focal points.

The fact that uh solves Huh = 0 mod O(h2) is also expressed by the commutation relation

(3.14) H(x, hDx;h)
[
Kh

(Λ+,µ)
a
]
(x;h) =

[
Kh

(Λ+,µ)
h
(db0
dt

+ iH1b0
)]
(x;h) +O(h2) = O(h2)

3.3 Bi-Lagrangian distributions.

We want to describe solutions of the inhomogeneous equation (H − E)uh = fh, i.e. oscillatory

integrals microlocally supported near Λ∪Λ+, in term of Maslov canonical operator for bi-Lagrangian

distriubutions. Semi-classical distributions used in [MelUhl] (adapted to the semi-classical case), are

locally of the form

(3.18) uh(x) =
i

h

∫ ∞

0

θT (t) dt

∫ ∗

ei(x
′ξ′+(xn−t)ξn)/hb(t, x, ξ;h) dξ

where b is an amplitude, and θT (t) a cut-off as in (1.8), which we omit most of the time in the

notations.

As a warm-up, let us compute the semi-classical wave-front set WFh uh. Fix z = (x, ξ) ∈ T ∗M ,

ξ = (ξ
′
, ξn). It is well known that WFh(uh) is characterized by the following property: z /∈ WFh(uh)

iff there exists χ ∈ C∞
0 (T ∗M) equal to 1 near z, such that

χ(x, hDx)uh(x) = (2πh)−1

∫ ∫
ei(x−y)η/hχ(y, η)uh(y) dy dη = O(h∞)

We have the standard
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Proposition 3.1: Let uh be as in (3.18). Then

(3.19) WFh(uh) ⊂ {xn ≥ 0} ∩
(
{xn = 0} ∪ {x′ = 0} ∪ {ξn = 0}

)

If moreover b(t, x, ξ;h) verifies the transport equation ∂tb+ ∂xnb = 0 (and hence hDxnuh = fh, then

WFh(uh) ⊂ Λ0
+ ∪ T0Rn, which is the conormal bundle of the manifold with boundary x′ = 0, xn ≥ 0.

Here we recall Λ0
+ = CharhDxn from Lemma 1.1.

Proof: Let Φt(x, ξ, y, η) = y′ξ′ + (yn − t)ξn + (x− y)η be the phase-function in (3.18).

(i) If xn < 0, we choose χ such that χ(y, η) = χ̃(y′, η)χn(yn), with χn(xn) 6= 0. It follows that

yn 7→ Φt is non stationary in suppχn, so WFh uh ⊂ {xn ≥ 0}.
(ii) Assume ξn 6= 0 and choose χ such that χ = χ̃(y, η′)χ2n(ηn), with χ2n(ξn) 6= 0. Let ε be so small

that |ξn − ηn| > δ > 0 on |ξn| < ε and ηn ∈ suppχ2n, we split χ according to χε and χ̂ε = χ − χε,

where χε(x, hDx)uh(x) = (2πh)−n
∫
dy
∫
|ξn|≥ε

∫
ei(x−y)η/hχ(y, η)uh(y) dη.

We have hDte
iΦt/h = −ξneiΦt/h, so that integrating by parts N times with respect to t we get

χε(x, hDx)uh(x) =
(
h
i

)N
AεN (x;h) +BεN (x;h) where

(3.21)

AεN (x;h) = (2πh)−n
∫
χ(y, η) dy dη

∫ ∞

0

dt

∫ ∗

|ξn|≥ε

eiΦt/h
1

ξn+1
n

∂N+1
t b(t, y, ξ;h) dξ

BεN (x;h) = (2πh)−n
∫
χ(y, η) dy dη

∫ ∗

|ξn|≥ε

eiΦ0/h
1

ξn

N∑

j=0

( h
iξn

)j
∂jt b(0, y, ξ;h) dξ

Now (y, ξ) 7→ Φ0(x, ξ, y, η) = yξ+(x−y)η has a non-degenerate critical point at ξ = η, y = 0. Assume

x 6= 0, i.e. we choose χ such that 0 /∈ πx(suppχ); so Φ0 is not stationary and BεN (x;h) = O(h∞).

Hence χ̂ε(x, hDx)uh(x) = O(hN) for any N .

Consider next the contribution χ̂ε(x, hDx)uh(x) of |ξn| < ε to χ(x, hDx)uh(x). The map

yn 7→ Φt(x, ξ, y, η)

has a critical point at ξn = ηn. Since |ξn − ηn| > δ > 0 when ηn ∈ suppχ2n, yn 7→ Φt(x, ξ, y, η) is

non stationary and χ̂εuh(x) = O(h∞). Altogether, χ(x, hDx)uh(x) = χεuh(x) + χ̂εuh(x) = O(h∞)

so z /∈ WFh uh if ξn 6= 0. In particular WFh uh ⊂ {xn ≥ 0} ∩
(
{ξn = 0} ∪ {x = 0}

)
.

(iii) Assume next xn > 0 and take as above χ(y, η) = χ̃(y′, η)χn(yn), with χn(xn) 6= 0. Then

(t, ξn, y, η) 7→ Φt is critical at t = yn = xn, ξn = 0, y′ = x′, η′ = x′, and this is a non-degenerate

critical point. So when xn > 0, asymptotic stationary phase (3.1) shows that

(3.22) χ(x, hDx)uh(x) = 2iπ

∫ ∗

eix
′ξ′/hχ̃(x′, ξ′)

[
b(xn, x, (ξ

′, 0);h) +
h

i

∂2b0
∂t∂ξn

)
(xn, x, (ξ

′, 0);h)
]
dξ′

In particular, using (i), we see that WFh(uh) ⊂ {xn ≥ 0} ∩
(
{xn = 0} ∪ {x′ = 0}

)
, which altogether

proves (3.19).

For the last statement of Proposition 3.1, apply hDxn to uh and integrate by part once with

respect to t. We find

(3.23) hDxnuh(x) =

∫ ∗

eixξ/hb(0, x, ξ;h) dξ +

∫ ∞

0

dt

∫ ∗

eiΦt/h(∂t + ∂xn)b(t, x, ξ;h) dξ
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so if b(t, x, ξ;h) verifies the transport equation, hDxnuh(x) = gh(x) =
∫ ∗

eixξ/hb(0, x, ξ;h) dξ and

since WFh gh ⊂ T ∗
0R

n, the last (sharper) estimate on WFh uh follows from the well-known property

WFh uh ⊂ WFh hDxnuh ∪ CharhDxn . ♣

We say that uh(x) is a bi-Lagrangian (semi-classical) distribution on the intersecting pair (Λ0,Λ0
+).

By Proposition 3.1 and its proof we can easily recover [MelUhl,Prop.2.3], namely if χ(x, hDx) is a

h-PDO with WFh(χ(x, hDx)) ∩ Λ = WF′
h(χ(x, hDx)) ◦ Λ = ∅, then χ(x, hDx)uh is a Lagrangian

distribution supported on Λ0
+, while if χ(x, hDx) is a h-PDO with WFh(χ(x, hDx) ∩ Λ0

+ = ∅, then
χ(x, hDx)uh is a Lagrangian distribution supported on Λ.

It can also be shown that a h-FIO A preserving the Lagrangian intersection preserves also bi-

Lagrangian distributions of the form (3.18). Namely, let (Λ,Λ+) be a Lagrangian pair in the sense of

Lemma 1.1, defined near (y0, η0) ∈ ∂Λ′
+, and uh be of the form (3.18). We recall the following result:

Proposition 3.2 [MelUhl,Prop.3.2]: Let (Λ0,Λ0
+) ∼ (Λ,Λ+) be Lagrangian pairs in the sense of

Lemma 1.1. Let A be a h-FIO of the form

Av(x;h) = (2πh)−(n+N)/2

∫
eiφ(x,y,θ)/hc(x, y, θ)v(y;h) dy dθ

associated with the canonical transformation κA, κA(y0, η0) = (x0, ξ0) with graph

Λ̃A = {(x, φ′x(x, y, θ), y, φ′y(x, y, θ) : φ′θ(x, y, θ) = 0}

such that (locally) Λ̃A ◦Λ′ = Λ, Λ̃A ◦Λ′
+ = Λ+ and the compositions are transversal [HöIV,p.19&44].

Let uh be defined near (y0, η0) on the Lagrangian pair (Λ0,Λ0
+) by (3.18). Then Auh defined near

(x0, ξ0) on the Lagrangian pair (Λ,Λ+) is again of the form (3.18).

The proof essentially reduces to show that Auh can be rewritten as an integral of the form (3.18),

i.e. with the same phase Φt, and a new amplitude b′(t, x, ξ;h). So we can define the class I(M,Λ,Λ+)

of bi-Lagrangian distributions supported on the Lagrangian pair (Λ,Λ+) ∼ (Λ′,Λ′
+), all of which take

locally the form (3.18).

Consider now the inhomegenous equation H(x, hDx;h)uh = fh, where

fh(x) =

∫ ∗

eixξ/ha(x, ξ;h) dξ

is conormal to Λ0 = T ∗
0M . When H(x, hDx;h) = hDxn , uh as in (3.18) solves H(x, hDx;h)uh = fh

whenever b solves the transport equation, i.e. b(t, x, ξ;h) = a(x′, xn − t, ξ;h), so that (3.23) simplifies

to hDxnuh(x) = fh(x) mod O(h∞). In the general case, we can take H(x, hDx; ) to its normal form

hDxn by conjugating with a h-FIO whose canonical transformation preserves Lagrangian intersection.

Namely we have

Proposition 3.3: Let the energy surface H0 = E be non critical, and vH0
be transverse to Λ0 = T ∗

0M

at (x0, ξ0) ∈ ∂Λ+, where Λ+ is the flow out of vH from Λ0. Then there is a h-FIO B, defined

microlocally near
(
(x0, ξ0), (0, 0)

)
, quantizing the canonical transformation of Lemma 1.1 such that

A−1H(x, hDx)A = hDyn .
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In Sect. 4 & 5 we shall instead construct objects written globally in a suitable coordinate system,

using the phase functions in Sect.2. This system consists only of coordinates on Λ and of time

parameter t in Hamilton equations.

3.4 Compatibility condition and symbolic calculus. Maslov canonical operator for bi-Lagrangian dis-

ributions.

Here we prove Theorem 1.2, which relies mainly on [Hö,Lemma 18.2.1]. By Proposition 3.2 it

suffices to consider the Lagrangian pair (Λ,Λ0
+) (we have written Λ = Λ0 for short). When uh solves(

H(x, hDx;h) − E)uh(x) = fh mod O(hN) we want to define the “boundary-part” and “wave-part”

symbols of uh satisfying the compatibility condition. We proceed in two steps.

• The boundary-part symbol.

Consider χδ ∈ C∞
0 (R2n) with |ηn| ≥ δ on suppχδ(y, η), and χδ(y, η) → 1 pointwise for ηn 6= 0,

as δ → 0. From the part (ii) of the proof of Proposition 3.1 for N = 2, taking ε < δ so that the

contribution of |ξn| < ε to χδ(x, hDh)uh(x) is O(h∞), we know that χδ(x, hDh)uh(x) = Bε2(x;h) +

O(h2). Computing

Bε2(x;h) =

∫
eixη/hχδ(y, η) dy dη

∫ ∗

|ξn|>ε

ei(y−x)(ξ−η)/hq(y, ξ;h) dξ

by asymptotic stationary phase in (y, ξ), where

q(y, ξ;h) =
1

ξn

[
b(0, y, ξ;h) +

h

iξn
∂tb0(0, y, ξ) +O(h2)

]

we assume as we may that ∂χδ
∂y

(0, η) = 0, which gives

(3.27)

Bε2(x;h) =

∫
dη eixη/hχδ(0, η)

[
q(0, η;h) − h

iηn

∂2b0
∂y′∂ξ′

(0, 0, η) − h

i

∂2b0
∂yn∂ξn

(0, 0, η) +
h

iη2n

∂b0
∂yn

(0, 0, η)
]

Oscillating integral uh solves hDxnuh = fh iff b satisfies the transport equation

∂tb(0, x, ξ) + ∂xnb(0, x, ξ) = 0

i.e. b(t, x, ξ;h) = b(x′, xn − t, ξ). From [Hö,Lemma 18.2.1] and its proof, we know then that if

vh(x) =
∫
eixξ/ha(x, ξ;h) dξ, then we also have vh(x) =

∫
eixξ/hã(ξ;h) dξ, with a symbol ã(ξ;h) ∼∑

j

hj〈−iDx,Dξ〉a(x, ξ)/j! independent of x. Applying this to amplitude b(x′, xn−t, ξ), (3.27) reduces

to Bε2(x;h) =
∫
eixη/hχδ(0, η)

1
ηn
b(η;h) dη +O(h2). and thus

(3.28) χδ(x, hDh)uh(x) =

∫
eixη/hχδ(0, η)

1

ηn
b(η;h) dη +O(h2)

For ηn 6= 0 we define the boundary symbol of uh as σ(η;h) = 1
ηn
b(η;h).

• The wave-part symbol.
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Consider next χ+
δ ∈ C∞

0 (R2n with yn ≥ δ on suppχ+
δ (y, η), and χδ(y, η) → 1 pointwise for

yn > 0, as δ → 0. As in the part (ii) in Proposition 3.1, we perform the integration

χ+
δ (x, hDh)uh(x) =

i

h

∫ ∞

0

dt

∫
χ+
δ (y, η) dy dη

∫ ∗

eiΦt(x,ξ,y,η)/hb(t, y, ξ;h) dξ

by asymptotic stationary phase with respect to (t, ξn, y
′, η′), the critical value of the phase being

Φc = x′ξ′ + (xn − yn)ηn. Again the resulting integral is computed by asymptotic stationary phase

with respect to (yn, ηn), and we eventually get

χ+
δ (x, hDh)uh(x) = 2iπ

∫ ∗

eix
′ξ′/h

[
b(xn, x, ξ

′, 0;h) +
h

i

∂2b0
∂t∂ξn

(xn, x, ξ
′, 0)

]
dξ′

Assuming as before b = b(ξ;h), this reduces to

(3.29) χ+
δ (x, hDh)uh(x) = 2iπ

∫ ∗

eix
′ξ′/hb(ξ′, 0;h) dξ′

We define the wave-part symbol of uh as σ+(ξ;h) = 2iπb(ξ′, 0;h) by letting δ → 0. Observe that

σ+(ξ;h) is continuous up to ∂Λ+ and comparing (3.28) with (3.29) we get, at least mod O(h2), the

compatibility condition (1.13) between the wave-part and boundary-part symbols on ∂Λ+.

It is clear that (3.30) carries by induction mod O(hN), alle N . Note that if we are only interested

at the zero:th order approximation (H − E)uh = fh + O(h), then b is not required to satisfy any

transport equation, and the boundary-part and wave-part symbols are always defined mod O(h).

Propositions 3.2 and 3.3 then allow to define coherently the (bi-)symbol (σ, σ+) = (σ(uh), σ
+(uh))

computed as above in local coordinates, and thus by analogy with Sect.3.2, an “effective” Maslov

canonical operator Kh
Λ,Λ0

+

(σ, σ+). The commutation formula for bi-Lagrangian distributions takes

the form

(3.31)

H(x, hDx;h)
[
Kh

Λ,Λ+
σ, σ+

]
(x;h) =

[
Kh

Λ,Λ+
(H−E)σ, h

(1
i
LvH0

|Λ+
+H1

)
σ+
0

]
(x;h)+O(h2) = fh+O(h2)

This brings the proof of Theorem 1.2 to an end. ♣
3.5 The constant coefficient case.

In general it is difficult to obtain a decomposition of uh adapted to the splitting (3.30), i.e.

uh = u0h + u1h where WFh(u
0
h) ⊂ Λ and WFh(u

1
h) ⊂ Λ0

+.

Here we compute uh explicitely in the 2-D case for Helmholtz operator −h2∆ − E, but f with

compact support. Let f also be radially symmetric; its Fourier transform g = F1f is again of the

form g(p) = g(|p|) = g(r) and extends holomorphically to C2. For E = k2, k > 0, we rewrite

(3.33) uh(x) = (2πh)−n
∫
eixξ/h

F1f(ξ)

ξ2 −E − i0
dξ

as uh(x) = u(x) = u0(x) + u1(x) with

u0(x) =
k + i ε

(2πh)2

∫ 2π

0

dθ

∫ ∞

0

exp[i|x|r cos θ/h] g(r)

r2 − (k + i ε)2
dr

u1(x) =
1

(2πh)2

∫ 2π

0

dθ

∫ ∞

0

exp[i|x|r cos θ/h] g(r)

r + k + i ε
dr
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To compute u0 we use contour integrals. When θ ∈] − π
2
, π
2
[, we shift the contour of integration to

the positive imaginary axis and get by the residues formula

(3.35)

∫ ∞

0

exp[i|x|r cos θ/h] g(r)

r2 − (k + i ε)2
dr +

∫ ∞

0

exp[−|x|r cos θ/h] g(ir)

r2 + (k + i ε)2
idr =

2iπ
g(k + i ε)

2(k + i ε)
exp[i|x|(k + i ε) cos θ/h]

while for θ ∈]π2 , 3π2 [,

(3.36)

∫ ∞

0

exp[i|x|r cos θ/h] g(r)

r2 − (k + i ε)2
dr −

∫ ∞

0

exp[|x|r cos θ/h] g(−ir)
r2 + (k + i ε)2

idr = 0

Summing up (3.35) and (3.36), integrating over θ ∈]0, 2π[ and letting ε→ 0, we obtain

u0(x) =
iπg(k)

(2πh)2

∫ π/2

−π/2

exp[i|x|k cos θ/h] dθ+
∫ ∞

0

dr

r2 + k2
[∫ π/2

−π/2

g(ir)−
∫ 3π/2

π/2

g(−ir)
]
exp[−|x|| cos θ|/h] dθ

Since g(ir) = g(−ir), the latter integral vanishes, so we end up with

u0(x) =
iπg(k)

(2πh)2

∫ π/2

−π/2

exp[i|x|k cos θ/h] dθ

It is readily seen that

WFh u0 ⊂ {x = 0} ∪ {(x, k x|x| ), x 6= 0} = Λ ∪ Λ+

Consider now u1. We let ε → 0 and set g̃(r) = g(r)
r(r+k)

. Since g̃(r)
√
r ∈ L1(R+), we have u1(x) =

H0(g̃)(
|x|
h
), where H0 denotes Hankel transform of order 0. Let χ ∈ C∞

0 (R2) be radially symmetric,

and equal to 1 near 0, since WFh fh = {x = 0}, we have

g = Fh(χfh) +O(h∞) = (2πh)−2Fh(χ) ∗ g +O(h∞)

so in the expression for u1 we may replace mod O(h∞), g̃(r) by a constant times ĝ(r) = (Fh(χ)∗g)(r)
r(r+m)

(see [Bad] for 2-D convolution and Fourier transform in polar coordinates). To estimate WFh u1, we

compute again the Fourier transform of (1 − χ̃)ĝ where χ̃ is a cut-off equal to 1 near 0, and we find

it is again O(h∞) if χ ≡ 1 on supp χ̃. This shows that WFh u1 ⊂ {x = 0}.
Note that this Example makes use of Bessel function J0(

|x|
h
), we shall return to such “localized

functions” in Sect.5.

26



4. fh is supported microlocally on the “vertical plane”

Consider the case where H0 is positively homogeneous of degreem ≥ 1 with respect to p and fh is

microlocally concentrated on the vertical plane Λ = {x = 0}, e.g. fh(x) = h−nf( x
h
), with f ∈ S(Rn)

(Schwartz space).

4.1 Some non-degeneracy condition.

Recall first from [DoNaSh, Lemma 6] the following result. Let ι̃ : Λ̃ → T ∗M̃ be a Lagrangian

embedding of dimension ñ, U ⊂ Λ̃ a connected simply connected open set,

(φ̃, ψ̃) = (φ1, · · · , φk, ψ1, · · · , ψñ−k)

local coordinates on U . Here we don’t assume that k is the rank of dπx : Λ̃ → M̃ . Thus Λ̃ is defined

by x = X(φ̃, ψ̃), p = P (φ̃, ψ̃) in the chart U . Let Π(φ̃, ψ̃) be a smooth ñ× k matrix function defined

in U such that:

Π∗(φ̃, ψ̃)X
ψ̃
(φ̃, ψ̃) = Idk×k(4.1)

κ : (φ̃, ψ̃) 7→ (X(φ̃, ψ̃), ψ̃) is an embedding(4.2)

Then there is a neighbhd V of κ(U) such that the system

Π∗(φ̃, ψ̃)
(
x−X(φ̃, ψ̃)

)
= 0, (x, ψ̃) ∈ V

has a unique smooth solution φ̃ = φ̃(x, ψ̃) satisfying the condition X(φ̃(x, ψ̃), ψ̃) = x, when (x, ψ̃) ∈
κ(U).

For (φ̃, ψ̃) ∈ U , define the ñ× ñ matrix

M(φ̃, ψ̃) =
(
Π(φ̃, ψ̃);P

ψ̃
(φ̃, ψ̃)− P

φ̃
(φ̃, ψ̃)Π∗(φ̃, ψ̃)X

ψ̃
(φ̃, ψ̃)

)

As we shall see, invertibility of M(φ̃, ψ̃) plays an important role [DoMaNa2], [DoNaSh].

Consider now our special setting where H is positively homogeneous of degreem, Λ is the vertical

plane, and recall 〈P (t, ψ, τ), Ẋ(t, ψ, τ)〉 = mH from (2.6). Here τ is taken as a parameter, everything

depends smoothly on τ and Λ+(0) = Λ+. So Π(t, ψ, τ) = 1
mH

P (t, ψ, τ) is a left inverse of Ẋ:

Π∗Ẋ = 1
mH

〈P, Ẋ〉 = 1. Further, the map Λ+ → Rn, (t, ψ) 7→ (X(t, ψ, τ), ψ) is clearly an embedding

This fulfills conditions (4.1),(4.2) above for Λ̃ = Λ+(τ), with ñ = n, k = 1 and φ̃ = t and ψ̃ = ψ. So

the system Π∗(t, ψ, τ)(x − X(t, ψ, τ) = 〈P, x − X(t, ψ, τ)〉 = 0 has a unique solution t = t0(x,ψ, τ)

satisfying the condition X(t0(x,ψ, τ), ψ, τ) = x, and this solution is a smooth function.

Moreover by (2.6) again, the matrix

(4.3) M(t, ψ) =
(
Π(t, ψ), Pψ(t, ψ) − Ṗ

1

mH
tP Xψ

)
= (

1

mH
P,Pψ)

has determinant 1
mH

det(P,Pψ). As we shall see, it turns out that detM gives the invariant (inverse)

density on Λ+.
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Example 4.1: Let us compute det(P,Pψ) at t = 0 for a geodesic flow H(x, p), on the energy shell E = 1

when n = 2 or n = 3. When n = 2, up to a change of x coordinates such that at x = 0, the metric

H(0, p) takes the diagonal form H(x, p) =
p21
a2
1

+
p22
a2
2

(elliptic polarization), and P = (a1 cosψ, a2 sinψ).

Hence det(P,Pψ) = a1a2 at x = 0, and for small |t| we have det(P,Pψ) > 0. For n = 3, H(0, p) =
p21
a2
1

+

p22
a2
2

+
p23
a2
3

, and in spherical coordinates (ψ1, ψ2) where 0 < ψ1 < π, we find det(P,Pψ) = a1a2a3 sinψ1 > 0

for small t and away from the poles (0, 0,±1).

Example 4.2: When H(x, p) = |p|m

ρ(x) , recall from (2.3) that P (ψ, τ) = |P |τω(ψ) at t = 0. Since

det(ω(ψ), ω⊥(ψ)) = 1, again we have det(P,Pψ) 6= 0 for small t.

4.2 Construction of the phase function and half-density, general case.

We first construct by HJ theory a generating function Φ of Λ+ that verifies the initial condition

Φ|t=0 = 〈x, ω(ψ)〉. Our approach consists in looking for a parametric form of the phase, depending

on the initial data through the “front variables” (X(t, ψ, τ), P (t, ψ, τ)) only.

The most natural Ansatz (recall τ +H = E), would be

(4.4) Φ0(x, t, ψ, τ) = mEt+ 〈P (t, ψ, τ), x −X(t, ψ, τ)〉

with initial condition Φ|t=0 = 〈p, x〉, p = P (ψ,ω) arbitrary. The “θ variables” in Hörmander’s

definition are then (ψ, τ).

In the simplest example where n = 1, τ + H(x, p) = τ + p = E, Φ0 = Et + p(x − t) (there are

no variable ψ, and X(t) = t is independent of τ). This is actually a parametrization of exp tvH(z),

z ∈ T ∗M , for t ∈ R (positive and negative values). Its drawback is to depend on τ (that has eventually

to bet set to 0) in a complicated way, when taking variations with respect to parameters.

The second one consists [DoMaNaTu2] in choosing a new coordinate λ = λ(τ), λ(0) = 1, on Λ

completing the ψ variables, such that ∂Λ+ is given by λ = 1. We define

(4.5) Φ(x, t, ψ, λ) = mEt+ λ〈P (t, ψ), x−X(t, ψ)〉

where now (X,P ) are evaluated on Λ+ (and not on Λ+(τ)). The “θ variables” in Hörmander’s

definition are then (ψ, λ). In the Example above, Φ = Et + λp(x − t). The critical value of Φ with

respect to θ, is viewed either as a function on the critical set C̃Φ, with the Lagrangian embedding

(4.6) C̃Φ = {(x, t, θ) : ∂θΦ = 0} → Λ̃+

or on

(4.7) CΦ = {(x, t, θ) : ∂θΦ = ∂tΦ = 0} → Λ+

In both cases, (2.12) holds precisely on the critical set.

Moreover, such a phase function is also most suitable for the situation of Sect.5. Eikonal equation

(2.12) verified at second order on CΦ reads

(4.8) ∂tΦ+H(x, ∂xΦ)− E = O(|x−X(t, ψ), λ − 1|2)
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Variables τ and λ are diffeomorphically mapped onto each other. In case (1.15) this goes as follows :

comparing (4.6) with (4.7) at t = 0, we get P (ψ, τ) = λP (ψ), so by (2.3)

(4.9) λ =
(
1− τ

E

)1/m

A similar correspondence holds in Example 4.1.

Proposition 4.1: Let H(x, p) be positively homogeneous of degree m ≥ 1 with respect to p on T ∗M \0,
and det(P,Pψ) > 0. Then Φ(x, t, ψ, λ) given in (4.5) is a non-degenerate phase function defining Λ+,

and solves HJ Eq. (2.5), with initial condition Φ|t=0 = 〈x, p〉. The positive invariant (inverse) density

on Λ+ we recall from (3.8) is given by

(4.10) F [Φ, dµ+]|CΦ
= mE det(P,Pψ) > 0

The critical set CΦ is then determined by x = X(t, ψ) (which can be inverted as t = t(x,ψ)) and

λ = 1. It coincides with the set κ(U) defined after (4.2).

Proof: We have using (2.6)

(4.11) ∂tΦ = Φ̇ = mE + λ〈Ṗ , x−X(t, ψ)〉 − λ〈P, Ẋ〉 = mE(1 − λ) + λ〈Ṗ (t, ψ), x −X(t, ψ)〉

so ∂tΦ = 0 and ∂xΦ = P (t, ψ) along x = X(t, ψ) when λ = 1. We are left to show that Φ is non

degenerate phase function, with (ψ, λ) as “θ-parameter”s. From (4.5)

(4.12)
∂ψΦ = λ〈∂ψP (t, ψ), x−X(t, ψ)〉
∂λΦ = 〈P (t, ψ), x−X(t, ψ)〉

Let us add t to the “θ-variables”, and consider the variational system ∂tΦ = ∂ψΦ = ∂λΦ = 0, which

determines the critical set CΦ. Last 2 equations ∂ψΦ = 0, ∂λΦ = 0 give an homogeneous linear system

in x−X(t, ψ) with determinant det(P,Pψ).

So at least for small t the phase is critical with respect to (ψ, λ) precisely for λ = 1 and x =

X(t, ψ), in particular it is critical along ∂Λ+ when λ = 1. By the discussion above and [DoNaSh,

Lemma 6], we find that 〈P (t, ψ), x−X(t, ψ, τ)〉 = 0 when λ = 1 has a unique solution t = t1(x,ψ) =

t0(x,ψ, τ = 0) satisfying the condition: if (x;ψ, λ = 1) ∈ CΦ, then X
(
t1(x,ψ), ψ

)
= x. We recall t0 is

defined in the discussion after (4.4). Moreover t1 is the critical point of t 7→ Φ when λ = 1.

Condition det(P,Pψ) > 0 (which holds at t = 0) actually ensures that Φ is a non degenerate

phase function, i.e. the vectors
(
d∂tΦ, d∂ψΦ, d∂λΦ,

)
are linearly independent on the set x = X(t, ψ).

Namely, look at the variational system and compute on CΦ the differentials

(4.13)

dΦ̇ = −mE dλ+ λ〈Ṗ (t, ψ), dx− dX(t, ψ)〉
d(∂ψΦ) = λ〈Pψ(t, ψ), dx− dX(t, ψ)〉
d(∂λΦ) = 〈P, dx− dX(t, ψ)〉

Introduce the Jacobian (3.8)

(4.14) F [Φ, dµ+]|CΦ
=
dt ∧ dψ ∧ dΦ̇ ∧ d(∂λΦ) ∧ d(∂ψΦ)

dx ∧ dt ∧ dψ ∧ dλ
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Here dx is the volume form. Substituting (4.13) into ω = dt ∧ dψ ∧ dΦ̇ ∧ d(∂λΦ) ∧ d(∂ψΦ) we get

ω = −mE dψ ∧ dt ∧ dλ ∧ 〈P, dx− dX(t, ψ)〉 ∧ 〈Pψ, dx− dX(t, ψ)〉+
dψ ∧ dt ∧ 〈Ṗ , dx− dX(t, ψ)〉 ∧ 〈P, dx− dX(t, ψ)〉 ∧ 〈Pψ, dx− dX(t, ψ)〉

Writing dX = Ẋ dt+Xψ dψ, we check that the second term vanishes, so we are left with

ω = −mE dt ∧ dψ ∧ dλ ∧ dxdet(P,Pψ)

which gives (4.10). So if det(P,Pψ) > 0 (which holds at t = 0, since det(P,Pψ) = |P |2 there), Φ is a

non-degenerate phase function, and (4.10) the invariant (inverse) density on Λ+. ♣

4.3 More or less “θ-variables”.

We investigate some configurations of Λ+, and describe the corresponding Lagrangian singulari-

ties. Consider first the critical points of the phase. Let (see Proposition A.1)

(4.16) a = 〈Ṗ ,Xψ〉, c = 〈Pψ,Xψ〉, d = 〈Ṗ , Ẋ〉, α = det(P,Pψ), β = det(P, Ṗ ), γ = det(Ṗ , Pψ)

At the critical point

(4.17) −Hess(t,ψ,λ) Φ =




λ〈Ṗ , Ẋ〉 λ〈Ṗ ,Xψ〉 〈P, Ẋ〉
λ〈Ṗ ,Xψ〉 λ〈Pψ,Xψ〉 0

〈P, Ẋ〉 0 0




thus detHess(t,ψ,λ) Φ = (mE)2〈Pψ,Xψ〉.
When TzΛ+ is not transverse to the vertical plane Vz = {(0, δp)} ⊂ T ∗

zM , we know from Sect.3.2

that we need to express uh in Fourier representation. This will be needed in Sect.4.5 to derive the

commutation formula at some z ∈ Λ+.

Assume α = det(P,Pψ) 6= 0 (which holds near t = 0). Since 〈P,Xψ〉 = 0, 〈Pψ,Xψ〉 = 0 implies

Xψ = 0, so at such point, we need to add new “θ-variables” to Φ(x, t, ψ, λ). If z ∈ Λ+ is such that

Xψ = 0, TzΛ+ is not transverse to the vertical plane: indeed dim(Vz ∩TzΛ+) = 1, for 〈P, Ẋ〉 = 1 and

Ẋ 6= 0.

We proceed as in Sect.3. Consider the embedding CΦ → Λ+ as in (4.7). Let x′, x′′ be a partition

of x, we introduce a partial Legendre transformation as in Sect.3, implement the latter equations for

the critical point by Φ̇ = 0, and compute the Hessian

H(x′′, ξ′) = Hess(x′,t,ψ,λ)

(
Φ(x, t, ψ, λ) − x′ξ′

)

First we try x′ = x2, x
′′ = x1 so that

H(x1, ξ2) =




0 λṖ2 λ∂ψP2 P2

λṖ2 −λ〈Ṗ , Ẋ〉 −λ〈Ṗ ,Xψ〉 −mE
λ∂ψP2 −λ〈Ṗ ,Xψ〉 −λ〈Pψ,Xψ〉 0
P2 −mE 0 0




30



and we find, with notations (4.16)

(4.20) λ−2 detH(x1, ξ2) = P 2
2 (a

2 − cd) + 2mEcP2Ṗ2 −mEaP 2
2 −mEaP2∂ψP2 +mE(∂ψP2)

2

Similarly, choosing x′ = x1, x
′′ = x2, we get the same expression with P2 replaced by P1. Now if

Xψ = 0, then a = c = 0, and since Pψ 6= 0 (we assume here det(P,Pψ) 6= 0, there is a partition of

variables x′, x′′ such that detH(x′, ξ′′) 6= 0. (Actually variables (x′, ξ′′) are implicit in the expression

of H(x′, ξ′′), but fixing (x′, x′′) on the critical set determines the front variables (X(t, ψ), P (t, ψ).)

Remark 4.2: Compute instead H(ξ) = Hessx,t,ψ,λ
(
Φ(x, t, ψ, λ) − xξ

)
at the critical point. We have

(4.21) H(ξ) =




0 0 λṖ1 λ∂ψP1 P1

0 0 λṖ2 λ∂ψP2 P2

λṖ1 λṖ2 −λ〈Ṗ , Ẋ〉 −λ〈Ṗ ,Xψ〉 −mE
λ∂ψP1 λ∂ψP2 −λ〈Ṗ ,Xψ〉 −λ〈Pψ,Xψ〉 0
P1 P2 −mE 0 0




and −λ−3 detH(ξ) = β2c + α2d − 2αβa − 2mEαγ. When a = c = 0, (4.21) reduces at t = 0 (using

det(P,Pψ) = |P |2) to

−λ−3 detH(ξ) = |P |2〈−∂xH,∂pH〉 − 2mE〈−∂xH,P 〉

and in the particular case of Hamiltonian (1.15), λ−3 detH(ξ) = mE2

ρ(0) 〈P,∇ρ(0)〉 vanishes at a special

or residual point. See Remark 3.1.

Remark 4.3: Consider instead the embedding C̃Φ → Λ̃+ as in (4.6), and compute the critical points of

(x,ψ, λ) 7→ Φ(x, t, ψ, λ) − xξ. We add λP (t, ψ) − ξ = 0 to the previous equations ∂ψΦ = 0, ∂λΦ = 0.

and compute the Hessian

H0(t, ξ) = Hess(x,ψ,λ)
(
Φ(x, t, ψ, λ) − xξ

)

at x = X(t, ψ), namely

H0(t, ξ) = λ




0 0 ∂ψP1 P1

0 0 ∂ψP2 P2

∂ψP1 ∂ψP2 −〈Pψ,Xψ〉 0
P1 P2 0 0




so that H0(t, ξ) = λ4 det(P,Pψ) is non-degenerate, but as a function on C̃Φ (extended phase-space)

instead of CΦ.

On the other hand, in order to investigate Lagrangian singularities of Λ+, we need to eliminate

some of the “θ-variables”. For short we will do it only in the case where Λ+ is tranverse to the vertical

fiber of T ∗M .

So let z(t) =
(
X(t, ψ), P (t, ψ)

)
be such that Tz(t)Λ+ is transverse to the vertical plane Vz(t)

(namely Xψ 6= 0), or t = 0 but detH(ξ) 6= 0, see (4.21); we parametrize Λ+ with Φ(x, t, ψ, λ), and

Φθθ 6= 0. When z(t) is a focal point, we discuss according to the case z(t) is a special point or not.
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Proposition 4.3: Let n = 2 for simplicity. Let z ∈ Λ+ (possibly on ∂Λ+) and assume Φ is a non-

degenerate phase function near z (which holds true when z ∈ ∂Λ+ except for exceptional points where

Xψ = 0). We have:

(i) Let z ∈ Λ+ such that 〈−∂xH(z), ∂pH(z)〉 = 〈Ẋ, Ṗ 〉 6= 0. Then near z the rank of dπ|Λ+
is 1 when

c = 0 (i.e. Xψ = 0), and 2 when c 6= 0.

(ii) Let z0 =
(
X(t0, ψ0), P (t0, ψ0)

)
∈ Λ+ be a special point for some (t0, ψ0). Then the rank of

dπ|Λ+
(z) is 1 or 2. When the rank is 1, the tangent space of the caustics at X(t0, ψ0) takes the form

(4.22)
∂x1
∂ψ

∂λ

∂x1
+
∂x2
∂ψ

∂λ

∂x2
= 0

where ∂λ
∂x (x,ψ) 6= 0.

(iii) Let z0 =
(
X(t0, ψ0), P (t0, ψ0)

)
∈ Λ+ be a residual point for some (t0, ψ0), i.e. Ṗ (t0, ψ0) = 0.

Then the eikonal is mE dt = 〈P, dx〉 6= 0 at z0.

Proof: (i) On CΦ we have ∂2tΦ = −〈Ṗ , Ẋ〉 6= 0, so implicit function theorem shows that (for small

t) Φ̇ = 0 is equivalent to t = t(ψ, λ). Since we have eliminated t, the “θ-parameters” are now (ψ, λ),

and we set

Ψ(x,ψ, λ) = Φ(x, t(x,ψ, λ), ψ, λ)

Differentiating the relation ∂tΦ = 0, we get that on CΦ and for λ = 1

∂t

∂ψ
= −〈Pψ, Ẋ〉

〈Ṗ , Ẋ〉
,

∂t

∂λ
= − mE

〈Ṗ , Ẋ〉
and a straightforward computation using (2.6) yields

(4.23) Ψ′′
θθ = Ψ′′

(ψ,λ) =




〈Ṗ ,Xψ〉
2

〈Ṗ ,Ẋ〉
− 〈Pψ,Xψ〉 mE

〈Ṗ ,Xψ〉

〈Ṗ ,Ẋ〉

∗ (mE)2

〈Ṗ ,Ẋ〉




Applying (3.5) to the non-degenerate phase function Φ with N = n = 2, we find that the rank of

dπ|Λ+
(z) is 1 when c = 0 or 2 when c 6= 0.

(ii) We could attempt to solve ∂tΦ(x, t, ψ, λ) = ∂ψΦ(x, t, ψ, λ) = 0 but already for t = 0, the

determinant of the Hessian of Φ with respect to (t, ψ) vanishes on Λ+. We can solve instead (locally)

Φ′
(t,λ)(x, t, ψ, λ) = (∂tΦ, ∂λΦ) = 0. Namely since ∂2Φ

∂t∂λ
= −mE 6= 0, the implicit function theorem

gives (t, λ) =
(
t(x,ψ), λ(x,ψ)

)
.

We want to keep λ(x,ψ) = 1. Differentiating Φ′
(t,λ) = 0 along Λ+ with respect to x and ψ we

find, using (2.6) and Hamilton equations

(4.24)
〈Ṗ , Ẋ〉 ∂t

∂x
+mE

∂λ

∂x
= tṖ , mE

∂t

∂x
= tP

〈Ṗ , Ẋ〉 ∂t
∂ψ

+mE
∂λ

∂ψ
= −〈Ṗ ,Xψ〉 = −a, mE

∂t

∂ψ
= 0

Assume ∂λ
∂x

= 0 at z0. This implies Ṗ = 〈Ṗ ,Ẋ〉
mE

P , i.e. ∂xH + 1
mE

〈−∂xH, Ẋ〉P = 0. Taking

scalar product with P 6= 0 we find 〈∂xH,P 〉 + |P |2

mE
〈−∂xH, Ẋ〉P = 0, and since z is a special point,

〈−∂xH, Ẋ〉P = 0. It follows that ∂xH = 0 which is a contradiction (z is not a residual point).
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Now we need λ = λ(x,ψ) = 1 ; since ∂xλ 6= 0, the implicit functions theorem shows that (possibly

after renumbering the coordinates) that x2 = x2(x1, ψ). By second line (4.24) we have ∂t
∂ψ

= 0, and

−mE ∂λ
∂ψ

= a = 〈Ṗ ,Xψ〉.
• Assume a = 0.

Since we have eliminated t, λ, the “θ-parameter” is simply ψ, and we set

Ψ(x1, ψ) = Φ(x1, x2(x1, ψ), t2(x1, x2(x1, ψ)), ψ, λ(x1, x2(x1, ψ), ψ)

By (3.5) with N = 1, n = 2, it follows that rank dπx = 2 if ∂2ψΨ(x1, ψ)|x1=X1
6= 0, and rankdπx = 1

if ∂2ψΨ(x1, ψ)|x1=X1
= 0 (X1 being evaluated at (t, ψ) = (t0, ψ0). In the latter case, differentiating

λ = λ(x,ψ) = 1 gives ∂λ
∂ψ + ∂λ

∂x
∂x
∂ψ = 0. Since ∂λ

∂ψ = 0 at point z, (4.22) easily follows.

• Assume a 6= 0. From λ(x,ψ) = 1, we get ψ = ψ(x) by implicit function theorem, so we have

eliminated all “θ-variables” and rankdπx = 2.

(iii) We consider a residual point as a limit of special points, for which ∂λ
∂x = 0. Since a = 0, we have

∂λ
∂ψ = ∂λ

∂x = 0 at z0, and λ(x,ψ) = 1+O(|x−X(t0, ψ0), ψ−ψ0|2). Then (4.24) reduces to mE ∂t
∂x = tP

at z0, which can be cast in the form dt = 〈P, dx〉 6= 0. ♣.

For residual points Proposition 4.3 tells nothing however about rank dπx(z0). For instance, if

Ṗ = 0, hence 〈Ṗ , Ẋ〉 = 0 and ∂tΦ = ∂2tΦ = 0, we could have ∂3tΦ 6= 0, and we have a cusp described

by Pearcy functions (see e.g. [DoMaNaTu1,App.2]). Alternatively we could think of Hamiltonian p2

for which rankdπx(z0) = n is maximal, or of Hamiltonian H(x, p) = p1 for which rank dπx(z0) = 1.

It tells nothing either about ordinary points, see however Lemma 4.6 when H is of the form (1.15).

Remark 4.2: As mentionned in Example 1.1(7), we can also consider complex quadratic phase func-

tions. For instance replace (4.5) by

Φ(x, t, ψ, λ) = mEt+ λ〈P (t, ψ), x−X(t, ψ)〉+ i
λµ

2
〈P (t, ψ), x−X(t, ψ)〉2

it has the same critical point as the real phase when λ = 1, with the initial condition Φt=0 =

〈x, ω(ψ)〉+ iµ2 〈x, ω(ψ)〉2.

4.3 Construction of E+fh and the commutation formula.

Here we prove Theorem 1.3. First we look for a solution v(t, x;h) to the Cauchy problem (1.9)

that can be expressed as an oscillatory integral
∫
eiΦ(x,t,ψ,λ)/hb(x, t, ψ, λ) dψ dλ, see (1.16).

Assume for simplicity H(x, hDx;h) has no sub-principal symbol: H1(x, p) = 0. Then it is well

known that the principal term b = b0 of the amplitude restricted to CΦ, since mE det(P,Pψ) is the

(inverse) density, is of the form

(4.25) b0 =
(
mE det(P,Pψ)

)−1/2
a(ψ, λ)

with a independent of t. Since P,Pψ are linearly independent, we look for

b(x, t, ψ, λ) =
(
mE det(P,Pψ)

)−1/2
a(ψ, λ) + 〈FP (t, ψ) +GPψ(t, ψ), x−X(t, ψ)〉+O(|x−X(t, ψ)|2)
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where we can determine functions F = F (t, ψ, λ), G = G(t, ψ, λ) from second derivatives of H by

taking variations (already in (4.14)). Set b̃ = 〈FP +GPψ, x−X(t, ψ)〉, it is readily seen that

(4.45) ∂tb̃+ 〈∂pH,∂x b̃〉 = 0 on CΦ

Let vh solves Cauchy problem (1.5), and uh(x) =
i
h

∫∞

0
v(t, x;h) dt (after sticking in a cut-off θT (t)

as in (1.18)). We start with computing (H − E)uh and assume the general case of H homogeneous

of degree m in the p variables, and det(P,Pψ) 6= 0. For simplicity we present the calculations as if H

were a differential operator, see [Du]. We assume also the sub-principal symbol of H (as a h-PDO)

vanishes.

• Let first x ∈ M be such that x = X(t, ψ) with Xψ 6= 0, so that TzΛ+ is transverse to the vertical

plane. We use representation (1.16). Applying H−E to (1.16), since Φ is just linear in x, we get first

e−iΦ/h(H −E)eiΦ/hb = (H(x, ∂xΦ)− E)b+
h

i
〈∂pH(x, ∂xΦ), ∂xb〉+O(h2)

By (4.8) we have, integrating by parts

(4.27)

(H −E)uh(x) =

∫
eiΦ/hb dψ dλ|t=0 +

∫ ∞

0

dt

∫
eiΦ/h

(
∂tb+ 〈∂pH(x, ∂xΦ), ∂xb〉

)
dψ dλ+

i

h

∫ ∞

0

dt

∫
eiΦ/hO(|x−X(t, ψ), λ − 1|2)b dψ dλ+O(h2)

To the second integral we apply asymptotic stationary phase [Hö,Theorem 7.7.5]; denote c(x, t, ψ, λ) =

O(|x −X(t, ψ), λ − 1|2)b(x, t, ψ, λ), and by Φc the critical value of (t, ψ, λ) 7→ Φ(x, t, ψ, λ) with non

critical degenerate point η(x) = (t = t(x), ψ = ψ(x), λ = 1) (see (4.17)) we have

i

h

∫ ∞

0

dt

∫
eiΦ/heiΦ/hc(x, t, ψ, λ;h) dψ dλ =

eiΦc/h
(
det(Φ′′/2iπh)

)−1/2(
c(x, η(x);h) +

h

i
〈Φ′′(x, η(x))−1D,D〉c(x, η(x)) +O(h2)

where D denotes the gradient with respect to the 3 variables t, ψ, λ (of course we still assumed n = 2).

We have c(x, η(x);h) = 0, but the next term 〈Φ′′(x, η(x))−1D,D〉c(x, η(x)) may not vanish because

of the partial derivative ∂2c
∂λ2 , as shows (4.17). So

i

h

∫ ∞

0

dt

∫
eiΦ/heiΦ/hc(x, t, ψ, λ;h) dψ dλ = O(h3/2)

We consider next the first integral in (4.27). Because of (4.25) and (4.26) which implies

∂tb+ 〈∂pH(x, ∂xΦ), ∂xb〉 = O(|x−X(t, ψ)|)

we apply asymptotic stationary phase as before and obtain

∫ ∞

0

dt

∫
eiΦ/h

(
∂tb+ 〈∂pH(x, ∂xΦ), ∂xb〉

)
dψ dλ = O(h5/2)
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Collecting these estimates in (4.27) yields

(H − E)uh(x) =

∫
eiΦ/hb dψ dλ|t=0 +O(h3/2)

Since we can choose b0 in (4.25) to be equal to the amplitude defining fh, the RHS is just fh mod

O(h3/2).

Remark 4.3: Note the loss of h1/2 with respect to the reminder term O(h2) when solving the homo-

geneous equation (H − E)uh = 0, see the discussion after (3.13).

• Take next x ∈M near X(t, ψ) with Xψ = 0, by the discussion after (4.21), up to a permutation of

x1 and x2, we may consider in the mixed representation H(−hDp1 , x2, ξ1, hDx2
;h). We try as new

phase function

Φ1(x2, p1, t, ψ, λ) = mEt − λX1(t, ψ)p1 + λP2(t, ψ)
(
x2 −X2(t, ψ)

)

so that the eikonal equation reads

∂tΦ1 +H(−∂p1Φ1, x2, p1, ∂x2
Φ1)) = O(|x2 −X2(t, ψ), p1 − P1(t, ψ), λ− 1|2)

Transport equations are derived similarly. Using again (1.16) we present (H(−hDp1, x2, ξ1, hDx2
;h)−

E)Fh
x1→p1uh(p1, x2) as

(H(−hDp1 , x2, ξ1, hDx2
;h)−E)

i

h

∫ ∞

0

dt

∫
eiΦ(x2,p1,t,ψ,λ)/hb(x2, p1, t, ψ, λ) dψ dλ

which we compute as before by asymptotic stationary phase. Theorem 1.3 easily follows. •

4.5 Reduced parametrizations of Λ+ in case of the “conformal metric”, n = 2.

In case of the conformal metric we can make the results more precise (at least for n = 2), due to

fact that Ẋ is parallel to P . First information is related with the density. By Proposition 4.1, Φ is a

non-degenerate phase function parametrizing Λ+ iff det(P,Pψ) > 0, see (4.10). This certainly holds

for small t. We want to allow for larger values of t (the far field). We have no proof that (4.10) is

valid everywhere on Λ+. See however [DoMaNaTu1], Example 6, in case case m = 1, and ρ is radially

symmetric. In general, this property is related with parametrization of Lagrangian submanifolds, see

[Hö,Thm 21.2.16]. In case of the conformal metric, Lemma A.2 readily implies :

Proposition 4.4: Let H(x, p) be as in (1.15), n = 2. Then at least near focal points, representation

(4.5) defines a non degenerate phase function parametrizing Λ+, and the (inverse) density on Λ+ is

mE det(P,Pψ) > 0.

This holds also when Λ is the “cylinder”, see Proposition 5.4.

Next information is related to eliminating extra “θ-variables” in the phase function and deter-

mining rankdπx : Λ+ → M . For simplicity we consider only the position representation of uh, i.e.

the case Xψ 6= 0. As in Proposition 4.3, we proceed to find the critical value of t 7→ Φ(x, t, ψ, λ) when
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z(t) =
(
X(t, ψ), P (t, ψ)

)
is an ordinary point (which is equivalent to 〈Ẋ, Ṗ 〉 6= 0 in case of Hamilto-

nian (1.15). Although this is not essential to our argument, in a simple scenario there would be at

most one special or residual point on each bicharacteristic. Definition 1.5 provides such a scenario.

Recall ∂tΦ(x, t, ψ, λ = 1) = 〈Ṗ (t, ψ), x −X(t, ψ)〉 = 0 This holds on Λ+, i.e. for x = X(t, ψ). Taking

second derivative at critical point gives

(4.30) ∂2tΦ(X(t, ψ), t, ψ, λ = 1) = −m|P (t, ψ)|2m−2

ρ(X(t, ψ))3
〈∇ρ(X(t, ψ)), P (t, ψ)〉

so we have to take into account the set of ψ such that 〈∇ρ(X(t, ψ)), P (t, ψ)〉 = 0, i.e. of the special

or residual points. Consider f(t, ψ) = 〈∇ρ(X(t, ψ)), P (t, ψ)〉, so that f = 0 iff (X(t, ψ)), P (t, ψ) is

special or residual. Using Hamilton equations, we find

(4.31) ∂tf(t, ψ) =
m|P (t, ψ)|m−2

ρ(X(t, ψ))

[
〈∇2ρ(X(t, ψ) · P (t, ψ), P (t, ψ)〉+ |∇ρ(X(t, ψ))|2

mρ(X(t, ψ))
|P (t, ψ)|2

]

Let z(s, ψ) be a special (or residual) point for some s ≥ 0, then whenever ∂tΦ(t, x, θ) = 0 at some

t > s (this occurs when the bicharacteristic t 7→ z(t) projects again on x), z(t) is no longer special (or

residual). This holds under assumption (1.25), namely ∂tf(t, ψ) > 0, and t 7→ ∂2tΦ(X(t, ψ), t, ψ, λ = 1)

is strictly decaying on Λ+.

• Ordinary critical points. They correspond to non degenerate critical points of t 7→ Φ(x, t, ψ, λ = 1).

Lemma 4.6: Assume (1.25), n = 2 (no condition on ∇ρ is required here). Let Iψ = {t : z(t, ψ) /∈
S(Λ+)} (we have already evaluated λ = 1) Then Iψ is an interval, and

(4.33) ∀t ∈ Iψ , x = X(t, ψ) ⇐⇒ t = t1(x,ψ) on CΦ

where t1 is a smooth function. Moreover πx : Λ+ →M at every ordinary critical point has same rank

as the symmetric matrix (4.23) i.e. dπx has rank 1 (〈Pψ,Xψ〉 = 0) or 2 (〈Pψ,Xψ〉 6= 0).

Proof: Note that when t = 0, f(0, ψ) = 〈∇ρ(0), P (ψ)〉. So when f(0, ψ) > 0, 0 is non-degenerate

critical point of t 7→ Φ(x, t, ψ, λ), and the implicit function theorem shows that (4.33) holds. Since

t 7→ f(t, ψ) is increasing, this holds for all t in the maximal interval of definition of the integral

curve starting at (0, P (ψ)). When f(0, ψ) < 0 instead, (4.33) holds on an interval ending at some

s such that f(s, ψ) = 0. Let us compute the rank of πx : Λ+ → M at an ordinary point. Let

U = {(t, ψ) : t ∈ Iψ, z(t) = (X(t, ψ), P (t, ψ)) /∈ S(Λt)}, then the same computation as in Proposition

4.3 shows that U is a canonical chart rank 1 or 2, which gives the Lemma. ♣

• Special and residual critical points. Near the end point s of Iψ we can solve (locally) as in Proposition

4.3, ∂tΦ(x, t, ψ, λ) = ∂λΦ(x, t, ψ, λ) = 0 which gives t = t(x,ψ) and λ = λ(x,ψ). Namely, the

Hessian of Φ with respect to (t, λ) at (s, 1) has determinant −
(
∂2Φ
∂t∂λ

)2
= −(mE)2 < 0 on Λ+. So

if (X(s, ψ), P (s, ψ)
)
is a special point then (s, 1) is a non degenerate point of (t, λ) 7→ Φ(x, t, ψ, λ).

Integrating Hamilton equations also for t < 0 gives the Lagrangian manifold Λ− ∪ Λ+. So there is

no loss of generality in assuming the special point is at s = 0. The following Lemma strengthens

Proposition 4.3 in case Xψ 6= 0.
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Lemma 4.7: Let n = 2 and H be as in (1.15). Assume det(P,Pψ) 6= 0.

(i) Assume z(s) = (X(s, ψ), P (s, ψ)) ∈ Λ+ be a special point (hence ∇ρ(x(s)) 6= 0). If Xψ = 0,

then rank dπx(z(s)) = 1 as in Proposition 4.3 (i). If Xψ 6= 0, then ac 6= 0 so that rank dπx(z) = 2.

Near z(s), Λ+ is given by t = t(x), ψ = ψ(x), and ∂t
∂x

6= 0, ∂ψ
∂x

6= 0. The constraint λ = 1 takes the

form

(4.41)
∂λ

∂ψ
+
∣∣∂ψ
∂x

∣∣−2〈∂λ
∂x
,
∂ψ

∂x
〉 = 0

(ii) Assume z(s) = (X(s, ψ), P (s, ψ)) ∈ Λ+ be a residual point (i.e. ∇ρ(x(s)) = 0). If Xψ 6= 0,

then c 6= 0 and rank dπx(z) = 2.

Proof: As in Proposition 4.3, the relations ∂tΦ = ∂λΦ = 0 being given by (t, λ) =
(
t(x,ψ), λ(x,ψ)

)

we use (4.24). Since Xψ 6= 0, 〈P,Xψ〉 = 0 and det(P,Pψ) > 0 we have c 6= 0.

(i) By the same geometric argument we have Ṗ 6= 0 by (2.2), and since 〈∇ρ, P 〉 = 0, the relation

a = 〈Ṗ ,Xψ〉 = 0 would contradict Xψ 6= 0. So by second line (4.24), −mE∂ψλ = 〈Ṗ ,Xψ〉 6= 0, or

∂ψλ 6= 0. Now we need λ = λ(x,ψ) = 1 ; since ∂ψλ 6= 0, the implicit functions theorem shows that

ψ = ψ(x). Then we have

(4.42) x = X(t, ψ) ⇐⇒ t = t(x), ψ = ψ(x) on ∂tΦ(x, t, ψ, λ = 1) = ∂λΦ(x, t, ψ, λ = 1) = 0

Differentiating λ = λ(x,ψ) gives
∂λ

∂x
+
∂λ

∂ψ

∂ψ

∂x
= 0

and together with the first equation (4.24)

〈Pψ, Ẋ〉t
(∂ψ
∂x

)
= mEṖ − 〈Ṗ , Ẋ〉P

Let us show that ∂ψ
∂x

6= 0. Otherwise, we would have 〈P, Ẋ〉Ṗ = 〈Ṗ , Ẋ〉P , and since we know that

〈∇ρ(X(s, ψ)), P (s, ψ)〉 = 0, this would contradict the fact that Ṗ is parallel to ∇ρ(X(s, ψ). Moreover
∂t
∂ψ

= 0, ∂t
∂x

= 1
mH

tP 6= 0, which readily gives (4.41). To compute the rank of πx at a special point,

we are left to compute second derivative of the critical value, namely −∂2ψΨ = ac 6= 0, so we conclude

as in Proposition 4.3 that rankπ|Λ+
is 2.

(ii) Thinking of a residual point as the limit of special points, (4.24) shows that ∂λ
∂x = ∂λ

∂ψ = 0,

and (4.24) reduces to mE ∂t
∂x = tP, ∂t∂ψ = 0. Note that on CΦ, (4.17) gives detHess(t,ψ,λ)Φ =

(mE)2〈Pψ,Xψ〉 6= 0 if Xψ 6= 0, so by the implicit functions theorem

(t, ψ, λ) =
(
t2(x), ψ2(x), λ2(x)

)

Let us check again that λ2(x) = 1 : Differentiating Φ′
t,ψ,λ(x, t, ψ, λ) = 0 with respect to x, λ gives the

triangular system

〈Pψ, Ẋ〉t
(∂t2
∂x

)
+ 〈Pψ,Xψ〉t

(∂ψ2

∂x

)
= Pψ

〈Ṗ , Ẋ〉t
(∂t2
∂x

)
+ 〈Ṗ ,Xψ〉t

(∂ψ2

∂x

)
+mHt

(∂λ2
∂x

)
= Ṗ

mHt
(∂t2
∂x

)
= P
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Since Ṗ = 0, using a = 0 (see (4.16)) this reduces to

ct
(∂ψ2

∂x

)
= Pψ,

∂λ2
∂x

= 0, mHt
(∂t2
∂x

)
= P

and in particular λ = λ2(x) = 1. There are no “θ”-parameters left and so rankdπx(z(s) = 2. Then

det(P,Pψ) 6= 0 implies det
(
∂ψ2

∂x ,
∂t2
∂x

)
6= 0. ♣

Note that if Xψ = 0 at a focal point of Λ+, then Pψ 6= 0 (otherwise this would violate property

(3) of Proposition A.1).

From Lemma 4.7, the set of focal points which are also special points is S(Λt) ∩ F(Λt) = {ψ :

〈Pψ,Xψ〉 = 0}. In Example 2.4, we find 〈Pψ,Xψ〉 = 1
2 sinh(2f(t)) >0 for all t > 0 and vanishes at

t = 0.

Now to find the canonical charts for the phase functions, we use a connectedness argument.

Assume (1.25), and let s be the supremum of Iψ, we have f(s, ψ) = 0. Since G(ρ)(s, ψ) > 0, we have

f(t, ψ) > 0 for all t > s, so all points z(t) = (X(t, ψ), P (t, ψ)) for t > s are ordinary points. So far we

proved (except for the case Xψ = 0 which can be handled similarly by replacing Φ by its Legendre

transformation):

Proposition 4.3: Let H(x, p) = |p|m

ρ(x)
, n = 2. Then there exists globally a smooth solution Ψ of HJ

equation H(x, ∂xΦ) = E. Let CΦ = {(t, x, ψ), t > 0, ψ ∈ S1 : ∂tΦ = ∂λΦ = ∂ψΦ = 0}. Then the

embedding

ιΦ : CΦ → T ∗R2, (t, x, ψ, λ) 7→ (x, ∂xΦ(x, t, ψ, λ = 1))

such that ιΦ(CΦ) ⊂ Λ+ consists in charts of rank 1 or 2 [the rank is never 0 since p 6= 0 in the energy

shell H = E]. Under the defocussing condition (1.17) these charts can intersect the set of special

points S only along a line.

Remark 4.9: The canonical charts in Λ+ where Φ = Φ(x), i.e. of WKB type are of course of maximal

rank 2, in particular there is a WKB solution near a special point z such that 〈Xψ, Pψ〉 6= 0.
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5. fh is supported microlocally on the “cylinder”

We recall Λ from (1.3). When n = 2 this is the wave-front set of Bessel function fh(x;h) = J0(
|x|
h ).

The new difficulty lies in ∂Λ+, since ϕ and ψ are not independent variables on the energy surfaces

H = E − τ .

5.1 Non degeneracy conditions

Let us check first the Lagrangian intersection.

Definition 5.1: The point z ∈ Λ is called glancing if vH(z) ∈ TzΛ. We denote by G(Λ) the set of

glancing points on Λ.

So (Λ,Λ+) is an intersecting pair whenever G(Λ) = ∅. Hamiltonian flow preserves the set of

glancing points, i.e. exp tvH(G(Λ)) = G(Λt).
Proposition 5.2: Let H be homogeneous of degree m, and Λ be the “cylinder”. With the notation

above, z ∈ ∂Λ+ is a glancing point iff

(5.2) 〈∂pH + ϕ∂xH,ω
⊥(ψ)〉 = 0, 〈−∂xH,ω(ψ)〉 = 0, H(z) = E

(in particular z is a special point). More generally (n = 2 for simplicity) assume z(t) ∈ Λt is a

glancing point, (ϕ,ψ) are local coordinates on Λt near z(t), and (P,Pψ) is a basis of R2 at z(t) =

(X(t, ϕ, ψ), P (t, ϕ, ψ)). Let

R = R(t, ϕ, ψ) = |Xψ|2
(
〈−∂xH,Pψ〉 −mH〈Pϕ, Pψ〉

)
− |Pψ|2

(
〈∂pH,Xψ〉 −mH〈Xϕ,Xψ〉

)

Then H(z(t)) = E, and

(5.2)t
〈P,Pψ〉 6= 0 =⇒ 〈−∂xH −mHPϕ, P

⊥
ψ 〉 = 0 and R = 0

〈P,Pψ〉 = 0 =⇒ 〈−∂xH,P 〉 = mH〈P,Pϕ〉 and R = 0

Proof: We complete ω(ψ) in Sn−1 into a (direct) orthonormal basis ω⊥(ψ) =
(
ω1(ψ), · · · , ωn−1(ψ)

)

of Rn, and denote by ω⊥(ψ)δψ = ω1(ψ)δψ1 + · · ·+ωn−1(ψ)δψn−1 a section of TSn−1, δψj ∈ R. The

tangent space TzΛ has the parametric equations

δX = ω(ψ)δϕ+ ϕω⊥(ψ)δψ, δP = ω⊥(ψ)δψ, (δϕ, δψ) ∈ Rn

so vH ∈ TzΛ iff there exist (δϕ, δψ) such that

∂pH = ω(ψ)δϕ+ ϕω⊥(ψ)δψ, −∂xH = ω⊥(ψ)δψ

Taking scalar products with ω(ψ), ω⊥(ψ), and using Euler identity, we get δϕ = 〈∂pH,P (ψ)〉 = mH,

δψ = 〈−∂xH,ω⊥(ψ)〉. Since (ω(ψ), ω⊥(ψ)) form a basis of Rn, relations (5.2) are necessary and

sufficient for vH ∈ TzΛ+ ∩ TzΛ = Tz∂Λ+.

Let now t > 0, (δX, δP ) ∈ Tz(t)Λ(t) is given by δX = Xϕδϕ+Xψδψ, δP = Pϕδϕ+ Pψδψ, so if

vH ∈ Tz(t)Λ(t), due to Euler identity and (2.11) we still have δϕ = mH and

∂pH = mHXϕ +Xψδψ, −∂xH = mHPϕ + Pψδψ
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Taking scalar product of the first equation by Xψ gives

|Xψ|2δψ =
(
〈∂pH,Xψ〉 −mH〈Xϕ,Xψ〉

)

Taking scalar product of the second equation with Pψ and P gives

δψ = |Pψ|−2
(
〈−∂xH,Pψ〉 −mH〈P,Pϕ〉

)
, 〈−∂xH,P 〉 = mH〈P,Pϕ〉+ 〈P,Pψ〉δψ

Discussing according to the fact P is orthogonal to Pψ or not readily gives (5.2)t. ♣
Since the glancing property is invariant under the Hamiltonian flow, (5.2) and (5.2)t are actually

equivalent.

Example 5.1: When H = p2, all points are glancing. When H = |p|m

ρ(x) , z(0) is a glancing point iff

(5.3) either : ϕ 6= 0 and ∇ρ = 0, or : ϕ = 0 and 〈∇ρ(0), ω(ψ)〉 = 0

Second condition means that if z(0) = (0, ω(ψ)) is a special point. Assuming (1.25) it follows that if

z(0) is a glancing point, z(t) will be glancing but never special at later t > 0.

Example 5.2: Consider H(x, p) = 〈µ, p〉, where µ ∈ R2 (constant coefficients case), then (5.2) will

always occur at some point ψ. Namely, X(t, ψ) = µt + ϕω(ψ), P (t, ψ) = ω(ψ). The system x =

X(t, ϕ, ψ) has a unique solution (t1(x,ψ), ϕ1(x,ψ), ψ) provided 〈µ, ω⊥〉 6= 0, i.e. vH is transverse to

Λ, and ψ = ψ0 belongs to {τ = 0}, i.e. 〈µ, ω(ψ0)〉 = E. It is given by

t =
〈x, ω⊥(ψ0)〉
〈µ, ω⊥(ψ0)〉

, ϕ =
1

〈µ, ω⊥(ψ0)〉
det

(
〈x, ω(ψ0)〉 〈x, ω⊥(ψ0)〉
〈µ, ω(ψ0)〉 〈µ, ω⊥(ψ0)〉

)

In particular ϕ1(x,ψ = ψ0) = 0 if the determinant of Gram matrix vanishes, i.e. when x is parallel

to µ.

Example 5.3: Assume again M = R2. For a, b ∈ R, let ρ(x) = 1 + ax21 + bx22. Consider Hamiltonian

on T ∗R2 of the form

H(x, p) =
〈µ, p〉
ρ(x)

with µ = (1, 0). A computation shows that, with x1 = ϕ cosψ, x2 = ϕ sinψ

〈−∂xH,ω(ψ)〉 =
2ϕ cosψ

ρ2(x)
(a cos2 ψ + b sin2 ψ)

− ρ2(x)〈−∂xH,ω(ψ)〉 =
(
ρ(x) + 2ϕ2 cos2 ψ(a− b)

)
sinψ

so choosing a > b > 0 and E > 1, we see that G(Λ) = ∅. Otherwise, there may be a unique glancing

point near x = 0. Such a non-transversality is called a kiss in [ElGr].

Example 5.4: There are in general glancing points when Λ = T ∗
{xn=0}R

n andH is totally characteristic

at xn = 0, see [Mel].

Let us first describe ∂Λ+(τ) in case (1.15). The intersection of Λ with the energy surface H =

E − τ , is given by the implicit equation H(ϕω(ψ), ω(ψ)) = E − τ , which usually defines a smooth
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1-D isotropic submanifold. To avoid boundaries, we assume ∂Λ+(τ) is a closed isotropic manifold of

dimension n− 1, i.e. ∂Λ+(τ) is defined by a map

(5.4) R×Tn−1 → ∂Λ+(τ) : (τ,Θ) 7→ (ϕ,ψ) =
(
ϕ(τ,Θ), ψ(τ,Θ)

)

verifying

(5.5) ρ
(
ϕ(τ,Θ)ω ◦ ψ(τ,Θ)

)
=

1

E − τ

It is clear in this case that Λ+ can be parametrized by (t, ψ). Recall from Proposition A.1 that

〈Ẋ, Pψ〉 = 〈Ṗ ,Xψ〉. So taking the limit t→ 0+ readily implies

(5.6) ϕ〈∇ρ(ϕω(ψ), ω⊥(ψ)〉 = 0

on ∂Λ+. By Proposition 5.2, if z ∈ ∂Λ+ is ordinary, and ϕ 6= 0, then z is not glancing, and by (5.6)

〈∇ρ(ϕω(ψ), ω(ψ)〉 = ±|∇ρ| 6= 0. Taking derivative of (5.5) with respect to τ,Θ we get

∂τϕ(τ,Θ) = ±|∇ρ|−1(E − τ)−2, ∂Θϕ(τ,Θ) = 0

So ϕ = ϕ(τ), which can be inverted by implicit functions theorem, so τ = τ(ϕ) and it follows that we

can take ψ(τ,Θ) = Θ, i.e. Θ = ψ. So in case (1.15) Λ+ can be parametrized by (t, ψ), and ϕ = ϕ(τ).

In the general case, we replace (5.5) by

(5.8) H
(
ϕ(τ,Θ)ω ◦ ψ(τ,Θ), ω ◦ ψ(τ,Θ)

)
= E − τ

Assume Λ+ can be again parametrized by (t, ψ), then we still have 〈−∂xH,Xψ〉 = 〈∂pH,Pψ〉. If

z ∈ ∂Λ+ is an ordinary point, then differentiating (5.8) with respect to τ,Θ gives

(5.9) ∂τϕ =
1 + ϕ(∂τψ − 1)〈∂xH,ω⊥(ψ)〉

〈−∂xH,ω(ψ)〉
, ∂Θϕ =

ϕ(∂Θψ − 1)〈∂xH,ω⊥(ψ)〉
〈−∂xH,ω(ψ)〉

which simplifies again if Θ = ψ, so that ∂τψ = 0.

Next we discuss the properties of Hamiltonian flow issued from Λ using eikonal coordinates

as in Sect.4.1. Consider Hamiltonian τ + H(x, p) on T ∗(Rn × R+) and the Lagrangian manifold

Λ̃+ =
⋃
τ Λ+(τ) in the extended phase-space, i.e.

(5.10)
Λ̃+ = {(x, p; t, τ) : τ +H(x, p) = E, z(t) =

(
X(t, ϕ, ψ, τ), P (t, ϕ, ψ, τ)

)
,

z(0) ∈ ∂Λ+(τ), t ≥ 0} ⊂ T ∗(M ×R+)

Assume that

ι̃ : Λ̃+ → T ∗(M ×R+)

is a Lagrangian embedding (this holds true if we take t, τ small enough). Let X̃ =
(

t
X(t,ϕ,ψ,τ)

)
, and

P̃ =
(

τ
P (t,ϕ,ψ,τ)

)
in the extended phase-space. The action on Λ̃+ is of the form

(5.11) 〈P̃ , dX̃〉 = 〈P (t, ϕ, ψ, τ), dX(t, ϕ, ψ, τ)〉 + τ dt
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Here ϕ is still considered as a variable.

With the notations of (4.1)-(4.2), let ñ = n + 1, k = 2, ψ̃ = ψ, φ̃ = (t, ϕ). By the preceding

discussion, we may assume τ = τ(ϕ,ψ), which simplifies further to τ = τ(ϕ) in case of Hamiltonian

(1.15). Recall S(t, ϕ, ψ, τ) = ϕ +m(E − τ)t + S0 from (2.10). In the extended phase-space, we set

S̃(t, ϕ, ψ, τ) = S(t, ϕ, ψ, τ)+tτ , one has also to differentiate with respect to τ , so that dS+τ dt+t dτ =

〈P, dX〉+ τ dt, or

dϕ+m(E − τ) dt+ (1−m)t dτ = 〈P, Ẋ〉 dt+Xϕ dϕ+Xψ dψ +Xτ dτ

using dτ = τϕ dϕ+ τψ dψ we get by identification (still with the notation yx = ∂y
∂x

)

(5.12)

〈P,Xϕ〉+ τϕ〈P,Xτ〉 = 1 + (1−m)tτϕ

〈P,Xψ〉+ τψ〈P,Xτ 〉 = (1−m)tτψ

〈P, Ẋ〉 = mH

We look for a “left inverse” of ( ˙̃
X, X̃ϕ

)
=

(
1 0
Ẋ Xϕ +Xττϕ

)

We try Π̃1 =

(
1 −mH
0 P

)
, which gives, using (5.12)

Π̃∗
1

(
1 0
Ẋ Xϕ +Xτ τϕ

)
=

(
1 0
0 1 + (1−m)tτϕ

)

so we choose

(5.13) Π̃ = Π̃1

(
1 0
0 1

1−(m−1)tτϕ

)
=

(
1 −αmH
0 αP

)
, α = α(t, ϕ, ψ) =

(
1 + (1−m)τϕ

)−1

which is well defined when m = 1 or whenever 1 − (m − 1)tτϕ > 0. By [DoNaSh,Lemma 6] (which

doesn’t assume k̃ to be the rank of Λ̃+), we know in particular that the equation

(5.14) Π̃∗

(
0

x−X(t, ϕ, ψ, τ)

)
= 0 ⇐⇒ 〈P (t, ϕ, ψ, τ), x−X(t, ϕ, ψ, τ)〉 = 0

has a unique solution t = t1(x,ψ, τ), ϕ = ϕ1(x,ψ, τ). To meet the initial condition, we have seen that

τ = τ(ϕ,ψ), which can be inverted as ϕ = ϕ(τ, ψ). So we interprete ϕ as a parameter we have to

adjust so to stay on the energy surface, say τ = 0, in the same way (Proposition 4.3(ii)) that λ was a

function of (x,ψ), so that λ(x,ψ) = 1. So we can omit τ from the notations, its role being played by

ϕ. Thus as in [DoNaSh,Lemma 6] we can prove the following result, at least for small t > 0.

Proposition 5.3: There is a open set U ⊂ Rn+1, (t, ϕ, ψ) ∈ U , such that

(5.15) κ : U 7→ Rn+1
t,x ×Rn−1, (t, ϕ, ψ) 7→

(
X̃
(
t, ϕ, ψ

)
, ψ
)

is an embedding. Then there is a neighbhd V of C = κ(U), such that

(5.16) 〈P (t, ϕ, ψ), x−X(t, ϕ, ψ)〉 = 0, (t, x, ψ) ∈ V
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has a unique solution t = t1(x,ψ), ϕ = ϕ1(x,ψ) satisfying the condition

(5.17) (t, x, ψ) ∈ C =⇒ x = X(t1(x,ψ), ϕ1(x,ψ), ψ)

Consider now M(t, ϕ, ψ, τ) =
(
Π̃; P̃

ψ̃
− P̃

φ̃
Π̃∗X̃

ψ̃

)
as in Sect.4.1. In [DoNaSh, Lemma 9], M

is constructed in a canonical chart of rank k̃ for the Lagrangian embedding (without boundary)

ι : Λ → T ∗M , so that M becomes an invertible matrix. Here we consider instead the expression of

M as an Ansatz, and check that detM defines the (inverse) density on Λ+. With α as in (5.13) we

have

M =

(
1 −mHα τψ − α(m− 1)τϕτψt
0 αP Pψ + τψPτ + α(m− 1)τψt(Pϕ + τϕPτ )

)

so that

(5.19) detM = α(t, ϕ, ψ) det
(
P,Pψ + ατψ(Pτ + (m− 1)tPϕ)

)

Note that when m = 1 (which implies that τ +H(x, p) is homogeneous of degree 1 as an Hamiltonian

on T ∗(M ×R)), detM = det(P, dψP ), where

(5.20) dψP = Pψ + τψPτ

On the other hand when τψ = 0, detM = α(t, ϕ, ψ) det(P,Pψ) is non zero for small t. By the

discussion above, this holds for Hamiltonian (1.15), so for m = 1 we recover the same (inverse)

density on Λ+ as in Sect.4. Moreover detM = det(P,Pψ) > 0 with the condition of Proposition 4.4

that carries to this case.

5.2 Construction of the phase function in the extended phase-space

From now on we consider a general Hamiltonian H(x, p) positively homogeneous of degreem = 1,

so that detM = det(P, dψP ) can be interpreted as the (inverse) density on Λ+ when det(P, dψP ) 6= 0.

Consider HJ equation for the phase function parametrizing Λ+ as in (2.12)

(5.25) ∂tΦ+H(x, ∂xΦ) = E, Φ|t=0 = 〈x, ω(ψ)〉

We find as before an integral manifold ΛΦ,t = {p = ∂xΦ(t, x)} ⊂ T ∗Rn. As before we let Φ depend

on additional ”θ-variables”. As in (4.5), we could make the choice

Φ0(x, t, ψ, ϕ, τ) = m(E − τ)t+ ϕ+ 〈P (t, ϕ, ψ, τ), x −X(t, ϕ, ψ, τ)〉

as in [DoNaSh, formula (2.40)], which allows for some uniformity in τ . But as in Sect.4, we add λ to

the “θ”-variables, and put instead

(5.26) Φ(x, t, ψ, ϕ, λ, τ) = mEt+ ϕ+ λ〈P (t, ϕ, ψ, τ), x−X(t, ϕ, ψ, τ)〉

where the integral curve (X,P ) will be eventually computed on τ = 0. Remember here τ = τ(ϕ,ψ).

We check that for λ = 1

Φ|t=0 =

∫
P dX + 〈ω(ψ), x〉 − ϕ = ϕ+ 〈ω(ψ), x〉 − ϕ = 〈ω(ψ), x〉
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so Φ|t=0 = 〈ω(ψ), x〉 satisfies the initial condition. The dependence on λ in the phase thus becomes

linear, but then we need to restrict to τ = 0. Variables (x, t, ϕ, ψ, λ) will be used in various combi-

nations, reflecting the role of the boundary ∂Λ+, or more generally Λ+ ∩ Λt. In the sequel we keep

m > 1 as a free parameter, but this really makes sense when m = 1, in order to interprete det(P, dψP )

as an (inverse) density on Λ+.

Taking partial derivatives in (5.26) with respect to variables t, ψ, λ, with ∂t
∫
〈P, dX〉 = mE,

∂ϕ
∫
〈P, dX〉 = 1, ∂t

∫
〈P, dX〉 = 0, we find

(5.27)

∂tΦ = (1− λ)mE + λ〈Ṗ , x−X〉
∂ψΦ = λ〈Pψ, x−X〉
∂λΦ = 〈P, x−X〉

To this set of equations we could add

∂ϕΦ = 1− λ+ λ〈Pϕ, x−X〉

but actually we will not use this equation.

The critical point x = X(t, ϕ, ψ) is uniquely determined (for small t) : namely the determinant

of the 2 × 2 system for the last 2 Eq. is given by det(P,Pψ), and this is non zero at t = 0. So when

λ = 1 and x = X(t, ϕ, ψ) belongs to the critical set CΦ. Taking differential on CΦ gives

(5.28)

d∂tΦ = −Edλ+ 〈Ṗ , dx− dX〉
d∂ψΦ = 〈Pψ, dx− dX〉
d∂λΦ = 〈P, dx− dX〉

which, again, we could implement by

d∂ϕΦ = −dλ+ 〈Pϕ, dx− dX〉

It is natural to expect the (inverse) density F [Φ, dµ+]|CΦ
as in (4.10) (up to a constant factor) to be

det(P, dψP ) computed above. Namely we have:

Proposition 5.4: Let H(x, p) be positively homogeneous of degree 1 with respect to p on T ∗M \ 0.

Then Φ(x, t, ϕ, ψ, λ, τ) given in (5.26) solves HJ Eq. (2.12). We have

(5.29) F [Φ, dµ+]|CΦ
=
dt ∧ dψ ∧ dϕ ∧ dΦ̇ ∧ d(∂λΦ) ∧ d(∂ψΦ)

dx ∧ dt ∧ dψ ∧ dϕ ∧ dλ
= E det(P, dψP )

Then the critical set CΦ is determined as in Proposition 5.2 by x = X(t, ϕ, ψ) (which can be inverted

as t = t1(x,ψ), ϕ = ϕ1(x,ψ)) and λ = 1. It coincides with the set κ(U) defined in Proposition 5.3.

When det(P, dψP ) 6= 0, this is (inverse) density on Λ+, and Φ is a non-degenerate phase function

defining Λ+.

Proof: We assume n = 2 for simplicity and start to compute F [Φ, dµ+]|CΦ
. We expand the 2n+2-form

ω = dt ∧ dψ ∧ dϕ ∧ dΦ̇ ∧ d(∂λΦ) ∧ d(∂ψΦ) = ω1 + ω2
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where
ω1 = −mEdt ∧ dψ ∧ dϕ ∧ dλ ∧ 〈dψP, dx− dX〉 ∧ 〈P, dx− dX〉
ω2 = dt ∧ dψ ∧ dϕ ∧ 〈Ṗ , dx− dX〉 ∧ 〈dψP, dx− dX〉 ∧ 〈P, dx− dX〉

Using (5.28) a short calculation gives ω2 = 0, while only the term −Edt∧ dψ∧ dϕ∧ dλ∧〈dψP, dx〉 ∧
〈P, dx〉 contributes in ω1, so ω1 = −mE det(dψP,P )dt ∧ dψ ∧ dϕ ∧ dλ ∧ dx. So we get (5.29), and

the Proposition follows as in Proposition 4.1. See also [DoNaSh, Lemma 10]. ♣

Assuming ϕ = ϕ(τ) as for Hamiltonian (1.15) and fixing τ = 0, there is no longer dependence

on ϕ. Thus we can proceed as in Sect.4, define ordinary and special points precisely as in Definition

2.1, and extend Proposition 4.3 to this case. The only requirement is that the density computed in

Proposition 5.3 is non vanishing. In the same way, Lemmas 4.6 and 4.7 for Hamiltonian (1.15) extend

to this case.

It may be more convenient to determine simulteneously the critical point (t, ψ) instead of (t, λ).

Namely consider the system
(
∂tΦ
∂ψΦ

)
= 0, i.e. Φ′

(t,ψ) = 0. We have

(5.31) Φ′′
t,ψ =

(
∂2Φ
∂t2

∂2Φ
∂t∂ψ

∂2Φ
∂ψ∂t

∂2Φ
∂ψ2

)
=

( 〈Ṗ , Ẋ〉 〈Pψ, Ẋ〉
〈Pψ, Ẋ〉 〈Pψ,Xψ〉

)

where 〈Pψ, Ẋ〉 = 〈Xψ, Ṗ 〉. Let

(5.32) D(z(t)) = detΦ′′
t,ψ

(for short we omit other variables in the notation z(t)) and

Ω(t) = {ψ : z(t) =
(
X(t, ϕ, ψ), P (t, ϕ, ψ)

)
, D(z(t)) 6= 0}

For t = 0, we have detD(z(0)) = ϕ〈−∂xH,∂pH〉 − 〈∂pH,ω(ψ)⊥〉2, so for Hamiltonian (1.15) this is

non vanishing when z(0) is an ordinary point where ϕ 6= 0, and D(z(0)) = 0 if z(0) is glancing. So

when D(z(t)) 6= 0, implicit function theorem shows that Φ′
(t,ψ) = 0 is equivalent to t = t0(x,ϕ), ψ =

ψ0(x,ϕ). We conjecture that D(z(t)) = 0 iff z(0) is a glancing point.

In other words, for the vertical plane (see Proposition 4.3(ii)) we express the two variables (t, λ)

as a function of the 2n − 1 variables (x,ψ), while for the cylinder we express the n variables (t, ψ)

as a function of the n + 1 variables (x,ϕ) (when n = 2 there is the same number of variables in the

source and target spaces).

Remark 5.1: Assume det(Ẋ,Xψ) 6= 0 (i.e. z(t) is not a focal point), then Φ′′
t,ψ is just Gram matrix

of (Ṗ , Pψ) in the basis Ẋ,Xψ, and det(Ṗ , Pψ) = 0 iff D(z(t)) = 0. We can interchange of course the

role of the pairs of vectors.

Again it is instructive to look at the model Hamiltonian H = 〈p, µ〉, where X(t, ψ) = µt+ϕω(ψ),

P (t, ψ) = ω(ψ), and Φ(t, ϕ, ψ, λ) = Et+ (1− λ)ϕ+ λ〈ω(ψ), x− µt〉 is independent of ϕ when λ = 1.

Since 〈µ, ω(ψ)〉 = E, we have Φ̇ = E − λ〈µ, ω(ψ)〉 = (1 − λ)E, and ∂ψΦ = λ〈ω⊥(ψ), x − µt〉. So

on the critical set x = X(t, ϕ, ψ), λ = 1, we have Φ̇ = ∂ψΦ = 0; assuming Lagrangian intersection,
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the Hessian of Φ with respect to (t, ψ) has determinant D(z(t)) = −
(
∂2Φ
∂t∂ψ

)2
= −〈µ, ω⊥(ψ)〉2. So

if 〈µ, ω⊥(ψ)〉 6= 0, ψ = ψ0 such that 〈µ,ψ0〉 = E, i.e. z(t) is non glancing, then D(z(t)) 6= 0 is a

constant. We notice also that the time component of the critical point is precisely t1(x,ψ) computed

in Proposition 5.2.

5.3 Reduced parametrizations of Λ+ in case of the “conformal metric”.

As in Sect.4 we could retrieve global informations in case of Hamiltonian (1.15) when m = 1, due

to the fact that the (inverse) density det(P,Pψ) on Λ+ is globally positive. But we content ourselves

to find the critical point and the critical value of (t, ψ) 7→ Φ(x, t, ϕ, ψ, λ = 1), whenever D(z(t)) 6= 0

(i.e. away from special points and ϕ = 0). This will provide the microlocal structure of (1.4) near

those points of ∂Λ+.

Take polar coordinates on M of the form (r, θ) such that (r, θ) = (ϕ,ψ) parametrize a point on

Λ near ∂Λ+. We make the identification x = (r, θ).

• Ordinary points. We show that near an ordinary point z(0) ∈ ∂Λ+, rank dπx(z(0)) = 2. Namely we

have:

Proposition 5.5: Let Φ′
t,ψ(x, t, ϕ, ψ, λ = 1) = (∂tΦ, ∂ψΦ), and assume D(z(0)) 6= 0 as in (5.32)

i.e. z(0) is an ordinary point with ϕ 6= 0. Then for x sufficiently close to ϕω(ψ), the system

Φ′
t,ψ(x, t, ψ, λ = 1) = 0 is equivalent to t = t(x), ψ = ψ(x), and ϕ = ϕ(x) when x is sufficiently close

to ϕω(ψ), (ϕ,ψ) ∈ Ω(z(0)). The critical value of Φ takes the form

(5.34) Ψ(r, θ;ϕ,ψ) = r cos(θ − ψ(x)) +O(|r − ϕ(x), θ − ψ(x)|) = r +O(|r − ϕ(x), θ − ψ(x)|)

In particular rank dπx(z(0)) = 2.

Proof: Since D(z(0)) 6= 0, implicit function theorem shows that Φ′
t,ψ = 0 (we omitted λ = 1) has a

unique solution t = t0(x,ϕ), ψ = ψ0(x,ϕ), i.e. t = t0(r, θ, ϕ), ψ = ψ0(r, θ, ϕ) Differentiating Φ′
t,ψ = 0

along Λ+ with respect to r, θ and ϕ we find

(5.35)

〈Ṗ , Ẋ〉∂t0
∂r

+ 〈Ṗ ,Xψ〉
∂ψ0

∂r
= 〈Ṗ , ω(θ)〉

〈Pψ, Ẋ〉∂t0
∂r

+ 〈Pψ,Xψ〉
∂ψ0

∂r
= 〈Pψ, ω(θ)〉

〈Ṗ , Ẋ〉1
r

∂t0
∂θ

+ 〈Ṗ ,Xψ〉
1

r

∂ψ0

∂r
= 〈Ṗ , ω⊥(θ)〉

〈Pψ, Ẋ〉1
r

∂t0
∂r

+ 〈Pψ,Xψ〉
1

r

∂ψ0

∂r
= 〈Pψ, ω⊥(θ)〉

〈Ṗ , Ẋ〉∂t0
∂ϕ

+ 〈Ṗ ,Xψ〉
∂ψ0

∂ϕ
= −〈Ṗ ,Xϕ〉

〈Pψ, Ẋ〉∂t0
∂ϕ

+ 〈Pψ,Xψ〉
∂ψ0

∂ϕ
= −〈Pψ,Xϕ〉

Using the relation 〈Ṗ ,Xψ〉 = 〈Pψ, Ẋ〉, the 3 sub-systems have determinant

D(z(t)) = det

( 〈Ṗ , Ẋ〉 〈Pψ, Ẋ〉
〈Pψ, Ẋ〉 〈Pψ,Xψ〉

)
6= 0
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So for (ϕ,ψ) ∈ Ω(z(s)), (5.35) has the unique solution with the condition

(5.36) t0(ϕ,ψ, ϕ) = 0, ψ0(ϕ,ψ, ϕ) = ψ, (ϕ,ψ) ∈ Ω(0)

On the other hand we know from Proposition 5.2 that on CΦ, i.e. when x = X(t, ϕ, ψ), we have

ϕ = ϕ1(x,ψ) and t = t1(x,ψ). This gives :

g(x,ψ) = ψ − ψ0

(
x,ϕ1(x,ψ)

)
= 0

Compute ∂ψg(x,ψ) = 1− ∂ψ0

∂ϕ
∂ϕ1

∂ψ at x = ϕω(ψ). Combining Proposition 5.3 and [DoNaSh,Lemma 7]

(which still doesn’t assume k̃ = 2 to be the rank of Λ̃+), we get

∂ψ

(
t1
ϕ1

)
(x,ψ) = −

(
1 0

−H tP

)(
0

Xψ

)
+O

(∣∣x−X
(
t1(x,ψ), ϕ1(x,ψ), ψ

)∣∣)

Since 〈P,Xψ〉 = 0 , we get in particular

∂ϕ1

∂ψ
(x,ψ) = O

(∣∣x−X
(
t1(x,ψ), ϕ1(x,ψ), ψ

)∣∣) = o(1)

Thus ∂ψg(x,ψ) 6= 0 along CΦ and implicit function theorem gives ψ = ψ1(x). Sustituting into

t = t1(x,ψ) = t0(x,ϕ) we get also t = t1(x,ψ1(x)) = t0(x,ϕ1(x,ψ1(x)). Substituting into (5.26)

(where we have assumed m = 1) gives the critical value (for λ = 1) where all “θ-variables” have been

eliminated

(5.37) Ψ(r, θ) = Et1(t, θ) + ϕ1(r, θ) + 〈P (t1, ϕ1, ψ1), rω(θ)−X(t1, ϕ1, ψ1)〉

which we expand around (r, θ) = (ϕ,ψ) using (5.36). With

t1(t, θ) = o(1), ϕ1(t, θ) = ϕ+ o(1), P (t1, ϕ1, ψ1) = ω(ψ) + o(1), X(t1, ϕ1, ψ1) = ϕω(ψ) + o(1)

substituting into (5.37) we find Ψ(r, θ) = r cos(θ − ψ) + o(1), where

o(1) = O
(∣∣x−X

(
t1(x,ψ), ϕ1(x,ψ), ψ

)∣∣) = O(|r − ϕ, θ − ψ|)

This proves (5.34) (no “θ-variables”). ♣
• Special points. We know that a special point at t = 0 is also a critical point of ρ. We assume ϕ 6= 0,

so it is not glancing (or residual).

Proposition 5.6: Let Φ′
t,ψ,λ(x, t, ϕ, ψ, λ) = (∂tΦ, ∂ψΦ, ∂λΦ), and assume z(0) is an special point i.e.

∇ρ(ϕω(ψ) = 0, but ϕ 6= 0. Then for x sufficiently close to ϕω(ψ), the system Φ′
t,ψ,λ(x, t, ψ, λ) = 0 is

equivalent to t = t2(x,ϕ), ψ = ψ2(x,ϕ), The critical value of Φ takes the form

(5.39) Ψ(x, t, ϕ, ψ, λ = 1) = mHt2(x,ϕ) + ϕ+ 〈P (t, ϕ, ψ), x−X(t, ϕ, ψ)〉|t=t2(x,ϕ),ψ=ψ2(x,ϕ)

In particular rank dπx(z(0)) = 1.
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Proof: We have as in (4.17)

det
∂2Φ

∂(t, ψ, λ)
|t=0 = −(mH)2〈Pψ,Xψ〉|t=0 = −(mH)2ϕ

this is non zero for non zero ϕ, so by implicit functions theorem (t, ψ, λ) =
(
t2(x,ϕ), ψ2(x,ϕ), λ2(x,ϕ)

)
.

Differentiating Φ′
t,ψ,λ(x, t, ϕ, ψ, λ) = 0 with respect to x,ϕ gives the triangular systems

(5.40)

〈Pψ, Ẋ〉t
(∂t2
∂x

)
+ 〈Pψ,Xψ〉t

(∂ψ2

∂x

)
= Pψ

〈Ṗ , Ẋ〉t
(∂t2
∂x

)
+ 〈Ṗ ,Xψ〉t

(∂ψ2

∂x

)
+mHt

(∂λ2
∂x

)
= Ṗ

mHt
(∂t2
∂x

)
= P

and

(5.41)

〈Ṗ , Ẋ〉∂t2
∂ϕ

+ 〈Ṗ ,Xψ〉
∂ψ2

∂ϕ
+mH

∂λ2
∂ϕ

= −〈Ṗ ,Xϕ〉

〈Pψ, Ẋ〉∂t2
∂ϕ

+ 〈Pψ,Xψ〉
∂ψ2

∂ϕ
= −〈Pψ,Xϕ〉

mH
∂t2
∂ϕ

= −1

We first solve (5.41), using a = b, this gives ∂ψ2

∂ϕ = − 〈Pψ ,Xϕ〉
c , and ∂λ2

∂ϕ = 0, as expected since λ = 1 and

∂Λ+(τ) is now parametrized by ϕ. Then (5.40), still evaluated at t = 0, gives ∂t2
∂x = P

mH , ∂ψ2

∂x =
Pψ
c

and again ∂λ2

∂x = 0. Now we put as before Ψ(x,ϕ) = Φ(x, t, ϕ, ψ, λ = 1)|t=t2(x,ϕ),ψ=ψ2(x,ϕ), with Φ

given in (5.39). Taking derivative with respect to ϕ gives (we evaluate at t = 0)

(5.43) ∂ϕΨ(x,ϕ) =
∂ψ2

∂ϕ
〈ω⊥(ψ), x−X(t2(x,ϕ), ϕ, ψ2(x,ϕ)〉

and differentiating again (5.43) with respect to ϕ

−∂2ϕΨ(x,ϕ) =
〈Pψ,Xϕ〉2

c
= 0

So (3.5) ensures that rankdψx(z(0)) = 1. ♣
Note that the 3:rd Eqn’s in (5.40) and (5.41) yield the condition that P (t2(x,ϕ), ϕ, ψ2(x,ϕ)) be

independent of ϕ, and t2, ψ2 satisfy the integral equation

mHt2(x,ϕ) + ϕ =

∫ x

〈P, dx〉

P being evaluated along t = t2(x,ϕ), ψ = ψ2(x,ϕ), which gives the eikonal ; cf. also Proposition 4.3

(iii).

Of course, these methods elaborated for computing the critical values of Φ do not extend to a

glancing point z(t) (ϕ = 0), where all second derivatives of Φ vanish. We already notice that, since
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Pψ 6= 0 at t = 0, the first Eq. (5.40) is singular in the limit ϕ→ 0, so there is no hope to recover the

variational system for (5.40) and (5.41), differentiating Φ′
t,ψ,λ) = 0 once again along Λ+ with respect

to x and ϕ.

5.4 Construction of Maslov canonical operator.

It goes the same way as in Sect. 4., using Propositions 5.5 and 5.6 instead of Proposition 4.3,

and Lemmas 4.6 & 4.7 in the discussion according to ordinary or special points. For simplicity we

work with the “conformal metric” (1.15) where we recall m = 1. To avoid glancing points, we will

assume that ϕ 6= 0 on WFh fh, i.e. WFh fh ∩ T ∗
0M = ∅.

We look for uh of the form

uh(x) =

∫ ∞

0

∫
eiΦ(x,t,ϕ,ψ,λ,τ)/ha(x, t, ϕ, ψ, λ, τ) dµ(ψ,ϕ, λ) dt

where Φ as in (5.26), and dµ(ψ,ϕ, λ) are defined in some charts: in a neighbhd of an ordinary

point z(t), we take dµ(ψ, λ) = µ1(ψ, λ) dψ dλ, and consider Φ(x, t, ϕ, ψ, λ, τ) as Φ(x, t, ψ, λ) with

fixed ϕ, as in Proposition 5.5. In a neighbhd of a special or residual point z(t) instead, we take

dµ(ψ,ϕ) = µ2(ψ,ϕ) dψ dϕ, and think of Φ(x, t, ϕ, ψ, λ, τ) as Φ(x, t, ϕ, ψ) with λ = 1, as in Proposition

5.6. In both cases, we omit τ from the notations, since it is related to λ and ϕ as before. These

phases an densities can be chosen coherently, and define a “new” Maslov bundle, subordinated to the

additional partition between ordinary/ special or residual points.

In an ordinary chart, we proceed as in Sect.4.

5.5 Radially symmetric “conformal metric”

We choose m = 1 for simplicity, and ρ(x) radially symmetric, i.e. ρ = ρ(|x|) with ρ a smooth

function on R+.

We have ρ(|x|) = ρ(ϕ) (choosing the branch ϕ > 0), ϕ = ϕ0 > 0 on L = Λ ∩ {H = E}, and
p dx = dϕ on Λ. The hypothesis ϕ0 > 0 may be relaxed. We assume also ρ′(ϕ0) 6= 0.

The phase function is now given by (5.16) with ϕ = ϕ0. The variational system is obtained

directly in the x−X variables as

d∂tΦ = −mH dλ+ (dx− dX)∗∂tP

d∂ψΦ = (dx− dX)∗P∂ψP

d∂λΦ = (dx− dX)∗P

We check the linear independance. Let

d(∂tΦ)α+ 〈d(∂ψ)Φ, β〉+ d(∂λΦ)γ = 0

Identifying the term in dλ we find α = 0, then (dx− dX)∗(〈∂ψP, β〉+ γP ) = 0, which readily implies

β = γ = 0, for small t since P |t=0 = ω(ψ) and ∂ψP |t=0 = ω(ψ)⊥.

In a second step, we seek for a reduced generating function for Λ+ by eliminating t when t > 0

by stationary phase. This follows easily from implicit functions theorem and the value at t = 0

∂2tΦ|x=X(ψ) = −〈∂tP, ∂ψX〉 = Const.〈ω(ψ), ω(ψ)〉 6= 0
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(without any further assumption).

It follows that uh has only “wave-part” component, until the Hamilton flow meets ϕ = 0 where

the analysis has slightly to be changed to take into account the singularity of ρ(|x|) at this point.
We complete this Example by the integration of motion (at least in 2-D), since the system

is integrable (with H as in (1.15)). Introduce polar coordinates (r, θ) and (s, ψ) on T ∗R2 (same

parameter ψ as in the definition of Λ), so that

(5.50) x = r ω(θ), p = s ω(ψ)

and

(5.51) p dx = s cos(ψ − θ) dr + rs sin(ψ − θ) dθ

On H = s
ρ(r) , Hamilton equations are given by

ṙ =
1

ρ(r)
, ṡ =

ρ′(r)

ρ(r)2
s

that is
ṡ

s
=
ρ′(r)

ρ(r)2
=
ρ′(r)

ρ(r)
ṙ

Integrating these equations we find s(t) = s0ρ(r(t)) so

(4.52) P (t, ψ) = s0
ρ(r(t))

ρ(r0)
ω(ψ)

If the trajectory leaves Λ at r(0) = r0 = ϕ0, then s0 = 1, 1
ρ(r0)

= E (which fixes r0). The first Eq.

(4.51) has separated variables ρ(r) dr = dt, so if N(r) = 1
E
+
∫ r
r0
ρ(r′) dr′, we get N(r) = T , which is

solved implicitely by r = R(t). Finally, θ = Const., ψ = Const., so the solution of Hamilton equations

with data on L = ∂Λ+ are simply

(5.53)

θ = ψ

x = X(t, r0, ψ) = R(t)ω(ψ)

p = P (t, r0, ψ) =
ρ(R(t))

ρ(r0)
ω(ψ)

These are the parametric equations of Lt = gt(L). We are left to investigate the “collision” on r = 0,

where the solution becomes singular, and the “boundary part” comes into play.

5.6 Example in the constant coefficient case

To close this section we consider as in Remark 3.1, H = −h2∆, n = 2 and

fh(x) = J0
( |x|
h

)
= (2π)−1

∫ π

−π

ei〈x,ω(ψ)〉 dψ = (2π)−1

∫ π

−π

ei|x| sinψ dψ
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The outgoing solution is given by the oscillating integral

uh(x) = (4π2h)−1/2

∫
eiΦ(x,y,ψ)/h

(
ξ2 −E − i0

)−1
dψ dy dξ

which we compute (formally) by stationary phase in (y, ξ). The critical point is given by y = x,

ξ = x
|x| sinψ, and

(5.61) uh(x) = h1/2
∫ π

−π

ei|x| sinψ/h
1

sin2 ψ − E − i0
dψ +O(h3/2)

and the leading term can be simply evaluated by contour integrals. The phase of course is the same

as in Bessel function. We can also consider more general fh and stick in an amplitude of the form

(see [DoMaNaTu])

A(x,ψ) =
1

2

(
a(|x|, ψ) + a(−|x|, ψ)

)
+

〈x, ω(ψ)〉
2|x|

(
a(|x|, ψ) − a(−|x|, ψ)

)

so that

fh(x) =
( i

2πh

)1/2
∫ π

−π

ei〈x,ω(ψ)〉A(x,ψ) dψ

As in (5.61) we get

(5.62) uh(x) = h1/2
∫ π

−π

ei|x| sinψ/h
A(x,ψ)

sin2 ψ −E − i0
dψ +O(h)

When A is independent of ψ, this can lead to significant simplifications.
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Appendix Lagrange immersions and global half-densities

Recall first some well-known properties of Lagrangian immersions (see e.g. [DoZh], [DoNaSh]) :

Proposition A.1: Let ι : Λ → T ∗M , be a Lagrangian immersion, parametrized on a canonical chart

U by ϕ 7→ z = ι(ϕ) = (X(ϕ), P (ϕ)). Introduce the Jacobian matrices B(z) = ∂P
∂ϕ , C(z) = ∂X

∂ϕ . Then:

(1) the matrix (B(z), C(z)) is of rank n.

(2) the matrix tC(z)B(z) is symmetric.

(3) C(z)± iB(z) is non degenerate.

The symmetry of tC(z)B(z) expresses for instance in the situation of Sect.4 as the symmetry of

Gram matrix

(A.1)

( 〈Ẋ, Ṗ 〉 〈Ẋ, Pψ〉
〈Xψ, Ṗ 〉 〈Xψ, Pψ〉

)

We consider the rank of projections πx : Λ+ →M . It is equal to the rank of πx,t : Λ̃+ →M ×Rt.

In general we call focal point a point z ∈ Λ where π∗ : TΛ → TM is singular, and caustics the

projection C of the set of focal points onto M . Assume n = 2, and let z be a focal point, so C(z)

cannot be of rank 2, and by property (1) above either B(z) is of rank 2 (and C(z) has rank at most

1, since the projection π : Λ+ 7→M is not a diffeomorphism at z) or both C(z) and B(z) are of rank

1.

Assume now H(x, p) = |p|m

ρ(x) , n = 2. Let Λ = Λ+ be an integral manifold of vH in the energy shell

H(x, p) = E, and U ⊂ Λ+ be a canonical chart parametrized by ϕ = (t, ψ), i.e. z = (X(t, ψ), P (t, ψ))

verifies Ẋ = ∂xH(X,P ), Ṗ = −∂pH(X,P ), such that U → T ∗M is an immersion (not necessarily an

embedding). Recall 〈P, Ẋ〉 = mH, 〈P,Xψ〉 = 0. Actually (X(t, ψ), P (t, ψ) may depend on additional

parameters, as in Sect.5, but here only t, ψ matter. Consider the quantity det(P,Pψ).

Lemma A.2: Let H(x, p) = |p|m

ρ(x)
, n = 2. Assume that at some point z =

(
X(t, ψ), P (t, ψ)

)
, we have

det(P,Pψ) = 0.

1) If ∇ρ(X(t, ψ)) 6= 0, then either |P (t, ψ)| = 1, or Pψ(t, ψ) = 0. In the latter case C(z) =

(Ẋ,Xψ) has rank 2, i.e. πx is regular at z.

2) If ρ has a critical point at some x0 = X(t, ψ), then πx is regular at z = (x0, P (t, ψ))

Proof: We apply Proposition A.1 to the Lagrangian immersion ι : U → T ∗M , ϕ = (t, ψ). Assume

det(P,Pψ) = 0 at some point z = (X(t, ψ), P (t, ψ)). Then either Pψ = 0, or by Hamilton equations

(3.2), there is α ∈ R such that Ẋ = αPψ . Let first ∇ρ 6= 0.

(i) Let Pψ = 0. In this case Xψ 6= 0, for otherwise this would contradict property (3) of

Proposition A.1. The symmetry of tC(z)B(z) shows that 〈Ṗ ,Xψ〉 = 0, or 〈∇ρ(X),Xψ〉 = 0. Since

〈P,Xψ〉 = 0, we find that Ẋ, P, Ṗ ,∇ρ(X) are parallel, and all orthogonal to Xψ. In particular,

C(z) = (Ẋ,Xψ) is of rank 2.

(ii) Let Pψ = 0. By property (2) of Proposition A.1, the matrix

tC(z)B(z) =

( ∗ Ẋ1∂ψP1 + Ẋ2∂ψP2

Ṗ1∂ψX1 + Ṗ2∂ψX2 ∗

)
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has to be symmetric. If Ẋ = αPψ , this implies α = 〈Ṗ , ∂ψX〉|Pψ|−2, and hence differentiating the

dispersion relation (2.2)

(A.5) Ẋ = 〈Ṗ , ∂ψX〉|Pψ|−2Pψ =
|P |m
ρ(X)2

〈∇ρ(X),Xψ〉|Pψ|−2Pψ

• Assume B(z) is of rank 2, and C(z) of rank at most 1. We know that 〈P (t, ψ), Ẋ(t, ψ)〉 = m(E−τ) 6=
0, Ẋ 6= 0 parallel to P 6= 0, and 〈P (t, ψ), ∂ψX(t, ψ)〉 = 0.

Assume Xψ 6= 0. Since C(z) is of rank at most 1, Xψ parallel to Ẋ, which is itself parallel to

P . So P is parallel to Xψ, which contradicts 〈P,Xψ〉 = 0. Hence Xψ = 0. By first equality (A.6) we

have 〈P,Pψ〉 = 0. If det(P,Pψ) = 0, then we would have P both orthogonal to Xψ, and parallel to

Pψ 6= 0. But B(z) is of rank 2, which is a contradiction.

• So by property (3) of Proposition A.1 we must have B(z) and C(z) of rank 1. So either Ẋ = λXψ

and Ṗ = µPψ for some λ, µ ∈ R, or Xψ = 0, Ṗ = µPψ, or Pψ = 0, Ẋ = λXψ, or Xψ = Pψ = 0.

Examine the first case: Identifying the off-diagonal terms of tB(z)C(z), which is symmetric by

property (2) of Proposition A.1, we find that either λ = µ or ∂X
∂ψ

⊥ ∂P
∂ψ

. But λ 6= µ since otherwise the

complex matrices C(z)±iB(z) would be degenerate, which violates property (3) of Proposition 3.2. So
∂X
∂ψ

and ∂X
∂t

are colinear, and orthogonal to both ∂P
∂ψ

and ∂P
∂t

. Assume first λµ 6= 0. Using again (A.6),

we find that P ⊥ Pψ, since Pψ 6= 0, we find that det(P,Pψ) 6= 0. Assume then λµ = 0. If λ = 0, µ 6= 0,

we would have Ẋ = 0, which is impossible. Let now λ 6= 0, then B+ iC = (Pψ+ iXψ , iλXψ) has rank

2, so has (Pψ,Xψ). So by (A.6) P , ∂X
∂ψ

and ∂X
∂t

are colinear, and orthogonal to both ∂P
∂ψ

and ∇ρ. As
before, this implies det(P,Pψ) 6= 0.

Examine the second case Xψ = 0, Ṗ = µPψ. Writing that tB(z)C(z) is symmetric, we find

Ẋ ⊥ Pψ. Since B(z) + iC(z) has rank 2, Pψ 6= 0. Then P and Ẋ are parallel, and both orthogonal

to ∇ρ, Pψ and Ṗ . As before, we find det(P,Pψ) 6= 0.

The last two cases are similar. So det(P,Pψ) 6= 0 at any focal point where ∇ρ 6= 0. .

(iii) Let at last, ∇ρ(x0) = 0. The first situation above cannot hold, since this would imply Ẋ = 0

by (A.6), hence P = 0. Hence Ṗ = Pψ = 0 which implies again C(z) of rank 2 by Proposition A.1. ♣
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