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Abstract

We propose here to study the concentration of random objects that are implicitly
formulated as fixed points to equations Y = f(X) where f is a random mapping.
Starting from an hypothesis taken from the concentration of the measure theory,
we are able to express precisely the concentration of such solutions, under some
contractivity hypothesis on f . This statement has important implication to
random matrix theory, and is at the basis of the study of some optimization
procedures like the logistic regression for instance. In those last cases, we give
precise estimations to the first statistics of the solution Y which allows us predict
the performances of the algorithm.
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Introduction

From random matrix theory (RMT) to optimization theory (OT), the study
of fixed point equation appears as a systematic approach to solve efficiently im-
plicitly expressed issues. In RMT, the spectrum Sp(X) that implicitly underlies
the statistical behavior of a random matrix X ∈ Mp is understood through the
study of the resolvent Q(z) = (zIp −X)−1, unique solution to the fixed point
equation Q(z) = 1

z Ip+
1
zXQ(z) when z is sufficiently far from Sp(X). The same

way, optimization problems with regularization terms like:

Minimize f(x1, . . . , xn, β) + λ‖β‖2, β ∈ R
p
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induce naturally fixed point equations when f is differentiable and lead to the
equation:

β = − 2

λ

∂f(x1, . . . , xn, β)

∂β
,

which is contracting and thus admit a unique solution when λ is sufficiently
big. In both cases, one classically aims at showing that Q(z) (or β) converges
towards a deterministic behavior expressed through a so-called “deterministic
equivalent”. The main objective of our paper is to show how concentration
properties of the random objectsX or (x1, . . . , xn) can be respectively transfered
to the resolvent Q(z) or to the optimized parameter β and allows for a precise
understanding of their statistical properties.

Following a work initiated in Louart and Couillet (2020), our probabilistic
approach is inspired from the Concentration of Measure Theory (CMT) that
demonstrates an interesting flexibility allowing (i) to characterize realistic set-
ting where, in particular, the hypothesis of independent entries is relaxed (ii)
to provide rich concentration inequalities with precise convergence bounds. The
study of random matrices is often conducted in the literature with mere Gaus-
sian hypotheses or with weaker hypotheses concerning the first moments of the
entries that are supposed to be independent (at least independent via an affine
transformation). As an example, consider a sample covariance matrices 1

nXX
T ,

where X = (x1, . . . , xn) ∈ Mp,n is the data matrix. It seams natural to assume
that the columns x1, . . . , xn are independent, nonetheless, to assume that the
entries of each datum xi (for i ∈ [n]) are independent limits greatly the range of
application. Thanks to concentration of the measure hypothesis, this last inde-
pendence property is no longer needed. To present the simpler picture possible,
we will admit in this introduction that what we call for the moment "concen-
trated vectors" are transformation F (Z) of a Gaussian vector Z ∼ N (0, Id) for
a given 1-Lipschitz (for the euclidean norm) mapping F : Rd → Rp. This class
of random vectors is originated from a central result of CMT (Ledoux, 2005,
Corollary 2.6) that states that for any λ-Lipschitz mapping f : Rd → R (where
Rd and R are respectively endowed with the euclidean norm ‖ · ‖ and with the
absolute value | · |):

∀t > 0 : P (|f(Z)− E[f(Z)]| ≥ t) ≤ Ce−(t/σλ)2 , (1)

where C = 2 and σ =
√
2 (they do not depend on the dimensions d !). Note

that the speed of concentration is proportional to the Lipschitz parameter of f ,
the random variable f(Z) – that is called a “λ-Lipschitz observation of Z” – has
a standard deviation that does not depend on the dimension d (if λ is constant
when d tends to ∞). We note this property succinctly Z ∝ CE2(σ), or, if we
place ourselves in the quasi-asymptotic regime where the dimension d (or p)
is big, we do not pay attention to the constants appearing in the exponential
bound (as long as C, σ ≤

d→∞
O(1), the result would not be much different) and we

write Z ∝ E2. Then we say that the “observable diameter of Z” is of order O(1),
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which means that all the standard deviations of the 1-Lipschitz observation of
Z are of order O(1) (they do not increase with the dimension).

We can then deduce an infinite number of concentration inequalities on any
observation g(F (Z)) for g : Rp → R Lipschitz. If F is, say, λ-Lipschitz with
λ possibly depending on the dimension, we have therefore the concentration
F (Z) ∝ E2(λ). In particular, considering Generative adversarial neural network
(GAN) whose objective is to construct from a given noise, realistic image of
a given class (images of cats, images of planes, etc...), we can assert as it was
explained in Seddik et al. (2020) that the artificial (but realistic !) outputs
of those networks form concentrated vectors as Lipschitz transformations of
Gaussian drawings.

The notation F (Z) ∝ E2(λ) is set rigorously in the first section of this
paper but we choose to introduce it already here as a foretaste because it will
be extensively employed all over the paper and once it is well understood, it
clarifies drastically the message (and reduce tremendously the expressions). In
some aspects, this notation and the systematic attempt to employ it for each
new random object that we meet constitute our main contribution to this field
of research. To present it briefly, we will show in this paper that if X ∝ E2 (and
other minor hypotheses), then:

(Q | AQ) =

(

Ip −
1

n
XXT

)−1

∝ E2(1/
√
n) and (β | Aβ) ∝ E2(1/

√
n),

where AQ and Aβ are event of high probability (bigger that 1−Ce−c(n+p), for
two constants C, c > 0) under which Q and β are, at the same time, well defined
and concentrated. It was shown in Louart and Couillet (2020) that Lipschitz
transformation, sums or product of concentrated vectors are also concentrated
vectors, here, we go a step further setting that the concentration is preserved
through such implicit formulations as the one defining Q and β. Once we know
that they are concentrated, we also provide means to estimate their statistics.

Our paper is organized as follows. In a first part we display briefly, but
rigorously important results of Louart and Couillet (2020) and new ones that
provide a solid basis to use CMT tools, we particularly insist on the distinction
between three classes of concentrated vectors identified (in an increasing order
for the inclusion relation):

• the Lipschitz concentrated vectors Z : f(Z) satisfies (1) for any λ-Lipschitz
f having value in R, we note Z ∝ E2(σ),

• the convexly concentrated vectors Z : f(Z) satisfies (1) for any λ-Lipschitz
and convex functional f , we note Z ∝c E2(σ)

• the linearly concentrated random vectors – f(Z) satisfies (1) for any linear
forms f bounded by λ, we note Z ∈ E2(σ). For such linear mappings, we
can rewrite (1):

∀t > 0 : P (|f(Z)− f(E[Z])| ≥ t) ≤ Ce−(t/σλ)2 , (2)
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which leads us to introducing the notation Z ∈ E[Z] ± E2(σ) to express
the fact that the linear observations f(Z) of Z lie around f(E[Z]) (which
has no reason to be the case for Lipschitz observation when Z is Lipschitz-
concentrated). A major issue in RMT is to find a computable deterministic
matrix Z̃ close to E[Z] such that Z ∈ Z̃ ± E2(σ). Such deterministic
matrices are then called “deterministic equivalents” of Z (E[Z] is of course
one of them).

Although it is the most stable class, the Lipschitz concentrated vectors can
degenerate into linear concentration for instance when we look at the random
matrix XDY T for X,Y ∈ Mp,n and D ∈ Dn Lipschitz concentrated. That
justifies the introduction of the notion of linear concentration that is simpler
to verify and still gives some capital control on the norm. The convex concen-
tration, although it is not so easy to treat – being only stable through affine
mappings – finds some interest thanks to a well known result of Talagrand
(1995) that sets its validity for any random vector of [0, 1]p with independent
entries, allowing this way to consider discrete distribution quite absent of the
Lipschitz concentrated vectors class. The class of convexly concentrated vec-
tors often degenerates into a mere linear concentration when one consider the
product of convexly concentrated random matrices, the entry-wise product of
convexly concentrated random vectors or the resolvent (Ip−X)−1 of a convexly
concentrated random matrix X ∈ Mp...

In a second part we present our main theorems allowing us to set the con-
centration of the solution of equation of the type:

Y : Y = F (X,Y )

where X is concentrated and y 7→ F (X, y) is contracting with high probability.
In a third part we give a first application of the two first theoretical part with the
design of a deterministic equivalent of the resolvent Qz ≡ (zIp − 1

nXDX
T )−1.

We consider three different settings where n and p are of the same order (O(n) =
O(p)):

• if X ∝ E2, and D = In, then (Qz | AQ) ∝ E2(1/
√
n) in (Mp, ‖ · ‖F ),

• if X ∝ E2, and D ∝ E2, then (Qz | AQ) ∝ E2(
√
logn) in (Mp, ‖ · ‖F ),

• if X ∝c E2, and D = In, then (Qz | AQ) ∈ E2 in (Mp, ‖ · ‖∗).
In addition, for all those settings we also provide a similar computable deter-
ministic equivalent. Note that the different results of concentration differ by
the observable diameter, by the type of concentration and by the choice of the
norm endowing Mp. For a given matrix A ∈ Mp, we employ the notation

‖A‖F =
√

Tr(AAT ) = sup‖B‖F≤1 Tr(BA) and

‖A‖∗ = Tr(
√
AAT ) = sup

‖B‖≤1

Tr(BA),

where ‖ · ‖ is the spectral norm : ‖A‖ = sup‖u‖,‖v‖≤1 u
TAv). In particular,

since for any A ∈ Mp such that ‖A‖ ≤ 1, q 7→ Tr(Aq) is
√
p-Lipschitz for the
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Frobenius norm, for any random matrix Z, Z ∝ E2(1/
√
n) in (Mp, ‖·‖F ) implies

Z ∝ E2 in (Mp, ‖ · ‖∗), which justifies that the last setting gives a weaker result
than the first one (but it is still important !).

Finally, in a last part, we consider a precise fixed point equation:

Y =
λ

n

n
∑

i=1

f(xTi Y )xi,

where the vectors x1, . . . , xn ∈ Rp are all independent, f : R → R is twice
differentiable, f ′ and f ′ are bounded and ‖f ′‖∞ is chosen small enough for the
equation to be contractive with high probability (i.e. bigger that 1−Ce−cn, for
two constants C, c > 0). We show in that case how the statistical behavior of Y
can be understood and give, in particular, a precise estimation of its expectation
and covariance.

Main Contributions

1. We provide in Corollary 4 the linear concentration:

XDY T ∈ E2(
√

(n+ p) log(pn)) in (Mp, ‖ · ‖F ),

when X,Y ∈ Mp,n and D ∈ Dn all satisfy X,Y,D ∝ E2. This result is
central for the design of a computable deterministic equivalents of Q.

2. We prove the stability of the convex concentration through entry-wise
product of vectors (Proposition 12) and through matrix product (Propo-
sition 13).

3. We present in Section 2 a detailed framework to show the concentration
of the solution of a random fixed point equation Y = φ(Y ) when Φ is
contractive with high probability with four main results :

• Theorems 5 gives the linear concentration of Y when φ is affine and
all the iterates φk(0) are concentrated

• Theorems 6 and 7 give the same result when just a small number of
iterations of φk(y), for y not too far from 0 are concentrated

• Theorem 8 gives Lipschitz concentration φ is possibly non affine and a
small number of iterations φk(y0), for y0 well chosen, are concentrated

• Theorem 9 gives Lipschitz concentration of Y for general φ when φ
is concentrated as a random mapping and for the infinity norm

4. We justify the concentration of the random matrices Xk(Ip−X l)−1 when
one only assumes that X is a symmetric matrix, convexly concentrated
(it happens for instance when X ∈ Sp([0, 1]) and has independent entries
on each triangle – it is a consequence of the Theorem of Talagrand, here
the Theorem 3). The same result holds for (XXT )k(Ip − (XXT )l)−1 (or
XT (XXT )k(Ip − (XXT )l)−1 etc...) when X ∈ Mp,n is convexly concen-
trated (see Corollary 8).
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5. We design a new semi-metric ds that seems to have a structural impor-
tance in the field of RMT. It is defined for any complex diagonal matri-
ces D,D′ ∈ Dn(C

+) (where C+ ≡ {z ∈ C,ℑ(z) > 0}) as ds(D,D
′) =

‖(D −D′)/
√

ℑ(D)ℑ(D)‖. It allows us to set properly the validity of the

definition of the deterministic equivalent Q̃ of Q = (Ip − 1
nXX

T )−1 when
the x1, . . . , xn are not identically distributed (but independent !). It is in-
voked in particular to employ Banach-like theorems (Theorem 11) in order
to show the existence and uniqueness of solution of fixed-point equations
on diagonal matrices (Proposition 16 for instance).

6. We give a precise quasi-asymptotic speed bound to the convergence of
Qz ≡ (zIp − 1

nXX
T )−1 towards its deterministic equivalent Q̃z when the

distance between z and Sp( 1nXX
T ) ⊂ R stays constant with the dimension

(Theorem 10). More precisely, if there exists an event AQ, such that AQ ⊂
{‖ 1

nXX
T‖ ≤ 1− ε} and P(Ac

Q) ≤ Ce−cn (for two constants C, c > 0), we
show that if d(z, [0, 1− ε]) ≥ O(1) and |z| ≤ O(1):

‖E[Qz,AQ]− Q̃z‖F ≤
p,n→∞
n/p=γ

O

(
√

logn

n

)

It is a good improvement of Louart and Couillet (2020) where we could
just bound the spectral norm (and not the Frobenius norm) of the dif-
ference and just for z at a distance of order O(1) from the positive real
line. The convergences surpasses (but with a different setting) the results
of Bai and Zhou (2008).

7. We prove the concentration of a resolvent Qz(Γ) ≡ (zIp − 1
nXΓXT )−1

when Γ ∝ E2. This resolvent has an observable diameter of order
O(

√
logn), which is O(

√
n) time bigger than the one of (zIp− 1

nXX
T )−1.

It is however still sufficient for our needs (in particular, the Stieltjes trans-
form still concentrates and can be estimated, but more importantly for us
some quantities of the last section precisely need this speed of concentra-
tion). We also prove that for any deterministic vector u ∈ Rp Qz(Γ)u has
an observable diameter of order O(

√

log n/n).

8. We provide a rigorous proof to the validity of the estimators of the expec-
tation and covariance of a robust regression parameter as was presented in
El Karoui et al. (2013) and Mai et al. (2019). Those estimations rely on a
pseudo-identity involving the parameter vectors Y ∈ Rp under study and
Y−i ∈ Rp the same parameter deprived of the contribution of the datum
xi. They satisfy the equations:

Y =
1

n

n
∑

i=1

f(xTi Y )xi and Y−i =
1

n

n
∑

j=1
j 6=i

f(xTj Y−i)xj

note that, by construction, Y−i is independent with xi (since x1, . . . , xn
are all independent). The random vector Wi ≡ Y − Y−i− 1

nf(x
T
i Y )Q−ixi

7



is very close to zero and we have the estimations:

(Wi | AY ) ∝ E2
(

1

n

)

and ‖E[Wi | AY ]‖ ≤ O

(√
log n

n

)

,

where AY is an event of high probability under which Y and Y−i are well
defined and Q−i ≡ (Ip − 1

n

∑n
i=1 f

′(xTi Y−i)xix
T
i )

−1 (see Proposition 35).

1. Basics of the Concentration of Measure Theory

We choose here to adopt the viewpoint of Levy families where the goal is to
track the influence of the vector dimension over the concentration. Specifically,
we are given a sequence of random vectors (Zp)p≥N where each Zp belongs to
a space of dimension p (typically Rp) and we want to obtain inequalities of the
form:

∀p ∈ N, ∀t > 0 : P (|fp(Zp)− ap| ≥ t) ≤ αp(t), (3)

where for every p ∈ N, αp : R+ → [0, 1] is called a concentration function,
which is left-continuous, decreasing and tends to 0 at infinity, fp : Rp → R

is a 1-Lipschitz function, and ap is either a deterministic variable (typically
E[fp(Zp)]) or a random variable (for instance fp(Z

′
p) with Z ′

p an independent
copy of Zp). The sequences of random vectors (Zp)p≥0 satisfying inequality (3)
for any sequences of 1-Lipschitz functions (fp)p≥0 are called Levy families or
more simply concentrated vectors (with this denomination, we implicitly omit
the dependence on p and abusively call “vectors” the sequences of random vec-
tors of growing dimension). The concentrated vectors having a concentration
function αp exponentially decreasing are extremely flexible objects. We dedi-
cate the next two subsections to further definitions of the fundamental notions
involved under this setting, which are of central interest to the present article –
these notions are primarily motivated by Theorem 1, to be introduced below.

We define here three classes of concentrated vectors depending on the reg-
ularity of the class of sequences of functions (fp)p∈N satisfying (3). When (3)
holds for all the 1-Lipschitz mappings fp, Zp is said to be Lipschitz concentrated ;
when only valid for all 1-Lipschitz and quasi-convex (see Definition 7) mappings
fp, Zp is said to be convexly concentrated ; and when true for all 1-Lipschitz and
linear mappings fp, Zp is said to be linearly concentrated. As such, the concen-
tration of a random vector Zp is only defined through the concentration of what
we call its “observations” fp(Zp) for all fp in a specific class of functions.

1.1. Lipschitz concentration and fundamental examples

We will work with normed (or semi-normed) vector spaces, although CMT
is classically developed in metric spaces. The presence of a norm (or a semi-
norm) on the vector space is particularly important when we try to show the
concentration of a product of random vectors (among other applications).
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Definition/Proposition 1. Given a sequence of normed vector spaces (Ep, ‖ ·
‖p)p≥0, a sequence of random vectors (Zp)p≥0 ∈ ∏p≥0Ep

1, a sequence of pos-

itive reals (σp)p≥0 ∈ RN
+ and a parameter q > 0, we say that Zp is Lipschitz

q-exponentially concentrated with an observable diameter of order O(σp) iff one
of the following three equivalent assertions is satisfied:

• ∃C, c > 0 | ∀p ∈ N, ∀ 1-Lipschitz f : Ep → R, ∀t > 0 :

P
(∣

∣f(Zp)− f(Z ′
p)
∣

∣ ≥ t
)

≤ Ce−(t/cσp)
q

,

• ∃C, c > 0 | ∀p ∈ N, ∀ 1-Lipschitz f : Ep → R, ∀t > 0 :

P (|f(Zp)−mf | ≥ t) ≤ Ce−(t/cσp)
q

,

• ∃C, c > 0 | ∀p ∈ N, ∀ 1-Lipschitz f : Ep → R, ∀t > 0 :

P (|f(Zp)− E[f(Zp)]| ≥ t) ≤ Ce−(t/cσp)
q

,

where Z ′
p is an independent copy of Zp and mf is a median of f(Zp) (it satisfies

P (f(Zp) ≥ mf ) ,P (f(Zp) ≤ mf ) ≥ 1
2); the mappings f are of course 1-Lipschitz

for the norm (or semi-norm) ‖ · ‖p. We denote in this case Zp ∝ Eq(σp) (or
more simply Z ∝ Eq(σ)). If σ = O(1), we simply write Zp ∝ Eq.

The equivalence between the three definition is proven in Louart and Couillet
(2020), principally thanks to results issued from Ledoux (2005).

Remark 1 (From (Ledoux, 2005, Proposition 1.7)). In the last item, the
existence of the expectation of fp(Zp) is guaranteed assuming any of the two
other assertions. For instance

∀t > 0 : P
(∣

∣fp(Zp)−mfp

∣

∣ ≥ t
)

≤ Ce−(t/cσp)
q

implies the bounding:

E [|fp(Zp)|] ≤
∣

∣mfp

∣

∣+ E[|fp(Zp)−mfp |] ≤
∣

∣mfp

∣

∣+
Ccσp
q̄1/q̄

<∞;

the random variable fp(Zp) is thus integrable and admits an expectation (there
always exists a median mfp ∈ R). For the existence of the expectation of a
random vector, refer to Appendix A.

Remark 2. It is more natural, as done in Ledoux (2005), to introduce the
notion of concentration in metric spaces, because one only needs to resort to
Lipschitz mappings which merely require a metric structure on E to be defined.

1A random vector Z of E is a measurable function from a probability space (Ω,F , P) to the
normed vector space (E, ‖ · ‖) (endowed with the Borel σ-algebra); one should indeed write
Z : Ω → E, but we abusively simply denote Z ∈ E.
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However, our central Theorems (Theorem 6 and 9) involve the expectation of
random vectors which can only be defined in vector spaces.

At one point in the course of the article, it will be useful to invoke concentra-
tion for semi-norms in place of norms. Definition 1 is still consistent for these
weaker objects. Recall that a seminorm ‖ · ‖′ : E 7→ R is a functional satisfying:

1. ∀x, y ∈ E : ‖x+ y‖′ ≤ ‖x‖′ + ‖y‖′
2. ∀x ∈ E, ∀α ∈ R : ‖αx‖′ = |α|‖x‖′

(it becomes a norm if in addition ‖x‖′ = 0 ⇒ x = 0).

Remark 3. In cases where a concentrated vector Zp ∝ Eq(σp) takes values
only on some subsets A ≡ Zp(Ω) ⊂ Ep, it might be useful to be able to set
concentration of observations fp(Zp) where fp is only 1-Lipschitz on A (and
possibly non Lipschitz on Ep \ A). This would be an immediate consequence of

Definition 1 if one would be able to continue fp A into a mapping f̃p Lipschitz
on the whole vector space Ep but this is rarely possible. Yet, the observation
fp(Zp) do concentrates under hypothesis of Definition 1. Indeed, considering a
median mfp of fp(Zp) and the set Sp = {fp ≤ mfp} ⊂ Ep, if we note for any
z ∈ Ep and U ⊂ Ep, U 6= ∅, d(z, U) = inf{‖z − y‖, y ∈ U}, then, we have the
implications for any z ∈ A and t > 0:

fp(z) ≥ mfp + t =⇒ d(z, Sp) ≥ t

fp(z) ≤ mfp − t =⇒ d(z, Sc
p) ≥ t,

since fp is 1-Lipschitz on A. Therefore since z 7→ d(z, Sp) and z 7→ d(z, Sc
p) are

both 1-Lipschitz on E and both admit 0 as a median (P(d(Zp, Sp) ≥ 0) = 1 ≥ 1
2

and P(d(Zp, Sp) ≤ 0) ≥ P(fp(Zp) ≤ mfp) ≥ 1
2). Therefore:

P
(∣

∣fp(Zp)−mfp

∣

∣ ≥ t
)

≤ P (d(Zp, Sp) ≥ t) + P (d(Zp, Sp) ≥ t)

≤ 2Ce−(t/cσp).

One can then deduce from this inequality similar bounds for
P
(∣

∣fp(Zp)− fp(Z
′
p)
∣

∣ ≥ t
)

and P (|fp(Zp)− E[fp(Zp)]| ≥ t).
One could then argue, that we could have taken instead of Definition 1 hy-

potheses concerning the concentration of Zp on Zp(Ω) only; we thought however
that the definition was already sufficiently complex and preferred to precise the
notion in a side remark. This aspect should however be kept in mind since
it will be exploited to set the concentration of products of random vectors (in
particular).

A simple but fundamental consequence of Definition 1 is that any Lipschitz
transformation of a concentrated vector is also a concentrated vector. The
Lipschitz coefficient of the transformation controls the concentration.

Proposition 1. In the setting of Definition 1, given a sequence (λp)p≥0 ∈ RN
+,

a supplementary sequence of normed vector spaces (E′
p, ‖·‖′p)p≥0 and a sequence

of λp-Lipschitz transformations Fp : (Ep, ‖ · ‖p) → (E′
p, ‖ · ‖′p), we have

Zp ∝ Eq(σp) =⇒ Fp(Zp) ∝ Eq(λpσp).
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There exists a wide range of concentrated random vectors that can be found
for instance in (Ledoux, 2005). We recall below some of the major examples.
In the following theorems, we only consider sequences of random vectors of the
vector spaces (Rp, ‖·‖). We will omit the index p to simplify the readability of
the results.

Theorem 1 (Fundamental examples of concentrated vectors). The
following sequences of random vectors are concentrated and satisfy Z ∝ E2:

• Z is uniformly distributed on the sphere
√
pSp−1.

• Z ∼ N (0, Ip) has independent Gaussian entries.

• Z is uniformy distributed on the ball
√
pB = {x ∈ Rp, ‖x‖ ≤ √

p}.
• Z is uniformy distributed on [0,

√
p]p.

• Z has the density dPZ(z) = e−U(z)dλp(z) where U : Rp → R is a positive
functional with Hessian bounded from below by, say, cIp with c = O(1)
and dλp is the Lebesgue measure on Rp.

Remark 4 (Concentration and observable diameter). The notion of
“observable diameter” (the diameter of the observations) introduced in Def-
inition 1 should be compared to the diameter of the distribution or “metric
diameter” which could be naturally defined as the expectation of the distance
between two independent random vectors drawn from the same distribution.
The “concentration” of a random vector can then be interpreted as a difference
of concentration rates between the observable diameter and the metric diameter
through dimensionality. For instance, Theorem 1 states that the observable
diameter of a Gaussian distribution in Rp is of order 1, that is to say 1√

p

times less than the metric diameter (that is of order
√
p): Gaussian vectors are

indeed concentrated.
As a counter example of a non concentrated vectors, one may consider the

random vector Z = [X, . . . , X ] ∈ Rp where X ∼ N (0, 1). Here the metric
diameter is of order O(

√
p), which is the same as the diameter of the observation

1√
p (X + · · ·+X) (the mapping (z1, . . . , zp) 7→ 1√

p (z1 + · · ·+ zp) is 1-Lipschitz).

Remark 5 ((q 6= 2)-exponential concentration). We provide here two ex-
amples of q-exponential concentration where q 6= 2 and the underlying metric
space is not necessarily Euclidean:

• (Talagrand, 1995) if Z is a random vectors of Rp with independent entries
having density 1

2e
−|·|dλ1, then Z ∝ E1.

• (Ledoux, 2005) if Z is uniformly distributed on the balls

B‖·‖q
=







x ∈ R
p | ‖x‖q =

(

p
∑

i=1

xqi

)1/q

≤ 1







⊂ R
p

then Z ∝ Eq
(

p−
1
q

)

.
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A very explicit characterization of exponential concentration is given by a
bound on the different centered moments.

Proposition 2. A random vector Z ∈ E is q-exponentially concentrated with
observable diameter of order σ (i.e., Z ∝ Eq(σ)) if and only if there exists C ≥ 1
and c = O(σ) such that for any (sequence of) 1-Lipschitz functions f : E → R:

∀r ≥ q : E
[

|f(Z)− f(Z ′)|r
]

≤ C

(

r

q

)
r
q

cr, (4)

where Z ′ is an independent copy of Z. Inequality (4) also holds if we replace
f(Z ′) with E[f(Z)] (of course the constants C and c might be slightly different).

1.2. Linear concentration, notations and properties of the first statistics

Although it must be clear that a concentrated vector Z is generally far from
its expectation (keep the Gaussian case in mind), it can still be useful to have
some control on ‖Z−E[Z]‖. That can be done for a larger class than the class of
Lipschitz concentrated random vector: the class of linearly concentrated random
vectors. It is a weaker notion but still relevent since, as it will be shown in various
examples (Propositions ??, 12 and 13, Theorems 6, 7 and 12), it can become
the residual concentration property satisfied by non Lipschitz operations on
Lipschitz concentrated (or convexly concentrated – see Subsection 1.7) random
vectors.

Definition 2. Given a sequence of normed vector spaces (Ep, ‖ · ‖p)p≥0, a se-
quence of random vectors (Zp)p≥0 ∈ ∏p≥0Ep, a sequence of deterministic vec-

tors (Z̃p)p≥0 ∈ ∏p≥0Ep, a sequence of positive reals (σp)p≥0 ∈ RN
+ and a pa-

rameter q > 0, we say that Zp is q-exponentially linearly concentrated around

the deterministic equivalent Z̃p with an observable diameter of order O(σp) iff
there exist two constants c, C > 0 such that ∀p ∈ N and for any unit-normed
linear form f ∈ E′

p (∀p ∈ N, ∀x ∈ E: |f(x)| ≤ ‖x‖):

∀t > 0 : P

(∣

∣

∣f(Zp)− f(Z̃p)
∣

∣

∣ ≥ t
)

≤ Ce(t/cσp)
q

.

If this holds, we write Z ∈ Z̃ ± Eq(σ). When it is not necessary to mention the
deterministic equivalent, one can write simply Z ∈ Eq(σ).

Of course linear concentration is stable through affine transformations. Given
two normed vector spaces (E, ‖ · ‖E) and (F, ‖ · ‖F ), we denote L(E,F ) the set
of continuous linear mappings from E to F that we endow with the operator
norm ‖ · ‖L(E,F ) defined as:

∀φ ∈ L(E,F ) : ‖φ‖L(E,F ) = sup
‖x‖E≤1

‖φ(x)‖F .

When E = F and ‖·‖E = ‖·‖f = ‖·‖, we note ‖·‖ = ‖·‖L(E,E) for simplicity, and
it is an algebra-norm on L(E,F ): for any φ, ψ ∈ L(E,E): ‖φ ◦ ψ‖ ≤ ‖φ‖‖ψ‖).

12



We equivalently denote A(E,F ) the set of continuous affine mappings from E
to F and we endow it with the norm:

∀φ ∈ A(E,F ) : ‖φ‖A(E,F ) = ‖L(φ)‖L(E,F ) + ‖φ(0)‖F where L(φ) = φ− φ(0).

Proposition 3. Given two normed vector spaces (E, ‖ · ‖E) and (F, ‖ · ‖F ), a
random vector Z ∈ E, a deterministic vector Z̃ ∈ E and an affine mapping
φ ∈ A(E,F ) such that ‖L(φ)‖L ≤ λ:

Z ∈ Z̃ ± Eq(σ) =⇒ φ(Z) ∈ φ(Z̃)± Eq(λσ).

When the expectation can be defined (see Appendix A), we can deduce from
Proposition 40 and Lemma 29 that there exists an implication relation between
Lipschitz concentration (Definitions 1) and linear concentration (2).

Lemma 1. Given a reflexive space (E, ‖ · ‖) and a random vector Z ∈ E, we
have the implication:

Z ∝ Eq(σ) =⇒ Z ∈ E[Z]± Eq(σ).

A similar implication exists for random mappings thanks to the basic gener-
alization explained in Remark 29. The next lemma is a formal expression of
the assessment that “any deterministic vector located at a distance smaller than
the observable diameter to a deterministic equivalent is also a deterministic
equivalent”.

Lemma 2. Given a random vector Z ∈ E, a deterministic vector Z̃ ∈ E such
that Z ∈ Z̃ ± Eq(σ), we have then the equivalence:

Z ∈ Z̃ ′ ± Eq(σ) ⇐⇒
∥

∥

∥Z̃ − Z̃ ′
∥

∥

∥ ≤ O(σ)

When we are just interested in the size of the deterministic equivalent, we employ
the notation:

Z ∈ O(θ) ± Eq(σ)

if Z ∈ Z̃ ± Eq(σ) and ‖Z̃‖ ≤ O(θ) (for some deterministic vector Z̃). The
previous lemma leads to the implication:

Z ∈ O(σ) ± Eq(σ) =⇒ Z ∈ 0± Eq(σ).

Given two random vectors Z,W ∈ E, we also allow ourselves to write:

Z ∈W ± E2(σ)

iif Z −W ∈ O(σ) ± E2(σ), W is then called a random equivalent of Z. In Rp,
two randomly equivalent vectors have similar expectations:

‖E[Z]− E[W ]‖ ≤ sup
‖u‖≤1

uTE[uT (Z −W )] ≤ O(σ),

13



thanks to Proposition 2. However their covariance could be more different,
to have a similarity on higher order statistic, one needs a stronger property :
the strong equivalence. We say that W is a strong random equivalent of Z if
‖Z −W‖ ∈ 0± E2(σ), we have a similar result to Lemma 2:

Lemma 3. Given two (sequence of) random vectors Z,W and a (sequence of)
positive number σ > 0, if Z ∈ Eq(σ) and ‖Z −W‖ ∈ O(σ) ± Eq(σ) then Z ∈
W ± Eq(σ).

Remark 6. In Rp two strongly equivalent random vectors with observable di-
ameter of order O(1/

√
p) have similar covariance in nuclear norm (and similar

expectation). Indeed, if ‖Z −W‖ ∈ 0± E2(1/√p), and Z,W ∈ E2(1/√p):
∥

∥E[ZZT ]− E[Z]E[Z]T − E[WWT ] + E[W ]E[W ]T
∥

∥

∗
≤ E

[∥

∥ZZT − E[Z]E[Z]T −WWT + E[W ]E[W ]T
∥

∥

∗
]

≤ E [‖Z −W‖ ‖Z − E[Z]‖+ ‖Z −W‖ ‖W − E[W ]‖] ≤ O(1/
√
p),

thanks to Hölder inequality, and thanks to Proposition 8 given below that states
that ‖Z − E[Z]‖ , ‖W − E[W ]‖ ∈ O(1)± E2(1).

Those new notation will be extensively employed with random variables or
low dimensional random vectors for which the notion of concentration is very
simple.

Remark 7. For random variables, or law rank random vectors, the notions
of Lipschitz concentration and linear concentration are equivalent. More over,
if Z is a random variable satisfying Z ∈ Eq(σ), for any 1-Lipschitz mapping
f : R → R, we have:

f(Z) ∈ f(E[Z])± Eq(σ).

Indeed f(Z) ∈ E[f(Z)]± Eq(σ) and:

|E[f(Z)]− f(E[Z])| ≤ E[|f(Z)− f(E[Z])|] ≤ E[|Z − E[Z]|] = O(σ),

thanks to Proposition 2. The same holds for a random vector Z = (Z1, . . . , Zd) ∈
Rd if d ≤ n, because we can bound:

E[‖f(Z)− f(E[Z])‖] ≤

√

√

√

√

d
∑

i=1

E[(f(Z1)− f(E[Zd]))2] ≤
√
dO(σ) = O(σ),

thanks again to Proposition 2, since for all i ∈ [d], Zi ∈ Eq(σ)

We end this subsection with a precise characterization of the linearly concen-
trated random vectors of the (sequence of) normed vector space Rp thanks to a
bound on the moments, as we did in Proposition 2.
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Definition 3 (Moments of random vectors). Given a random vector X ∈
Rp and an integer r ∈ N, we call the “rth moment of X” the symmetric r-linear
form CX

r : (Rp)r → R defined for any u1, . . . , ur ∈ Rp with:

CX
r (u1, . . . , up) = E

[

p
∏

i=1

(

uTi X − E[uTi X ]
)

]

.

When r = 2, we retrieve the covariance matrix.

Given an r-linear form S of Rp we note its operator norm:

‖S‖ ≡ sup
‖u1‖,...,‖ur‖≤1

S(u1, . . . , up),

when S is symmetric we employ the simpler formula ‖S‖ = sup‖u‖≤1 S(u, . . . , u).
We have then the following characterization that we give without proof since it
is a simple consequence of the definition of linearly concentrated random vectors
an Proposition 2.

Proposition 4. Given q > 0, a sequence of random vectors Xp ∈ Rp, and a
sequence of positive numbers σp > 0, we have the following equivalence:

X ∈ Eq(σ) ⇐⇒ ∃C, c > 0, ∀p ∈ N, ∀r ≥ q : ‖CXp
r ‖ ≤ C

(

r

q

)
r
q

(cσp)
r

In particular, if we note C = E[XXT ]−E[X ]E[X ]T , the covariance ofX ∈ Eq(σ),
we see that ‖C‖ ≤ O(σ).

1.3. Linear concentration through sums and integrals

The second basic result on linear concentration allows us to follow the con-
centration rate through concatenation of possibly dependent random vectors.
An interesting fact is that independence is generally not a relevant property
when trying to set concentration inequalities from linear concentration hypothe-
ses.

Proposition 5 (Louart and Couillet (2019)). Given two sequences m ∈
NN and σ ∈ RN

+, a constant q, m sequences of normed vector spaces (Ei, ‖ ·
‖i)1≤i≤m, m sequences of deterministic vectors Z̃1 ∈ E1, . . . , Z̃m ∈ Em, and
m sequences of random vectors Z1 ∈ E1, . . . , Zm ∈ Em (possibly dependent)
satisfying, for any i ∈ {1, . . . ,m}, Zi ∈ Z̃i ± Eq(σ), we have the concentration :

(Z1, . . . , Zm) ∈ (Z̃1, . . . , Z̃m)± Eq(σ), in (E, ‖ · ‖ℓ∞),

where we introduced on E ≡ E1 × · · · ×Em the norm ‖ · ‖ℓ∞ satisfying, for any
(z1, . . . , zm) ∈ E: ‖(z1, . . . , zm)‖ℓ∞ = sup1≤i≤m ‖zi‖i.
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If we want to consider the concatenation of vectors with different observ-
able diameter, it is more convenient to look at the concentration in a space
(
∏m

i=1 Ei, ℓ
r), for a given r > 0, where, for any (z1, . . . , zm) ∈ ∏m

i=1 Ei:

‖(z1, . . . , zm)‖ℓr =

(

m
∑

i=1

‖zi‖ri

)1/r

.

Corollary 1. Given two constants q, r > 0, m ∈ NN, σ1, . . . , σm ∈ (RN
+)

m,

m sequences of (Ei, ‖ · ‖i)1≤i≤m, m sequences of deterministic vectors Z̃1 ∈
E1, . . . , Z̃m ∈ Em, and m sequences of random vectors Z1 ∈ E1, . . . , Zp ∈ Ep

(possibly dependent) satisfying, for any i ∈ {1, . . . ,m}, Zi ∈ Z̃i ± Eq(σi), we
have the concentration :

(Z1, . . . , Zm) ∈ (Z̃1, . . . , Z̃m)± Eq(‖σ‖r), in (E, ‖ · ‖ℓr),

Remark 8. When E1 = · · · = Em = E, then for any vector a = (a1, . . . , am) ∈
Rm

+ , we knew from Corollary 1 that:

m
∑

i=1

aiZi ∈
m
∑

i=1

aiZ̃i ± E2(|a|Tσ),

where |a| = (|a1|, . . . , |am|) ∈ Rm
+

Proof. We already know from Proposition 5 that:

(

Z1

σ1
, . . . ,

Zm

σm

)

∈
(

Z̃1

σ1
, . . . ,

Z̃m

σm

)

± Eq, in (E, ‖ · ‖ℓ∞)

Let us then consider the linear mapping:

φ : (E, ‖ · ‖ℓ∞) −→ (E, ‖ · ‖ℓr)
(z1, . . . , zm) 7−→ (σ1z1, . . . , σmzm),

the Lipschitz character of φ is clearly ‖σ‖r = (
∑m

i=1 σ
r
i )

1/r, and we can deduce
the concentration of Z = φ(σ1Z1, . . . , σmZm).

Corollary 1 is very useful to set the concentration of infinite series of concen-
trated random variables. This is settled thanks to an elementary result issued
from Louart and Couillet (2020) that sets that the observable diameter of a
limit of random vectors is equal to the limit of the observable vectors. Be care-
ful that rigorously, there are two indexes, p coming from Definition 1 that only
describes the concentration of sequences of random vectors, and n particular to
this lemma that will tend to infinity.
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Lemma 4. Given a sequence of random vectors (Zn)n∈N ∈ EN and a sequence
of positive reals (σn)n∈N ∈ RN

+ such that:

Zn ∝ Eq(σn),

if we assume that (Zn)n∈N converges in law2 when n tends to infinity to a
random vector (Z∞) ∈ E and that σn −→

n→∞
σ∞ then:

Z∞ ∝ Eq(σ∞).

The result also holds if we only assume linear concentration for Zn then we
obtain the linear concentration of Z∞.

Corollary 2. Given two constants q, r > 0, σ1, . . . , σn . . . ∈ (RN
+)

N, a (se-

quences of) reflexive normed vector spaces (E, ‖ · ‖), Z̃1 . . . , Z̃n, . . . ∈ EN de-
terministic, and Z1 . . . , Zn, . . . ∈ EN random (possibly dependent) satisfying,
for any n ∈ N, Zn ∈ Z̃n±Eq(σn). If we assume that Z ≡∑n∈N

Zn is pointwise

convergent3, that
∑

n∈N
Z̃n is well defined and that

∑

n∈N
σi ≤ ∞, then we have

the concentration :

∑

n∈N

Zn ∈
∑

n∈N

Z̃n ± Eq
(

∑

n∈N

σn

)

, in (E, ‖ · ‖),

Proof. We already know from Corollary 1 that for all N ∈ N:

N
∑

n=1

Zn ∈
N
∑

n=1

Z̃n ± Eq
(

∑

n∈N

σn

)

, in (E, ‖ · ‖).

Thus in order to employ Lemma 4 let us note that for any bounded continuous
mapping f : E → R, the dominated convergence theorem allows us to set that:

E

[

f

(

N
∑

n=1

Zn

)]

−→
N→∞

E

[

f

( ∞
∑

n=1

Zn

)]

,

thus (
∑N

n=1 Zn)N∈N converges in law to
∑∞

n=1 Zn, which allows us to set the
result of the corollary.

To study the concentration of integrated random mapping, we are going to
introduce a notion of concentration under semi-norm families. The concentra-
tion under the infinity norm (φ 7→ ‖φ‖∞ ≡ supz∈E ‖φ(z)‖) is also relevant but
this strong notion of concentration is unnecessarily restrictive.

2For any bounded sequence of continuous mapping (fp)p≥0 :
∏

p≥0 Ep → RN:

sup
p∈N

|E[fp(Zp,n)− E[fp(Zp,∞)]| −→
n→∞

0

3For any w ∈ Ω,
∑

n∈N
‖Zn(w)‖ ≤ ∞ and we define Z(w) ≡

∑

n∈N
Zn(w)

17



Definition 4 (Concentration with family of semi-norms). Given a se-
quence of normed vector spaces (Ep)p≥0, a sequence of index sets Θp, a se-
quence of semi-norm families ((‖ · ‖t)t∈Θp)p≥0, a sequence of random vectors
(Zp)p≥0 ∈∏p≥0Ep, a sequence of positive reals (σp)p≥0 ∈ RN

+ and a parameter
q > 0, we say again that Zp is Lipschitz q-exponentially concentrated with an
observable diameter of order O(σp) iff there exist two positive constants C, c > 0
such that ∀p ∈ N, ∀t ∈ Θp for any f : Ep → R 1-Lipschitz for the norm ‖ · ‖t :

P
(∣

∣f(Zp)− f(Z ′
p)
∣

∣ ≥ t
)

≤ Ce−(t/cσp)
q

(5)

We denote in this case Zp ∝ Eq(σp) in (Ep, (‖ · ‖t)t∈Θp).

Remark 9. Let us comment this definition.

• The important point of the notion of concentration for family of semi-
norms is that the constants C and c are the same for all the semi norms.

• As in Definition 1, (5) can be replaced by concentration inequalities around
a or the expectation of fp(Zp).

• As we will see in next proposition, this definition is particularly convenient

when Zp is a random mapping of F
Gp
p (Zp : Gp → Fp), for a sequence of

sets (Gp)p≥0, and a sequence of normed vector spaces (Fp, ‖ · ‖)p≥0, when
Θp ⊂ Gp and the semi-norms are defined with the evaluation maps defined
for any g ∈ Gp as:

∀φ ∈ FGp
p : ‖φ‖g = ‖φ(g)‖. (6)

The concentration of Zp in (F
Gp
p , (‖ · ‖t)t∈Θp) is then equivalent to the

concentration of all the (Zp(t))t∈Θp in (Fp, ‖ · ‖) for all t ∈ Θp and for the
same constants C > 0 and c > 0.

• If we introduce the random mapping Φ : z 7→ XDY T z where X,Y ∈ Mp,n

and D ∈ Dn are three random matrices such that X,Y,D ∝ E2, ‖E[X ]‖ ≤
O(

√
n+ p), ‖E[Y ]‖‖E[D]]‖ ≤ O(1), then we will see in Corollary 4 below

that for any deterministic vector z ∈ Rp such that ‖z‖ ≤ 1, Φ(z) is concen-
trated and has an observable diameter of order O(

√

(n+ p) log(n)), but we
can not obtain a smaller observable diameter than O(n+p) for the random
matrix XDY T and consequently for ‖Φ‖∞. As such, the concentration of
mapping Φ with the infinity norm is looser than the concentration with the
set of semi-norms (‖ · ‖)‖z‖≤1. This important remark justifies fully the
introduction of this new notion, although next Proposition could have been
stated with hypotheses of concentration under infinity norm.

Proposition 6 (Concentration of the integration). Given a (sequence of)
finite dimensional4 normed vector space (F, ‖ · ‖), a (sequence of) integrable

4So that we can integrate Φ(·)
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random mappings Φ : [0, 1] → F , if there exists a (sequence of) positive reals
κ > 0 such that for any t ∈ [0, 1], ‖Φ(t)‖ ≤ κ and Φ ∝ Eq in (F [0,1], (‖·‖t)t∈[0,1])
then:

∫ 1

0

Φ(t)dt ∈ Eq in (F, ‖ · ‖).

Proof. For any n ∈ N, we already know from Corollary 8 that:

1

n

n
∑

i=1

φ

(

k

n

)

∈ Eq.

Besides, for any bounded real valued continuous mapping f : F → R, the
dominated convergence theorem (employed two times – for the integral and the
expectation) ensures the convergence:

E

[

f

(

1

n

n
∑

i=1

φ

(

k

n

)

)]

= E

[

f

(∫ 1

0

φn(t)dt

)]

−→
n→∞

E

[

f

(∫ 1

0

φ(t)dt

)]

,

where φn(t) = φn(k/n) if k ≤ ⌊nt⌋ ≤ k + 1 (E[f(φn(·))] pointwise converges to

E[f(φ(·))]). Therefore, 1
n

∑n
i=1 φ

(

k
n

)

converges in law to
∫ 1

0 φ(t)dt, and we can
conclude with Lemma 4.

1.4. Concentration of the norm

Given a random vector Z ∈ (E, ‖ · ‖), if Z ∈ Z̃ ± Eq(σ), the control on the

norm ‖Z − Z̃‖ can be done easily when the norm ‖·‖ can be defined as the
supremum on a set of linear forms; for instance when (E, ‖ · ‖) = (Rp ‖·‖∞):
‖x‖∞ = sup1≤i≤p e

T
i x (where (e1, . . . , ep) is the canonical basis of Rp). We can

then bound:

P

(

‖Z − Z̃‖∞ ≥ t
)

= P

(

sup
1≤i≤p

eTi (Z − Z̃) ≥ t

)

≤ min

(

1, p sup
1≤i≤p

P

(

eTi (Z − Z̃) ≥ t
)

)

≤ min
(

1, pCe−(t/c)q
)

≤ max(C, e) exp

(

− tq

2cq log(p)

)

,

for some c = O(σ) and some constant C > 0. To manage the infinity norm, the
supremum is taken on a finite set {e1, . . . ep}.

Problems arise when considering the Euclidean norm satisfying for any x ∈
Rp the identity ‖x‖ = sup{uTx, ‖u‖ ≤ 1}, indeed, here the supremum is taken
on the whole unit ball BRp ≡ {u ∈ Rp, ‖u‖ ≤ 1} which is an infinite set. This
loss of cardinality control can be overcome if one introduces so-called ε-nets
to discretize the ball with a net {ui}i∈I (with I finite – |I| < ∞) in order to
simultaneously
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1. approach sufficiently the norm to ensure

P

(

‖Z − Z̃‖∞ ≥ t
)

≈ P

(

sup
i∈I

uTi (Z − Z̃) ≥ t

)

,

2. control the cardinality |I| for the inequality

P

(

sup
i∈I

uTi (Z − Z̃) ≥ t

)

≤ |I|P
(

uTi (Z − Z̃) ≥ t
)

not to be too loose (see Tao (2012) for more detail).

One can then show:

P(‖Z − Z̃‖ ≥ t) ≤ max(C, e) exp−(t/c)q/p . (7)

The approach with ε-nets in (Rp, ‖ · ‖) can be generalized to any normed vector
space (E, ‖·‖) where the norm can be written as a supremum through an identity
of the kind

∀x ∈ E : ‖x‖ = sup
f∈H

f(x) with H ⊂ E′ and dim(Vect(H)) <∞, (8)

for a given H ⊂ E′ and where VectH designates the subspace of E generated
by H . Such a H ⊂ E′ exists in particular when (E, ‖ · ‖) is a reflexive spaces.

Proposition 7 (James (1957)). In a reflexive space (E, ‖ · ‖):

∀x ∈ E : ‖x‖ = sup
f∈BE′

f(x) where BE′ = {f ∈ E′ | ‖f‖ ≤ 1}.

When (E, ‖ ·‖) has an infinite dimension and is not reflexive, it is sometimes
possible to establish (8) for some H ⊂ E in some cases (most of them appearing
when ‖ · ‖ is a semi-norm. Without going deeper into details, we introduce the
notion of norm degree that will help us adapting to other normed vector space
the concentration rate p appearing in the exponential term of concentration
inequality (7) (concerning (Rp, ‖ · ‖)).

Definition 5 (Norm degree). Given a normed (or seminormed) vector space
(E, ‖ · ‖), and a subset H ⊂ E′, the degree ηH of H is defined as :

• ηH ≡ log(|H |) if H is finite,

• ηH ≡ dim(VectH) if H is infinite.

If there exists a subset H ⊂ E′ such that (8) is satisfied, we then denote η(E, ‖ ·
‖), or more simply η‖·‖, the degree of ‖ · ‖, defined as :

η‖·‖ = η(E, ‖ · ‖) ≡ inf

{

ηH , H ⊂ E′ | ∀x ∈ E, ‖x‖ = sup
f∈H

f(x)

}

.
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Example 1. We can give some examples of norm degrees :

• η (Rp, ‖ · ‖∞) = log(p) (H = {x 7→ eTi x, 1 ≤ i ≤ p}),

• η (Rp, ‖ · ‖) = p (H = {x 7→ uTx, u ∈ BRp}),

• η (Mp,n, ‖ · ‖) = n+ p (H = {M 7→ uTMv, (u, v) ∈ BRp × BRn}),

• η (Mp,n, ‖ · ‖F ) = np (H = {M 7→ Tr(AM), A ∈ Mn,p, ‖A‖F ≤ 1}),

• η (Mp,n, ‖ · ‖∗) = np (H = {M 7→ Tr(AM), A ∈ Mn,p, ‖A‖ ≤ 1})5.

Depending on the vector space we are working in, we can then employ those
different examples and the following proposition to set the concentration of the
norm of a random vector.

Proposition 8. Given a reflexive vector space (E, ‖ · ‖) and a concentrated
vector Z ∈ E satisfying Z ∈ Z̃ ± Eq(σ):

‖Z − Z̃‖ ∈ O
(

η
1/q
‖·‖ σ

)

± Eq
(

η
1/q
‖·‖ σ

)

.

Remark 10. When Z ∝ Eq(σ) (or Z ∝c Eq(σ), as we will see in Subsec-

tion 1.7), we have of course the better concentration ‖Z − Z̃‖ ∝ Eq (σ) but

the bound E

[

‖Z − Z̃‖
]

≤ O
(

η
1/q
‖·‖ σ

)

can not be improved.

Example 2. Given two random vectors Z ∈ Rp and M ∈ Mp,n:

• if Z ∝ E2 in (Rp, ‖·‖) : E ‖Z‖ ≤ ‖E[Z]‖+O(
√
p),

• if M ∝ E2 in (Mp,n, ‖ · ‖) : E ‖M‖ ≤ ‖E[M ]‖+O(
√
p+ n),

• if M ∝ E2 in (Mp,n, ‖ · ‖F ) : E ‖M‖ ≤ ‖E[M ]‖F +O(
√
pn).

• if M ∝ E2 in (Mp,n, ‖ · ‖∗) : E ‖M‖∗ ≤ ‖E[M ]‖∗ +O(
√
pn).

1.5. Concentration of basic operations

Returning to Lipschitz concentration, if we want to control the concentration
of the sum X + Y or the product XY of two random vectors X and Y , we first
need to express the concentration of the concatenation (X,Y ). This last result
is very easy to obtain in the class of linearly concentrated random vector since
it is a consequence of Proposition 5 (but the concentration of the product is
impossible to set with good observable diameter). In the class of Lipschitz
concentrated vectors, the concentration of (X,Y ) is far more complicated, and
independence here plays a central role (unlike for linear concentration).

To understand the issue, let us give an example where X and Y are concen-
trated but not (X,Y ). Consider X , uniformly distributed on the sphere

√
pSp−1

5‖ · ‖∗ is the nuclear norm defined for any M ∈ Mp,n as ‖M‖∗ = Tr(
√
MMT ) it is the

dual norm of ‖ · ‖, which means that for any A,B ∈ Mp,n, Tr(ABT ) ≤ ‖A‖‖B‖∗.
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and Y = f(X) where for any x = (x1, . . . , xp) ∈ Rp, f(x) = x if x1 ≥ 0 and
f(x) = −x otherwise. We know that all the linear observations of X + Y are
concentrated thanks to Proposition 5, but it is not the case for all the Lipschitz
observations. Indeed, it is straight forward to see that the diameter of the ob-
servation ‖X+Y ‖ (which is a

√
2-Lipschitz transformation of (X,Y )) is of order

O(
√
p) like the metric diameter of X+Y that contradicts the description of the

concentration made in Remark 4. This effect is due to the fact that the mapping
f is clearly not Lipschitz, and Y in a sense “defies” X (see Louart and Couillet
(2019) for more details).

Still there exists two simple ways to obtain the concentration of (X,Y ), the
first one being deduced from any identity (X,Y ) = φ(Z) with Z concentrated
and φ Lipschitz. It is also possible to deduce the concentration of (X,Y ) from
the concentration of X and Y when they are independent.

Lemma 5. Given (E, ‖ · ‖), a sequence of normed vector spaces and two se-
quences of independent random vectors X,Y ∈ E, if we suppose that X ∝ Eq(σ)
and Y ∝ Er(ρ) (where q, r > 0 are two positive constants and σ, ρ ∈ RN

+ are two
sequences of positive reals):

(X,Y ) ∝ Eq (σ) + Er (ρ) in (E2, ‖ · ‖ℓ∞),

where as in Proposition 5, we note for all x, y ∈ E2, ‖(x, y)‖ℓ∞ =
max(‖x‖, ‖y‖)6. Following our formalism, this means that there exist two pos-
itive constants C, c > 0 such that ∀p ∈ N and for any 1-Lipschitz function
f : (E2

p , ‖ · ‖ℓ∞) → (R, | · |), ∃dp = O(ρp), ∀t > 0 :

P
(∣

∣f(Xp, Yp)− f(X ′
p, Y

′
p)
∣

∣ ≥ t
)

≤ Ce(t/cσp)
q

+ Ce(t/cdp)
r

.

The sum being a 2-Lipschitz operation (for the norm ‖ · ‖ℓ∞), the concen-
tration of X + Y is easy to handle and directly follows from Lemma 5. To treat
the product of two vectors, we provide a general result of concentration for the
m-linear application on normed vector space.

Theorem 2. Given a (sequence of) integers m, let us consider:

• m (sequence of) normed vector spaces (E1, ‖ · ‖1), . . . , (Em, ‖ · ‖m).

• m (sequence of) norms (or semi-norms) ‖·‖′1, . . . , ‖·‖′m respectively defined
on E1, . . . , Em.

• m (sequence of) random vectors Z1 ∈ E1, . . . , Zm ∈ Em satisfying

Z ≡ (Z1, . . . , Zm) ∝ Eq(σ),

6One could have also considered a big number of equivalent norms like ‖(x, y)‖ℓ1 = ‖x‖+
‖y‖ or ‖(x, y)‖ℓ2 =

√

‖x‖2 + ‖y‖2.
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for some (sequence of) positive number σ ∈ R+ and for both norms
‖z1, . . . , zm‖ℓ∞ = supmi=1 ‖zi‖i and ‖z1, . . . , zm‖′ℓ∞ = supmi=1 ‖zi‖′i defined
on E = E1 × · · · × Em

7. For all i ∈ [m] , we denote for simplicity

µi = E[‖Zi‖′i].

• a (sequence of) normed vector space (F, ‖ · ‖), a (sequence of) mapping
φ : E1, . . . , Em → F , and a constant C > 0 such that ∀(z1, . . . , zm) ∈
E1 × · · · × Em and z′i ∈ Ei:

‖φ(z1, . . . , zm)− φ(z1, . . . , zi−1, z
′
i, . . . , zm)‖ ≤ C

∏m
j=1 max(‖zj‖′j , µj)

max(‖zi‖′i , µi)
‖z1 − z′i‖i .

Then there exists a constant κ > 0 such that we have the concentration:

φ (Z1, . . . , Zm) ∝ Eq
(

σ(κµ)(m−1)
)

+ E q
m
((κσ)m) , with µ(m−1) =

m
∑

i=1

µ1 · · ·µm

µi

(9)

(the combination of exponential concentration is described precisely in
Lemma 5).

Remark 11. Let us rewrite the concentration inequality (9) to let appear the
implicit parameter t. There exists two constants C, c ≤ O(1) such that for any
1-Lipschitz mapping f : F → R, for any t > 0:

P (|f(Φ(Z)− E[f(Φ(Z)]| ≥ t) ≤ Ce−(t/cσµ(m−1))q + Ce−(t/cσm)q/m , (10)

The two exponential terms Ce−(t/cσµ(m−1))q and Ce−(t/cσm)q/m induce two
regimes of concentration each one taking an advantage on the other one de-
pending on the values of t. Indeed:

t ≤ t0 ≡ (µ(m−1))
m

m−1 ⇐⇒ e−(t/cσµ(m−1))q ≥ e−(t/cσm)q/m .

As a consequence, when t ≤ t0, the leading term of concentration is Eq
(

σµ(m−1)
)

and the tail of the distribution is therefore controlled by E q
m
(σm). With a similar

result to Proposition 2, we can show that the observable diameter (i.e. the order
of the standard deviation of the 1-Lipschitz observations) of φ (Z1, . . . , Zm) is
then of order σµ(m−1) which means that Eq

(

σµ(m−1)
)

is the central term of the
concentration inequality. One can infer from (10) a weaker concentration result
that might be sufficient and far easier to handle, depending on our needs. For
all f : F → R, 1-Lipschitz and for all t > 0:

P (|f(Φ(Z)− E[f(Φ(Z)]| ≥ t) ≤ Ce−(t/cσµm−1)q + Ce−(µ/cσ)q , (11)

where we supposed for simplicity that µ1 = · · · = µm so that µ(m−1) = µm−1.

7One just needs to assume the concentration ‖Zi‖′i ∈ µi ± Eq(σ) and does not need the
global concentration of Zi for the norm (or seminorm) ‖ · ‖′i.
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Remark 12. To give a precise idea of the concentration rates given by Theo-
rem 2, consider the case where (E1, ‖ · ‖1) = · · · = (Em, ‖ · ‖m) = (E, ‖ · ‖) and

for all i ∈ [m], ‖E[Zi]‖ = O(ση
1/q
‖·‖ ). Then we know from Proposition 8 that

E[‖Zi‖] = O(ση
1/q
‖·‖ ) and therefore:

µ(m−1) = O

(

σm−1η
m−1

q

‖·‖

)

.

Following Remark 11, the observable diameter of φ(Z) would then be σmη
m−1

q

‖·‖
(for a canonical Gaussian vector of (Rp, ‖ · ‖), Z ∝ E2, the observable diameter

of φ(Z) would be O(n
m−1

2 )), and (11) could be rewritten:

P (|f(Φ(Z)− E[f(Φ(Z)]| ≥ t) ≤ Ce−(t/cσm)q/ηm−1

+ Ce−cη

Example 3. In (Rp, ‖ · ‖), we can look at the concentration of the product ⊙ :
x, y 7→ (xiyi)1≤i≤p ∈ Rp for which ‖x⊙ y‖ ≤ ‖x‖‖y‖∞. For any random
vectors Z,W ∝ E2, such that ‖EZ‖∞, ‖EW‖∞ = O(

√
log p), we have thanks

to Theorem 2:

Z ⊙W ∝ E2(
√

log p) + E1,

since Proposition 8 implies that E[‖Z‖∞] ≤ ‖EZ‖∞ + O(
√
log p) ≤ O(

√
log p),

and the same holds for E[‖W‖]. Now, consider a random matrix X ∝ E2 in
Mp,n such that E[X ] = 0. Since ∀A,B ∈ Mn,p, ‖ABT ‖F ≤ ‖A‖F‖B‖, we
see that the empirical covariance matrix has an observable diameter of order

O(
√
n+p
n ):

XXT

n
∝ E2

(√
p+ n

n

)

+ E1
(

1

n+ p

)

.

We give now some useful consequences of Theorem 2. We start with a result
very similar to Hanson-Wright concentration inequality we do not give the proof
here since we will provide later a more general result in a convex concentration
setting in Corollary 6.

Corollary 3. Given a deterministic matrix A ∈ Mp and two random vectors

Z,W ∈ Rp satisfying Z,W ∝ E2 and such that ‖E[Z]‖, ‖E[W ]‖ ≤ O(
√

log(p)),
we have the concentration:

ZTAW ∈ E2
(

‖A‖F
√

log p
)

+ E1(‖A‖F ) in (Mn, ‖ · ‖F ).

If we consider three random matrices X,Y ∈ Mp,n and D ∈ Dn such that
X,Y,D ∝ E2 and ‖E[D]‖, ‖E[X ]‖, ‖E[Y ]‖ ≤ O(1) then, Theorem 2 just allows us
to set the concentrationXDY T ∝ E2(n)+E3/2 since we can not get better bound
than ‖XDY T ‖F ≤ ‖X‖‖D‖F‖Y ‖. We are going to see in next proposition than
we can get a better observable diameter if we project the random matrix XDY T

on a deterministic vector.
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Corollary 4. Given three random matrices X,Y ∈ Mp,n and D ∈ Dn diagonal
such that X,Y,D ∝ E2, ‖E[X ]‖ ≤ O(

√
p+ n) and ‖E[D]‖, ‖E[Y ]‖ ≤ O(

√
logn)

then for any deterministic vector u ∈ Rp such that ‖u‖ ≤ 1:

XDY Tu ∝ E2
(

√

log(n)(p+ n)
)

+ E2/3 in (Rp, ‖ · ‖),

Proof. The Lipschitz concentration of XDY T is proven thanks to the inequal-
ities:

∥

∥XDY T v
∥

∥ ≤
{

‖X‖‖D‖‖Y T v‖
‖X‖‖D‖F‖Y T v‖∞.

We can bound thanks to the bounds already presented in Example 2 (the spec-
tral norm ‖ · ‖ on Dn is like the infinity norm ‖ · ‖∞ on Rn):

• µX ≡ E[‖X‖] ≤ ‖E[X ]‖+O(
√
p+ n) ≤ O(

√
p+ n),

• µD ≡ E[‖D‖] ≤ ‖E[D]‖+O(
√

log(n)) ≤ O(
√

log(n)),

• µY T ≡ E[‖Y T ‖] ≤ ‖E[Y T ]‖+O(
√

log(n)) ≤ O(
√

log(n)).

The result is then a consequence of Theorem 2 applied on the mapping

Φ : Mp,n ×Dn ×Mp,n −→ R
p

(X,D, Y ) 7−→ XDY T v,

with the tuple:

µ =
(

O(
√
n+ p), O(

√

logn), O(
√

logn)
)

satisfying µ(3−1) = O(
√

(n+ p) logn+ logn) ≤ O(
√

(n+ p) logn).

The next proposition reveals some instability of the class of Lipschitz concen-
trated vectors and the relevance of the notion of linear concentration. Indeed,
a Lipschitz concentration hypothesis does not always lead to results in terms of
Lipschitz concentration; in the last example of next proposition, it only entails
linear concentration.

Corollary 5. Given three random matrices X,Y ∈ Mp,n and D ∈ Dn and

a deterministic diagonal matrix D̃ ∈ Dn such that X,Y ∝ E2 in (Dn, ‖ · ‖F ),
D ∈ D̃±E2, in (Dn, ‖ · ‖F ) and ‖D̃‖, ‖E[X ]‖, ‖E[Y ]‖ ≤ O(1) we have the linear
concentration:

1

n
XDY T ∈ 1

n
E

[

XD̃Y T
]

± E1
(

log p√
n

)

+ E1/2
(

1√
n

)

| e−n
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Proof. Let us note x1, . . . , xn and y1, . . . , yn, the columns of, respectively, X
and Y , considering a matrix A ∈ Mp such that ‖A‖F ≤ 1, we can then compute:

1

n
Tr
(

AXDY T − E[AXD̃Y T ]
)

=
1

n

n
∑

i=1

Diy
T
i Axi − D̃iE[y

T
i Ai]

=
1

n

n
∑

i=1

(

yTi Axi − E[yTi Axi]
)

D̃i + E[yTi Axi]
(

Di − D̃i

)

+
1

n

n
∑

i=1

(

yTi Axi − E[yTi Axi]
)

(

Di − D̃i

)

Then, recalling from Theorem 2 thatXD̃Y T ∈ E2(1/
√
n)+E1(1/n) (since ‖D̃‖ ≤

O(1)) and from Corollary 3 that for all i ∈ [n] yTi Axi ∈ E[yTi Axi]±E2(
√
log p)+

E1, our hypotheses then provides the concentrations:

• 1
n Tr

(

AXD̃Y T − E

[

AXD̃Y T
])

∈ 0± E2(1/
√
n) + E1,

• 1
n Tr

(

E[Y TAX ]
(

D − D̃
))

∈ 0± E2(1/
√
n) (since ‖ 1

nE[Y
TAX ]‖F ≤ 1)

•
(

yTi Axi − E[yTi Axi]
)

(

Di − D̃i

)

∈ 0± E1(log p/
√
n) + E1/2(1/

√
n).8

We can then conclude the result thanks to Corollary 1

1.6. Concentration under highly probable event

When a random vector satisfies

X ∝ Eq(σ) + Eq/k(σ′),

implicitly, σ′ ≤ O(σ) (otherwise one would rather work with the simpler equiva-
lent concentration inequalityX ∝ Eq/k(σ′)). This is indeed the case in particular
for the random vectors whose concentration is expressed thanks to Theorem 2
(when the problem is well posed, we have µ(m−1) ≥ O(σm)). Then, following
Remark 11, we know that the leading term of the concentration is the term
Eq(σ) that gives an observable diameter of order O(σ). We then suggest to
work with a weaker but more flexible concentration inequality, that allows to

8This product concentration does not follow exactly the setting of Theorem 2 but can be
treated similarly thanks to the bound:

P

(∣

∣

∣yTi Axi − E[yTi Axi]
∣

∣

∣ |Di − E[Di]| ≥ t
)

≤ P

(∣

∣

∣
yTi Axi − E[yTi Axi]

∣

∣

∣
≥

√
t
)

+ P

(

|Di − E[Di]| ≥
√
t
)
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replace the unrelevent but precise term Eq/k(σ′) by an error term more easy to
handle as it is done in inequality (11).

Those flexible concentration inequalities, rely on the introduction of condi-
tioned random vectors. Letting X : Ω → E be a random vector and A ⊂ Ω
be a measurable subset of the universe Ω, A ∈ F , when P(A) > 0, the ran-
dom vector X |A designates the random vector X conditioned with A defined
as the measurable mapping (A,FA,P/P(A)) → (E, ‖ · ‖) satisfying: ∀ω ∈ A,
(X | A)(ω) = X(ω). When there is no ambiguity, we will allow ourselves to
designate abusively with the same notation “A”, a subset of Ω and the subset
X(A) of E.

Definition 6 (Concentration under highly probable event). Given two
(sequences of) positive numbers θ and σ, a (sequence of) random vector Z ∈
(E, ‖·‖) and a (sequence of) event AZ , we say that Z is Lipschitz q-exponentially
concentrated on the concentration zone AZ over θ with an observable diameter
of size σ, and we write

Z
AZ∝ Eq(σ) | e−θ, (12)

if and only if there exist some constants C, c > 0 such that:

(Z | AZ) ∝ Eq(σ) and P(Ac
Z) ≤ Ce−θ/c.

Be careful that the expectation of f(Z) is not always defined if Z is not expo-
nentially concentrated, but if (12) is satisfied, we can still consider:

EAZ [f(Z)] ≡ E[f(Z) | AZ ] =
E[1AZf(Z)]

P(AZ)
. (13)

We will sometimes omit to precise the concentration zone AZ when it is not
necessary. The notation Z ∝ Eq(σ) | e−θ implicitly requires the existence of a
concentration zone AZ satisfying the upper inequalities. We also adapt this no-
tation to the case of linear concentration and we then denote Z ∈ Z̃±Eq(σ) | e−θ,

(for Z̃ ∈ E, a deterministic equivalent of Z).

The concentration under highly probable event is of course a weaker notion than
the notion of concentration presented in Definition 1:

Lemma 6. Given three (sequences of) positive number σ, θ, µ > 0, a (sequence
of) random vector Z ∈ (E, ‖ · ‖) and two (sequences of) events A1 and A2, if
there exists two constants C, c > 0 such that P(Ac

2) ≤ Ce−c/µ, then:

Z
A1∝ Eq(σ) | e−θ =⇒ Z

A1∩A2∝ Eq(σ) | e−min(θ,µ).

In particular, Z ∝ Eq(σ) can be rewritten Z
Ω∝ Eq(σ) | e−θ for any (sequence of)

positive number θ > 0, therefore Definition 1 concerns a subclass of the random
vectors described by Definition 6.
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Proof. It is immediate, since P(A) ≥ K, for any independent copy of Z, Z ′

and any f : E → R 1-Lipschitz:

P (|f(Z)− f(Z ′)| ≥ t | A) ≤ 1

P(A)
P (|f(Z)− f(Z ′)| ≥ t) ≤ C

K
e−(t/cσ)q ,

for some constants C, c > 0.

Remark 13. Since the term e−θ/c does not vanish as t → ∞, this system of
concentration inequalities is only interesting in the regime where t = O(σ/θ1/q).
Note that when (12) is verified, then for any λ-Lipschitz mapping φ : E → E,
φ(Z) ∝ Eq(λσ) | e−θ (the term e−θ remains unchanged).

If we disregard the tail behavior, the expression of the concentration of a
product of random vectors is obtained straightforwardly.

Proposition 9. Under the hypotheses of Theorem 2, without supposing that m

is a constant but only that log(m) ≤ o(min1≤i≤m(
µq
i

σq , θ)), for all i ∈ [m], if we
assume (unlike in Theorem 2) that:

Z = (Z1, . . . , Zm) ∝ Eq(σ)9

then for some µi ≤ O(E[‖Zi‖′i,AZ ]), then we have the concentration:

φ (Z) ∝ Eq
(

σµ(m−1)
)

| e−min1≤i≤m µq
i /σ

q

.

Recall from Proposition 8 that when (E1, ‖ · ‖′1) = · · · = (Em, ‖ · ‖′m) = (E, ‖ · ‖′)
and ‖ · ‖′ admits a norm degree η′ and if Z ∝ Eq(σ), ‖E[Zi]‖′ = O(ση′1/q), then
µi = O(ση′1/q) and we can express the concentration:

φ (Z) ∝ Eq
(

(cσ)mη′
m−1

q

)

| e−η′
,

for some constant c > 0.

We know from Remark 11 that this proposition is a consequence of Theorem 2
when Z = (Z1, . . . , Zm) ∝ Eq(σ), but we still give the proof to show how to
handle the notion of concentration under highly probable events.

Proof. Let us introduce the event:

B = {∀i ∈ [m] : ‖Zi‖′i ≤ 2µi} .

9We can also take as hypothesis that Z
Az∝ Eq(σ) | e−θ for some θ > 0, then the result is

morally the same, one just has to replace the term e−min1≤i≤m µ
q
i /σ

q
by e−min1≤i≤m(

µ
q
i

σq ,θ)

in the expression of the concentration of φ(Z)
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We know from the concentration ‖Zi‖′i ∈ µi ± Eq(σ) | e−θ (for i ∈ [m]) that
there exist two constants C, c > 0 such that:

P(Bc) ≤
m
∑

i=1

P (‖Zi‖′i ≤ 2µi) ≤
m
∑

i=1

Ce−
cµ

q
i

σq ≤ Celog(m)−cmin1≤i≤m
µ
q
i

σq ≤ Ce−c′ min1≤i≤m
µ
q
i

σq ,

for some constant c′ > 0. Then, on B (recall from the discussion preceding
Definition 6 that we identify the event B with the subset Z(B) ⊂ E1×· · ·×Em),
φ : (E, ‖ · ‖ℓ∞) → (F, ‖ · ‖) is 2m−1µ(m−1)-Lipschitz, and since P((B)2) ≥ O(1),
one can invoke Remark 3 to set that:

P
(

|φ B(Z)− φ B(Z
′)| ≥ t | (Z,Z ′) ∈ B2

)

≤ Ce−(ct/σ(2µ)(m−1))q ,

for some constant C, c > 0, which concludes the proof.

Remark 14. We principally displayed Proposition 9 to give the reader an easy
way to apprehend the expression of the concentration of a product of random
vectors. However keep in mind that Theorem 2 is a far stronger result, obtained
thanks to the optimization of a trade-off parameter. It is not so obvious when
m = 2 (Theorem 2 just has the advantage to precisely describe the tail of the
concentration) but when m = 3, it is quite clear. For instance, we can deduce
from Corollary 4 (which is a direct consequence of Theorem 2) that (under the
hypotheses of Corollary 4):

XDY Tu ∝ E2(
√

log(n)(p+ n)) | e− log(n)(p+n) (14)

(see Remark 11 for more details on this inference). However, with Proposition 9,
one could only have obtained the concentration:

XDY Tu ∝ E2(
√

log(n)(p+ n)) | e− log(n)

which is far less interesting because if c > 0 is too small, (Ce−c log(n))n∈N con-
verges relatively slowly to 0.

Proposition 9 is though useful to control the concentration of high order prod-
ucts, because it does not let appear in the observable diameter, as in Theorem 2,
a term κk that is hard to control. For instance we provide in the following an
improvement of Corollary 4, allowing us to control ( 1nXDY

T )ku, as long as
‖ 1
nXDY

T ‖ is lower than one with high probability.

Proposition 10. Given three (sequence of) random matrices X,Y ∈ Mp,n

and D ∈ Dn such that X,Y,D ∝ E2, ‖E[X ]‖ ≤ O(
√
p+ n), ‖E[D]‖, ‖E[Y ]‖ ≤

O(
√
logn) we assume that there exists a positive constant ε > 0 such that:

P

(

1

n
‖XDY T ‖ ≥ 1− ε

)

≤ Ce−cn

Then for any u ∈ Rp such that ‖u‖ ≤ 1 and a (sequence of) integers k ∈ N:

(

1

n+ p
XDY T

)k

u ∝ E2((1− ε)k) | e−n.
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Proof. Let us bound as in the proof of Corollary 4:






















∥

∥

∥

∥

∥

(

1

n+ p
XDY T

)k

u

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

(

1

n+ p
XDY T

)k−1
X√
p+ n

∥

∥

∥

∥

∥

‖D‖F‖Xu‖∞
∥

∥

∥

∥

∥

(

1

n+ p
XDY T

)k

u

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

(

1

n+ p
XDY T

)k−1
X√
p+ n

∥

∥

∥

∥

∥

‖D‖‖Xu‖

If we note A ≡ { 1
n‖XDY T ‖ ≥ 1− ε}, we know from Proposition 9 that:























(

1

n+ p
XDY T

)k−1
X√
p+ n

∝ E2 | e−n

EA

[∥

∥

∥

∥

∥

(

1

n+ p
XDY T

)k−1
X√
p+ n

∥

∥

∥

∥

∥

]

≤ O((1 − ε)k),

besides, E[‖D‖],E[‖Xu‖∞] ≤ O(log(p + n)), thus we can apply a second time
Proposition 9 to obtain our result.

1.7. The class of convexly concentrated vectors and its degeneracy

Between Lipschitz concentration and linear concentration lies the convex
concentration which arises from a theorem of Talagrand (Talagrand, 1995), ex-
tending the list of examples of concentrated vectors. A random vector is said
to be convexly concentrated if its Lipschitz and quasi-convex observations are
concentrated.

Definition 7. Given a normed vector space (E, ‖·‖), an application f : E 7→ R

is said to be quasi-convex iif for any t ∈ R, the set {f ≤ t} ≡ {x ∈ E | f(x) ≤ t}
is convex.

Definition 8. Given a sequence of normed vector spaces (Ep, ‖ · ‖p)p≥0, a se-
quence of random vectors (Zp)p≥0 ∈ ∏

p≥0Ep, a sequence of positive reals

(σp)p≥0 ∈ RN
+ and a parameter q > 0, we say that Z = (Zp)p≥1 is convexly q-

exponentially concentrated with an observable diameter of order O(σp) iff there
exist two positive constants C, c > 0 such that ∀p ∈ N and for any 1-Lipschitz
and quasi-convex function f : Ep → R (for the norms ‖ · ‖p), ∀t > 0,

P (|f(Zp)− E[f(Zp)]| ≥ t) ≤ Ce(t/cσp)
q

,

We write in that case Zp ∝c Eq(σp) (or more simply Z ∝c Eq(σ)).10

The relevance of this definition is given by the next theorem. It is a com-
binatorial result which provides concentration inequalities for “discontinuous”
distributions (we can have atoms for instance: none of the previous theorems in
Subsection 1.1 allowed us to handle this scenario).

10One could have replaced in the inequality E[f(Zp)] by f(Z′
p) (with Z′

p, an independent
copy of Zp) or by mf (with mf a median of f(Zp)) as in Definition 1. All those three assertions
are equivalent.
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Theorem 3 (Talagrand (1995)). A random vector Z ∈ [0, 1]n with indepen-
dent entries satisfies Z ∝c E2.
The class of convexly concentrated random vectors is far less stable than the
class of Lipschitz concentrated vectors: the only simple transformations that
preserve concentration are the affine transformations (as for the class of linearly
concentrated vectors).

Proposition 11. Given two normed vector spaces (E, ‖ · ‖) and (F, ‖ · ‖′), a
random vector Z ∈ E and an affine mapping φ ∈ A(E,F ) such that ‖L(φ)‖ ≤ λ:

Z ∝c Eq(σ) =⇒ φ(Z) ∝c Eq(λσ).

As for Lipschitz concentration in Remark 3 (and for linear concentration – but
this results was not displayed as it is not used in our study), a lemma allows us
to treat the concentration of observations f(Z) when f is Lipschitz and quasi-
convex only on a convex subset A and {Z ∈ A} has positive probability non
decreasing with the dimension.

Lemma 7. Given a (sequence of) positive numbers σ > 0, a (sequence of)
random vector Z ∈ E satisfying Z ∝ Eq(σ), and a (sequence of) convex subsets
A ⊂ E, if there exists a constant K > 0 such that P(Z ∈ A) ≥ K then there
exist two constants C, s > 0 such that for any (sequence of) 1-Lipschitz and
quasi-convex mappings f : A→ R:

∀t > 0 : P (|f(Z)− E[f(Z)]| ≥ t | Z ∈ A) ≤ Ce−(t/cσ)q .

and similar concentration occur around any median of f(Z) or any independent
copy of Z (under A).

Proof. The proof is the same as the one provided in Remark 3 except that
this time, one needs the additional argument that since S = {f ≤ mf} (for mf ,
a median of f) is convex, the mappings z 7→ d(z, S) and z 7→ −d(z, S) are both
quasi-convex thanks to the triangular inequality.

Given two convexly concentrated random vectors X,Y ∈ E satisfying
X,Y ∝c Eq(σ), the convex concentration of the couple (X,Y ) ∝c Eq(σ) is en-
sured if:

1. X and Y are independent

2. (X,Y ) = u(Z) with u affine and Z ∝c Eq(σ).
We can then in particular state the concentration of X + Y as it is a linear
transformation of (X,Y ). For the product it is not as simple as for the Lips-
chitz concentration: we will consider the special cases E = R

p, E = Mp,n to
retrieve interesting properties. All the coming study is based on a preliminary
elementary result that does not need any proof.

Lemma 8. Given a convex mapping f : R → R, and a vector a ∈ R
p
+, the

mapping F : Rp ∋ (z1, . . . , zp) 7→
∑p

i=1 aif(zi) ∈ R is convex (so in particular
quasi-convex).

31



We need a supplementary result to efficiently manage the concentration rate
when multiplying a large number of random vectors.

Lemma 9. Given m non commutative variables a1, . . . , am of a given algebra,
we have the identity:

(−1)m
∑

σ∈Sm

aσ(1) · · · aσ(m) =
∑

I⊂[m]

(−1)|I|
(

∑

i∈I

ai

)m

,

where |I| is the cardinality of I.

Proof. The idea is to inverse the identity:

(a1 + · · ·+ am)m =
∑

J⊂I

∑

{i1,...,im}=J

ai1 · · ·aim ,

thanks to the Rota formula (see Rolland (2006)) that sets for any mappings f, g
defined on the set subsets of N and having values in a commutative group (for
the sum):

∀I ⊂ N, f(I) =
∑

J⊂I

g(J) ⇐⇒ ∀I ⊂ N, g(I) =
∑

J⊂I

µP(N)(J, I)f(J).

where µP(N)(J, I) = (−1)|I\J| is an analog of the Moëbus function for the order
relation induced by the inclusions in P(N). In our case, for any J ⊂ [m], if we
set:

f(J) =

(

∑

i∈J

ai

)m

and g(J) =
∑

{i1,...,im}=J

ai1 · · · aim ,

we see that for any I ⊂ [m], f(I) =
∑

J⊂I g(J), therefore taking the Rota
formula in the case I = [m] and multiplying on both sides by (−1)m, we
obtain the result of the Lemma (in that case, µP(N)(J, I) = (−1)m−|J| and
∑

{i1,...,im}=I ai1 · · · aim =
∑

σ∈Sm
aσ(1) · · · aσ(m)).

Proposition 12. Given a (sequences of) integer m ∈ NN and a (sequence of)
positive number σ > 0 such that m ≤ O(p), a (sequence of) m random vectors
X1, . . . , Xm ∈ Rp such that sup1≤i≤m ‖E[Xi]‖∞ = O((log p)1/q), if we suppose
that

X ≡ (X1, . . . , Xm) ∝c Eq(σ) in ((Rp)m, ‖ · ‖ℓ∞) ,

with, for any z = (z1, . . . , zm) ∈ (Rp)m, ‖z‖ℓ∞ = sup1≤i≤m ‖zi‖, then there
exists a constant κ ≤ O(1) such that:

X1 ⊙ · · · ⊙Xm ∈ Eq
(

(κσ)m (log(p))(m−1)/q
)

+ Eq/m ((κσ)m) in (Rp, ‖ · ‖).
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To simplify the preceding inequality, we add that if there exists a (sequence of)
positive numbers κ > 0 and two constants C, c > 0 such that, noting Aκ ≡ {∀i ∈
[m] : ‖Xi‖∞ ≤ κ}, P(Ac

κ) ≤ Ce−cp, then:

X1 ⊙ · · · ⊙Xm ∈ Eq
(

(2eκ)m−1σ
)

| e−p in (Rp, ‖ · ‖).
Proof. Let us first assume that all the Xi are equal to a vector Z ∈ Rp.
Considering a = (a1, . . . , ap) ∈ Rp, we want to show the concentration of
aTZ⊙m =

∑p
i=1 aiz

m
i where z1, . . . , zp are the entries of Z.

The mapping pm : x 7→ xm is not quasi-convex when m is odd, therefore, in
that case we decompose it into the difference of two convex mappings pm(z) =
p+m(z)− p−m(z) where:

p+m : z 7→ max(zm, 0) andp−m : z 7→ −min(zm, 0), (15)

(say that, if m is even, then we set p+m = pm and p−m : z 7→ 0). For the same
reasons, we decompose φ+a : z 7→ aT p+m(z) and φ−a : z 7→ aT p−m(z) into:

φ+a = φ+|a| − φ+|a|−a and φ−a = φ−|a| − φ−|a|−a

(for |a| = (|ai|)1≤i≤p), so that:

aTZ⊙m = φ+|a|(Z)− φ+|a|−a(Z)− φ−|a|(Z) + φ−|a|−a(Z)

becomes a combination of quasi-convex functionals of Z. We now need to mea-
sure their Lipschitz parameter. Let us bound for any z ∈ Rp:

∣

∣

∣φ+|a|(z)
∣

∣

∣ =

n
∑

i=1

|ai||zi|m ≤ ‖a‖‖z‖‖z‖m−1
∞ ,

and the same holds for φ+|a|−a, φ
−
|a| and φ−|a|−a. Therefore, we can conclude a

similar result to Theorem 2 with µ = E[‖Z‖∞] ≤ O(σ(log p)1/q). To show the
second concentration result (still when X1 = · · · = Xm), we just have to note
that under {‖Z‖∞ ≤ κ}, φ+|a|, φ+|a|−a, φ

−
|a| and φ−|a|−a are all ‖a‖κm−1-Lipschitz.

Now staying in the second setting (P(Ac
κ) ≤ Ce−cp), if we assume that the

X1, . . . , Xm are different, we employ Lemma 9 in this commutative case to write
(|Sm| = m!):

(X1 ⊙ · · · ⊙Xm) =
(−1)m

m!

∑

I⊂[m]

(−1)|I|
(

∑

i∈I

Xi

)⊙m

. (16)

Therefore, the sum (Rp)I ∋ z1, . . . , zi|I| 7→
∑

i∈I zi ∈ Rp being m-Lipschitz for

the norm ‖ · ‖∞, we know that ∀I ⊂ [m],
∑

i∈I Xi ∝c Eq(mσ) | e−p, and thus
(
∑

i∈I Xi)
⊙m ∈ Eq(mmκm−1σ) | e−p. We can then exploit Proposition 5 to

obtain




(

∑

i∈I

Xi

)⊙m




I⊂[m]

∈ Eq(mmκm−1σ) | e−p in
(

(Rp)2
m

, ‖ · ‖ℓ∞
)

,
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where we recall that 2m is the number of subsets of [m]. Thus summing the 2m

concentration inequalities, we can conclude from Equation (16) and the Stirling
formula mm

m! = em√
2πm

+O(1) that:

(X1 ⊙ · · · ⊙Xm) ∈ Eq
(

(2eκ)m−1σ
)

| e−p.

The demonstration follows exactly the same steps when we do not place
ourselves on Aκ (it is just a bit longer to write).

Under convex concentration hypothesis we also have a Hanson-Wright-like
concentration inequality as in Corollary 3.

Corollary 6. Given a deterministic matrix A ∈ Mp and two random vectors

Z,W ∈ Rp satisfying Z,W ∝c E2 and such that ‖E[Z]‖, ‖E[W ]‖ ≤ O(
√

log(p)),
we have the concentration:

ZTAW ∈ E2
(

‖A‖F
√

log p
)

+ E1(‖A‖F ) in (Mn, ‖ · ‖F ).

Proof. We are going to employ the singular decomposition:

A = PT
AΛQA

with Λ = Diag(λ) ∈ Dp, PA, QA ∈ Op. Noting Ž ≡ PAX and W̌ ≡ QAY , since
M → PAM and M → QAM are both 1-Lipschitz linear transformations on Rp,
we see from Proposition 11 that Ž, W̌ ∝c E2. Besides we know from Example 2
that:

E[‖Ž‖∞] ≤ ‖E[Ž]‖∞ +O(
√

log p) ≤ ‖E[Z]‖+O(
√

log p) ≤ O(
√

log p),

and the same way E[‖W̌‖∞] ≤ O(
√
log p). Now, since for all vector z, w ∈ Rp,

‖z ⊙ w‖ = ‖w ⊙ z‖ ≤ ‖z‖‖w‖∞, Proposition 12 implies the concentration
Ž ⊙ W̌ ∈ E2(

√

log(pn)) + E1 which allows us to conclude that:

ZTAW = (Ž ⊙ W̌ )Tλ ∈ E2
(

‖λ‖
√

log p
)

+ E1(‖λ‖),

that gives us the result of the corollary since ‖λ‖ = ‖A‖F .

Corollary 5 that gives the linear concentration of random matrices 1
nXDY for

X,Y,D Lipschitz concentrated and D diagonal can not be set with good conver-
gence speed whenX,D, Y are simply convexly concentrated. We can still obtain
a precise estimation of 1

nE[XDY ] that will be utterly important for the design
of a computable deterministic equivalent of the resolvent Q = (In − 1

nXX
T )−1.

Corollary 7. Given three random matrices X,Y ∈ Mp,n and D ∈ Dn such
that X,Y ∝c E2 in (Mp,n, ‖ · ‖F ), D ∈ E2(1/

√
n) in (Dn, ‖ · ‖)11 and

11Note than in Corollary 5, to set the concentration of 1
n
XDY T , we had to assume that

D ∈ E2(1/
√
n) in (Dn, ‖ · ‖F ) (and not in (Dn, ‖ · ‖))
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‖E[D]‖, ‖E[X ]‖, ‖E[Y ]‖ ≤ O(1), we have the bound:

∥

∥

∥

∥

E

[

1

n
XDY T

]

− E

[

1

n
XE[D]Y T

]∥

∥

∥

∥

F

≤ O

(
√

log p

n

)

.

If in addition, ‖E[D]− D̃‖F ≤ O(1/
√
n)12, then:

∥

∥

∥

∥

E

[

1

n
XDY T

]

− E

[

1

n
XD̃Y T

]∥

∥

∥

∥

F

≤ O

(
√

log p

n

)

.

Proof. As in the proof of Corollary 4 note x1, . . . , xn and y1, . . . , yn, the
columns of, respectively, X and Y , considering a matrix A ∈ Mp such that
‖A‖F ≤ 1, we can bound:
∣

∣

∣

∣

E

[

1

n
Tr
(

AXDY T −AXE[D]Y T
)

]∣

∣

∣

∣

≤ 1

n

n
∑

i=1

E
[∣

∣yTi Axi − E[yTi Axi]
∣

∣ |Di − E[Di]|
]

Corollary 6 implies that for all i ∈ [n] yTi Axi ∈ E[yTi Axi]±E2(
√
log p)+ E1, and

we can bound thanks to Hölder inequality:

E
[∣

∣yTi Axi − E[yTi Axi]
∣

∣ |Di − E[Di]|
]

≤ O

(
√

log p

n

)

.

which allows us to set the first result of the corollary.
For the second result, let us bound:

∣

∣

∣

∣

E

[

1

n
Tr
(

AXDY T −AXD̃Y T
)

]∣

∣

∣

∣

≤
∣

∣

∣

∣

E

[

1

n
Tr
(

AXDY T −AXE[D]Y T
)

]∣

∣

∣

∣

+

∣

∣

∣

∣

1

n
Tr
(

E
[

Y TAX
]

(

E [D]− D̃
))

∣

∣

∣

∣

,

we can then conclude since ‖ 1
nE
[

Y TAX
]

‖F ≤ O(1) and ‖E [D] − D̃‖F ≤
O(1/

√
n).

A similar result to Proposition 12 holds for matrix product but for that one
needs first to introduce a new notion of concentration, namely the transversal
convex concentration. Let us give some definitions.

Definition 9. Given a sequence of normed vector spaces (Ep, ‖ · ‖p)p≥0, a se-
quence of groups (Gp)p≥0, each Gp (for p ∈ N) acting on Ep, a sequence of
random vectors (Zp)p≥0 ∈ ∏p≥0Ep, a sequence of positive reals (σp)p≥0 ∈ RN

+

and a parameter q > 0, we say that Z = (Zp)p≥0 is convexly q-exponentially
concentrated transversally to the action of G with an observable diameter of or-
der σ and we note Z ∝T

G Eq(σ) iff there exists two constants C, c ≤ O(1) such
that ∀p ∈ N and for any 1-Lipschitz, quasi-convex and G-invariant13 function
f : Ep → R, ∀t > 0 :

12This in particular the case if D ∈ D̃ ± E2(1/
√
n) in (Dn, ‖ · ‖F ) (see Lemma 2)

13For any g ∈ G and x ∈ E, f(x) = f(g · x)
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P (|f(Zp)− E[f(Zp)]| ≥ t) ≤ Ce(t/cσp)
q 14.

Remark 15. Given a normed vector space (E, ‖ · ‖), a group G acting on E
and a random vector Z ∈ E, we have the implication chain:

Z ∝ Eq(σ) ⇒ Z ∝c Eq(σ) ⇒ Z ∝T
G Eq(σ).

Considering the actions:

• Sp on Rp where for σ ∈ Sp and x ∈ Rp, σ · x = (xσ(i))1≤i≤p,

• Op,n ≡ Op × On on Mp,n where for (P,Q) ∈ Op,n and M ∈ Mp,n,
(P,Q) ·M = PMQ,

the convex concentration in Mp,n transversally to Op,n can be expressed as a
concentration on Rp transversally to Sp thanks to the introduction the mapping
σ providing to any matrix the ordered sequence of its singular values :

σ : Mp,n → R
d
+

M 7→ (σ1(M), . . . , σd(M)).

with d = min(p, n)

(there exists (P,Q) ∈ Op,n such that M = PΣ(M)Q, where Σ ∈ Mp,n has
σ1(M) ≤ · · · ≤ σd(M) on the diagonal).

Theorem 4 (Louart and Couillet (2019)). Given a random matrix Z ∈
Mp,n:

Z ∝T
Op,n

Eq(σ) ⇐⇒ σ(Z) ∝T
Sd

Eq(σ),

(where the concentrations inequalities are implicitely expressed for euclidean
norms: ‖ · ‖F on Mp,n and ‖ · ‖ on Rd).

We can now set the result of concentration of a product of matrices convexly
concentrated.

Proposition 13. Given three sequences m ∈ NN and σ, κ ∈ RN
+, a random

random matrix X ∈ Mp, if we suppose that

X ∝c Eq in (Mp, ‖ · ‖F ) ,15

and that there exists two constants C, c > 0 such that P(‖X‖ ≥ κ) ≤ Ce−cp,
then:

Xm ∈ Eq
(√

p (2eκ)
m−1

σ
)

| e−p in (Mp, ‖ · ‖∗) ,

where ‖ · ‖∗ is the nuclear norm satisfying for any M ∈ Mp,n ‖M‖∗ =

Tr(
√
MMT ) (it is the dual norm of the spectral norm). Now with the same

14Once again, we point out that one could have replaced here E[f(Zp)] by f(Z′
p) of mf .

15nothing is changed if we rather assume X ∝c Eq | e−p.
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hypotheses, if we consider this time that the random matrix X belongs to Mp,n

and satisfies ‖E[X ]‖ = O((p + n)1/q), we have the concentrations

(XXT )m ∈ Eq
(√

p+ n (2eκ)
2m−1

σ
)

| e−(p+n) in (Mp, ‖ · ‖∗) ,

(XXT )mX ∈ Eq
(√

p+ n (2eκ)2m σ
)

| e−(p+n) in (Mp,n, ‖ · ‖∗)

Remark 16. We could have given a result of concentration concerning the prod-
uct of different matrices X1, . . . , Xm but the expression would have been com-
plicated since our proof relies on Lemma 9, and without a strong hypothesis of
commutativity on the matrices X1, . . . , Xn, one could not have gone further than
a concentration on the whole term

∑

σ∈Sp
Tr(Xσ(1) · · ·Xσ(m)). However, if m

is small, say, if m ≤ O(1), and the matrices X1, . . . , Xm have different sizes,
we can still introduce the random matrix

Y =













0 Xm−1

. . .
. . .

. . . X1

Xm 0













then Y m =













0 Xm
1

. . .
. . .

. . . X2
3

X1
2 0













,

where for i, j ∈ {2, . . . ,m − 1}, Xj
i ≡ XiXi+1 · · ·XmX1 · · ·Xj and Xm

1 ≡
X1 · · ·Xm, then the concentration Y m ∈ Eq

(√
pκm−1σ

)

| e−p in (Mp, ‖ · ‖∗)
directly implies the concentration of Xm

1 .

Remark 17. Although a concentration with the nuclear norm is a stronger re-
sult that the concentration with the Frobenius norm as the one we got for a
product of Lipschitz concentrated matrices (see Proposition 9), note however
that here, there is a supplementary constant

√
p (or

√
p+ n) that increases

greatly the observable diameter of Xm when X is only convexly concentrated.

Proof (Proof of Proposition 13). We know from Theorem 4 that:

σ(X) ∝T
Sp

Eq | e−p,

and therefore, as a
√
p-Lipschitz, linear observation of σ(X)⊙m ∈

Eq
(

κm−1σ
)

| e−p, Tr(Xm) follows the concentration:

Tr(Xm) =

p
∑

i=1

σi(X)m
Aκ∈ Eq

(√
pκm−1σ

)

| e−p.

However, to obtain the linear concentration of Xm, what we would like to show
is the concentration of any Tr(AXm), for a deterministic matrix A ∈ Mp such
that ‖A‖ ≤ 1. We know from Lemma 9 applied on the matrices (A,X, . . . , X) ∈
(Mp)

m that:

Tr(AXm) =
(−1)m

m!

m−1
∑

k=0

(

m− 1

k

)

(−1)k (km Tr(Xm)− Tr ((A+ kX)
m
)) .
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Therefore, summing the concentrations:

km Tr(Xm)− Tr ((A+ kX)m) ∈ Eq
(√

p (κm)m−1 σ
)

| e−p,

we obtain the first result of the proposition (thanks again to the Stirling for-
mula).

The second result is obtained the same way looking at projections of powers
of the matrix

Y ≡
(

0 XT

X 0

)

∝c E2 in (Mp+n,p+n, ‖ · ‖F )

(like X). Given m ∈ N, the concentration of (XXT )m and (XXT )mX is then
a consequence of the identities:

Y 2m =

(

0 (XTX)m

(XXT )m 0

)

; Y 2m+1 =

(

0 (XTX)mXT

(XXT )mX 0

)

.

2. Concentration of the solutions of Y = φ(Y )

Given a concentrated random vector X ∈ E and a random vector Y = φ(X)
for some mapping φ : E → E, we have seen in the previous section several
results to “transfer” the concentration of X into a concentration for Y . We
are now interested in the more intricate concentration of the solution of the
equation:

Y = φ(Y )

where φ is now a random mapping satisfying some concentration properties.
The next Remark helps us circumventing this issue.

Remark 18. To introduce the reader to the issues and settings of this section,
let us consider the simple case where E = R and φ : t 7→ 1 + Xt for X ∈ R,
a Gaussian random variable with zero mean and variance equal to σ2 (X ∼
N (0, σ2)). We know that X ∈ E2. The solution X of the equation Y = φ(Y ) is
only defined if X 6= 1, and in that case Y = 1/(1 −X). The law fY of Y can
be computed in this particular case and one obtains:

fY (y) =
e−(1− 1

y )2/σ2

(1− y)2
.

Thus Y is clearly not exponentially concentrated (when y → ∞, fY (y) ∼ e−1/σ2

y2

therefore the expectation of Y is not even defined). However, if σ is small enough
(at least σ ≤ o(1)), it can be interesting to consider the event AY ≡ {X ≤ 1

2}
satisfying P(Ac

Y ) ≤ Ce−σ2/2 and the mapping f : z 7→ 1
1−z being 4-Lipschitz

on (−∞, 12 ], one sees that Y = f(X) ∈ E2 | e−σ2

. Following this setting, in
more general cases, we will always place ourselves in a concentration zone AY

where the fixed point Y is defined; sufficiently small to retrieve an exponential
concentration with Y | AY but large enough to be highly probable.
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2.1. When φ is affine and L(φ)k(φ(0)) ∈ E2(σ(1 − ε)k) for all k ∈ N

Theorem 5. Given a (sequence of) reflexive vector space (E, ‖·‖), let φ ∈ A(E)
be a (sequence of) random mapping such that and there exists a constant ε > 0
and two (sequences of) integers σ, θ > 0 satisfying for all (sequence of) integer
k:

L(φ)k(φ(0))
Aφ∈ Eq

(

σ(1 − ε)k
)

| e−θ in (E, ‖ · ‖) and Aφ ⊂ {‖L(φ)‖ ≤ 1− ε},

. Then under the event Aφ, the random equation

Y = φ(Y )

admits a unique solution Y = (IdE − L(φ))−1φ(0) satisfying the linear concen-
tration:

Y
Aφ∈ Eq(σ) | e−θ.

Although this theorem is far easier to use than Theorems 6 or 7, we did not give
directly because the complex setting of Theorem 6 can be adapted more easily
to study afterwards Lipschitz concentration of solutions to non affine equation.

Proof. Under Aφ, Y is well defined and expresses:

Y = (IdE − L(φ))−1φ(0) =

∞
∑

k=0

L(φ)kφ(0)

One can then conclude with Corollary 2 that (Y |AQ) ∈ Eq(σ/ε) = Eq(σ).
As an important illustration of this theorem, let us employ the result of the

concentration of the powers of convexly concentrated random matrices (Propo-
sition 13) to set the linear concentration of their resolvent.

Corollary 8. Let X ∈ Sp be a symmetric random matrix satisfying X ∝c E2,
and h, l ≤ O(1) be two constant integers and ε > 0, a constant. If

‖E[X ]‖/√p ≤ 1−2ε
2e ,

then with high probability16 Q ≡ (Ip − (X/
√
p)h)−1 is well defined and

1

pl/2
QX l ∈ E2((1− ε)l) | e−p in (Mp, ‖ · ‖∗).

The same concentration result holds for the random matrix (Ip −
( 1nXX

T )h)−1( 1nXX
T )l or even (Ip − ( 1nXX

T )h)−1( 1nXX
T )lX/

√
n when X ∈

Mp,n and satisfies X ∝c E2 and ‖E[ 1nXXT ]‖ ≤ 1−2ε
(2e)2 .

16We will use several times the expression “with high probability”, mathematically speaking
it does not mean much in general, but in our case it means that the assertion is true with a
probability bigger than 1−Ce−θ where θ generally follows the dimension of the objects under
study, here θ = p
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At first sight, the concentration inequality obtained on the resolvent might
seem insufficient, that is untrue. The fact that the concentration is obtained in
(Mp, ‖ · ‖∗) allows us to set that for any matrix A ∈ Mp such that ‖A‖ ≤ O(1):

1

p
Tr(AQ) ∈ E2

(

1

p

)

| e−p

which is a very efficient concentration inequality, at the core of random matrix
theory inferences.

Proof. We only need to verify the hypotheses of Theorem 5 in the normed
vector space (Mp, ‖ · ‖∗) and for the mapping φ : q 7→ (X/

√
p)hq + (X/

√
p)l.

We know that if we set AX = {‖X‖ ≤ 1−ε
2e

√
p}, then P(Ac

X) ≤ Ce−cp, for some
constants C, c > 0. Besides, we know from Proposition 13 that for any k ∈ N

φk(φ(0)) =

(

X√
p

)kh+l AX∈ E2((1− ε)l((1 − ε)h)k) | e−p in (Mp, ‖ · ‖∗) ,

which allows us to conclude on the concentration of 1
pl/2QX

l.

Remark 19. In the setting of Theorem 5 (or Theorems 6, 7, 8 and 9), once
one knows that Y ∝ Eq (σ) | e−η one might be tempted to estimate EAY [Y ] with

the fixed point Ỹ1, solution to:

Ỹ1 = EAφ
[φ(Ỹ1)].

That is not so simple : most of the time ‖EAφ
[Y ]− Ỹ1‖ ∼ O(1), and it is more

clever to take as in our proof the solution to the expectation of an O(log n)
iteration of the fixed point equation (the ideal estimator being Ỹ∞ satisfying
Ỹ∞ = limk→∞ E[φk(Ỹ∞)], in that case of course ‖EAφ

[Y ]− Ỹ∞‖ = O(1/η1/q)).
However, if we are given a smaller semi-norm ‖·‖ satisfying ∀x ∈ E, ‖x‖′ ≤

‖x‖ Ỹ1 can be a relevant choice when η′ ≡ η(E,‖·‖′) ≪ 1/σq and when the
Lipschitz properties of φ are the same for this norm. Let us thus suppose that
P(‖φ‖(L,‖·‖′) > 1 − ε) ≤ Ce−cη, for two constants C, c > 0, where ‖φ‖(L,‖·‖′)

designates the Lipschitz parameter of φ for the norm ‖ · ‖′. We have the same
concentration inequality Y ∝ Eq (σ) | e−η in (E, ‖ · ‖′) but this time if we set
A′ = Aφ ∩ {‖φ‖(L,‖·‖′) ≤ 1− ε} we can bound:

EA′

[

‖Y − Ỹ1‖′
]

≤ EA′

[

‖φ(Y )− φ(Ỹ1)‖′
]

+ EA′

[

‖φ(Ỹ1)− EA′ [φ(Ỹ1)]‖′
]

≤ (1− ε)EA′

[

‖Y − Ỹ1‖′
]

+O
(

ση′1/q
)

,

thus we see that EA′

[

‖Y − Ỹ1‖′
]

= O(ση′1/q) and thanks to Proposition 8:

∥

∥

∥EA′ [Y ]− Ỹ
∥

∥

∥

′
≤ O

(

EA [‖EA′ [Y ]− Y ‖′] + EA′

[

‖Y − Ỹ1‖′
])

≤ O
(

ση′1/q
)

.
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This inequality will be in particular used when q = 2, E = Rp, ‖ · ‖ is the
euclidean norm and ‖ · ‖′ is the infinite norm. In that case, if σ =

√
η‖·‖ =

√
p,

one has indeed:

∥

∥

∥EA′ [Y ]− Ỹ
∥

∥

∥

∞
≤ O

(
√

log p

p

)

.

Nevertheless, this remark does not apply to the case described by Corollary 8,
because then, q = 2, E = Mp the big norm is the Frobenius norm ‖·‖F the small
norm is the spectral norm ‖ · ‖Sp (usually we note it ‖ · ‖), η‖·‖F

≫ σ = η‖·‖Sp

and therefore the solution of:

Q̃ = Ip +
1

n
EA′ [XXT ]Q̃.

is not a deterministic equivalent (for the spectral norm) of the expectation of
Q = (Ip− 1

nXX
T )−1. Indeed, the estimation of EAQ [Q] is harder to handle and

will be done precisely in Section 3 with the Frobenius norm.

2.2. When φk(y) is linearly or Lipschitz concentrated for k ≤ log(η(E,‖·‖)) and
y deterministic and bounded.

When we can not get a decreasing observable diameter for the iterates of φ,
or when φ is not affine, one needs a different approach that allows to treat, at
the same time affine and non-affine mappings φ and extend very simply linear
concentration inferences to Lipschitz concentration inferences. We first give the
result of concentration of a mapping φ affine since the hypotheses express more
simply.

Theorem 6. Given a (sequence of) reflexive17 vector space (E, ‖ ·‖), we note η
its norm degree (of course η ≥ O(1)). Let φ ∈ A(E) be a (sequence of) random
mapping such that there exists two (sequences of) integers σ, θ > 0 satisfying
for all (sequence of) integer k such that k ≤ O(log(η)) and for any y ∈ E such
that ‖y‖ ≤ O(1):

φk(y)
Aφ∈ Eq (σ) | e−θ in (E, ‖ · ‖) (17)

We additionally suppose that there exists a constant ε ≥ O(1) such that Aφ ⊂
{‖L(φ)‖ ≤ 1− ε} (recall that L(φ) = φ− φ(0) ∈ L(E)) and that EAφ

[‖φ(0)‖] ≤
O(1). Then under the event Aφ, the random equation

Y = φ(Y )

admits a unique solution Y = (IdE − L(φ))−1φ(0) satisfying the linear concen-
tration:

Y
Aφ∈ Eq (σ) | e−θ.

17We suppose E reflexive to be able to define an expectation operator on the set of random
vectors of E – see Appendix A
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Remark 20. One can then generally adapt the choice of Aφ to the needs of
this theorem. More precisely, if we note Ak the concentration zone of φk, one
can choose Aφ = Ak ∩ {‖L(φ)‖ ≤ 1 − ε} if there exist two constants C, c > 0,
such that P({‖L(φ)‖ ≥ 1− ε}) ≤ Ce−cθ (that could have been an assumption of
the Theorem replacing “Aφ ⊂ {‖L(φ)‖ ≤ 1− ε}”).

Remark 21. When σ = O(1/η1/q) and θ = O(η) for η = η(E,‖·‖) (for instance
if φ : Y 7→ XTY/

√
n and X ∝ 0 ± E2) one has often (at least when φ is Lips-

chitz or convexly concentrated) ‖L(φ)‖ ∈ E[‖L(φ)‖] ± Eq(1/η1/q) and therefore
if E[‖L(φ)‖] ≤ 1 − 2ε, then P(‖L(φ)‖ ≤ 1 − ε) ≤ Ce−η/c for some constants
C, c > 0.

Remark 22. Sometimes, one could consider a situation where for l =
O(log(η)), and ‖y‖ = O(1), L(φ)l(y) ∈ Eq (σ) | e−θ but φl(y) has an observ-
able diameter of a bigger order than σ (and ‖φ(0)‖ ≫ O(1)). In that case, if,
say, φ(0) ∈ Eq (κ) | e−θ and EAφ

[‖φ(0)‖] ≤ O(κ), one then has to consider the
mapping φκ : x 7→ φ(κx)/κ that satisfies the hypothesis of the theorem:

• for all y ∈ E, L(φκ)l(y) = L(φ)l(y) thus they satisfy the same hypotheses

• φlκ(0) =
∑l

i=0 L(φ)i(φ(0)/κ) ∈ Eq(lσ) (σ) | e−θ (we implicitly assume
that the bilinear form L(φ)i(φ(0)/κ) taken in L(φ)i and φ(0) follows the
concentration properties described by Theorem 2, or Propositions 9, 12
or 13)

• EAφ
[‖φκ(0)‖] = EAφ

[‖φ(0)‖]/κ ≤ O(1)

Then the solution Yκ verifying Yκ = φκ(Yκ) follows the concentration Yκ ∝
E2(σ) |e−θ and therefore Y = κYκ ∝ E2(κσ) |e−θ. We found cleverer to keep the
simpler setting possible for the theorem, and to do this kind of small adaptation
if needed.

It is possible to prove a stronger result than Theorem 6 if there exists a
supplementary norm ‖ · ‖′ satisfying ∀y ∈ E: ‖y‖′ ≤ ‖y‖ allowing us to weaken
the hypothesis.

Theorem 7. In the setting of Theorem 6, given any supplementary norm ‖ · ‖′
on E, if we suppose:

• (17) is true just any y ∈ E such that ‖y‖′ ≤ O(1) (and not for any y ∈ E
such that ‖y‖ ≤ O(1)),

• EAφ
[‖φ(0)‖′] ≤ O(1) instead of EAφ

[‖φ(0)‖] ≤ O(1),

• Aφ ⊂ {‖L(φ)‖′ ≤ 1− ε} (in addition to Aφ ⊂ {‖L(φ)‖ ≤ 1− ε})

then we obtain the same concentration result for Y .

Let us prove this theorem that will imply directly Theorem 7 (taking ‖·‖′ = ‖·‖).
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Proof. Under Aφ, the mapping y 7→ φ(y) is contractive, that proves the exis-
tence and uniqueness of Y (E is complete since it is reflexive – see Remark 27).

To show the linear concentration of Y thanks to Remark 27, let us consider
a unit normed linear form f on E (it satisfies ∀x ∈ E: |f(x)| ≤ ‖x‖). For

a reason that will become clear later, we let k = ⌈− log(η)
q log(1−2ε)⌉ (in particular

k ≤ O(log(η))). There exist two constants C, c ≤ O(1) such that for any y ∈ E
and any sequence of unit normed linear function fp : Ep → R (we write it
rigorously just this time to clarify one more time our notations) ∀p ∈ N, ∀t > 0:

P

(∣

∣

∣fp(φ
kp
p (y))− EAφp

[fp(φ
kp
p (y))]

∣

∣

∣ ≥ t | Aφp

)

≤ Ce−(t/cσp‖y‖)q ,

where the notation “EAφp
” is introduced in equation (13). Note that the observ-

able diameter (see Remark ??) depends on the norm of y. Let us now introduce
the function

φ̃k : E −→ E

y 7−→ EAφ
[φk(y)].

We can then bound:

‖L(φ̃k)‖ = ‖L(EAφ
[φk])‖ ≤ EAφ

[

‖L(φ)k‖,
]

≤ E
[

‖L(φ)‖k, ‖L(φ)‖ ≤ 1− ε
]

≤ 1− ε < 1.

The mapping y 7→ φ̃k(y) is thus contractive: we can introduce the (uniquely
defined) deterministic vector Ỹ satisfying:

Ỹ = φ̃k(Ỹ ),

which we will show is a deterministic equivalent for Y . To this end, let us first
bound ‖Ỹ ‖′ to be able to control the concentration of φk(Ỹ ):

‖Ỹ ‖′ =
∥

∥

∥

∥

∥

EAφ

[

L(φ)kỸ +
k−1
∑

i=0

L(φ)i(φ(0))
]∥

∥

∥

∥

∥

′

≤ EAφ

[

‖L(φ)‖′k‖Ỹ ‖′ +
(

k−1
∑

i=0

‖L(φ)‖′i
)

‖φ(0)‖′
]

≤ (1− ε)‖Ỹ ‖+ 1

ε
EAφ

[‖φ(0)‖′] .

Therefore ‖Ỹ ‖′ ≤ 1
ε2EAφ

[‖φ(0)‖′] ≤ O(1) and (φk(Ỹ ) | Aφ) ∝ Eq(σ).
Then let us try and bound ‖Y − Ỹ ‖ under Aφ:

∥

∥

∥Y − Ỹ
∥

∥

∥ =
∥

∥

∥φk(Y )− φ̃k(Ỹ )
∥

∥

∥ ≤
∥

∥

∥φk(Y )− φk(Ỹ )
∥

∥

∥+
∥

∥

∥φk(Ỹ )− φ̃k(Ỹ )
∥

∥

∥

≤ ‖L(φ)‖k
∥

∥

∥Y − Ỹ
∥

∥

∥+
∥

∥

∥φk(Ỹ )− φ̃k(Ỹ )
∥

∥

∥ .

43



Under Aφ, ‖L(φ)‖k ≤ 1− ε, so that:

∥

∥

∥Y − Ỹ
∥

∥

∥ ≤ 1

ε

∥

∥

∥φk(Ỹ )− φ̃k(Ỹ )
∥

∥

∥ .

But we know from Proposition 8 that:
(∥

∥

∥φk(Ỹ )− φ̃k(Ỹ )
∥

∥

∥ | Aφ

)

∈ O(η1/qσ)± Eq(η1/qσ)

which allows us to conclude that
∥

∥

∥Y − Ỹ
∥

∥

∥ ∈ O(η1/qσ)± Eq(η1/qσ) | e−θ.

Returning to our initial goal (the linear concentration of Y ), we now bound,
for f ∈ L(E) and under Aφ (we still have ‖L(φ)‖ ≤ 1− ε),

∣

∣

∣f(Y )− f(Ỹ )
∣

∣

∣ ≤
∣

∣

∣f
(

φk(Y )− φk(Ỹ )
)∣

∣

∣+
∣

∣

∣f
(

φk(Ỹ )− φ̃k(Ỹ )
)∣

∣

∣

≤ (1− ε)k
∥

∥

∥Y − Ỹ
∥

∥

∥+
∣

∣

∣f
(

φk(Ỹ )− φ̃k(Ỹ )
)∣

∣

∣ .

Further, noting that, with our choice of k, (1 − ε)k = O(1/η1/q), we conclude
again from the concentration of φk(Ỹ ) that

f(Y ) ∈ f(Ỹ )± Eq (σ) | e−θ,

thereby giving the sought-for concentration result.

It is possible to get a similar result to Theorem 6 with non affine mappings
and in the case of Lipschitz concentration. Given a normed vector space (E, ‖·‖),
we note F(E), the set of mappings from E to E. If f is bounded, we denote
‖f‖∞ = supx,y∈E ‖f(x)‖. For a Lipschitz mapping f ∈ F (E), we introduce the
seminorm ‖ · ‖L which provides the Lipschitz parameter and will play the role
of ‖L(φ)‖ in Theorem 6:

‖f‖L = sup
x,y∈E
x 6=y

‖f(x)− f(y)‖
‖x− y‖ .

Theorem 8. Let us consider a (sequence of) reflexive vector space (E, ‖ · ‖)
admitting a finite norm degree that we note η. Given φ ∈ F (E), a (sequence of)
random mapping, we suppose that there exists a (sequences of) integer σ > 0, a
constant ε > 0 such that there exists a (sequence of) highly probable event Aφ

satisfying:

• Aφ ⊂ {‖φ‖L ≤ 1− ε},
• for any (sequence of) integer k such that k ≤ O(log(η)), noting y0 ∈ E, the

(sequence of) fixed point to the deterministic equation y0 = EAφ
[φk](y0)

18:

φk(y0)
Aφ∝ Eq (σ) | e−θ in (E, ‖ · ‖).

18the first assumption on ‖φ‖L ensures the existence and uniqueness of y0.
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Then, the random equation Y = φ(Y ) admits under Aφ a unique solution Y ∈ E
satisfying the Lipschitz concentration:

Y
Aφ∝ Eq (σ) | e−θ.

It can happen that one wants to employ Theorem 8 for functions φ whose
Lipschitz semi-norm are not finite. Still some property of concentration on
fixed point can be inferred if the Lipschitz parameter of φ can be controlled
around y0 satisfying y0 = EAφ

[φk](y0) or, more simply y0 = E[φ(y0)] we detail
this marginal setting in Appendix B.

Proof. The existence and uniqueness of Y under Aφ is justified, as in the proof
of Theorem 6 by the contractiveness of φ. Of course, y 7→ EAφ

[φk(y)] is also
contractive, wich justifies the existence of y0.

If we first want to show that Y is linearly concentrated, one can follow the
last steps of the proof of Theorem 6 with y0 replacing Ỹ (here, there is no need
to verify that ‖Ỹ ‖ is bounded), and conclude that Y ∈ Eq(σ) | e−θ.

To show the Lipschitz concentration of Y , let us consider a Lipschitz map
f : E → R and introduce the mappings:

U : E 7−→ E × R

y 7−→ (y, f(y))

V : E × R 7−→ E

(y, t) 7−→ y.

Note that if we endow E × R with the norm ‖ · ‖ℓ∞ satisfying ∀(x, t) ∈ E × R,
‖(x, t)‖ℓ∞ = max(‖x‖, |t|) then the mappings U and V are both 1-Lipschitz and
consequently for all constant K > 0, AK ⊂ {‖U ◦ φ ◦ V ‖L ≤ 1− ε} and we can
consider x0 ∈ E × R solution to:

x0 = E[U ◦ φk ◦ V (x0) | ‖U ◦ φ ◦ V ‖L ≤ 1− ε].

for a given (sequence of) integer k ≤ O(log η) (note that V ◦ U = IdE). Then,
noting (y0, t0) = x0:

(U ◦ φ ◦ V )k(x0) = (φk(y0), f(φ
k(y0)))

AK∈ Eq (σ) | e−η in (E, ‖ · ‖)

by hypothesis. Therefore, one can deduce the linear concentration of the unique
solution to the fixed point equation:

X = U ◦ φ ◦ V (X) X ∈ E × R, (18)

that satisfies X ∈ E2(σ) | e−η. As a consequence, noting π : E × R → R the
projection on the last variable, we know that:

π(X) ∝ Eq (σ) | e−η.

Since V ◦U = IdE , we see from the definition of Y that U(Y ) is also a solution
to (18), therefore, by uniqueness of the solution (when it exists), X = U(Y ) and,
in particular f(Y ) = π(X) which allows us to conclude on the concentration of
Y .
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2.3. When φ ∝ E2(σ) for the infinity norm

If one can assume the stronger hypothesis that φ is concentrated as a ran-
dom mapping, and for the infinity norm, then it is unnessessary to consider
the O(log(η)) iterate of φ. We can indeed apply Theorem 2 to infer from the
concentration of φ, the concentration of its iterates. We give here a weak setting
where the mapping φ is only bounded around a given point y0, for that, for any
r > 0, we introduce the semi-norm ‖ · ‖B(y0,r) defined for any f ∈ F(E) and
y ∈ E as:

‖f‖B(y0,r) = sup
‖y−y0‖≤r

‖f(y)‖

The following Lemma might seem a bit complicated and artificial, it is however
perfectly adapted to the requirement of Theorem 8.

Lemma 10. Given a normed vector space (E, ‖ · ‖) whose norm degree is noted
η, a vector y0 ∈ E and a (sequence of) random mapping φ ∈ F∞(E), let
us suppose that there exists a (sequence of) constant ε > 0 (ε ≥ O(1)) such
that for any constant K > 0, there exists a (sequence of) event AK satisfying
AK ⊂ {‖φ‖L ≤ 1− ε} and:

φ
AK∝ Eq (σ) | e−η in

(

F(E), ‖ · ‖B(y0,Kση1/q)

)

,

then for any constant K ′ (K ′ ≤ O(1)) we have:

φm
Aφ∝ Eq (σ) | e−η in (F(E), ‖ · ‖B(y0,K′ση1/q)),

Proof. Let us introduce three constants κ,C, c > 0 (κ,C, c ≤ O(1)) such that:

∀K ≥ κ : P
(

‖φ(y0)− y0‖ ≥ Kση1/qε | A1

)

≤ Ce−η/c,

Now, given a constant K ′ > 0, we choose K = max(K ′/ε, κ) and we set:

Aφ∞ ≡ AKε ∩ A1 ∩
{

‖φ(y0)− y0‖ ≤ Kση1/qε
}

.

Then we see that P(Ac
φ∞) ≤ C′e−c′η, for some constants C′, c′ > 0 and we can

bound under Aφ∞ , for any k ∈ N and y ∈ B(y0,K ′ση1/q):
∥

∥φk(y)− y0
∥

∥ ≤
∥

∥φk(y)− φk(y0)
∥

∥+
∥

∥φk(y0)− y0
∥

∥

≤ (1− ε)k‖y − y0‖+
k−1
∑

i=0

(1− ε)i‖φ(y0)− y0‖ ≤ Kση1/q

Thus, for any f ∈ Aφ∞ and for all k ∈ N, fk : B(y0,K ′ση1/q) → B(y0,Kση1/q),
and we can bound for any supplementary mapping g ∈ Aφ∞ :

‖fm − gm‖B(y0,K′ση1/q) ≤
m
∑

i=1

(1− ε)i−1‖f(gm−i(y))− g(gm−i(y))‖

≤ 1

ε
‖f − g‖B(y0,Kεση1/q).
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Thus the mapping f 7→ fm is 1
ε -Lipschitz from (Aφ∞ , ‖ · ‖B(y0,Kση1/q)) to

(F(E), ‖ · ‖B(y0,K′ση1/q)), which directly implies the result of the lemma.

The next theorem is an important improvement (allowed by Lipschitz con-
centration) of Theorem 8 in that it only take as hypothesis the concentration of
φ (and not of all its iterates).

Theorem 9. Let us consider a (sequence of) reflexive vector space (E, ‖ · ‖)
whose norm degree is noted η, a (sequence of) random mapping φ : E → E, a
given constant ε > 0 (ε ≥ O(1)) such that for any constant K > 0 (K ≤ O(1)),
there exists a (sequence of) highly probable event AK satisfying:

• AK ⊂ {‖φ‖L ≤ 1− ε},

• Noting y0 ∈ E, the (sequence of) fixed point to the deterministic equation
y0 = EAK [φk](y0), we have the concentration:

φ(y0)
AK∝ Eq (σ) | e−θ in (F(E), ‖ · ‖B(y0,Kση1/q))

then there exists an highly probable event AY , such that, under AY , the random
equation

Y = φ(Y )

admits a unique solution Y ∈ E satisfying the Lipschitz concentration:

Y ∝ Eq (σ) | e−η.

2.4. When φ = Ψ(X) with Ψ deterministic and X concentrated

As we saw with Corollary 8, a classical setting of Theorems 6-9 is the case
where the randomness of φ depends on a random vector X ∈ F (for a normed
vector space (F, ‖ · ‖)) and the fixed point equation writes:

Y = Ψ(X)(Y )

for a given deterministic mapping Ψ : F → F(E). The issue is then, not only
to show the concentration of Y but also the concentration of (X,Y ) to be able
to control the operations made on X and Y .

Corollary 9. Given two reflexive vector space (E, ‖ · ‖E) and (F, ‖ · ‖F ), a
random vector X ∈ F satisfying X ∝ Eq and a deterministic mapping Ψ : F →
F(E), we assume that there exist a constant ε > 0 and an event AΨ such that:

• EAΨ [Ψ(X)] is defined (see Definition 14 in Appendix A)

• AΨ ⊂ {‖Ψ(X)‖L < 1 − ε}, P(Ac
Ψ) ≤ Ce−cη (where η is the norm degree

of ‖ · ‖E)
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• Noting y0 ∈ E, the unique solution to y0 = EAΨ [Ψ(X)(y0)], for any con-
stant K > 0 (K ≤ O(1)), the mapping A 7→ Ψ(A) is O(σ)-Lipschitz from
(AΨ, ‖ · ‖F ) to (F(E), ‖ · ‖BE(y0,Kσ

√
η))

Then with high probability, there exists a unique random vector Y ∈ E such that
Y = Ψ(X)(Y ) and it satisfies:

(σX, Y ) ∝ E2(σ) | e−η.

Proof. We just need to verify the hypotheses of Theorem 9 with:

φ : (F × E, ‖ · ‖ℓ∞) −→ (F × E, ‖ · ‖ℓ∞)

(x, y) 7−→ (σX,ψ(X)(y)) ,

where for (x, y) ∈ F × E, ‖(x, y)‖ℓ∞ = max(‖x‖F , ‖y‖E). For any constant
K > 0, the random mapping φ is clearly a O(σ)-Lipschitz transformation of X
for the norm ‖ · ‖B(z0,Kση1/q), therefore, it satisfies:

φ
AΨ∝ Eq(σ) | e−η in (F(E), ‖ · ‖B(z0,Kση1/q)),

where z0 = (σEAΨ [X ], y0) ∈ F × E. And of course:

{‖φ‖L ≥ 1− ε} = {‖Ψ(X)‖L ≥ 1− ε} ⊃ AΨ

One can therefore employ Theorem 9 to φ to set the existence and concentration
of (σX, Y ).

3. First example : Concentration of the resolvent and device of a
deterministic equivalent

3.1. Setting, assumptions and first properties

Let us first study the concentration of a central object appearing in random
matrices, the so-called “resolvent” defined as the matrix (Ip−Z)−1 for Z ∈ Mp,
a random matrix. We already gave in Corollary 8 some conditions on a convexly
concentrated random matrix Z for Q to be concentrated, we will however first
place ourselves in a Lipschitz concentration setting.Let us look at the matrix
Q ≡ (Ip − 1

nXX
T )−1, where X = (Xn,p)n,p∈N ∈ ∏p,n∈N2 Mp,n is a (sequences

of) random matrices. We suppose:

Assumption 1. X ∝ E219.

19In the initial Definition 1, we defined the concentration of a sequence of random vectors
and here, Xn,p is indexed by two natural numbers. A slight change of Definition 1 allows us
to adapt it to any set of indexes S for (Xs)s∈S (in particular to S = N2), the two constants
C, c > 0 appearing in the concentration inequality are assumed to be valid for any s ∈ S (i.e.
for any n, p ∈ N2).
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Assumption 2. X has independent columns x1, . . . , xn ∈ Rp20

Assumption 3. O(p) ≤ n ≤ O(p)21.

Let us note for simplicity, for any i ∈ [n]:

µi ≡ E[xi] Σi ≡ E[xix
T
i ] and Ci ≡ Σi − µiµ

T
i

We know from Proposition 4 that sup1≤i≤n ‖Ci‖ ≤ O(1), but we also need to
bound:

Assumption 4. sup1≤i≤n ‖µi‖ ≤ O(1) and inf1≤i≤n ‖ 1
n TrΣi‖ ≥ O(1)22

This assumption allows us to bound ‖X‖ thanks to Proposition 8. We have
indeed:

‖E[X ]‖ ≤ √
n sup

1≤i≤n
‖E[xi]‖ ≤ O(

√
n)

thus we know from Proposition 8 that E[‖X‖] ≤ ‖E[X ]‖ + O(
√
n) ≤ O(

√
n)

and therefore, ‖X‖ ∈ O(
√
n)±E2. For (Ip − 1

nXX
T ) to be invertible with high

probability we need a last assumption:

Assumption 5. There exists ε ≥ O(1) such that ‖ 1
n

∑n
i=1 Σi‖ ≤ 1− 2ε.

In that case, we can indeed deduce from the linear concentration of XXT given
in example 3 and the inferences on the norm provided by Proposition 8 that:

P
(

Ac
Q

)

≤ Ce−cn, for AQ ≡
{

1

n

∥

∥XXT
∥

∥ ≤ 1− ε

}

, (19)

for two constants C, c > 0.
Strangely enough, a complex relaxation of our setting is necessary to design

a deterministic equivalent of Q and justify its validity. We define for that reason
for any z ∈ C \ [0, 1− ε] and under AQ the complex random matrix:

Qz ≡
(

zIn − 1

n
XXT

)−1

∈ Mp(C).

With the notation |M |2 = MM̄T ∈ S+
p (R) for any matrix M ∈ Mp(C), gen-

eralizing the notion of squared modulus to any complex matrix, we have the
following Lemma:

20note that we do not assume that the xi are identically distributed as it is not required.
21Assumption 1 introduces two asymptotic directions, n → ∞ and p → ∞, the notation

an,p ≤ O(bn,p) (resp. an,p ≥ O(bn,p)) thus means that there exists a constant C > 0 such
that ∀n, p ∈ N, an,p ≤ Cbn,p (resp. an,p ≥ Cbn,p). Assumption 3 therefore restricts our
study to choices of p and n satisfying an equality cp ≤ n ≤ Cp, for two constants C, c > 0.

22This second hypothesis on the statistics of X is not introduced to set the concentration
of Q but for the design of a deterministic equivalent. If the covariance of a vector xi is too
small, one should be able to replace it by its expectation in the construction of a deterministic
equivalent of Q, however, in this quasi asymptotic regime, it is not easy to identify the correct
threshold, thus we prefer to place ourselves in the most common case where the energy of
every data is taken into account in our estimation.
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Lemma 11. In the set of symmetric matrices:

Ip
|z|2 + (1− ε)2

≤ |Qz|2 ≤ Ip
d(z, [0, 1− ε])2

,

where for any w ∈ C and A ⊂ C, d(w,A) = inf{w − v, v ∈ A}.

Proof. If we note A = ℜ(Q−1) and B = ℑ(Q−1), then (|Q−i|2)−1 = A2 + B2

and:

A2 =

(

ℜ(z)Ip −
1

n
XXT

)2

and B2 = ℑ(z)2Ip.

One can then deduce the result of the Lemma from the inequality 0 ≤ 1
nXX

T ≤
(1− ε)Ip (under AQ) and:

|z|2 + (1− ε)2 ≥ A2 +B2 ≥ ℑ(z)2 + d(ℜ(z), [1− ε])2 = d(z, [0, 1− ε])2.

Proposition 14. If d(z, [0, 1 − ε]) ≥ O(1), then Qz ∝ E2(1/
√
n) | e−n in

(Mp, ‖ · ‖F ).

Proof. We could see it as a consequence of Theorem 9, applied to the equation

Qz =
Ip
z

+
1

zn
XXTQz,

but it is probably more simple to see Qz as a O(1)-Lipschitz transformation of
1

nXXT ∝ E2(1/
√
n) | e−n (see Example 3). Indeed if we note Φ : Mp → Mp(C)

defined as Φ(M) = (zIp −M)−1, we have for M ∈ ( 1nXX
T )(AQ)

23:

‖dΦ M‖ = ‖Φ(M)MΦ(M)‖ ≤ 1− ε

d(z, [0, 1− ε])2
≤ O(1).

3.2. A first deterministic equivalent

One is often merely working with linear functionals of Qz, and since Propo-
sition 14 implies that Qz ∈ EAQQ

z ± E2 | e−n, one naturally wants to estimate
the expectation EAQQ. In Louart and Couillet (2019) is provided a determin-

istic equivalent Q̃z ∈ Mp satisfying ‖Qz − Q̃z‖ ≤ O(1/
√
n) for any z ∈ R−, we

are going to show below a stronger result,

• with a Frobenius norm replacing the spectral norm,

• for any complex z ∈ C such that d(z, [0, 1− ε]) ≥ O(1).

23That means in particular that ‖M‖ ≤ 1− ε.
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An efficient approach, developed in particular in Silverstein (1986), is to
look for a deterministic equivalent of Qz depending on a deterministic diagonal
matrix ∆ ∈ Rn and having the form:

Q̃z(∆) = (zIp − Σ∆)
−1 where Σ∆ =

1

n

n
∑

i=1

∆iΣi.

One can then express the difference with the expectation of Qz (the natural
deterministic equivalent that we try to estimate) followingly:

Q̃z(∆) − EAQQ = EAQ

[

Qz

(

1

n
XXT − Σ∆

)

Q̃z(∆)

]

=
1

n

n
∑

i=1

EAQ

[

Qz(xix
T
i −∆iΣi)Q̃

z(∆)
]

.

To pursue the estimation of the expectation, one needs to control the dependence
between Qz and xi, for that purpose, one uses classically the Schur identities:

Qz = Qz
−i +

1

n

Qz
−ixix

T
i Q

z
−i

1− 1
nx

T
i Q

z
−ixi

and Qzxi =
Qz

−ixi

1− 1
nx

T
i Q

z
−ixi

, (20)

for Qz
−i = (zIn − 1

nX−iX
T
−i)

−1 and X−i = (x1, . . . , xi−1, 0, xi+1, . . . , xn) ∈
Mp,n. Then introducing the notation Dz ≡ Diag1≤i≤n(

1
nx

T
i Q

z
−ixi) and the

mapping χ : C \ {1} → C, defined as:

χ(z) =
1

1− z
,

one can express thanks to the independence between Qz
−i and xi:

Q̃z(χ(∆z))− EAQQ =
1

n

n
∑

i=1

EAQ

[

Qz
−i

(

xix
T
i

1−Dz
i

− Σi

1−∆z
i

)

Q̃z(χ(∆z))

]

+
1

n2

n
∑

i=1

1

1−∆z
i

EAQ

[

Qzxix
T
i Q

z
−iΣQ̃

z(χ(∆z))
]

= EAQ [ε1 + ε2] (21)

with :



















ε1 =
1

n
EAQ

[

QzXχ(∆z) (Dz −∆z)XT Q̃z(χ(∆z))
]

ε2 =
1

n2

n
∑

i=1

χ(∆z
i )EAQ

[

Qzxix
T
i Q

z
−iΣiQ̃

z(χ(∆z))
]

,

From this decomposition, one is enticed into choosing, in a first step:

∆z ≡ EAQ [D
z] ∈ Dn(C)

(so that ε1 would be small). The concentration of Dz can be deduced from the
concentration of

Ez ≡ Diag

(

1

n
XQzX

)

∝ E2(1/
√
n) | e−n
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and Schur identities (20) that imply:

Dz =
Ez

Ez + In
.

To show the concentration of In
Ez+In

, one needs to show that Ez + In = χ(Dz)
is bounded inferiorly. For that purpose, let us introduce the matrix:

Q̌z ≡
(

zIp −
1

n
XTX

)−1

∈ Mn, (22)

we have the identities:

XTQz = Q̌zX and
1

n
Q̌zXXT = zQ̌z − In (23)

from which we can deduce:

In + Ez = In +
1

n
Diag(XTQzX) = zQ̌z

One can then bound in a similar way as in Lemma 11:

Lemma 12.
Ip

|z|2+(1−ε)2 ≤ |Q̌z|2 ≤ Ip
d(z,[0,1−ε])2 and:

|z|
|z|+ 1− ε

In ≤ |In + Ez| ≤
(

1 +
1− ε

d(z, [0, 1− ε])

)

In

Remark 23. Schur formulas 20 imply in particular that χ(Dz) = In+E. Then,
for any z such that d(z, [0, 1 − ε]) ≥ O(1), one can also bound |z| ≥ O(1) and
deduce from Lemma 12 that:

O(1) ≤
(

1− 1− ε

|z|+ 1− ε

)

In ≤ χ(Dz) ≤
(

1 +
1− ε

d(z, [0, 1− ε])

)

In ≤ O(1)

In other words, there is no need to control the modulus of z from above to be
able to control χ(Dz), just the distance to the segment [0, 1− ε] is relevant.

Inverting the inequalities around χ(DZ), taking expectation, and inverting
again, one can deduce the similar bound:

O(1) ≤ χ(∆z) ≤ O(1).

Proof. The inequalities concerning Q̌z are inferred as in the proof of Lemma 11
since under AQ, 1

n‖XTX‖ = 1
n‖XXT‖ ≤ 1− ε. One can then deduce that:

|z|In
√

|z|2 + (1− ε)2
≤ |In + E| = |zQ̌z| ≤ |z|In

d(z, [0, 1− ε])

On the one hand employing the inequality, valid for any a, b > 0,
√
a2 + b2 ≤

√

(a+ b)2 = a+ b, one can note that |z|√
|z|2+(1−ε)2

≥ |z|
|z|+(1−ε) . On the second

hand:
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• if ℜ(z) ≤ 0, |z| = d(z, [1− ε])

• if ℜ(z) ∈ [0, 1−ε], d(z, [1−ε]) = ℑ(z) and |z| =
√

d(z, [1− ε])2 + ℜ(z)2 ≤
d(z, [1− ε]) + 1− ε

• if ℜ(z) ≥ 1− ε, |z| ≤ |z − 1 + ε|+ 1− ε = d(z, [1− ε]) + 1− ε,

one can conclude that in all cases, |z|
d(z,[0,1−ε]) ≤ 1+ 1−ε

d(z,[0,1−ε]) , which eventually

provides the result of the lemma.

We then have all the element to set:

Lemma 13. Given z ∈ C such that d(z, [0, 1− ε]) ≥ O(1):

Dz ∝ E2(1/
√
n) | e−n in (Dn(C), ‖ · ‖F ).

In particular, Dz ∈ ∆z ± E2(1/
√
n) | e−n in (Dn, ‖ · ‖F ) and we can prove:

Proposition 15. Given z ∈ C such that d(z, [0, 1− ε]) ≥ O(1):

∥

∥

∥Q̃z(χ(∆z))
∥

∥

∥ ≤ O(1) and
∥

∥

∥EAQQ
z − Q̃z(χ(∆z))

∥

∥

∥

F
= O

(
√

logn

n

)

.

Proof. Let us note for simplicity NQ̃ ≡ ‖Q̃z(χ(∆z))‖. With the notation
introduced in (21), note that we have to bound ‖EAQ [ε1]‖F and ‖EAQε2‖F . We
can already bound thanks to Corollary 7:

‖ε1‖F =

∥

∥

∥

∥

1

n
EAQ

[

QzXχ(∆z) (Dz −∆z)XT Q̃z(χ(∆z))
]

∥

∥

∥

∥

F

≤ O

(
√

logn

c
NQ̃

)

since QzXχ(∆z) ∝ E2 | e−n, Q̃z(χ(∆z))X ∝ E2(NQ̃) | e−n and ‖Dz −∆z‖F ≤
O(1/

√
n). It is then sufficient to bound for any matrix A ∈ Mp satisfying

‖A‖F ≤ 1 the quantity EAQ [Tr(Aε2)]. We can bound thanks to Cauchy-Shwarz
inequality that:

∣

∣EAQ [Tr(Aε2)]
∣

∣ =

√

1

n2
EAQ [Tr(AQzXχ(∆z)2XTQzAT ]

·

√

√

√

√

1

n2

n
∑

i=1

EAQ

[

Tr(Q̃z(χ(∆z))ΣiQz
−iΣiQz

−iΣiQ̃z(χ(∆z))
]

≤ O





√

Tr(ATA)

n

Tr(Q̃z(χ(∆z))2)

n



 ≤ O

(

NQ̃√
n

)

thanks to the bounds provided by our assumptions, Lemma 11 and Remark 23.
Putting the bounds on

∥

∥EAQ [ε1]
∥

∥ and
∥

∥EAQ [ε2]
∥

∥ together, we obtain:

∥

∥

∥
EAQQ

z − Q̃z(χ(∆z))
∥

∥

∥

F
≤ O

(

NQ̃

√

logn

n

)
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So, in particular:

NQ̃ ≡
∥

∥

∥Q̃z(χ(∆z))
∥

∥

∥ ≤
∥

∥EAQQ
z
∥

∥+O

(

NQ̃

√

logn

n

)

,

which implies that NQ̃ ≤ O(1) as
∥

∥EAQ [Q
z]
∥

∥. We obtain then directly the
second bound of the Proposition.

3.3. A second deterministic equivalent
With Proposition 15, the problem becomes much simpler because, we ini-

tially had to estimate the expectation of the whole matrix Qz and now, we just
need to approach the expectation of the diagonal matrix Dz = 1

nxiQ
z
−ixi. One

is tempted to introduce from the pseudo identity:

∆z
i ≈ EAQ

[

1

n
xTi Q

z
−ixi

]

≈ 1

n
Tr
(

ΣiQ̃
z
−i(χ(∆

z))
)

≈ 1

n
Tr
(

ΣiQ̃
z(χ(∆z))

)

,

(where, naturally, Q̃z
−i(Γ) = (zIp − 1

n

∑

1≤j≤n
j 6=i

ΓjΣj)
−1) a fixed point equation

whose solution Λ ∈ Dn(C) is a natural estimate for ∆.
The two next proposition are very strong results that will be demonstrated

after the multiple inferences of the next fifteen pages. Before starting this long
proof we provide Theorem 10 that gives us a computable deterministic equiva-
lent for Qz (which was the main objective of this section once we knew that Qz

was concentrated).

Proposition 16 (Definition of Λz). For any z ∈ C \ [0, 1 − ε], applying χ
entry-wise, the system of equations :

L = Diag1≤i≤n

(

1

n
Tr
(

ΣiQ̃
z(χ(L))

)

)

, L ∈ Dn(C)

admits a unique solution in Dn(C) that we note Λz

Proposition 17. For any z ∈ C such that |z| ≤ O(1) and d(z, [0, 1−ε]) ≥ O(1):

‖∆z − Λz‖ ≤ O

(√
logn

n

)

.

Remark 24. The bound ‖∆z
i − Λz

i ‖ ≤ O
(√

logn
n

)

, valid for all i ∈ [n] might

look strong since ∆z
i is of order O(1). However a lower speed convergence like

O

(

√

log n
n

)

is trivial to obtain since we can show for instance that if we intro-

duce Γ = Diag1≤i≤n(
1
zn Tr(Σi)), we can bound for any i ∈ [n]:

|∆i − Γi| =
∣

∣

∣

∣

1

n
Tr

(

σi(EAQ [Q
z
−i]−

1

z
Ip)

)∣

∣

∣

∣

=

∣

∣

∣

∣

EAQ

[

1

zn2
Tr
(

ΣiQ
z
−iXX

T
)

]∣

∣

∣

∣

≤ O

(
√

logn

n

)

,

thanks to Proposition ?? applied to the matrices Σi, Q
z
−iX, In and X.
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Anyway, such a speed of order O
(√

logn
n

)

is necessary to be able to show the

validity of the second deterministic equivalent of Qz.

Theorem 10 (Computable deterministic equivalent of the resolvent).
For any z ∈ C such that |z| ≤ O(1) and d(z, [0, 1 − ε]) ≥ O(1),
‖Q̃z(χ(Λz))‖ ≤ O(1) and:

Qz ∈ Q̃z(χ(Λz))± E2
(
√

logn

n

)

| e−n in (Mp, ‖ · ‖F )

Proof. We already know from Propositions 14 and 15 that:

Qz ∈ Q̃z(χ(∆z))± E2
(
√

logn

n

)

| e−n in (Mp, ‖ · ‖F ),

and since for an A ∈ Mp, Tr(A) ≤ √
p‖A‖F and Proposition 17 imply that:

∣

∣

∣Tr
(

A(Q̃z(χ(∆z))− Q̃z(χ(Λz)))
)∣

∣

∣

≤
∣

∣

∣

∣

∣

Tr

(

AQ̃z(χ(∆z))

(

1

n

n
∑

i=1

(Λz
i −∆z

i )Σi

)

Q̃z(χ(Λz))

)∣

∣

∣

∣

∣

≤ ‖Λz −∆z‖
∣

∣

∣

∣

∣

‖Q̃z(χ(Λz))‖Tr(A)
d(z, [0, 1− ε])

∣

∣

∣

∣

∣

≤ O

(

‖Q̃z(χ(Λz))‖
√

logn

n

)

.

We can then deduce that:

‖Q̃z(χ(Λz))‖ ≤ ‖Q̃z(χ(∆z))‖+ ‖Q̃z(χ(∆z)) − Q̃z(χ(Λz))‖F

≤ O(1) +O

(

‖Q̃z(χ(Λz))‖
√

logn

n

)

Therefore ‖Q̃z(χ(Λz))‖ ≤ O(1) and ‖Q̃z(χ(∆z)) − Q̃z(χ(Λz))‖F ≤
O(
√

logn/n).

Propositions 16 and 17 are quite hard to establish, we will need for that a new
notation:

Iz(D) ≡ Diag

(

1

n
Tr
(

ΣiQ̃
z(D))

)

)

1≤i≤n

for a diagonal matrix D ∈ Dn(C) such that Q̃z(D) is well defined. We will then
follow the strategy:

1. Show that Λz = Iz ◦ χ(Λz) admits a unique solution for z ∈ C
−
−, where:

C
−
− ≡ {z ∈ C,ℑ(z),ℜ(z) < 0},
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2. Show that for all i ∈ [n], z 7→ Λz
i is analytical on an open set of C−

− like
z 7→ ∆z

i ,

3. Justify the possibility of an extension of the regularity of Λz on C
−
− to the

whole set of definition of z 7→ ∆z (i.e C \ [0, 1− ε]), while keeping, at the
same time, a control on the bound on ‖Λz −∆z‖ ≤ O(

√
logn/n).

4. Actual proof of Propositions 16 and 17.

Each one of these steps will form our four next subsections.

3.4. Existence and uniqueness of Λz when z ∈ C
−
−

To show the existence and uniqueness of Λz, let us adapt tools already
introduced in Louart and Couillet (2020) that rely on the introduction of a semi-
metric ds called “the stable semi metric” and defined24 for any D,D′ ∈ Dn(C

+)
(where C+ ≡ {z ∈ C, Im(z) > 0}) as:

ds(D,D
′) = sup

1≤i≤n

|Di −D′
i|

√

ℑ(Di)ℑ(D′
i)

(it lacks the triangular inequality to be a true metric). This metric is introduced
to set Banach-like fixed point theorems. For that purpose, we introduce:

Definition 10. The “stable class”, denoted Cs(Dn(C
+)) is defined as the class

of functions f : Dn(C
+) → Dn(C

+), 1-Lipschitz for the semi-metric ds; i.e.
satisfying for all D,D′ ∈ Dn(C

+):

ds(f(D), f(D′)) ≤ ds(D,D
′).

Given f ∈ Cs(Dn(C
+)), if there exists a constant ε > 0 such that:

∀D,D′ ∈ Dn(C
+), ds(f(D), f(D′)) ≤ (1 − ε)ds(D,D

′),

we say that f is contracting.

The stable class owes its name to an important number of stability properties
that we list in the next proposition:

Proposition 18. Given f, g ∈ Cs(Dn(C
+)), α ∈ R+

∗ and h : Dn(C
+ ∪ R) →

Dn(C
+ ∪ R) 1-Lipschitz for the spectral norm:

−1

f
, αf, f ◦ g, f + g, and f + h

are all in the stable class.

24In Louart and Couillet (2020), ds is only defined on Dn(R+) and the denominator ap-
pearing in the definition is then

√

DiD′
i instead of

√

ℑ(Di)ℑ(D′
i). The present adaptation

does not change the fundamental properties of the semi-metric; the only objective with this
new choice is to be able to set that Iz is contractive for this semi-metric.
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We then deduce easily from these properties that:

Corollary 10. χ(C+) ⊂ C+ and χ ∈ Cs(C+).

We can now present our fixed point theorem that has been demonstrated once
again in Louart and Couillet (2020):

Theorem 11. Given a mapping f : Dn(C
+) → Dn(C

+), contracting for the
stable semi-metric ds and such that its imaginary part is bounded from above
(in D+

n ), there exists a unique fixed point ∆∗ ∈ D+
n satisfying ∆∗ = f(∆∗).

The idea is then to employ this theorem to the mapping χ ◦ Iz. Let us first find
a good choice of z for Iz ◦ χ to be stable on a subset of Dn(C

+). We need for
that a first lemma that will, in passing, help us verifying the hypothesis Iz ◦ χ
bounded from above in Theorem 11.

Lemma 14. Given z ∈ C
+
− ≡ −R+ + iR+:

ℑ(χ(z)) ∈ (0, 1) and ℜ(χ(z)) ∈ (0, 1).

Proof. Given z ∈ C
+
−, note that:

ℜ(χ(z)) = 1−ℜ(z)
|1− z|2 > 0 and ℑ(χ(z)) = ℑ(z)

|1− z|2 > 0

Now, on the one hand 1−ℜ(z) > 1, thus ℜ(χ(z)) = 1−ℜ(z)
(1−ℜ(z))2+ℑ(z)2 <

1
1−ℜ(z) <

1 and on the other hand, if ℑ(z) < 1, ℑ(χ(z)) < 1
(1−ℜ(z))2 < 1 and if ℑ(z) ≥ 1,

ℑ(χ(z)) < 1
ℑ(z) ≤ 1.

The idea is then to take z ∈ C
−
− for Iz ◦ χ to be stable on Dn(C

+
−).

Lemma 15. If z ∈ C−, then Iz(Dn(C
+)) ⊂ Dn(C

+)and if z ∈ C
−
−:

Iz ◦ χ(Dn(C
+
−)) ⊂ Dn(C

+
−).

Proof. Considering z ∈ C−, for any D ∈ Dn(C
+) and i ∈ [n]:

ℑ(Iz(D)i) =
1

n
Tr
(

ΣiQ̃
z(D)

(

−ℑ(z)Ip +Σℑ(Dj)

) ¯̃Qz(D)
)

> 0, (24)

since for all j ∈ [n],Σ
1/2
i Q̃z(D)Σj

¯̃Qz(D)Σ
1/2
i is a nonnegative symmetric matrix

(recall that for all Γ ∈ Dn, ΣΓ ≡ 1
n

∑n
i=1 ΓiΣi.

Besides, since χ(Dn(C
+)) ⊂ Dn(C

+) (see Corollary 10), we already know
that for any D ∈ Dn(C

+
−) and z ∈ C

−
−, ℑ(Iz ◦ χ(D)) > 0. In addition, the

bound ℜ(χ(D)) ∈ Dn(R
+) implies that:

ℜ(Iz(χ(D))i) =
1

n
Tr
(

ΣiQ̃
z(χ(D))

(

ℜ(z)Ip − Σℜ(χ(D))

) ¯̃Qz(χ(D))
)

< 0.

Next proposition provides us the contractive character of Iz (that will imply
the contractive character of Iz ◦ χ).
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Proposition 19. For any z ∈ C−, the mapping Iz is 1-Lipschitz for the semi-
metric ds and satisfies for any D,D′ ∈ Dn(C

+):

ds(Iz(D), Iz(D′)) ≤
√

(1− φ(z,D))(1 − φ(z,D′))ds(D,D
′),

where for any w ∈ C
− and D ∈ Dn(C

+):

φ(w,D) = inf
1≤i≤n

|ℑ(w)|
n

Tr
(

Σi|Q̃w(D)|2
)

ℑ(Iw(D))i
∈ (0, 1).

(Recall that |Q̃z(D)|2 = Q̃z(D)Q̃z(D) ∈ S+
p (R)).

Proof. Considering D,D′ ∈ Dn(C
+):

Iz(D)i − Iz(D′)i ≤
1

n
Tr



ΣiQ̃
z(D)





1

n

n
∑

j=1

Dj −D′
j

√

ℑ(Dj)ℑ(D′
j)

√

ℑ(Dj)ℑ(D′
j)Σj



 Q̃z(D′)





We can then bound thanks to Cauchy-Schwarz inequality:

ds(Iz(D), Iz(D′)) ≤ ds(D,D
′) sup

1≤i≤n

1

n

√

1

ℑ(Iz(D)i)
Tr
(

ΣiQ̃z(D)Σℑ(D)
¯̃Qz(D)

)

· sup
1≤i≤n

√

1

ℑ(Iz(D′)i)
Tr
(

ΣiQ̃z(D′)Σℑ(D′)
¯̃Qz(D′)

)

We then conclude with the useful identity obtained from (24):

0 ≤ Tr
(

ΣiQ̃
z(D)Σℑ(D)

¯̃Qz(D)
)

= ℑ(Iz(D)i) +
ℑ(z)
n

Tr(ΣiQ̃
z(D) ¯̃Qz(D)).

To be able to employ Theorem 11 and define correctly Λz as the only matrix
satisfying Λz = Iz(χ(Λz)), one thus needs to show that Iz ◦χ is contractive for
the semi-metric ds; i.e. to bound uniformly on Dn(C

+
−) ‖|Q−i|2‖ from below

and ℑ(Iz(D)i) from above (we already know from Corollary 10 that for any
D,D′ ∈ Dn(C

+), ds(χ(D), χ(D′)) ≤ ds(D,D
′)). Those bounds are not easy to

obtain uniformly on Dn(C
+), but if we condition z to belong to C

+
−, then the

bounds can be obtained uniformly on Dn(C
+
−) which is a stable set of Iz ◦ χ as

we saw in Lemma 15.

Corollary 11. Given a complex number z ∈ C
−
−, there exists a unique diagonal

matrix Λz ∈ Dn(C
+
−) satisfying Λz = Iz(Λz).

Proof. We knwo from Lemma 14 that χ(Dn(C
+
−)) ⊂ Dn(C

(0,1)
(0,1)) thus we are

going to bound, for any i ∈ [n] and D ∈ Dn(C
(0,1)
(0,1)),

1
n Tr(Σi|Q̃z(D)|2) from

below and ℑ(Iz(D)) from above. Following the approach conducted in the
proof of Lemma 12, we note A = ℜ((Qz

−i)
−1) and B = ℑ((Qz

−i)
−1), then

(|Qz
−i|2)−1 = A2 +B2, and since
• 0 < ℜ(Dj) < 1

• 0 < ℑ(Dj) < 1

• ℜ(z) < 0

• ℑ(z) < 0
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• ‖ 1
n

∑n
i=1 Σi‖ ≤ 1− 2ε (see Assumption 5),

one can bound:


































ℜ(z)2Ip ≤ A2 =



ℜ(z)Ip −
1

n

n
∑

j=1

ℜ(Dj)Σj





2

≤ (|ℜ(z)|+ (1− ε))
2
Ip

ℑ(z)2Ip ≤ B2 =



ℑ(z)Ip −
1

n

n
∑

j=1

ℑ(Dj)Σj





2

≤ (|ℑ(z)|+ (1− ε))
2
Ip

That gives us the bounds (in the set of symmetric matrices) for any D ∈
Dn(C

(0,1)
(0,1)):

Ip
|z|2 + 2|ℜ(z)|+ 2|ℑ(z)|+ 2

≤ |Q̃z
−i(D)|2 = (A2 +B2)−1 ≤ Ip

|z|2 . (25)

One can thus bound from below, uniformly on Dn(C
[0,1]
[0,1]), the functional φ(z,D)

presented in Proposition 19 that gives us the contractive character of Iz ◦χ. In
addition, we know from Lemma 14 that this mapping is bounded (with a bound
depending only on z), we can thus employ Theorem 11 to set the existence and
uniqueness of Λz.

Remark 25. Inequality (25) is obtain in the case where z ∈ C
−
− and D ∈

Dn(C
(0,1)
(0,1)), when we relax those hypothesis to assume only z ∈ C− and D ∈

Dn(C
+), one can still bound:

Ip
|z|+ ‖D‖ ≤ |Q̃z

−i(D)| ≤ Ip
|ℑ(z)| . (26)

The bound Ip
|ℑ(z)|2 (that tends to ∞ when ℑ(z) → 0) can be improved in the case

D = χ(∆z), we can then set thanks to Proposition 15 that, for any z ∈ C−

satisfying d(z, [0, 1− ε]) ≥ O(1) and |z| ≤ O(1):

O(1) ≤ |Q̃z
−i(χ(∆

z))| ≤ O(1). (27)

since ‖χ(∆z)‖ ≤ O(1) thanks to Lemma 12 (more precisely thanks to Re-
mark 23).

3.5. Analyticity of z 7→ Λz

We then want to show that for all i ∈ [n] the mappings z 7→ ∆z
i and z 7→ Λz

i

are analytic on an open set of C
−
− (where Λz is well defined) to be able to

employ afterwards complex analysis inferences. It is straightforward to see that
z 7→ ∆z is differentiable thanks to its explicit form. Let us recall the existence
of a parameter ε > 0, introduced in Assumption 5 such that the event AQ ≡
{‖XXT‖ ≤ 1−ε} described in (19) satisfies P(Ac

Q) ≤ Ce−cn, for some constants
C, c > 0 and let us set:
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Proposition 20. For all i ∈ [n], the mapping z 7→ ∆z
i is analytical on C \

[0, 1− ε]

Proof. Recall that for all z ∈ C \ [0, 1− ε],

∆z = Diag1≤i≤n

(

EAQ

[

1

n
xTi

(

zIp −
1

n
X−iX

T
−i

)−1

xi

])

,

under AQ, we can differentiate:

∂∆z

∂z
= −zDiag1≤i≤n

(

EAQ

[

1

n
xTi (Q

z
−i)

2xi

])

.

It is more difficult to differentiate z 7→ Λz (on C
−
−, where it is defined for the

moment) with its implicit formulation. Let us first show its continuity. For that
purpose we introduce a result from Louart and Couillet (2020) that allows to
bound variations around a fixed point of a stable mapping.

Proposition 21. Let us consider a set of indexes Θ and a family of mappings
of Dn(C

+), (ft)t∈Θ, each ft being λt-Lipschitz for the semi-metric ds and ad-
mitting the fixed point Dt = ft(Dt) and a family of diagonal matrices Γt

25. If
one assumes that:

1. there exist a constants C > 0 such that for all t ∈ Θ, ∀D ∈ Dn(C
+
−):

sup1≤i≤n ℑ(ft(Γt))i

inf1≤i≤n ℑ(ft(Γt))i
,
sup1≤i≤n ℑ(Dt)i

inf1≤i≤n ℑ(Dt)i
≤ C

2. there exists a constant λ′ ∈ (0, 1) such that:

∀t ∈ Θ : λt

(

1 +

∥

∥

∥

∥

∥

√

|ℑ(ft(Γt))−ℑ(Γt)|
ℑ(Γt)

∥

∥

∥

∥

∥

)

≤ λ′ < 1,

then there exists a constant K > 0 such that for all t ∈ Θ:

‖Dt − Γt‖ ≤ K‖ft(Γt)− Γt‖.

Proof. Let us first bound:
∥

∥

∥

∥

Dt − Γt
√

ℑ(Dt)ℑ(ft(Γt))

∥

∥

∥

∥

≤ ds(ft(Dt), ft(Γt)) +

∥

∥

∥

∥

ft(Γt)− Γt
√

ℑ(Dt)ℑ(ft(Γt))

∥

∥

∥

∥

≤ λ

∥

∥

∥

∥

Dt − Γt
√

ℑ(Dt)ℑ(Γt)

∥

∥

∥

∥

+

∥

∥

∥

∥

ft(Γt)− Γt
√

ℑ(Dt)ℑ(ft(Γt))

∥

∥

∥

∥

.

25Proposition 23 uses a simpler setting where Γt is independent with t, then the existence

of two constants c, C > 0 such that for all t ∈ Θ,
sup1≤i≤n ℑ(ft(Γt))i
inf1≤i≤n ℑ(ft(Γt))i

≤ C is obvious

60



(one must be careful here that the stable semi-metric does not satisfy the tri-
angular inequality). Besides, since for any positive number a, b > 0,

√
a−

√
b ≤

√

|a− b|, one can bound:

∥

∥

∥

∥

Dt − Γt
√

ℑ(Dt)ℑ(Γt)

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

Dt − Γt
√

ℑ(Dt)

(

√

ℑ(ft(Γt))−
√

ℑ(Γt)
√

ℑ(Γt)
√

ℑ(ft(Γt))

)∥

∥

∥

∥

∥

+

∥

∥

∥

∥

Dt − Γt
√

ℑ(Dt)ℑ(ft(Γt))

∥

∥

∥

∥

≤
∥

∥

∥

∥

Dt − Γt
√

ℑ(Dt)ℑ(ft(Γt))

∥

∥

∥

∥

(

1 +

∥

∥

∥

∥

∥

√

|ℑ(ft(Γt))−ℑ(Γt)|
ℑ(Γt)

∥

∥

∥

∥

∥

)

.

Thus, by hypothesis, we have the inequality:

∥

∥

∥

∥

Dt − Γt
√

ℑ(Dt)ℑ(ft(Γt))

∥

∥

∥

∥

≤ λ′
∥

∥

∥

∥

ft(Γt)− Γt
√

ℑ(Dt)ℑ(ft(Γt))

∥

∥

∥

∥

.

(with λ′ < 1). Thus, since
sup1≤i≤n ℑ(ft(Γt))i
inf1≤i≤n ℑ(ft(Γt))i

and
sup1≤i≤n ℑ(Dt)i
inf1≤i≤n ℑ(Dt)i

are bounded

independently with t ∈ Θ, we obtain the existence of a constant K ′′ > 0 such
that:

‖Dt − Γt‖ ≤ K ′′ ‖ft(Γt)− Γt‖

The result of Proposition 21 can be obtained with simpler hypothesis when one
supposes that Γt is constant and equals Γ ∈ Dn(C

+).

Proposition 22. Considering Θ ⊂ C, an open set containing 0 and a family of
mappings of Dn(C

+), (ft)t∈Θ, each ft being 1− ν-Lipschitz for the semi-metric
ds with ν > 0 and admitting the fixed point Dt = ft(Dt), if one assumes that
there exists a diagonal matrix Γ ∈ Dn(C

+) such that there exists a for all C > 0
a subset ΘC open in C and containing 0 such that:

∀t ∈ Θ′ : ‖ft(Γ)− Γ‖ ≤ C,

then there exits a constant K > 0 and an open set U ⊂ C, containing 0 such
that:

∀t ∈ U : ‖Dt − Γ‖ ≤ K ‖ft(Γ)− Γ‖

Proof. We know that there exists Θ′ ⊂ Θ such that 0 ∈ Θ′ and for all t ∈ Θ′:

‖ft(Γ)− Γ‖ ≤
(

1

1− ν
2

− 1

)2
√

inf
1≤i≤n

ℑ(Γ)i.

then, for any t ∈ Θ′:

(1− ν)

(

1 +

∥

∥

∥

∥

∥

√

|ℑ(ft(Γt))−ℑ(Γt)|
ℑ(Γt)

∥

∥

∥

∥

∥

)

≤ 1− ν

1− ν
2

≡ λ′ < 1
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Then, we can deduce as in the proof of Proposition 21 that:

∥

∥

∥

∥

Dt − Γ
√

ℑ(Dt)

∥

∥

∥

∥

≤ Cλ′
∥

∥

∥

∥

ft(Γ)− Γ
√

ℑ(Dt)

∥

∥

∥

∥

, with C =

√

sup1≤i≤n ℑ(ft(Γ))
inf1≤i≤n ℑ(ft(Γ))

Now, if we introduce the indexes iinf , isup ∈ [n] satisfying:

ℑ(Dt)iinf = inf
1≤i≤n

ℑ(Dt)iand ℑ(Dt)isup = sup
1≤i≤n

ℑ(Dt)i,

we see that:

|ℑ(Dt)iinf −ℑ(Γ)iinf |
√

ℑ(Dt)iinf
≤ Cλ′

‖ft(Γ)− Γ‖
√

ℑ(Dt)iinf
,

from which we deduce that ℑ(Dt)iinf ≥ ℑ(Γ)iinf − Cλ′ ‖ft(Γ)− Γ‖ ≥ ℑ(Γ)iinf
2 ,

for any t ∈ Θ′′, where Θ′′ ∋ 0 is a well chosen open subset of Θ′. Besides :

√

ℑ(Dt)isup ≤ 1
√

ℑ(Dt)iinf

(

ℑ(Γ)isup + Cλ′ ‖ft(Γ)− Γ‖
)

≤ 2ℑ(Γ)isup
√

ℑ(Dt)iinf
,

for all t ∈ U , where U ∋ 0 is a well chosen open subset of Θ′′. Setting K =

Cλ′
4ℑ(Γ)isup√

ℑ(Dt)iinfℑ(Γ)iinf
, we retrieve the result of the proposition.

Proposition 23. The mapping z 7→ Λz
i is continuous on C

−
−.

Proof. Given z ∈ C
−
−, let us verify the assumption of Proposition 22 for Θ ⊂ C

being an open set of C containing 0 and such that z+Θ ∈ C
−
−∩{ℑ(w) ≤ 2ℑ(z)},

for all t ∈ Θ, ft = Iz+t ◦ χ (and Dt = Λz+t) and Γ = Λz. We already know
from Proposition 19 that ft are all contracting for the stable semi-metric with
a Lipschitz parameter λ < 1 that can be chosen independent from t for Θ small
enough. Let us express for any t ∈ Θ and any i ∈ [n]:

ft(Γt)− Γt =
1

n
Tr(ΣiQ̃

z+t(χ(Λz)))− 1

n
Tr(ΣiQ̃

z(χ(Λz)))

=
t

n
Tr
(

ΣiQ̃
z(χ(Λz))Q̃z+t(χ(Λz))

)

(28)

Thus, thanks to Lemma 12 and bounds on ‖|Q̃z(χ(Λz))|2‖ provided by (25),
there exists a constant C > 0 such that for all t ∈ Θ:

‖ft(Γt)− Γt‖ ≤ |t|(1 − ε)

|z||z + t| ≤ C|t| −→
t→0

0.

Therefore, the assumptions of Proposition 22 are thus satisfied, and there exists
a constant K > 0 such that:

∀t ∈ Θ :
∥

∥Λz+t − Λz
∥

∥ ≤ K|t|,

that directly implies that z 7→ Λz is continuous on C
−
−.
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Proposition 24. The mapping z 7→ Λz
i is analytic on a set C−

− ∩ {ℑ(z) ≤ −ν}
for a given ν > 0 satisfying ν ≤ O(1).

Proof. Employing again the notation ft = Iz+t ◦ χ, we can decompose:

1

t

(

Λz+t − Λz
)

=
1

t

(

ft(Λ
z+t)− ft(Λ

z) + ft(Λ
z)− f0(Λ

z)
)

we recognize the term provided in (28), we are thus left to expressing:

ft(Λ
z+t)− ft(Λ

z) = Diag1≤i≤n

(

1

n
Tr
(

ΣiQ̃
z+t(χ(Λz+t))AiQ̃

z+t(χ(Λz))
)

)

with the notation, ∀i ∈ [n]:

Ai =
1

n

n
∑

j=1

Λz+t
j − Λz

j

(1 − Λz+t
j )(1− Λz

j )
Σj .

Thanks to (28), we can compute for all k ∈ N:

1

n
Tr
(

ΣiQ̃
z+t(χ(Λz+t))AiQ̃

z+t(χ(Λz))
)

=
1

n2

n
∑

j=1

Tr
(

ΣiQ̃
z+t(χ(Λz+t))ΣjQ̃

z+t(χ(Λz))
)

(1− Λz+t
j )(1 − Λz

j )

(

ft(Λ
z+t
j )− ft(Λ

z
j ) + ft(Λ

z
j )− f0(Λ

z
j )
)

=
1

n2

n
∑

j=1

χ(Λz+t
j ) · χ(Λz

j ) · Tr
(

ΣiQ̃
z+t(χ(Λz+t))ΣjQ̃

z+t(χ(Λz))
)

·

·
(

1

n
Tr
(

ΣjQ̃
z+t(χ(Λz+t))AjQ̃

z(χ(Λz))
)

+
t

n
Tr
(

ΣjQ̃
z+t(χ(Λz))Q̃z(χ(Λz))

)

)

Now, if introduce the vectors:

a(t) =

(

1

n
Tr
(

ΣiQ̃
z+t(χ(Λz+t))AiQ̃

z+t(χ(Λz))
)

)

1≤i≤n

∈ R
n,

b(t) =

(

1

n
Tr
(

ΣjQ̃
z+t(χ(Λz))Q̃z(χ(Λz))

)

)

1≤i≤n

∈ R
n

and the matrices:

Ψ(t) =

(

1

n2
χ(Λz+t

j ) · χ(Λz
j ) · Tr

(

ΣiQ̃
z+t(χ(Λz+t))ΣjQ̃

z+t(χ(Λz))
)

)

1≤i,j≤n

∈ Mn

We have the equation:

a(t) = Ψ(t)(a(t) + tb(t))
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To be able to invert In−Ψ(t) one then needs to assume that the imaginary part
of z ∈ C

−
− is sufficiently big since the inequality ‖|Q̃z(D)|2‖ ≤ 1

|z|2 given in the

proof of Corollary 11 allows us to bound for any i, j ∈ [n]:

‖Ψ(t)‖ ≤ n sup
1≤i,j≤n

|[Ψ(t)]i,j | ≤
1

n

Tr(ΣiΣj)

|z|2

We have then the identity

1

t
a(t) = (In −Ψ(t))−1Ψ(t)b(t) = (In −Ψ(t))−1b(t)− b(t),

and by continuity of z 7→ Λz (see Proposition 23), letting t tend to 0, one
obtains:

∂Λz

∂z
= Diag (a′(0) + b(0)) = Diag

(

(In −Ψ(0))−1b(0)
)

3.6. Generalization of the definition and the analyticity of z 7→ Λz on the whole
set C \ [0, 1− ε] and convergence of Λz towards ∆z

The goal of this subsection is to end the proofs of Propositions 16 and 17.
The two demonstrations are conducted at the same time in a quite elaborate way,
therefore, we first present a sketch of proof and some useful lemmas before giving
the rigorous proof. Globally the idea is to transfer the properties available for
z ∈ C

−
− to the whole space C\[0, 1−ε] thanks to two complex analysis arguments.

Given r > 0, w ∈ C we note the open disk Dr(w) = {z ∈ C | |z − w| < r} and
the close disk D̄r(w) = {z ∈ C | |z − w| ≤ r}.

Proposition 25. (Rudin, 1986, Theorem 16.2) If an analytical mapping is de-
fined and bounded on a disk Dr(w) for r > 0 and w ∈ C, then it can be continued
into an analytical mapping defined on a strictly bigger disk Dρ(w) with ρ > r.

Proposition 26. (Rudin, 1986, Theorem 10.18) Given two analytical map-
pings f, g defined on an open set U ⊂ C if there exists a subset Z ⊂ U such that
U contains a limit point of Z26 and ∀z ∈ Z, f(z) = g(z), then f U = g U .

Proposition 25 allows us to extend the domain of z 7→ Λz (which is only an-
alytical on set C

−
− ∩ {ℑ(z) ≤ −ν} for ν > 0 thanks to proposition 24) and

Proposition 26 allows us to set that on this bigger domain, Iz(Λz) is also equal
to Λz. The boundedness of z 7→ Λz on the disks contained in C \ [0, 1 − ε]
can be tracked from the mapping z 7→ ∆z that we know to be analytical on
C \ [0, 1 − ε] (see Proposition 20), thus bounded on the sub-disks of C \ [0, 1].
Indeed it can be showed that those two mappings are close to one-another when
n tends to infinity thanks to Proposition 21 employed this time with Θ = N

26There exists u0 ∈ U such that any neighborhood of u0 contains a point of Z.
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we will then have the bound ‖∆z − Λz‖ ≤ O
(√

logn
n

)

thanks to Proposition 15

(‖ 1
nΣi‖F ≤ O(1/

√
n)) that entices:

‖Iz ◦ χ(∆z)−∆z‖ = sup
1≤i≤n

∣

∣

∣

∣

1

n
Tr
(

Σi

(

Q̃z(χ(∆z))−∆z
))

∣

∣

∣

∣

≤ O

(√
logn

n

)

.

(29)

To be able to employ Proposition 21, we are left to:

• bound
sup1≤i≤n ℑ(Iz◦χ(∆z))i
inf1≤i≤n ℑ(Iz◦χ(∆z))i

and
sup1≤i≤n ℑ(Λz)i
inf1≤i≤n ℑ(Λz)i

from above,

• show that
∥

∥

∥

ℑ(Iw◦χ(∆w)−∆w)
ℑ(∆w)

∥

∥

∥
→ 0 when n is sufficiently big,

• bound from below the functionals φ(z, χ(∆z)) ∈ (0, 1) and φ(z, χ(Λz)) ∈
(0, 1) with a O(1). Recall that φ appears in the inequality given by Propo-
sition 19 satisfied for any D,D′ ∈ Dn(C

+) and w ∈ C−:

ds(Iw ◦ χ(D), Iw ◦ χ(D′)) ≤
√

(1− φ(z, χ(D))) (1− φ(z, χ(D′)))ds(D,D
′).

(30)

The results concerning Λz are more easy to obtain than the results concerning
∆z, we are thus going to prove them first in the three next lemmas.

Lemma 16. Given a compact set K ⊂ C− such that supw∈K |w| ≤ O(1) and
O(1) ≤ infw∈K d(w, [0, 1 − ε]), we can bound:

O(|ℑ(w)|) ≤ ℑ(∆w) ≤ O(|ℑ(w)|) and O(|ℑ(w)|) ≤ ℑ(Iw ◦ χ(∆w)) ≤ O(|ℑ(w)|).
This lemma implies clearly:

sup1≤i≤n ℑ(Iz ◦ χ(∆z))i

inf1≤i≤n ℑ(Iz ◦ χ(∆z))i
≤ O(1) and

sup1≤i≤n ℑ(∆z)i

inf1≤i≤n ℑ(∆z)i
≤ O(1) (31)

Proof. For any i ∈ [n], and w ∈ K, we can bound thanks to Lemma 11 and
the bound O(1) ≤ 1

n Tr(Σi) ≤ O(1) given by Assumption 4 (this is the only
time where we need to bound 1

n Tr(Σi) from below):

O(|ℑ(w)|) ≤ ℑ(∆w
i ) = −ℑ(w)EAQ

[

1

n
xTi |Qw

−i|2xi
]

≤ O(|ℑ(w)|)

Let us note that thanks to Remark 23, O(1) ≤ |χ(∆w)| ≤ O(1) and:

O(|ℑ(w)|) ≤ ℑ(χ(∆w)) = ℑ(∆w)|χ(∆w)|2 ≤ O(|ℑ(w)|)

Finally, thanks to the bounds on ‖Q̃w(χ(∆z))‖ given in (27), we can bound:

O(|ℑ(w)|) ≤

ℑ(Iw ◦ χ(∆w)) = Tr

(

ΣiQ̃
w(χ(∆z))

(

−ℑ(z)Ip +
1

n

n
∑

i=1

ℑ(χ(∆w))Σi

)

¯̃Qw(χ(∆z))

)

≤ O(|ℑ(w)|)
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Lemma 17. Given a compact set K ⊂ C− such that supw∈K |w| ≤ O(1) and
O(1) ≤ infw∈K d(w, [0, 1 − ε]), we can bound:

∥

∥

∥

∥

ℑ (Iw ◦ χ(∆w)−∆w)

ℑ(∆w)

∥

∥

∥

∥

≤ O

(√
logn

n

)

Proof. 27 Recalling from the proof of Lemma 17 that ℑ(∆w) ≥ |ℑ(w)|, we can
bound for any w ∈ K:

∥

∥

∥

∥

ℑ (Iw ◦ χ(∆w)−∆w)

ℑ(∆w)

∥

∥

∥

∥

= sup
1≤i≤n

∣

∣

∣

∣

∣

∣

1
n Tr

(

Σiℑ
(

Q̃w(χ(∆w))− EAQ [Qw]
))

ℑ(∆w)

∣

∣

∣

∣

∣

∣

≤ O





∥

∥

∥

∥

∥

∥

ℑ
(

EAQ [Qw]
)

ℑ(w) −
ℑ
(

Q̃w(χ(∆w))
)

ℑ(w)

∥

∥

∥

∥

∥

∥

F





Let us try and estimate
ℑ(EAQ

[Qw])

ℑ(z) = −EAQ [|Qw|2] = −EAQ [Q̄
wQw]. Given a

deterministic matrix A ∈ Mp, we estimate rapidly without the necessary justifi-
cations (that are closely similar to those presented in the proof of Proposition 15

27For this poof, one might be inspired to employ an analytical argument stating that the
derivatives of z 7→ EAQ

[Qz] and z 7→ Q̃z(χ(∆z)) are close to one-another. We have indeed

|
EAQ

[Qz ]

ℑ(z)
| = |

EAQ
[Qz ]

∂w
| and:

∂Q̃w(χ(∆w))

∂w
= −Q̃w(χ(∆w))

(

Ip − 1

n

n
∑

i=1

EAQ
[xT

i (Qw
−i)

2xi]χ(∆
w
i )2Σi

)

Q̃w(χ(∆w))

ℑ(Q̃w(χ(∆w)))

ℑ(z)
= Q̃w(χ(∆w))

(

−Ip +
1

n

n
∑

i=1

EAQ
[xT

i |Qw
−i|2xi]|χ(∆w

i )|2Σi

)

¯̃Qw(χ(∆w)).

However to set that | Q̃
w(χ(∆w))

ℑ(z)
| ≈ | Q̃

w(χ(∆w))
∂w

| one would need ℑ(Q̃w(χ(∆w))) and

ℜ(Q̃w(χ(∆w))) to be almost commuting. This is however not so easy to show, even knowing
that ℑ(EAQ

[Qz]) and ℜ(EAQ
[Qz]) commute.
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– mainly application of Proposition ??):

Tr
(

AEAQ

[

Q̄w
(

Qw − Q̃w(χ(∆w))
)])

=
1

n

n
∑

i=1

Tr

(

AEAQ

[

Q̄wQw
−ixix

T
i Q̃

w(χ(∆w))

1− 1
nx

T
i Q

w
−ixi

])

− 1

n

n
∑

i=1

Tr

(

AEAQ

[

Q̄wQwΣiQ̃
w(χ(∆w))

1−∆w
i

])

=
1

n

n
∑

i=1

Tr

(

AEAQ

[

Q̄w
−iQ

w
−ixix

T
i Q̃

w(χ(∆w))

1−∆w
i

])

− 1

n

n
∑

i=1

Tr

(

AEAQ

[

Q̄wQw
−iΣiQ̃

w(χ(∆w))

1−∆w
i

])

+
1

n2

n
∑

i=1

Tr

(

AEAQ

[

Q̄wxix
T
i Q

w
−ixix

T
i Q̃

w(χ(∆w))

1−∆w
i

])

+O

(

√

logn

n

)

=
EAQ

[

1
n Tr

(

AQ̄wXDwXT Q̃w(χ(∆w))
)]

1−∆w
i

+O

(
√

logn

n

)

=
1

n

n
∑

i=1

∆w
i χ(∆

w
i )Tr

(

AEAQ

[

Q̄w
−ixix

T
i Q̃

w(χ(∆w))

1 + D̄z
i

])

+O

(
√

logn

n

)

=
1

n

n
∑

i=1

∆w
i |χ(∆w

i )|2 Tr
(

AEAQ

[

Q̄w
−ixix

T
i Q̃

w(χ(∆w))
])

+O

(
√

logn

n

)

= Tr
(

A ¯̃Qw(χ(∆w))Σ∆w|χ(∆w)|2Q̃
w(χ(∆w))

)

+O

(
√

logn

n

)

,

where we recall the notation ΣΓ ≡ 1
n

∑n
i=1 ΓΣi for any diagonal matrix Γ ∈ Dn.

In conclusion:

∥

∥

∥
EAQ

[

|Qw|2
]

− ¯̃Qw(χ(∆w))
(

Ip +Σ∆w|χ(∆w)|2
)

Q̃w(χ(∆w))
∥

∥

∥

F
≤ O

(
√

logn

n

)

We recognize here the expression of ℑ(Q̃w(χ(∆w)))/ℑ(w) which allows us to
conclude:

1

ℑ(z)
∥

∥

∥ℑ
(

EAQ [Qw]− Q̃w(χ(∆w))
)∥

∥

∥

F
≤ O

(
√

logn

n

)

Lemma 18. Given a compact set K ⊂ C− such that supw∈K |w| ≤ O(1) and
infw∈K d(w, [0, 1− ε]) ≥ O(1), we can bound:

φ(w,∆z) ≥ O(1).

Proof. From the expression

φ(w, χ(∆z)) = inf
1≤i≤n

|ℑ(w)|
n

Tr
(

Σi|Q̃w(χ(∆z))|2
)

ℑ(Iw(χ(∆z))i
,

we deduce directly the result of the Lemma from the lower bound on
|Q̃w(χ(∆z))|2 given in (27), Assumption 4 and Lemma 16
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The implicit formulation of Λz complicates the design of a bigger bound for
sup1≤i≤n ℑ(Λz)i
inf1≤i≤n ℑ(Λz)i

and a lower bound for φ(z,Λz) but one can track it from Lem-

mas 16 and 18. Indeed, D 7→ sup1≤i≤n ℑ(D)i
inf1≤i≤n ℑ(D)i

and Φ being uniformly continuous

on any compact, we have the following Lemma:

Lemma 19. Given two compacts K,K ′ ⊂ C+ such that d(z, [0, 1− ε]) ≥ O(1)
and supz∈K∩K′ |z| ≤ supz∈K∩K′ |z| ≤ O(1) and two positive scalars C, η > 0,
there exists N ∈ N such that for any n ≥ N , ∀D,D′ ∈ Dn(K), ∀w ∈ K ′:

‖D −D′‖ ≤ C
√
logn

n
=⇒











∥

∥

∥

∥

sup1≤i≤n ℑ(D)i

inf1≤i≤n ℑ(D)i
− sup1≤i≤n ℑ(D′)i

inf1≤i≤n ℑ(D′)i

∥

∥

∥

∥

< η

|φ(w,D) − φ(w,D′)| < η

One could object that to set the bound ‖Λz −∆z‖ ≤ C
√
logn
n we precisely need

Proposition 21 that needs in particular the result of Lemma 19 to be valid :
it looks like the snail is eating its own tail ! Actually, these properties can be
invoked in a relevant iterative way described rigorously in the next proof that
puts all together the preceding results to demonstrate Propositions 16 and 17.

3.7. Proof of Propositions 16 and 17

Let us consider z ∈ C \ [0, 1− ε] such that |z| ≤ O(1), d(z, [0, 1− ε]) ≥ O(1).
Let us note

K ≡
{

w ∈ C
−, |w| ≤ 2|z|, d(w, [0, 1− ε]) ≥ d(z, [0, 1− ε])

2

}

.

There exists an integer k ≤ O(1), a set of positive scalars r1, . . . , rk > 0 and
a set of complex values z0, . . . , zk such that Br0(z0) ∈ C

−
− ∩K ∩ {ℑ(z) ≤ −ν}

(where ν, introduced in Proposition 24, is such that z 7→ Λz is analytic on
C

−
− ∩ {ℑ(z) ≤ −ν}), zk = z and for all l ∈ [k]:

D̄rl(zl) ⊂ K and zl ∈ Drl−1
(zl−1),

With the purpose of employing Proposition 21, let us introduce two constants
κ ≤ O(1) and η ≥ O(1) originating from (31) and Lemma 18 and satisfying:

∀w ∈ K :
sup1≤i≤n ℑ(χ(∆w))i

inf1≤i≤n ℑ(χ(∆w))i
≤ κ− η and φ(w, χ(∆w)) ≥ 2η. (32)

Let us show by iteration on l ∈ [k] that there exists N ∈ N such that for
n ≥ N , and for all l ∈ [k], the following set of properties that we note Pl is
satisfied for any w ∈ D̄rl(zl):

• z 7→ Λz is analytic around z = w,

• Λw = Iw(χ(Λw)),

•
sup1≤i≤n ℑ(Λz)i
inf1≤i≤n ℑ(Λz)i

≤ κ,
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• φ(w, χ(Λw)) ≥ η.

The case l = 0 allows us to introduce a convenient N ∈ N appearing in
Lemma 19, it will be the same for all iterations, since the compact set K and
the constant η will not change. Working in Dr0(z0), let us note ρ ∈ (0, r0] the
biggest positive radius such that:

∀w ∈ Dρ(z0) :
sup1≤i≤n ℑ(Λz)i

inf1≤i≤n ℑ(Λz)i
≤ κ and φ(w, χ(Λw)) ≥ η (33)

We can then employ Proposition 21 with Θ = N, and for all n ∈ Θ, fn = Iw ◦χ
(thus Dn = Λw) and Γn = ∆w, for a given w ∈ Dρ(z0). Indeed:

• ∀w ∈ Dρ(z0)
sup1≤i≤n ℑ(Λw)i
inf1≤i≤n ℑ(Λw)i

≤ κ and
sup1≤i≤n ℑ(Iw◦χ(∆w)i
inf1≤i≤n ℑ(Iw◦χ(∆w)i

≤ κ,

• inequality (30) stated by Proposition 19 combined with (32) and (33)
implies that:

∀w ∈ Dρ(z0) : ds(χ ◦ Iz(Λw), χ ◦ Iz(∆w)) ≤ (1 − η)ds(D
w,∆w)

• we know from Lemma 17 that ‖ 1
ℑ(∆w)ℑ (Iw ◦ χ(∆w)−∆w) ‖ →

n→∞
0, and

therefore, for n sufficiently large:

∀w ∈ Dρ(z0) : (1− ν)

(

1 +

∥

∥

∥

∥

∥

√

|ℑ(Iw ◦ χ(∆w))−ℑ(∆w)|
ℑ(∆w)

∥

∥

∥

∥

∥

)

≤ 1− ν

2
< 1

Thus Proposition 21 combined with (29) implies that there exists a constant
C ≥ 0 depending only on κ and ν such that:

∀w ∈ Dr0(z0) : ‖Λw −∆w‖ ≤ O (‖Iw ◦ χ(∆w)−∆w‖) ≤ C

√
logn

n
(34)

Then, we can conclude from Lemma 19 and (32) that there exists N ∈ N

such that for any n ≥ N :

∀w ∈ Dρ(z0) :
sup1≤i≤n ℑ(Λz)i

inf1≤i≤n ℑ(Λz)i
< κ and φ(w, χ(Λw)) > η

By continuity of w 7→ sup1≤i≤n ℑ(Λz)i
inf1≤i≤n ℑ(Λz)i

and w 7→ φ(w, χ(Λw)), one can then

consider a bigger ρ > 0 satisfying (33), that means that ρ = r0.
Let us then assume that Pl−1 is satisfied for a given l ∈ [k]. We know

that z 7→ Dz is analytical around zl since zl ∈ Drl−1
(zl−1). Therefore, one

can introduce two positive scalars ρ1, ρ2 > 0, the maximum radiuses such that
respectively:

• ∀w ∈ Dρ1(zl),
sup1≤i≤n ℑ(Λw)i
inf1≤i≤n ℑ(Λw)i

≤ κ and φ(w, χ(Λw)) ≥ η,

• w 7→ f(w,Dw) is analytic on Dρ2(zl).
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Let us suppose in a first time that ρ2 ≤ ρ1. The mapping z 7→ Iz(Λz) is also
analytical on Dρ2(zl), but since it is equal to z 7→ Dz on an open set around
zl (thanks to Pl−1), the two mappings are equal on the full open disk Dρ2(zl)
(see Proposition 26). As before, for w ∈ Dρ2(zl) ⊂ Dρ1(zl), one can apply
Proposition 21 to set that:

∀w ∈ Dρ(zl) : ‖Λw −∆w‖ ≤ C

√
logn

n

(with the same constant C > 0 as in (34)). In particular, ∆w is bounded on
D̄ρ2(zl) ⊂ C+ and therefore so is Λw, which directly implies that it is analytical
on a strictly bigger disk than Dρ2(zl) (see Proposition 25). Therefore ρ2 > ρ1.
For any w ∈ Dρ1(zl), Λ

w = Iw ◦ χ(Λw), thus one can employ Proposition 21
the same way as in the case l = 0 to set that ρ1 = ρ2 = rl. That concludes the
iteration and gives the result of the Proposition for any z ∈ C−.

When z ∈ C+ ≡ {z ∈ C,ℑ(z) > 0} and is such that d(z, [0, 1 − ε]) ≥ O(1)
and |z| ≤ O(1), we can deduce the same results by symmetry since for all z ∈ C,
∆z̄ = ∆z and ∀D ∈ Dn(C), such that Iz(D) is well defined, I z̄(D̄) = Iz(D)
therefore for all z ∈ C+, Λz is well defined and satisfies Λz = Λz̄ , then one can
bound:

‖Λz −∆z‖ = ‖Λz̄ −∆z̄‖ ≤ C

√
log n

n

All those result are also true for any z ∈ R such that d(z, [0, 1− ε]) ≥ O(1)
and |z| ≤ O(1), because Proposition 25 implies that z 7→ Λz and z 7→ ∆z are
both analytical on this set and we can then deduce the bound on |Λz −∆z‖ by
continuity.

3.8. Resolvent of 1
nXDX

T

Let us now present a result of concentration of a generalization of the
resolvent Q, that will be useful for the study of the solutions Y to Y =
λ
n

∑n
i=1 f(x

T
i Y )xi conducted in next section (the diagonal matrix D will then

be Diag1≤i≤n f
′(xTi Y ) ∈ Dn). Given a diagonal matrix D ∈ Dn, we note:

Qz(D) ≡
(

zIn − 1

n
XDXT

)−1

Let us consider a random diagonal matrix Γ ∈ Dn satisfying:

Assumption 6. There exists a deterministic diagonal matrix Γ̃ ∈ Dn such that

Γ
AΓ∝ Γ̃± E2 | e−n in (Mp, ‖ · ‖) and ‖Γ̃‖ ≤ O(

√

logn)

In this setting, Theorem 2 (see Remark 14) just allows us to set the concentration
(since ‖XΓXT‖F ≤ ‖X‖‖Γ‖‖X‖F):

1

n
XΓXT ∝ E2(

√

logn/n) | e−n in (Mp,n, ‖ · ‖F ), (35)

and no better observable diameter can be obtained in (Mp,n, ‖ · ‖). This time,
instead of Assumption 5, we need the stronger hypothesis:
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Assumption 5 bis. There exists a parameter ε ≥ O(1), an event AQ(Γ) and
two constants C, c > 0 such that:

P(Ac
Q(Γ)) ≤ Ce−cn for AQ(Γ) ≡ AΓ ∩

{

1

n
‖XΓXT‖ ≤ 1− ε

}

Under this assumption, we still have (as in Lemma 11):

Lemma 20. Under AQ(Γ) : ‖Qz(Γ)‖ ≤ 1
d(z,[0,1−ε]) .

Placing ourselves under Assumptions 1 - 4, 5 bis, 6, we already know from the
Lipschitz28 concentration of 1

nXΓXT given in (35) and the Lipschitz character
of M 7→ (zIp−M)−1 (for z ∈ C such that d(z, [0, 1− ε]) ≥ O(1) and under AQ)
that:

Qz(Γ) ∝ E2
(

√

logn
)

| e−n in (Mp, ‖ · ‖F )

It is not such a good concentration, but it still allows us set approximations of
quantities like 1

n Tr(AQz(Γ)) when ‖A‖ ≤ O(1) thanks to next proposition.

Proposition 27. Qz(Γ) ∈ 1
z Ip ± E2

(√
logn

)

| e−n in (Mp, ‖ · ‖F ).

Proof. It is just a consequence of Proposition ?? as described in Remark 24,
we can bound indeed for any A ∈ Mp such that ‖A‖ ≤ 1:

∣

∣

∣

∣

EAQ(Γ)

[

Tr

(

A

(

Qz(Γ)− 1

z
Ip

))]∣

∣

∣

∣

≤ 1

n

∣

∣

∣

∣

EAQ(Γ)

[

1

z
Tr(AQz(Γ)XΓX)

]∣

∣

∣

∣

≤ O

(
√

logn

n
‖A‖F‖Γ‖F

)

≤ O(
√

logn)

We can obtain a better observable diameter if we project Qz(Γ) on a determin-
istic vector.

Proposition 28. For any z ∈ C such that |z| ≤ O(1), and d(z, [0, 1 − ε]) ≥
O(1), for any deterministic vector u ∈ Rp such that ‖u‖ ≤ 1:

Qz(Γ)u ∈ E2
(
√

logn

n

)

| e−n in (Rp, ‖ · ‖).

Proof. It is a simple and direct application of Theorem 5 and Proposition 10
to the mapping:

φ : y 7→ u+
1

n
XΓXTy.

28we need here a Lipschitz concentration to control the Lipschitz transformation operated
by the resolvent. That is why we can not employ the second result of Corollary 4 that could
gives us the linear concentration of 1

n
XΓXT in (Mp, ‖ · ‖F ) if Γ would be concentration in

(Dn, ‖ · ‖F ).
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3.9. Concentration of the resolvent of the sample covariance matrix of convexly
concentrated data

This subsection is the only one that employs results of Section 2, to show that
the resolvent is concentrated ( recall that in the case of a Lipschitz concentration
hypothesis on X , it is more simple to show that the resolvent is a O(1/

√
n)-

Lipschitz transformation of X). We suppose this time:

Assumption 1 bis. X ∝c E2
Placing ourselves (in this subsection) under Assumptions 1 bis, 2-5 let us first
show that the resolvent Qz ≡ (zIp− 1

nXX
T )−1 is concentrated if z is far enough

from the spectrum.

Proposition 29. Given z ∈ C such that d(z, [0, 1− ε]) ≥ O(1)29:

Qz ∈ E2 | e−n in (Mp, ‖ · ‖∗)

Proof. If |z| ≥ (2e)2, then Qz = 1
z (Ip − 1

znXX
T )−1, and X√

z
satisfies the

hypothesis of Corollary 8 (
√
z is a given square root of z, ‖X/√z‖ ≤ √

p(1−ε)/2e
with high probability). Therefore, the concentration of Qz is already valid in
that case.

Now, considering a general complex number z ∈ C such that |z| ≤ (2e)2 and
d(z, [0, 1 − ε]) ≥ O(1), we introduce a parameter K ≥ (2e)2 and the complex
number zK ∈ C, such that:

|zK | = K and d(zK , [0, 1− ε]) = |z − zK |+ d(z, [0, 1− ε]).

Note then that Qz is solution to:

Qz = QzK + (zK − z)QzKQz, (36)

As we are going to see, this is a contractive fixed point equation that leads us
to employing Theorem 7 giving the concentration of solutions to fixed point
equations. To verify the hypotheses, we need in particular to understand the
concentration of the powers of QzK . Considering and integer k ∈ N such that
k ≤ O(log n), let us express:

(zKQ
zK )k =

(

In − 1

nzK
XXT

)−k

= In +

∞
∑

i=0

(k + i) · · · k
(i + 1)!

(

1

nzK
XXT

)i+1

Besides, we know from Proposition 13 that

(

1

nzK
XXT

)i+1

∈ E2
(

(

4e2(1− ε)

K

)i+1
)

| e−n.

29ε was introduced in Assumption 5
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Then, assuming that K ≥ 4e2(1− ε), we can bound:

1 +

∞
∑

i=0

(k + i) · · · k
(i + 1)!

(

4e2(1− ε)

K

)i+1

=

(

1− 4e2(1− ε)

K

)−k

,

from which we deduce from Corollary 2 that:

(zKQ
zK )k ∈ E2

(

(

1

K − 4e2(1− ε)

)k
)

| e−n

Returning to equation (36), we chose K = 2 + 4e2(1− ε), then

∣

∣

∣

∣

zK − z

zK

∣

∣

∣

∣

1

K − 4e2(1− ε)
≤ d(zK , [0, 1− ε])− d(z, [0, 1− ε])

2K
≤ K − 1

2K
≤ 1

2

and we see that the mapping

φ : q 7→ 1

zK
(zKQ

zK ) +
(zK − z)

zK
(zKQ

zK )q

satisfies:

• for any q ∈ Mp such that ‖q‖ ≤ 1,

φk(q) =

(

zK − z

zK

)k

(zKQ
zK )kq +

1

zK

k−1
∑

l=0

(

zK − z

zK

)l

(zKQ
zK )l+1 ∈ E2 | e−n,

in (Mp, ‖ · ‖∗) (thanks again to Corollary 1).

• ‖φ(0)‖ = ‖Ip‖ ≤ O(1)

• ‖L(φ)‖∗, ‖L(φ)‖ ≤ |z−zK |‖QzK‖ ≤ |zK−z|
d(zK ,[0,1−ε]) ≤ 1− d(z,[0,1−ε])

d(zK ,[0,1−ε]) thanks

to to Lemma 12 and the hypothesis on zK . Besides, ε′ ≡ d(z,[0,1−ε])
d(zK,[0,1−ε]) ≥

O(1) and:

P (‖L(φ)‖∗ ≥ 1− ε′) ,P (‖L(φ)‖ ≥ 1− ε′) ≤ Ce−cp,

for some constant C, c > 0.

We can therefore employ Theorem 7 to set the result of the proposition.

Lemma 21. Dz ∈ ∆z ± E2 | e−n in (Dn(C), ‖ · ‖F ).

Proof. Given i ∈ [n], we can bound:

|Dz
i −∆z

i | ≤
∣

∣

∣

∣

1

n
xTi Q

z
−ixi −

1

n
Tr(ΣiQ

z
−i)

∣

∣

∣

∣

+

∣

∣

∣

∣

1

n
Tr(Σi(Q

z
−i − E[Qz

−i])

∣

∣

∣

∣

73



and we know respectively from Corollary 6 (‖Qz
−i‖ ≤ O(1)) and Proposition 29

(‖ 1
nΣi‖ ≤ O(1/n)) that:

1

n
xTi Q

z
−ixi ∈

1

n
Tr(ΣiQ

z
−i)± E2

(

1√
n

)

| e−n;

1

n
Tr(ΣiQ

z
−i) ∈

1

n
Tr(ΣiEAQ [Q

z
−i])± E2

(

1

n

)

| e−n,

thus Dz
i ∈ ∆z

i ± E2
(

1√
n

)

| e−n. We then deduce from Proposition 5 that:

Dz ∈ ∆z ± E2
(

1√
n

)

| e−n in (Mp, ‖ · ‖),

which implies the result of the Lemma since ‖A‖F ≤ √
p‖A‖ for all A ∈ Mp.

Proposition 30. There exists a constant κ ≤ O(1) such that for any z ∈ C

satisfying d(z, [0, 1− ε]) ≥ O(1) and |z| ≤ O(1):

Qz ∈ Q̃z(χ(Λz))± E2 (log(n)) | e−n in (Mp, ‖ · ‖∗),
where Λz is defined in Proposition 16.

Proof. We already know from Corollary 8 that Qz ∈ E2 | e−n in (Mp, ‖ ·
‖∗).With notations already introduced (∆z ≡ Diag1≤i≤n(

1
n Tr(ΣiEAQ [Q

z]))),
we already know from Theorem 10 that:

‖Q̃z(χ(∆z))− Q̃z(χ(∆z))‖∗ ≤ √
p‖Q̃z(χ(∆z))− Q̃z(χ(∆z))‖F ≤ O(1)

(the deterministic matrices Q̃z(χ(∆z)) and Q̃z(χ(Λz)) have not changed). It is
therefore sufficient to show that EAQ [Q

z] is close to Q̃z(χ(∆z)). We follow the

steps of the proof of Proposition 15, starting from ‖EAQ [Q
z]− Q̃z(χ(∆z))‖∗ ≤

sup‖A‖≤1 Tr(A(ε1+ε2)). First we bound thanks to Proposition ??30, Lemma 21

and the bound ‖Q̃z(χ(∆z))‖ ≤ O(1):

Tr(Aε1) =
1

n

∣

∣

∣EAQ

[

Tr
(

Q̃z(∆z)AQzXχ(∆z) (Dz −∆z)XT
)]∣

∣

∣

≤ O

(

‖A‖F
√

logn

n

)

≤ O
(

√

logn
)

Second, as in the proof of Proposition 15, we can bound:

∣

∣EAQ [Tr(Aε2)]
∣

∣ ≤ O





√

Tr(ATA)

n

Tr(Q̃z(χ(∆z))2)

n



 ≤ O (1)

We can thus conclude that Qz ∈ Q̃z(χ(∆z)) ± E2 (log(n)) | e−n in (Mp, ‖ · ‖∗)
from which we deduce our result.

30We do not exactly employ Proposition ?? since we can just deduce from Corollary 8 that
QzX ∈ E2

(√
n
)

| e−n in (Mp, ‖ · ‖∗), and we would need an observable diameter of order
O(1). However, we can adapt the proof thanks to the bound ‖QzX‖ ≤ O(‖X‖)
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4. Second example : fixed point equation depending on independent
data x1, . . . , xn

4.1. Setting and first properties

We give here some conditions on a random matrix X ∈ Mp,n and a twice-
differentiable mapping Ψ : Mp,n → F(E) satisfying the hypotheses of Corol-
lary 9 to be able to compute the expectation of Y = Ψ(X)(Y ). We are going
to study the very common case of a matrix of data X = (x1, . . . , xn) ∈ Mp,n,
where all the columns of X are independent but not identically distributed and
Ψ acting on each column xi “independently” through the decomposition for all
A = (a1, . . . , an) ∈ Mp,n, all y ∈ E:

Ψ(A)(y) =
1

n

n
∑

i=1

Hi(ai)(y), (37)

where H1, . . . , Hn : Rp → Lip(E).
To compute the expectation of Y , one needs to disentangle the influence of

each data xi on Y . This leads us to studying the random vector Y−i, defined
(when it exists) as the unique solution to:

Y−i =
1

n

n
∑

j=1
j 6=i

Hj(aj)(Y−i),

it is independent with xi by construction. To link Y with Y−i we creates a
“bridge” defined by a parameter t ∈ [0, 1], through a mapping Ψt

−i : Mp,n →
Lip(E), defined for any A ∈ Mp,n and any y ∈ E with:

Ψt
−i(A)(y) ≡

1

n

∑

j=1
j 6=i

Hj(aj)(y) + tHi(ai)(y).

Then, noting yA−i, the unique solution (when it exists) to yA−i = Ψt
−i(A)(y

A
−i),

we see that:

Y−i = yX−i(0) and Y = yX−i(1)

The next Lemma introduces a mapping yA−i : [0, 1] → E that creates a “bridge”
between Y−i and Y (when A = X).

Lemma 22. Considering an open set U ⊂ Mp,n, if we suppose that for all
A ∈ U , Ψ(A) is differentiable and satisfies ‖Ψ(A)‖L ≤ 1− ε, then the mapping
yA−i is differentiable and we have:

yA−i
′(t) =

1

n

(

IE − d2Ψ−i(A) yA
−i(t)

)−1

·
(

Hi(ai)(y
A
−i(t)) + td2Hi(ai) yA

−i(t)
· yA−i

′(t)
)

,

where we d2Ψ−i(A) and d2Hi(ai) are respectively the differential of the mappings
Ψ−i(A) : E → E and Hi(ai) : E → E.

75



Proof. It is a direct application of the inverse function theorem to the C1

bijective mapping:

Θ : R× E −→ R× E

(t, y) 7−→
(

t, y − 1

n

∑

i=1

tH(ai)(y)

)

Indeed, R × E is a Banach space, dΘ is clearly bounded (Ψ(A) is Lipschitz),
and ∀(t, y)× (s, h) ∈ (R× E)2:

dΘ|(t,y) · (s, h) =
(

s, h− sH(ai)(y)− d2Ψ
t
−i(A) y

· h
)

Thus dΘ|(t,y) is invertible with:

dΘ−1
|(t,y) · (s′, h′) =

(

s′, (IdE − d2Ψ
t
−i(A) y

)−1s′H(ai)(y)
)

(‖dΨt
−i(A)|yA

−i(t)
‖ ≤ 1− ε thus IdE − d2Ψ

t
−i(A)|y is invertible). Therefore, θ−1

is also C1 and, we can differentiate yA−i = Θ−1(t, 0) to obtain the identity:

yA−i
′(t) =d2Ψ

0
−i(A) yA

−i(t)
· yA−i

′(t) +
1

n
H(ai)(y

A
−i(t))

+
1

n
td2H(ai) yA

−i(t)
· yA−i

′(t), (38)

from which we retrieve directly the result of the Lemma.

To conduct our probabilistic study of Y ∈ E, we keep the assumptions
made in Section 3 concerning the quantities n, p and the random matrix X ∈
Mp,n. Now, to simplify the assumptions made in the last Lemma, we suppose
in addition that E = Rp and we assume that there exists a twice differentiable
mapping f : R → R such that all the mappings Hi are equal and satisfy:

∀i ∈ [n], ∀a, y ∈ R
p : Hi(a)(y) = f(aT y)a

To be able to justify the existence and uniqueness of Y , one is led to adapt
Assumptions 5 and 5 bis and assume that:

Assumption 5 ter. There exists a constant λ > 0, ∀t ∈ R |f ′(t)| ≤ λ with
1− λ

nE[‖XXT‖] ≥ O(1) .

Lemma 23. Under Assumption 1-5 ter, there exists a constant ε > 0 such
that if we set AY = {λ 1

n‖XXT‖ ≤ 1 − ε}, then under AY , the random vector
Y ∈ R

p solution to Y = Ψ(X)(Y ) is well defined and P(Ac
Y ) ≤ Ce−cn for some

constants C, c > 0.
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Proof. Noting ε = 1
2 (1 − λ 1

nE[‖XXT‖]), we know from Example 3 that
λ
n‖XXT‖ like 1

nXX
T satisfies the concentration 1

n‖XXT‖ ∝ E2(1/
√
n) +

E2(1/n) thus, there exists some constants C′, c′ > 0 such that:

P

(∣

∣

∣

∣

λ

n
‖XXT‖ − λ

n
E[‖XXT‖]

∣

∣

∣

∣

≥ ε

)

≤ C′e−c′n/ε2 + C′e−c′n/ε.

Therefore:

P(Ac
X) ≤ P

(

λ

n
‖XXT‖ ≥ ε+

λ

n
E[‖XXT‖]

)

≤ Ce−cn,

with C = 2C′ and c′ = min(c′/ε2, c′/ε).
To prove the existence and uniqueness of Y on AX , note that ∀A ∈ Mp,n

and ∀y ∈ Rp:

d2Ψ(A) y =
1

n

∑

i=1

f ′(aTi y)aia
T
i =

1

n
ADA,

where D ≡ Diag(f ′(aTi y))1≤i≤n satisfies ‖D‖ ≤ ‖f ′‖∞ ≤ λ. Thus, since ∀A ∈
Mp,n, ‖Ψ(A)‖L = supy∈Rp ‖d2Ψ(A) y‖, one sees that Ψ(X) is (1− ε)-Lipschitz

on AY
31, which implies the existence and uniqueness of Y thanks to Banach

fixed point theorem.

4.2. Concentration of yX−i
′(t)

The implicit statement that:

“f does not scale with n and p”.

induces some important features of f , among which we can mention:

• |f(0)| ≤ O(1),

• ∀t > 0, f(t) ≤ O(t + 1),

(since f ′(t) ≤ λ ≤ O(1)). With those characteristics on f , we can already bound
our fixed point:

Lemma 24. Given i ∈ [n], under AY :

sup
t∈[0,1]

‖yX−i(t)‖ ≤ O(1) and sup
t∈[0,1]

∥

∥yX−i
′(t)
∥

∥ ≤ O(1)

Proof. We only prove the result for t = 1 i.e when yX−i(t) = Y , the general
result is deduced the same way from our hypotheses. We know that under AY :

‖Ψ(X)(0)‖ ≤ 1

n
|f(0)1|‖X‖ ≤ O(1)

31Recall from from the discussion preceding Definition 6 that we employ the same notation
for the event AY and the subset X(AY ) ⊂ Mp,n, when there are no ambiguities.
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Therefore, Lemma 30 implies that ∀k > 0:

‖Ψ(X)k(0)‖ ≤
k
∑

i=1

‖Ψ(X)l(0)−Ψ(X)l−1(0)‖

≤ ‖Ψ(X)(0)− 0‖
k
∑

i=1

‖Ψ(X)‖lL ≤ ‖Ψ(X)(0)‖
1− ‖Ψ(X)‖L

≤ O(1)

since ‖Ψ(X)‖L < 1. In particular, letting k tend to ∞, one obtains ‖Y ‖ =
‖ limk→∞ Ψ(X)k(0)‖ ≤ O(1).

We know from a slight modification of Identity (38) that yX−i
′(t) is solution

to the fixed point equation:

yX−i
′(t) = d2Ψ

t
−i(X)

yX
−i(t)

· yX−i
′(t) +

1

n
f
(

xTi y
X
−i(t)

)

xi,

where, under AY (see Assumption 5 ter):

∥

∥

∥d2Ψ
t
−i(X)

yX
−i(t)

∥

∥

∥ =

∥

∥

∥

∥

∥

∥

∥

1

n

∑

1≤j≤n
j 6=i

f ′(xTj y
X
−i(t))xjx

T
j +

t

n
f ′(xTi y

X
−i(t))xix

T
i

∥

∥

∥

∥

∥

∥

∥

≤ ‖f ′‖∞
∥

∥

∥

∥

1

n
XXT

∥

∥

∥

∥

≤ 1− ε

like ‖Ψ(X)‖L, which implies naturally (since |f
(

xTi y
X
−i(t)

)

| ≤ |f(0)| +
‖f ′‖∞‖xTi yX−i(t)‖:

∥

∥yX−i
′(t)
∥

∥ ≤ 1

ε

∥

∥

∥

∥

1

n
f
(

xTi y
X
−i(t)

)

xi

∥

∥

∥

∥

≤ O

(

1√
n

(

|f(0)|+ ‖f ′‖∞‖xTi yX−i(t)‖
)

)

≤ O(1)

(39)

We have now all the elements to prove the concentration of yX−i(·).

Proposition 31. ∀i ∈ [n]:

(

1√
n
X, yX−i(·)

)

∝ E2
(

1√
n

)

| e−n in
(

Mp,n × (Rp)[0,1], ‖ · ‖∞
)

,

where for any A ∈ Mp,n and y(·) ∈ (Rp)[0,1], ‖(A, y)‖∞ = ‖A‖F +
supt∈[0,1] ‖y(t)‖.

Proof. Let us note y0 = E[yX−i(·)] ∈ (Rp)[0,1] (see Appendix A for a definition
of this expectation), we know from Lemma 24 that ‖y0‖∞ ≤ O(1). We show
in a first time that for any constant K > 0, and for all y ∈ B(y0,K), the
mappings Ψ(·)(y) : Mp,n → (Rp, ‖ · ‖) is O(1/

√
n)-Lipschitz on AX as the
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mapping 1
nHi(·)(y) : Mp,n → (Rp, ‖ · ‖) satisfying ∀A = (a1, . . . , an) ∈ Mp,n,

Hi(A)(y) = f(aTi y)ai. Indeed, for A,B ∈ AX , ‖A‖, ‖B‖, ‖y‖ ≤ O(1) and:

‖Ψ(A)(y)−Ψ(B)(y)‖ ≤ 1

n

∥

∥(A−B)f(AT y)
∥

∥+
1

n

∥

∥B
(

f(AT y)− f(BT y)
)∥

∥

≤ O

(

1√
n

)

‖A−B‖+ λ

n
‖B‖

∥

∥(A−B)T y
∥

∥

≤ O

(

1√
n

)

‖A−B‖,

where f(AT y) ∈ Rp is the vector having f(aT1 y), . . . , f(a
T
ny) as coordinates,

f being independent with n and p and ‖f‖L ≤ λ implies that ‖f(Ay)‖ ≤
λ‖Ay‖+ ‖f(0)‖ ≤ O(

√
n). For the same reasons, for any a, b ∈ Rp:

1

n
‖Hi(a)(y)−Hi(b)(y)‖ ≤ O

(

1√
n

)

‖a− b‖,

Therefore, since, ∀t ∈ [0, 1], Ψt
−i = Ψ− 1

n (1− t)Hi:

‖Ψ·
−i(A)(y) −Ψ·

−i(B)(y)‖∞ ≤ O

(

1√
n

)

‖A−B‖,

and naturally, (X,Ψ·
−i(X)(y)) ∝ E2 in (Mp,n × (Rp)[0,1], ‖ · ‖∞). Hypotheses of

Corollary 9 are then satisfied to set the concentration of (X,
√
nyX−i(·)).

Introducing, for any t ∈ [0, 1], and any i ∈ [n], the diagonal matrix D−i(t) ∈
Dn defined with

D−i(t)i = tf ′ (xTi y
X
−i(t)

)

and ∀j ∈ [n], j 6= i : D−i(t)j = f ′ (xTj y
X
−i(t)

)

the random matrix d2Ψ
t
−i(A) y

writes more simply 1
nXD−i(t)X and we have

the identity:

yX−i
′(t) =

1

n
f(xTi y

X
−i(t))Q−i(t)xi, (40)

where, Q−i(t) ≡ Q(D−i(t)) ≡ (Ip − 1
nXD−i(t)X

T )−1 (see subsection 3.8); Be
careful that Q−i(t) is different from Q−i(D−i(t))! However, when t = 0, the
random matrix Q−i(0), that we note Q−i is then independent with xi like
D−i ≡ D−i(0), since then [D−i]i = 0 and, in that case, Q−i = Q−i(D−i).

The concentration given by Proposition 31 combined with the bounds on
‖X‖ and ‖yX−i(t)‖, respectively provided by Assumption 4 and Lemma 24 allows
us to deduce from Proposition 9 the concentration:

XT yX−i(·) ∝ E2 | e−n in
(

(Rp)[0,1], (‖ · ‖t)t∈[0,1]

)

, (41)
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Here, a bound on ‖f‖∞ as in Assumption 5 ter would be very useful to set the
concentration of yX−i

′(·), but it is not necessary, thus we rather introduce the
quantity:

Mi ≡ E

[

sup
t∈[0,1]

∣

∣xiy
X
−i(t)

∣

∣

]

(42)

that will be shown to be of order O(1) below. Till now, we just know that
Mi ≤ O(

√
n), from (41) that xTi y

X
−i(t) ∈ O(Mi)± E2 | e−n and from the bound

∣

∣f(xTi y
X
−i(t))

∣

∣ ≤ |f(0)|+ ‖f ′‖∞
∣

∣xTi y
X
−i(t)

∣

∣ , (43)

that f(xTi y
X
−i(t)) ∈ O(Mi)±E2 | e−n (since ‖f(0)‖ ≤ O(1) and ‖f ′‖∞ ≤ O(1)).

To be able to set the concentration of Q(D−i(t))xi (the second term appear-
ing in (40)), we need first to set the concentration of D−i(t) and assume, in
place of Assumption 6:

Assumption 5 ter. ‖f ′′‖∞ ≤ ∞.32

Lemma 25. ∀i ∈ [n]: D−i(·) ∝ E2 | e−n in
(

D[0,1]
n , (‖ · ‖F,t)t∈[0,1]

)

.

Proof. Since ‖f ′′‖∞ ≤ O(1), f ′ is O(1)-Lipschitz. The concentration of
( 1√

n
X, yX−i(t)) combined by the bounds E[‖X‖] ≤ O(

√
n) and E[‖yX−i(t)‖] ≤

O(1) allows us to conclude from Proposition 9 that XTyX−i(t) ∝ E2 | e−n. There-
fore, as a O(1)-Lipschitz transformation of XT yX−i(t), D−i(t) ∝ E2 | e−n (and
the concentration constants do not depend on t).

Proposition 32. ∀i ∈ [n]:

yX−i
′(·) ∈ E2

(

1√
n

)

| e−n and XT yX−i
′(·) ∈ E2 | e−n

respectively in ((Rp)[0,1], (‖ · ‖t)t∈[0,1]) and in ((Rn)[0,1], (‖ · ‖t)t∈[0,1]).

Proof. To set the concentration of yX−i
′(t), we just have to verify hypotheses

of Theorem 5 with the equation: We can deduce from (40) that for any t ∈ [0, 1]
and any i ∈ [n]:























yX−i
′(t) =

1

n
f(xTi y

X
−i(t))

∞
∑

k=1

(

1

n
XD−i(t)X

T

)k

xi

XyX−i
′(t) =

1

n
f(xTi y

X
−i(t))

∞
∑

k=1

X

(

1

n
XD−i(t)X

T

)k

xi

32Since f does not scale with p and n that implicitly means that ‖f‖∞, ‖f ′′‖∞ ≤ O(1).
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and, for any k ∈ N, we know from Proposition 9 that:



















1

n
f(xTi y

X
−i(t))

(

1

n
XD−i(t)X

T

)k

xi ∝ E2
(

(1 − ε)k√
n

)

| e−n

1

n
f(xTi y

X
−i(t))X

(

1

n
XD−i(t)X

T

)k

xi ∝ E2
(

(1− ε)k
)

| e−n

indeed:

• f(xTi y
X
−i(t)) ∝ O(

√
n)± E2

(

(1 − ε)k
)

| e−n thanks to (43),

• 1
nXD−i(t)X

T ∝ E2
(

(1− ε)k
)

| e−n thanks to Lemma 13 and Propo-
sition 9, besides, under AY , we know from Assumption 5 ter that
‖ 1
nXD−i(t)X

T ‖ ≤ 1− ε,

• xi ∝ E2 thanks to Assumption 1.

We can then conclude thanks to Corollary 2 as in Theorem 5 (and the concen-
tration constants do not depend on t).

4.3. Integration of
∂yX

−i(t)

∂t

Now that the concentration of the objects yX−i(t) and yX−i(t)
′ are well under-

stood, we are able to integrate the formula provided by Lemma 22 to express
the link between Y and Y−i. We just some preliminary results to control the
matrix Q−i(·). In a first time, let us study Q−i ≡ Q−i(0) = Q−i(D−i) which is
independent with xi.

Proposition 33. Given i ∈ [n]:

1

n
Q−ixi ∈ E2

(

1

n

)

| e−n and
1

n
XQ−ixi ∈ E2

(

1√
n

)

| e−n

Proof. As in the proof of Proposition 32 the concentration of:

• Q−ixi =
∑∞

k=1

(

1
nX−iD−iX

T
−i

)k
xi,

• XT
−iQ−ixi =

∑∞
k=1X−i

(

1
nX−iD−iX

T
−i

)k
xi + xi

(

1
nX−iD−iX

T
−i

)k
xiei,

are consequences of Corollary 2. But this time, the independence between
1
nX−iD−iX

T
−i and xi allows us to have better observable diameter. Indeed,

if we note W−i ≡ 1
nX−iD−iX

T
−i, we know from Proposition 10 that W k

−i ∈
O((1 − ε)k) ± E2((1 − ε)k) | e−n and bounding, for any deterministic vector
u ∈ Rp such that ‖u‖ ≤ 1,

∣

∣uTW k
−ixi − EAY [u

TW k
−ixi]

∣

∣

≤
∣

∣uTW k
−i (xi − EAY [xi])

∣

∣+
∣

∣uT
(

W−i − EAY [W
k
−i]
)

EAY [xi]
∣

∣ ,
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we can deduce that:

W k
−ixi ∈ E2

(

(1 − ε)k
)

| e−n.

the same way, we prove that XT
−iW

k
−ixi ∈ E2

(√
n(1− ε)k

)

| e−n from the
concentration X−iW

k
−i ∈ O(

√
n(1−ε)k)±E2(

√
n(1−ε)k) | e−n and xTi W

k
−ixi ∈

E2
(√
n(1− ε)k

)

| e−n from the bound:

∣

∣xTi W
k
−ixi − EAY [x

T
i W

k
−ixi]

∣

∣

≤
∣

∣xTi W
k
−ixi − Tr

(

EAY [xix
T
i ]W

k
−i

)∣

∣+
∣

∣Tr
(

EAY [xix
T
i ]
(

W−i − EAY [W
k
−i]
))∣

∣ .

Then, Corollary 2 allows us to deduce the result of the proposition.

Proposition 34. Given i ∈ [n], recalling the notation Mi given in (42):

‖Q−i(·)xi −Q−ixi‖ ∈ O (Mi)± E2 (Mi) | e−n in (R[0,1], (‖ · ‖t)t∈[0,1])

Proof. Now, under AY and for any t ∈ [0, 1], let us bound:

‖(Q−i(t)−Q−i)xi‖ ≤ 1

n

∥

∥Q−i(t)X−i(D−i −D(t))XT
−iQ−ixi

∥

∥

≤ O

(

1√
n

)

‖XT
−iQ−ixi‖∞ sup

t∈[0,1]

‖D−i −D−i(t)‖F ,

since ‖X‖ ≤ O(
√
n) and ‖Q−i(t)‖ ≤ 1

ε (D−i ≡ D−i(0)). We already saw
that XT

−iQ−ixi/
√
n ∈ E2 | e−n and, since, for all j 6= i, |EAX [xTj Q−ixi]| =

|EAX [xTj Q−i]EAX [xi]| ≤ O(
√
n), we can deduce from Proposition 8 that

‖XT
−iQ−ixi‖∞/

√
n ∈ O(1)± E2 | e−n.

From identities D−i(t) = Diag(f ′(XTyX−i(t))) and:

XT yX−i(t) =
1

n
XTX−if(X

T yX−i(t)) +
t

n
XTxif(x

T
i y

X
−i(t)),

we can bound, under AY (recall that ‖X‖, ‖xi‖ ≤ O(
√
n) and ‖f‖∞ ≤ O(1)):

‖D−i −D−i(t)‖F ≤ ‖f ′′‖∞‖XTyX−i(0)−XTyX−i(t)‖ ≤ ‖f ′′‖∞
ε

t

n

∥

∥XTxif(x
T
i y

X
−i(t))

∥

∥

≤ O

(

f(0) + ‖f ′‖∞ sup
t∈[0,1]

|xTi yX−i(t)|
)

∈ O(Mi)± E2 | e−n

which ends the proof (thanks again to Proposition 9).

Before giving the link between Y and Y−i, we give a preliminary lemma that
will be of multiple use in the following to invert equations.

Lemma 26. Under AY , ∀i ∈ [n]: 1− ‖f ′‖∞
n xTi Q−ixi ≥ O(1)
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Proof. Recalling that [D−i]i = 0 and for all j ∈ [n] such that j 6= i, [D−i]i =
f ′(xjY−i), we can bound:

Q−i ≡ Q(D−i) ≡
(

Ip −
1

n
XD−iX

T

)−1

=

(

Ip −
1

n
X−iD−iX

T
−i

)−1

≤
(

Ip −
‖f ′‖∞
n

X−iX
T
−i

)−1

= Q−i(‖f ′‖∞In)

The Schur identity (20) then implies that:

‖f ′‖∞
n

xTi Q−i(t)xi ≤
‖f ′‖∞
n

xTi Q−i(‖f ′‖∞In)xi =
‖f ′‖∞

n xTi Q(‖f ′‖∞In)xi
1 +

‖f ′‖∞
n xTi Q(‖f ′‖∞In)xi

Therefore, 1− ‖f ′‖∞
n xTi Q−ixi ≥ O(1) since

‖f ′‖∞
n xTi Q(‖f ′‖∞In)xi ≤ O(1).

Proposition 35. ∀i ∈ [n], Mi ≡ EAY

[

supt∈[0,1]

∣

∣xTi y
X
−i(t)

∣

∣

]

≤ O(1) and:

∥

∥

∥

∥

Y − Y−i −
1

n
f(xTi Y )Q−ixi

∥

∥

∥

∥

∈ 0± E2
(

1

n

)

| e−n

Then, in particular, the bound Mi ≤ O(1) implies (thanks to Proposition 31
and (43)):

xTi y−i(t) ∈ O(1)± E2 | e−n and f(xTi y−i(t)) ∈ O(1)± E2 | e−n (44)

Proof. Setting χ(t) ≡ tf(xTi y
X
−i(t)) ∈ R, let us integrate between 0 and t the

identity yX−i
′(t) = χ′(t) 1

nQ−i(t)xi:

yX−i(t)− Y−i =
1

n
f(xTi Y )Q−ixi +

1

n

∫ t

0

χ′(u)(Q−i(u)−Q−i(0))xidu. (45)

Now, χ′(u) = f(xTi y
X
−i(u)) + tf ′(xTi y

X
−i(u))x

T
i y

X
−i

′(u), and satisfies the concen-
tration

χ′(·) ∈ O(Mi)± E2(Mi) | e−n in
(

R
[0,1], (‖ · ‖t)t∈[0,1]

)

(thanks to the bound ‖yX−i
′(u)‖ ≤ O(1) given in Lemma 24 that implies the

concentration xTi y
X
−i

′(u) ∈ O(Mi)±E2 | e−n and thanks to the discussion around
(43)). Besides, Proposition 9 combined with Proposition 34 imply that:

‖χ′(·)(Q−i(u)−Q−i(0))xi‖ ≤ |χ′(·)| ‖(Q−i(·)−Q−i(0))xi‖ ∈ O(M2
i )± E2(M2

i ) | e−n,

in (R[0,1], (‖ · ‖t)t∈[0,1]). We can then deduce the result from Proposition 6 that:

∥

∥

∥

∥

1

n

∫ t

0

χ′(u)(Q−i(u)−Q−i(0))xidu

∥

∥

∥

∥

∈ O(M2
i )± E2(M2

i ) | e−n
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and multiplying (45) on the right by xTi , one obtains thanks to (43):

sup
t∈[0,1]

∣

∣xTi y
X
−i(t)

∣

∣ ≤
∣

∣xTi Y−i

∣

∣+
|f(0)|
n

xTi Q−ixi +
‖f ′‖∞
n

xTi Q−ixi sup
t∈[0,1]

∣

∣xTi y
X
−i(t)

∣

∣

+

∥

∥

∥

∥

1

n

∫ t

0

χ′(u)(Q−i(u)−Q−i(0))xidu

∥

∥

∥

∥

.

We can then regroup all the terms supt∈[0,1]

∣

∣xTi y
X
−i(t)

∣

∣ on the left side of the in-

equality thanks to the bound 1−‖f ′‖∞
n xTi Q−ixi ≥ O(1) provided by Lemma 26.

Taking the expectation, we infer that:

Mi ≡ EAY

[

sup
t∈[0,1]

∣

∣xTi y
X
−i(t)

∣

∣

]

≤ O

(

1 + EAY

[∥

∥

∥

∥

1

n

∫ t

0

χ′(u)xTi (Q−i(u)−Q−i(0))xidu

∥

∥

∥

∥

])

≤ O(1) +O

(

M2
i√
n

)

,

which directly implies that Mi = O(1) and the second result of the proposition
(taking t = 1 in (45)).

With the formalism introduced in Subsection 1.2 (before Lemma 3) we say that
Y−i − 1

nf(x
T
i Y )Q−ixi is a strong random equivalent of Y , in particular, we saw

in Remark 6 that it has almost the same expectation and covariance, but since
we can bound:
∥

∥

∥

∥

EAY

[

1

n
f(xTi Y )Q−ixi

]∥

∥

∥

∥

≤ 1

n
EAY

[

|f(xTi Y )|‖xi‖‖Q−i‖
]

≤ O

(

1√
n

)

∥

∥

∥

∥

EAY

[

1

n2
f(xTi Y )2Q−ixix

T
i Q−i

]∥

∥

∥

∥

∗
≤ 1

n2
EAY

[

|f(xTi Y )2|‖xi‖2‖Q−i‖2
]

≤ O

(

1

n

)

∥

∥

∥

∥

EAY

[

1

n
f(xTi Y )2Q−ixiY

T
−i

]∥

∥

∥

∥

∗
≤ O

(

1√
n

)

,

we can also estimate:















‖EAY [Y ]− EAY [Y−i]‖ ≤ O

(

1√
n

)

∥

∥EAY

[

Y Y T
]

− EAY

[

Y−iY
T
−i

]∥

∥

∗ ≤ O

(

1√
n

)

.

(46)

One can then wonder why we set a result as complex as Proposition 35 if it was
simply to obtain these simple relations between the first statistics of Y and Y−i.
Of course, we are going to go further.

The observable diameter of order O(1/n) in Proposition 35 allows us to keep
good concentration bounds when Y is multiplied on the left by xTj , j ∈ [n]

(indeed, under AY , ‖xj‖ ≤ O(
√
n)). This time, the term 1

nf(x
T
i Y )xjQ−ixi can
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be of order O(1) in particular when j = i. For all j ∈ [n], 1
nf(x

T
i Y )xjQ−ixi ∈

E2(1/
√
n) (see (44) and Proposition 33) thus if j 6= i:

EAY

[

1

n
f(xTi Y )xjQ−ixi

]

≤ O

(

1√
n

)

but when j = i this quantity can be of order O(1), therefore we obtain the
concentrations:















xTj Y ∈ xTj Y−i ± E2
(

1√
n

)

| e−n when j 6= i

xTi Y ∈ xTi Y−i +
1

n
xTi Q−ixif(x

T
i Y )± E2

(

1√
n

)

| e−n.

(47)

4.4. Implicit relation between xTi Y and xTi Y−i

The random equivalent of xiY in (47) interests us particularly because it
allows us to replace in the identity

Y =
1

n

n
∑

i=1

f(xTi Y )xi,

the quantity f(xTi Y )xi with a quantity f(ζi(x
T
i Y−i))xi (for a given mapping

ζi : R → R) that is more easy to manage thanks to the independence between xi
and Y−i. For all i ∈ [n], let us introduce the deterministic and easily computable
diagonal matrix

∆ ≡ Diag1≤i≤n

(

1

n
Tr(Σi)

)

.

We know from Proposition 27 that Q−i ∈ Ip ± E2(
√
logn) |e−n, and, since

‖ 1
nΣi‖F ≤ O(1/

√
n), Proposition 33 implies that:

1

n
xiQ−ixi ∈

1

n
Tr(ΣiQ−i)± E2

(

1√
n

)

| e−n

∈ ∆i ± E2
(

√

logn

n

)

| e−n

It sounds then natural to introduce the equation

z = xTi Y−i +∆if(z), z ∈ R (48)

whose solution should be close to xTi Y as stated by next proposition.

Proposition 36. Given i ∈ [n], the random equation:

z = xTi Y−i +∆if(z), z ∈ R, (49)

admits a unique solution that we note ζi(x
T
i Y−i) and that satisfies:

xTi Y ∈ ζi(x
T
i Y−i)± E2

(

1√
n

)

| e−n

85



Proof. Let us differentiate the mapping g : R → R satisfying ∀z ∈ R, g(z) =
xTi Y−i +∆if(z):

g′(z) = ∆if
′(z) ≤ EAY

[

1

n
xTi Q−ixi‖f ′‖∞

]

< 1,

thanks to Lemma 26. Thus, the mapping g is contraction and it admits a unique
solution ζ(xTi Y−i). Now, we can bound under AY :

∣

∣xTi Y − ζ(xTi Y−i)
∣

∣ ≤
∣

∣xTi Y − xTi Y−i −∆if(ζ(x
T
i Y−i))

∣

∣

≤
∣

∣xTi Y − xTi Y−i −∆if(x
T
i Y )

∣

∣+∆i

∣

∣f(xTi Y )− f(ζi(x
T
i Y−i))

∣

∣

≤ ‖f ′‖∆i

∣

∣xTi Y − ζi(x
T
i Y−i)

∣

∣+O

(

1√
n

)

≤ O

(

1√
n

)

,

thanks to (47) and Lemma 26. We conclude then with Lemma 3.

We end this subsection with a little result that will allow us to differentiate ζi.

Lemma 27. Given i ∈ [n], the mapping ζi is differentiable.

Proof. Considering z, t ∈ R, let us express:

ζi(z + t)− ζi(z) = t+∆i (f(ζi(z + t))− f(ζi(z)))

thus |ζi(z + t)− ζi(z)| ≤ t
1−∆i‖f ′‖∞

(note that it implies that ζi is continuous).

Let us bound:

|f(ζi(z + t))− f(ζi(z))− f ′(ζi(z))(ζi(z + t)− ζi(z))|

≤ ‖f ′′‖∞ |ζi(z + t)− ζi(z)|2 ≤ t2‖f ′′‖∞
(1−∆i‖f ′‖∞)2

Dividing the upper identity by t we can bound:

∣

∣

∣

∣

1

t
(ζi(z + t)− ζi(z))− 1− ∆i

t
f ′(ζi(z))(ζi(z + t)− ζi(z))

∣

∣

∣

∣

≤ t‖f ′′‖∞∆i

(1−∆i‖f ′‖∞)
2 .

We can then let t tend to 0 to conclude that ζi is differentiable and we obtain
the identity:

ζ′i(t) = 1 +∆if
′(ζi(t))ζ

′
i(t).

We can then induce from the formulation of ζi that ∀z ∈ R:

ζ′(z) =
1

1−∆if ′(ζi(z))
≤ O(1), (50)

thanks to Lemma 26.
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4.5. Expression of the mean and covariance of Y .

Let us introduce the random vector:

Ž ≡
(

xTi Y−i

)

1≤i≤n

and the mappings ζ : Rn ∋ (zi)1≤i≤n 7→ (ζi(zi))1≤i≤n ∈ Rn, ξ = f ◦ ζ (∀i ∈ [n],
ξi = f ◦ ζi). With those notations, next Proposition gives us first estimations of
the deterministic objects:

mY ≡ EAY [Y ] and ΣY ≡ EAY [Y Y
T ],

Proposition 37.
∥

∥Y − 1
nXξ(Ž)

∥

∥ ∈ O

(

√

log n
n

)

+ E2
(

√

logn
n

)

| e−n and we

can estimate:






















∥

∥

∥

∥

mY − EAζ

[

1

n
Xξ(Ž)

]∥

∥

∥

∥

≤ O

(
√

logn

n

)

∥

∥

∥

∥

ΣY − EAζ

[

1

n2
Xξ(Ž)ξ(Ž)TXT

]∥

∥

∥

∥

∗
≤ O

(
√

logn

n

)

Proof. Let us bound under Aζ :
∥

∥

∥

∥

Y − 1

n
Xξ(Ž)

∥

∥

∥

∥

≤
∥

∥

∥

∥

1

n
Xf(Z)− 1

n
Xf(ζ(Ž))

∥

∥

∥

∥

≤ O

(

sup
1≤i≤n

∣

∣xTi Y − ζi(x
T
i Y−i)

∣

∣

)

Besides, we know from Propositions 36 and 5 that (|xTi Y − ζi(x
T
i Y−i)|)1≤i≤n ∈

E2
(√

1
n

)

| e−n in (Rn, ‖ · ‖∞), thus Proposition 8 implies that:

sup
1≤i≤n

∣

∣xTi Y − ζi(x
T
i Y−i)

∣

∣ ∈ O

(
√

logn

n

)

+ E2
(
√

logn

n

)

| e−n,

from which we deduce the first result of the proposition. The estimation of the
expectation and the non-centered covariance of Y then follow from Remark 6.

For any u ∈ Rp and any A ∈ Mp such that ‖u‖, ‖A‖ ≤ 1:

uTmY =
1

n

n
∑

i=1

E−iEi

[

ξi(x
T
i Y−i)u

Txi | AY

]

+O

(
√

logn

n

)

(51)

Tr(ΣY A) =
1

n2

∑

1≤i,j≤n

E−i,jEi,j

[

ξi(x
T
i Y−i)ξi(x

T
j Y−j)x

T
i Axj | AY

]

+O

(
√

logn

n

)

,

where Ei integrates only on the variable xi and:

Ei,j = Ej ◦ Ei = Ei ◦ Ej ; E−i =
∏

1≤j≤n
j 6=i

Ej and E−i,j =
∏

1≤k≤n
k 6=i,j

Ek.
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4.6. Computation of the estimation of the mean and covariance of Y when X
is Gaussian

The estimation given by (51)ecomes particularly interesting whenX is Gaus-
sian because in that case, the random variable zi ≡ xTi Y−i is also Gaussian (when
all the random vectors xj are fixed, for j 6= i) and admits the statistics:

Ei[zi] = mT
i Y−i and Ei[z

2
i ] = Y T

−iΣiY−i

(where we recall that mi ≡ E[xi] and Σi ≡ E[xix
T
i ]). We would like to obtain

from (51) fixed point equation on mY and ΣY , for that purpose, we need to
express Ei

[

ξ(zj)m
T
i xi | AY

]

and Ej,k

[

ξ(zj)ξ(zk)x
T
j Σixk | AY

]

as functions of

mY , CY mi, Σi, i ∈ [n]. Note indeed that zj ∈ xTj Y−j
−k

± E2(1/
√
n) | e−n (for

the same reasons that led to (47)), we can deduce that:

Ej,k[ξj(x
T
j Y−j)ξk(x

T
k Y−k)x

T
j Axk | AY ]

= Ej,k

[

ξj(x
T
j Y−j

−k
)xj | AY

]T

A Ej,k

[

ξk(x
T
k Y−j

−k
)xk | AY

]

+O

(

1√
n

)

= Ej

[

ξj(x
T
j Y−j)xj | AY

]T
A Ek

[

ξk(x
T
k Y−k)xk | AY

]

+O

(

1√
n

)

.

The only quantities that we want to explicit are thus of the form
Ej

[

ξ(zj)u
Txj | AY

]

and Ej

[

ξ(zj)
2xTj Axj | AY

]

. It will be done in two steps,
constituted by the two next propositions:

1. “separate” with Stein-like identities, the “functional part” (ξ(zj) and
ξ(zj)

2) from the “vectorial part” (uTxj and xTj Axj) in Ej

[

ξ(zj)u
Txj | AY

]

and Ej

[

ξ(zj)
2xTj Axj | AY

]

,

2. show that for a given functional h : R → R, the law of h(zi) just depends
on:

µi ≡ mT
i mY and νi ≡ Tr(ΣY Σi), i ∈ [n]. (52)

First, we give a result characteristic to Gaussian vectors commonly called
“Stein’s identities”:

Proposition 38. Given a Gaussian vector x ∼ N (µ,C) for µ ∈ R
p and

C ∈ Mp positive symmetric, two deterministic vectors w, u ∈ Rp, and a de-
terministic matrix A ∈ Mp,n, we have the identities:

E[f(wT x)uTx] = E[f(wT x)]uTµ+ E[f ′(wTx)]uTCw

E[f(wTx)xTAx] = E[f(wT x)] Tr
(

A(µµT + C)
)

+ E[f ′(wT x)]wT
(

A+AT
)

µ

+ E[f ′′(wTx)]wTCACw

Therefore, for j ∈ [n], we can express for any u ∈ Rp, A ∈ Mp symmetric,
such that ‖u‖, ‖A‖ ≤ O(1) and under Aζ (for the drawing of Y−j that is not
integrated here):
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• Ei

[

ξj(zi)u
Txi | AY

]

= Ei

[

ξi(zi)u
Txi
]

+O

(

1√
n

)

= Ei[ξi(zi)]u
Tmi + Ei[ξ

′
i(zi)]u

TCiY−i

•
1

n
Ej

[

ξj(zj)
2xTj Axj | AY

]

=
1

n
Ej

[

ξj(zj)
2xTj Axj

]

+O

(

1√
n

)

=
1

n
Ej

[

ξj(zj)
2
]

Tr (AΣj) +
4

n
Ej

[

ξj(zj)ξ
′
j(zj)

]

mT
j ACjY−j

+
2

n
Ej

[

ξj(zj)ξ
′
j
′(zj) + ξ′j(zj)

2
]

Y T
−jCjACjY−j +O

(

1√
n

)

=
1

n
Ej

[

ξj(zj)
2
]

Tr (AΣj) +O

(

1√
n

)

(since | 1nmT
j ACjY−j | = O(1/n) and 1

n |Y T
−jCjACjY−j | ≤ O(1/n))

• Ej,k[ξj(x
T
j Y−j)ξk(x

T
k Y−k)x

T
j Axk | AY ]

=
(

Ej [ξj(zj)]m
T
j + Ej [ξ

′
j(zj)]Y

T
−jCj

)T
A (Ek[ξk(zk)]mk + Ek[ξ

′
k(zk)]CkY−k) +O

(

1√
n

)

.

We know from Proposition 31 (that implies in particular that Y−jY
T
−k ∝

E2(1/
√
n) | e−n in (Mp, ‖ · ‖∗) thanks to (46) that:

• uTCiY−i ∈ uTCimY ± E2
(

1√
n

)

| e−n

• mT
j ACkY−k ∈ mT

j ACkmY ± E2
(

1√
n

)

| e−n

• Y T
−jCjACkY−k = Tr

(

Y−kY
T
−jCjACk

)

∈ Tr (ΣY CjACk)± E2
(

1√
n

)

| e−n

we are thus left to express the expectations of functionals of zj as functions of
mY and ΣY .

Next proposition provides a way to manage the randomness brought in the
expressions of Ei[zi] = mT

i Y−i and Ei[z
2
i ] = Y T

−iΣiY−i by Y−i to retrieve µi and
νi (defined in (52)).

Proposition 39. Given two (sequences of) random variables µ ∈ R and ν ∈ R,
two (sequences of) deterministic variable µ̃ ∈ R and ν̃ > 0 such that O(1) ≤
µ̃, ν̃ ≤ O(1) such that:

µ ∈ µ̃± E2
(

1√
n

)

| e−n and ν ∈ ν̃ ± E2
(

1√
n

)

| e−n,

if we consider a differentiable mapping f : R → R not scaling with n and such
that for any parameter a, b ∈ R: limy→±∞ |f(a + by)||y|e−y2/2 = 033, then for

33Since f does not scales with infinity, that implicitly induce that if O(1) ≤ a, b ≤ O(1),

then supy∈R |f(a + by)||y|e−y2/2 ≤ O(1).
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any Gaussian random variable z ∼ N (µ, ν), independent with ν and µ, we can
estimate:

Ez[f(z)] ∈ E[f(z̃)]± E2
(

1√
n

)

| e−n,

where Ez is the expectation taken only on the variation of z and z̃ ∼ N (µ̃, ν̃).

Proof. Let us introduce a Gaussian random variable y ∼ N (0, 1), independent
with µ and ν. We can express:

Ez[f(z)] ∈ E[f(z̃)] = Ey[f(µ+
√
νy)] ≡ φ(µ, ν)

Before bounding the variations of φ, note that there exists two constants C, c > 0
such that, introducing the event Aµ,ν ≡ { µ̃

2 ≤ µ ≤ 2µ̃ and ν̃
2 ≤ ν ≤ 2ν̃}, we

can bound P
(

Ac
µ,ν

)

≤ Ce−cn. Then (
√
ν|Aµ,ν) ∝ E2(1/

√
n) and under Aµ,ν ,

the mapping y 7→ f(µ+
√
νy)e−y2/2 is bounded, we can thus differentiate φ:

∂φ

∂ν
= Ey[

√
νf ′(µ+

√
νy)] = Ey

[

yf(µ+
√
νy)
]

≤ sup
a∈[µ̃/2,2µ̃]

b∈[
√

ν̃/2,
√

2ν̃]

Ey [yf(a+ by)] ≤ O(1)

∂φ

∂µ
= Ey[f

′(µ+
√
νy)] = Ey

[

y√
ν
f(µ+

√
νy)

]

≤ O(1)

Therefore as O(1)-Lipschitz transformations of µ, ν under Aµ,ν , we obtain the
concentration φ(µ, ν) ∈ φ(µ̃, ν̃) ± E2(1/

√
n) | e−n (see Remark 7), which is

exactly the result of the proposition.

4.7. Computation of µj ≡ mT
j mY and νj ≡ Tr(ΣT

j ΣY ), j ∈ [n]

To employ proposition 39, let us introduce the mapping E : F(R) × R × R

defined for any f : R → R and µ, ν ∈ R as:

E(f, µ, ν) = E[f(z)] with z ∼ N (µ, ν − µ2).

Then, for instance Ei[ξj(zj)] = E(ξj , µj , νj) ≤ O(1/
√
n), and we can rewrite

(51) to obtain for any u ∈ Rp such that ‖u‖ ≤ O(1):

uTmY =
1

n

n
∑

i=1

E(ξj , µj , νj)u
Tmi + E(ξ′j , µj , νj)u

TCimY +O

(
√

logn

n

)

,

To obtain a quasi-fixed point formulation on (µj)j∈[n] (and without apparition
of mY alone), we set:

C̃ ≡ 1

n

n
∑

i=1

E(ξ′j , µj , νj)Cj and m̃ ≡ 1

n

n
∑

i=1

E(ξj , µj, νj)mj ,

then mY satisfies the pseudo equation uTmy = uT m̃ + uT C̃mY and we need

the following result to be able to invert (Ip − C̃):
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Lemma 28.
∥

∥

1
n

∑n
i=1 E(ξ′j , µj , νj)Σi

∥

∥ < 1− ε
2

Proof. Given j ∈ [n], let us express with a random variable z ∼ N (µj , νj):

E(ξ′j , µj , νj) = EAζ
[f ′(ζj(z))ζ

′
j(z)],

and we know from (50) that ζ′j(z) =
1

1−∆jf ′(ζj(z))
and we can bound:

∣

∣E(ξ′j , µj , νj)
∣

∣ =

∥

∥

∥

∥

EAζ

[

f ′(ζj(z))

1−∆jf ′(ζj(z))

]∥

∥

∥

∥

≤ ‖f ′‖∞
1− ‖f ′‖∞∆j

.

Now, Proposition ?? implies that

∆j ≤ EAY

[

1

n
Tr(ΣjQ−j(‖f ′‖∞In))

]

= Λ1(‖f ′‖∞In) +O

(

√

logn

n

)

where Λ1(‖f ′‖∞In) = 1
n Tr

(

ΣjQ̃
z
(

‖̃f ′‖∞ · Λz(‖f ′‖∞In)
))

and:

Q̃1(‖f ′‖∞Λ1(‖f ′‖∞In) ≡
(

Ip −
1

n

n
∑

i=1

‖f ′‖∞Σi

1− ‖f ′‖∞Λ1(‖f ′‖∞In)

)−1

.

We know that:

∥

∥

∥Q̃1(‖f ′‖∞In
∥

∥

∥ ∈
∥

∥

∥Q̃1(‖f ′‖∞Λ1(‖f ′‖∞In)
∥

∥

∥± E2
(

1√
n

)

| e−n,

and
∥

∥

∥Q̃1(‖f ′‖∞In)
∥

∥

∥ ≤ 1
ε under AY . Thus inverting Q̃1(‖f ′‖∞Λ1(‖f ′‖∞In)),

we obtain the bound:
∥

∥

∥

∥

∥

1

n

n
∑

i=1

E(ξ′j , µj , νj)Σi

∥

∥

∥

∥

∥

≤ 1− 1
∥

∥

∥Q̃1 (‖f ′‖∞Λ1(‖f ′‖∞In))
∥

∥

∥

≤ 1− ε+O

(

1√
n

)

Therefore, since Σi = Ci +mim
T
i , ‖C‖ ≤

∥

∥

1
n

∑n
i=1E(ξ′j , µj , νj)Σi

∥

∥ < 1, we

can invert (Ip − C̃) and, replacing u by (Ip − C̃)−1mk, we obtain the system of
n quasi-equations on (µk)1≤k≤n:

∀k ∈ [n] : µk = mT
k (Ip − C̃)−1m̃+O

(
√

logn

n

)

Let us express from (51), for any symmetric matrix A ∈ Mp such that
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‖A‖ ≤ O(1):

Tr(ΣY A) =
1

n2

n
∑

i=1

E(ξ2i , µi, νi)Tr (AΣi)

+
1

n2

∑

1≤j 6=k≤n

E(ξk, µk, νk)E(ξj , µj , νj)m
T
j Amk

+ 2
1

n2

∑

1≤j 6=k≤n

E(ξj , µj, νj)E(ξ′k, µk, νk)m
T
j ACkmY

+
1

n2

∑

1≤j 6=k≤n

E(ξ′j , µj , νj)E(ξ′k, µk, νk)Tr(CjACkΣY ) +O

(

1√
n

)

=
1

n
Tr(AΣ̃) + m̃TAm̃+ 2m̃TAC̃mY +Tr(C̃AC̃ΣY ) +O

(

1√
n

)

=
1

n
Tr(AΣ̃) +

(

m̃+ C̃mY

)T

A
(

m̃+ C̃mY

)

+Tr(C̃AC̃CY ) +O

(

1√
n

)

Therefore, since mY = m̃ + C̃mY + O(1/
√
n) and ΣY = Cy −mYm

T
Y , we can

deduce that:

Tr(CY A) =
1

n
Tr(AΣ̃) + Tr(C̃AC̃CY ) +O

(

1√
n

)

with the notation Σ̃ ≡ 1
n

∑n
i=1E(ξ2i , µi, νi)Σi. Let us then introduce the linear

mapping Θ : Mp → Mp defined with the equation:

Θ(B) = B + C̃Θ(B)C̃, B ∈ Mp (53)

(this equation is invertible thanks to Lemma 28), we can then deduce that for
any k ∈ [n]:

νk ≡ Tr(ΣkΣY )− (mT
kmY )

2 = Tr(ΣkCY ) +mT
Y CkmY

=
1

n
Tr(ΣkΘ(Σ̃)) +mT

Y CkmY +O

(

1√
n

)

Remark 26. When B commutes with C̃, then Θ(B) = (Ip−C̃2)−1B. However,
this formulation is not very interesting for implementation, since Θ(B) can
be approximated far more rapidly with successive iterations of the fixed point
equation (53).

4.8. Application to the logistic regression for x1, . . . , xn Gaussian i.i.d. vectors.

To illustrate our theoretical results in a simple way we present the example
of a supervised classification method called the “the logistic regression” already
studied by Mai et al. (2019). Considering a deterministic vector m ∈ R

p and a
positive symmetric matrix C ∈ Mp, we suppose we are given nGaussian random
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vectors z1, . . . , zn, each one following the law N (yim,C) where y1, . . . , yn ∈
{−1, 1} are the “labels” of zi that determine the classes of our data. We assume
for simplicity that the classes are balanced. Our classification problem aims at
deducing from the training set z1, . . . , zn and the labels y1, . . . yn a statistical
characterization of our two classes that will allow us to classify a new coming
data x, independent with the training set and following one or the other law.
To introduce the problem, let us express the probability conditioned on a new
data x, and knowing that zi is Gaussian, that yi = y, for a given y ∈ {0, 1}:

P(yi = y | zi) =
P(yi = y)P(zi | yi = y)

P(yi = y)P(zi | yi = y) + P(yi = −y)P(zi | yi = −)

=
e−(zi−ym)TC−1(zi−ym)/2

e−(zi−ym)TC−1(zi−ym)/2 + e−(zi+ym)TC−1(zi+ym)/2

=
1

1 + e−yzT
i C−1m

= σ(yzTi β
∗),

noting σ : t 7→ 1/(1 + e−t) and β∗ ≡ C−1m. The goal of the logistic regression
is to try and estimate β to be able to classify the data depending on the highest
value of P(yi = 1 | zi) and P(yi = −1 | zi). For that purpose, we solve a
regularized maximum likelihood problem:

min
β∈Rp

1

p

n
∑

i=1

ρ(βTxi) +
λ

2
‖β‖2

where ρ(t) = log(1 + e−t), xi = yizi and λ > 0 is the regularizing parameter.
Differentiating this minimizing problem, we obtain:

β =
1

λn

n
∑

i=1

f(xTi β)xi,

where f : t 7→ 1
1+et . If one choses λ sufficiently big, the Assumptions 1-

5 ter are all satisfied, our results thus allow us to set the concentration β ∝
E2(1/

√
n) | e−n and estimate its first statistics. Introducing µ and ν as the

unique solutions to the system of equation:











µ = E(ξ, µ, ν)mTQm

ν = E(ξ2, µ, ν)Tr
(

Σ2
)

+ 4E(ξξ′, µ, ν)E(ξ, µ, ν)mTC2Qm

+ 2E(ξξ′′ + ξ′2, µ, ν)mQC3Qm+ E(ξ, µ, ν)2m2Q2m− µ2,

(54)

with, as before:

• ∀g : R → R, E(g, µ, ν) = E[g(z)] with z ∼ N (µ, ν)

• ξ = f ◦ ζ

• δ = 1
n Tr(Σ)
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• ∀x ∈ R, ζ(x) = x+ δf(ζ(x))

• Q ≡ (Ip − E(ξ′, µ, ν)C)−1

The system (54) can be solved by successive iteration (the quantities E(g, µ, ν)
for g = ξ, ξ2, ξ′, ξξ′, ξ′2, ξ′′ξ can all be estimated precisely with random drawings
of the distribution N (µk, νk) at the kth step of the iteration). We can then
deduce the performances of the algorithm from the statistics of Y , we depicted
on Figure...

Appendix A. Definition of the expectation

Given a concentrated random vector Z ∈ (E, ‖ ·‖), we will need at one point
(Theorems 6, 12 and 9) to be able to consider its expectation. We already know
from Remark 1 that, if Z ∝ Eq(σ), then for any Lipschitz mapping f : E 7→ R,
the functional f(Z) admits an expectation E[f(Z)] =

∫

E
f(z)dP(Z = z). This

definition can be first generalized when E is a reflexive space.
Given a normed vector space (E, ‖ · ‖), we denote (E′, ‖ · ‖) the so-called

“strong dual” of E, composed of the continuous linear forms of E for the norm
‖ · ‖. The norm ‖ · ‖ (written the same way as the norm on E for simplicity
– no ambiguity being possible) is called the strong norm of E′ and defined as
follows.

Definition 11. Given a normed vector space (E, ‖ · ‖), the strong norm ‖ · ‖ is
defined on E′ as:

∀f ∈ E′, ‖f‖ = sup
‖x‖≤1

|f(x)|.

To be able to define an expectation in E we first assume that E is reflexive. To
this end, we need to first define a “topological bidual” of E, denoted (E′′, ‖ · ‖)
and defined by E′′ = (E′)′ with norm the strong norm of the dual of E′.

Definition 12. The “natural embedding” of E into E′′ is defined as the map-
ping:

J : E −→ E′′

x 7−→ (E′ ∋ f 7→ f(x)).

It can be shown that J is always one-to-one, but not always onto; however, when
J is bijective, we say that E is reflexive.

If E is reflexive, then it can be identified with E′′ (this is in particular the
case of any vector space of finite dimension but also of any Hilbert space). One
can then define the expectation of any concentrated vectorX ∝ Eq(σ) as follows:

Definition 13. Given a random vector Z of a reflexive space (E, ‖ · ‖), if the
mapping E′ ∋ f 7→ E[f(Z)] ∈ R is continuous on E′, we define the expectation
of Z as the vector:

E[Z] = J−1(f 7→ E[f(Z)]). (A.1)
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Remark 27. A reflexive space is a complete space (since it is in bijection with
a dual space). It satisfies in particular the Picard Theorem which states that any
contractive mapping f : E → E (∀x, y ∈ E, ‖f(x)− f(y) ≤ (1 − ε)‖x− y‖ with
ε > 0) admits a unique fixed point y = f(y). This property will be particularly
interesting when considering the concentration of fixed point of concentrated
functions of Reflexive spaces in Section 2.

Lemma 29. Given a reflexive space (E, ‖ · ‖), a random vector Z ∈ E and a
continuous linear form f ∈ E′:

f(E[Z]) = E[f(Z)].

Proof. It is just a consequence of the identity:

f(E[Z]) = J(E[Z])(f) = J
(

J−1(f 7→ E[f(Z)])
)

(f) = E[f(Z)].

Proposition 40. Given a reflexive space (E, ‖ ·‖) and a random vector Z ∈ E,
if Z ∝ Eq(σ), then E[Z] can be defined with Definition 13.

Proof. We just need to show that f 7→ E[f(Z)] is continuous. There exists
Kp > 0 such that P(‖Zp‖ ≤ Kp) ≥ 1

2 , so that for any f ∈ E′, P(f(Zp) ≤
Kp‖f‖) ≥ 1

2 . Therefore, by definition, for any medianmf of f(Zp), mf ≤ Kp‖f‖
and employing again the inequalities given in Remark 1 we can obtain a similar
bound on |E[f(Z)]| which allows us to state that the mapping φ is continuous.

It is still possible to define a notion of expectation when E is not reflexive
but is a functional vector space having value on a reflexive space (F, ‖ · ‖); for
instance a subspace of FG, for a given set G.

Definition 14. Given reflexive space (F, ‖ · ‖), a given set G, a subspace E ⊂
FG, and a random vector φ ∈ E, if for any x ∈ F , the mapping F ′ ∋ f 7→
E[f(φ(x))] is continuous, we can defined the expectation of φ as:

E[φ] : x 7→ E[φ(x)].

Remark 28. When the space E ⊂ FG is endowed with a norm ‖ · ‖ such that
(E, ‖ · ‖) is reflexive and ∀x ∈ G, E ∋ φ 7→ φ(x) is continuous, then there is
no ambiguity on the definitions. Indeed, if we note E1[φ] and E2[φ], respectively
the expectation of φ given by Definition 13 and Definition 14, we can show for
any x ∈ F and any f ∈ F ′:

f(E1[φ](x)) = f̃(E1[φ]) = E[f̃(φ)] = E[f(φ(x))] = f(E[φ(x)]) = f(E2[φ](x)),

where f̃ : E ∋ ψ → f(ψ(x)) is a continuous linear form. Since this identity
is true for any f ∈ E′, we know by reflexivity of E that ∀x ∈ E: E1[φ](x) =
E2[φ](x). This directly implies that E1[φ] = E2[φ].
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Remark 29. Given a random mapping φ ∈ E ⊂ FG with (F, ‖ · ‖) reflexive,
we can then deduce from Proposition 40 that if for all x ∈ G, φ(x) ∝ Eq(σ) in
(F, ‖ ·‖) then we can define E[φ]. With a different formalism, we can endow FG

with the family of semi-norms (‖ · ‖x)x∈G defined for any f ∈ FG as ‖f‖x =
‖f(x)‖; then if for all x ∈ G, φ ∝ Eq(σ) in (FG, ‖ · ‖x), it is straightforward to
set that E[φ] is well defined. This is in particular the case if E = B(G,F ) is the
set of bounded mappings from G to F and φ ∝ Eq(σ) in (FG, ‖ · ‖∞) where for
all f ∈ FG, ‖f‖∞ = supx∈G ‖f(x)‖.

Appendix B. Concentration of Y solution to Y = φ(Y ) when φ is
locally Lipschitz

For that we first need a preliminary lemma that will allow us to set that
a mapping contracting in a sufficiently large compact admits a fixed point. It
expresses through the introduction of a new semi-norm defined for any f ∈
F(E), locally Lipschitz as:

‖f‖L,B(y0,r) = sup
x,z∈B(y0,r)

‖f(x)− f(z)‖
‖x− z‖ .

Lemma 30. Given a mapping φ ∈ F(E), if there exist two constants δ, ε > 0
and a vector y0 ∈ E such that:

‖φ‖L,B(y0,δ) ≤ 1− ε and ‖φ(y0)− y0‖ ≤ δε,

then for any y ∈ B(y0, δε) and any k ∈ N:
∥

∥φk(y)− y0
∥

∥ ≤ δ. (B.1)

Proof. That can be done iteratively. For k = 0, it is obvious since ‖y −
y0‖ ≤ εδ ≤ δ (ε < 1). Now if we suppose that (B.1) is true for all l < k and
y ∈ B(y0, εδ) (thus in particular for y = y0), we can bound (under Aφ∞):

∥

∥φk(y)− y0
∥

∥ ≤
∥

∥φk(y)− φk(y0)
∥

∥+
∥

∥φk(y0)− y0
∥

∥

≤ (1− ε)k ‖y − y0‖+
k
∑

i=1

∥

∥φi(y0)− φi−1(y0)
∥

∥

≤ (1− ε)kεδ +

k
∑

i=1

(1 − ε)i−1 ‖φ(y0)− y0‖ ≤ δ.

Remark 30. Note that in the previous proof k can tend to ∞ without any
change in the concentration bounds. This is due to the fact that for any l ∈ [k]
we used the large bounds:

(1− ε)l ≤ 1 and
l
∑

i=1

(1− ε)i ≤ 1

ε
.
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Theorem 12. Let us consider a (sequence of) reflexive vector space (E, ‖ · ‖)
admitting a finite norm degree that we note η. Given φ ∈ Lip(E), a (sequence
of) random mapping, we suppose that there exists a (sequences of) integer σ > 0,
a constant ε > 0 such that for any constant K > 0, there exists a (sequence of)
highly probable event AK such that:

• there exists a (sequence of) deterministic vector y0 ∈ E satisfying:

y0 = EAK [φ(y0)]

• for all y ∈ B(y0,Kση1/q) and for all (sequence of) integer k such that
k ≤ O(log(η)),

φk(y)
AK∈ Eq (σ) | e−η in (E, ‖ · ‖).

• AK ⊂ {‖φ‖L,B(y0,Kση1/q) ≤ 1− ε},

then with high probability (bigger than 1− Ce−cη for some constants C, c > 0),
the random equation

Y = φ(Y )

admits a unique solution Y ∈ E satisfying the linear concentration:

Y ∈ Eq (σ) | e−η.

Proof. We know that, (φ(y0) | A1) ∈ y0±Eq(σ), so in particular Proposition 8
implies that there exist three constants C, c,K > 0 such that:

P

(

‖φ(y0)− y0‖ ≥ Kση1/qε | A1

)

≤ Ce−η/c,

Let us then note AY = A1 ∩ AK ∩ {‖φ(y0)− y0‖ ≥ Kση1/qε}, we can bound
P(AY ) ≤ C′e−η/c′ for some constants C′, c′, and we know from Lemma 30 and
our hypotheses that ∀k ∈ N:

φk(y0) ∈ B(y0,Kση1/q),

(since y0 ∈ B(y0,Kση1/qε)). Therefore since AY ⊂ AK ⊂ {‖φ‖L,B(y0,Kση1/q) ≤
1 − ε}, the sequence (φk(y0))k∈N is a Cauchy sequence and it converges to
a random vector Y ∈ E satisfying Y = φ(Y ) (E is complete because it is
reflexive).

We now want to show that Y is concentrated. Following the steps of the proof

of Theorem 6, one sees that it is sufficient to show that
∥

∥

∥Ỹ − y0

∥

∥

∥ = O(ση1/q)

for Ỹ defined as the unique solution to the equation Ỹ = EAY [φ
k(Ỹ )] already
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introduced in the proof of Theorem 6 and k = ⌈− log(η)
q log(1−2ε)⌉. Let us bound:

∥

∥

∥Ỹ − y0

∥

∥

∥ ≤
∥

∥

∥EAY

[

φk(Ỹ )− φk(y0)
]∥

∥

∥+
∥

∥EAY [φ
k(y0)− y0]

∥

∥

≤ EAY

[∥

∥

∥φk(Ỹ )− φk(y0)
∥

∥

∥

]

+ EAY

[∥

∥φk(y0)− y0
∥

∥

]

≤ EAY

[

‖φ‖k
]

∥

∥

∥Ỹ − y0

∥

∥

∥+ EAY

[

k
∑

i=1

‖φ‖iL ‖φ(y0)− y0]‖
]

≤ (1 − ε)
∥

∥

∥Ỹ − y0

∥

∥

∥+Kση1/q.

Thus
∥

∥

∥Ỹ − y0

∥

∥

∥ ≤ Kση1/q

ε , so that, noting A′
Y ≡ AKση1/q

ε

∩ AY , by hypothesis:

φk(Ỹ )
A′

Y∝ Eq (σ) | e−θ,

the rest of the proof is then exactly the same as the proof of Theorem 6.

Let us now give a more flexible result involving the norms ‖ · ‖B(y0,r) for r > 0
but also the semi-norms ‖ · ‖L,B(y0,r). The following Lemma might seem a bit
complicated and artificial, it is however perfectly adapted to the requirement
of Theorem 9 generalizing Theorem 12 to the case of Lipschitz concentrated
mappings φ locally Lipschitz.

Lemma 31. Given a normed vector space (E, ‖ · ‖) whose norm degree is noted
η, a vector y0 ∈ E and a (sequence of) random mapping φ ∈ F∞(E), let us
suppose that there exists a (sequence of) constant ε > 0 (ε ≥ O(1)) such that
for any constant K > 0, there exists a (sequence of) event AK :

φ
AK∝ Eq (σ) | e−η in

(

F(E), ‖ · ‖B(y0,Kση1/q)

)

,

and there exist two constants C, c such that

P
(

‖φ‖L,B(y0,Kση1/q) ≥ 1− ε | AK

)

≤ Ce−cη,

then for any constant K ′ (K ′ ≥ O(1)) we have:

φm
Aφ∝ Eq (σ) | e−θ′

in (F∞(E), ‖ · ‖B(y0,K′ση1/q)),

Proof. In this particular setting it is more convenient to redo the full proof of
the weaker statement of Theorem 2 given by Proposition 9. The main difficulty
being, that we work in F(E) with the semi-norms

(

F(E), ‖ · ‖B(y0,K′ση1/q)

)

and
‖ · ‖L,B(y0,K), (in (F∞, ‖ · ‖∞ + ‖ · ‖L) there would not have been any issue).
As in the proof of Theorem 12, let us introduce three constants C, c > 0 and
K > K ′/ε such that:

P

(

‖Φ(y0)− y0‖ ≥ Kση1/qε | A1

)

≤ Ce−η/c,
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Let us set:

Aφ∞ ≡ AKε ∩A1 ∩
{

‖φ‖L,BE(y0,Kση1/q) ≤ 1− ε
}

,

We know from Lemma 30 that for all k ∈ N, and for all f ∈ Aφ∞ (recall that
we identify Aφ∞ with φ(Aφ∞)):

fk(y) ∈ B(y0,K),

since ‖y − y0‖ ≤ K ′ση1/q ≤ Kση1/qε. For any f, g ∈ Aφ∞ :

‖fm − gm‖B(y0,K′ση1/q) ≤
m
∑

i=1

‖f‖i−1
L,B(y0,Kση1/q)‖f(gm−i(y))− g(gm−i(y))‖

≤ 1

ε
‖f − g‖B(y0,Kεση1/q).

Thus the mapping f 7→ fm is 1
ε -Lipschitz on (Aφ∞ , ‖ · ‖B(y0,K ′ση1/q)), which

directly implies the result of the lemma.

The next theorem is an important improvement (allowed by Lipschitz con-
centration) of Theorem 8 in that it only take as hypothesis the concentration of
φ (and not of all its iterates). It also has the advantage to assume only a local
control on the Lipschitz character of φ to describe a larger range of settings.

Theorem 13. Let us consider a (sequence of) reflexive vector space (E, ‖ · ‖)
we suppose that ‖ · ‖ norm degree is noted η (of course η ≥ O(1)), a (sequence
of) random mapping φ ∈ Lip(E), a given constant ε > 0 (ε ≥ O(1)) and Aφ, a
(sequence of) highly probable events such that P (Aφ) ≤ Ce−cη for two constants
C, c > 0 and Aφ ⊂ {‖φ‖L ≤ 1−ε}. Introducing y0, a (sequence of) deterministic
vector y0 ∈ E satisfying:

y0 = EAφ
[φ(y0)],

if we suppose that for any constant K > 0:

φ ∝ Eq(σ) | e−η in (F(E), ‖ · ‖B(y0,Kση1/q)),

then there exists an highly probable event AY , such that, under AY , the random
equation

Y = φ(Y )

admits a unique solution Y ∈ E satisfying the Lipschitz concentration:

Y ∝ Eq (σ) | e−η.
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