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Abstract
Missing data can be informative. Ignoring this information can lead to

misleading conclusions when the data model does not allow information
to be extracted from the missing data. We propose a co-clustering model,
based on the Latent Block Model, that aims to take advantage of this
nonignorable nonresponses, also known as Missing Not At Random data
(MNAR). A variational expectation-maximization algorithm is derived to
perform inference and a model selection criterion is presented. We assess
the proposed approach on a simulation study, before using our model on
the voting records from the lower house of the French Parliament, where
our analysis brings out relevant groups of MPs and texts, together with a
sensible interpretation of the behavior of non-voters.

1 Introduction
Biclustering or co-clustering simultaneously groups the rows and the columns

of a data matrix. Co-clustering has found applications in many areas such as
genomic analysis [Pontes et al., 2015, Kluger et al., 2003], text analysis [Dhillon
et al., 2003, Selosse et al., 2020b], collaborative filtering [George and Merugu,
2005, Shan and Banerjee, 2008], or political analysis [Latouche et al., 2011,
Wyse and Friel, 2012]. Co-clustering methods can be divided into categories
such as, but not limited to, spectral methods [Dhillon, 2001, Kluger et al., 2003],
mutual information methods [Dhillon et al., 2003], modularity based methods
[Labiod and Nadif, 2011], non negative matrix tri-factorization [Ding et al., 2006]
or model-based methods. Among the model-based methods, the Latent Block
Model [Govaert and Nadif, 2008, Nadif and Govaert, 2010, Lomet, 2012, Keribin
et al., 2015] relies on mixtures, assuming that the observations are generated
from finite mixture components in rows and columns.

Most standard methods of clustering or co-clustering presuppose complete
information and cannot be applied with missing data, or may provide mislead-
ing conclusions when missingness is informative. A careful examination of the
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data generating process is necessary for the processing of missing values, which
requires identifying the type of missingness [Rubin, 1976]: Missing Completely
At Random (MCAR) refers to the mechanism in which the probability of being
missing does not depend on the variable of interest or any other observed vari-
able; whereas in Missing At Random (MAR) the probability of being missing
depends on some observed data but is still independent from the non-observed
data; and finally Missing Not At Random (MNAR) refers to the mechanism
in which the probability of being missing depends on the actual value of the
missing data. Under the MAR hypothesis, no information on the generation
of data can be extracted from its absence, but under a MNAR assumption,
this absence is informative, and ignoring this information in likelihood-based
imputation methods may lead to strong biases in estimation [Little and Rubin,
1986]. Missing Not At Random is also known as non-ignorable missingness, in
opposition to the ignorable missingness of MCAR and MAR settings, as the
absence of data is assumed to convey some information.

In this paper, we aim at clustering the rows and columns of a data matrix
whose entries are missing not at random. Equivalently, we consider the cluster-
ing of the vertices of a bipartite graph whose edges are missing not at random.
For this purpose, we introduce a co-clustering model that combines a MNAR
missingness model with the Latent Block Model (LBM).

In Section 2 we review the Latent Block Model introduced by Govaert and
Nadif [2008]. In Section 3, we introduce our model, a LBM extended to a MNAR
missingness process, and propose, in Section 4, a variational EM algorithm to
infer its parameters. We also introduce, in Section 5, an Integrated Completed
Likelihood (ICL) criterion to tackle model selection. We then conduct experi-
ments on synthetic datasets in Section 6 to show that the overall approach is
relevant to co-cluster MNAR data. Finally, an analysis of the voting records of
the lower house of the French Parliament is presented in Section 7.

1.1 Related Works
Up to our knowledge, all existing co-clustering methods consider that missing

data is either MCAR or MAR [Selosse et al., 2020a, Jacques and Biernacki, 2018,
Papalexakis et al., 2013], except one proposed by Corneli et al. [2020] used to
co-cluster ordinal data. Their model is very parsimonious as it assumes that
both data and missingness are only dependent on the row and column clusters.
In this setting, they are able to consider MNAR data even if they suppose
that missingness depends indirectly from the value of the data. The model we
propose is less parsimonious, thus more flexible, as it supposes that missingness
depends both on the value of the data and on the row and column indexes (not
only on their respective cluster indexes). In addition to that, our missing data
model can be easily re-used for any other statistical co-clustering model as it is
weakly-coupled to the generative model of the full data matrix.

In the simple clustering framework, few mixture models handling MNAR
data have been proposed. Marlin et al. [2011] combine a multinomial mixture
clustering model, used as a complete data model, with a missingness model of
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type MNAR. They propose two versions of their missingness model. The first
one, called CPT-v, models the data observation probability depending only on
the underlying value of the data. The second one, called Logit-vd, allows the
probability of a data entry to be missing to depend both on the value of the
underlying data and the characteristics of the column, giving more flexibility to
the model. Our missingness model respects the symmetry of the co-clustering
problem by depending identically on the characteristics of the row and column.
Kim and Choi [2014] propose Bayesian-BM/OR, a simple mixture model of
binomials in a Bayesian formalism. The MNAR missingness is modeled by
three factors, related to the row, the column and the data value, all three being
modeled by Bernoulli variables combined together by a “or” logical operator.
The choice of this missingness model is motivated by algorithmic considerations
that are not relevant for co-clustering models. Tabouy et al. [2020], in a graph
perspective, deal with nonobserved dyads during the sampling of a network and
consecutive issues in the inference of the stochastic block model. They propose
three different MNAR sampling designs in which observing dyads depends either
on their underlying value, or on the class or on the degree of the nodes. The
Stochastic Block Model, though similar from the Latent Block Model we use, is
not usable for co-clustering purposes.

Also related to missing data but not to clustering, MNAR is also considered
in the Matrix Factorization framework. Steck [2010] derives a weighted MF
model and optimizes the parameters based on a metric that is robust to MNAR
data. Hernández-Lobato et al. [2014] use a double probabilistic MF model; one
is for the complete data and one for the missing data, where users and items
propensities are both modeled with low rank matrices. Schnabel et al. [2016]
propose an empirical risk minimization framework to derive a propensity scored
matrix factorization method that can account for selection bias.

2 The Latent Block Model
The Latent Block Model (LBM) is a co-clusteringmodel that classifies jointly

the rows and the columns of a data matrix [Govaert and Nadif, 2008]. This
probabilistic generative model assumes a double partition on the rows and the
columns of a (n1 ×n2) data matrix X that corresponds to a strong structure of
the matrix in homogeneous blocks. This structure is unveiled by reordering the
rows and columns according to their respective cluster index; for k1 row clusters
and k2 column clusters, the reordering reveals k1×k2 homogeneous blocks in the
data matrix. Note that we adopt here the original view where the data matrix is
interpreted as a data table. The binary matrix X can also be interpreted as the
biadjacency matrix of a bipartite graph, whose two sets of vertices corresponds
to the rows and columns of the data matrix. In this interpretation, Xij = 1
if an edge is present between “row node” i and “column node” j, and Xij = 0
otherwise.

For the (n1 × n2) data matrix X, two partitions are defined by the latent
variables Y and Z, with Y being the n1 × k1 indicator matrix of the latent row
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clusters (Yiq = 1 if row i belongs to group q and Yiq = 0 otherwise), and Z being
the n2 × k2 indicator matrix of the latent column cluster. The group indicator
of row i will be denoted Y i, and similarly, the group indicator of column j will
be denoted Zj . The LBM makes several assumptions on the dependencies:

Independent rows and column clusters The latent variables Y and Z
are a priori independent.

p(Y ,Z) = p(Y )p(Z) .

Note that a priori independence does not imply a posteriori independence:
given the data matrix X, the two partitions are (hopefully) not independent.

Independent and identically distributed row clusters The latent vari-
ables Y are independent and follow a multinomial distributionM(1;α), where
α = (α1, ..., αk1) is the mixing proportions of rows:

p(Y ;α) =∏
i

p(Y i;α)

p(Yiq = 1;α) = αq ,

with α ∈ S(k1−1) = {α ∈ Rk1+ ∣∑q αq = 1}.

Independent and identically distributed column clusters Likewise, the
latent variablesZ are independent and follow a multinomial distributionM(1;β),
where β = (β1, ..., βk2) is the mixing proportions of columns:

p(Z;β) =∏
j

p(Zj ;β)

p(Zjl = 1;β) = βl ,

with β ∈ S(k2−1).

Given row and column clusters, independent and identically distributed
block entries Given the row and colum clusters (Y ,Z), the entries Xij are
independent and follow a Bernoulli distribution of parameter π = (πql; q =

1, ..., k1; l = 1, ..., k2): all elements of a block follow the same probability dis-
tribution.

p(X ∣Y ,Z;π ) =∏
ij

p(Xij ∣Y i,Zj ;π )

p(Xij = 1∣YiqZjl = 1;π ) = πql .

To summarize, the parameters of the LBM are θ = (α,β,π) and the proba-
bility mass function of X can be written as:

p(X; θ) = ∑
(Y ,Z)∈I×J

⎛

⎝
∏
i,q

αq
Yiq

⎞

⎠

⎛

⎝
∏
j,l

βl
Zjl

⎞

⎠

⎛

⎝
∏
i,j,q,l

φ(Xij ;πql)
YiqZjl

⎞

⎠
,
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Y i Zj

Xij

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∀i, Y i
iid
∼ M(1;α)

∀j, Zj
iid
∼ M(1;β)

∀i, j, Xij ∣Yiq = 1, Zjl = 1
ind
∼ B(πql)

with α ∈ Sk1−1, β ∈ Sk2−1 and πql ∈ [0,1]

Figure 1: Summary of the standard Latent Block Model with binary data.

where φ(Xij ;πql) = π
Xij
ql (1−πql)

1−Xij is the mass function of a Bernoulli variable
and where I (resp. J) denotes the set of all possible partitions of rows (resp.
columns) into k1 (resp. k2) groups.

3 Extension to Informative Missing Data
The standard Latent Block Model does not accommodate missing observa-

tions, that is, the data matrix X is fully observed. This section introduces
our missingness model, which will be coupled to the LBM, thereby enabling to
process missing data.

We start by introducing some notation: from now on, X(o) will denote
the “partially observed” data matrix, with missing entries, whereas X denotes
the “full” (unobserved) data matrix, without missing entries. The partially
observed matrix X(o) is identical to the full matrix X except for the missing
entries; X(o) takes its values in {0,1,NA}, where NA denotes a missing value.
It will be convenient to introduce a binary mask matrix M that indicates the
non-missing entries of X(o): if Mij = 0, then X(o)

ij = NA.

3.1 Models of Missingness
The three main types of missingness are Missing Completely At Random

(MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR).
We propose here a model for each missingness type. Instead of directly modeling
the probability of being missing, we will model a real variable that defines the
log-odds of this probability. This log-odds will be called here the “propensity”
to be missing.

Missing Completely At Random (MCAR) Missingness does not depend
on data, whether observed or not. A simple model of missingness is obtained
by assuming that every entry of X(o) has the same propensity of being missing.
This is modeled by a single propensity parameter µ. The graphical representa-
tion of this model is shown in Figure 2.
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µMijXij

X
(o)
ij

Figure 2: Graphical representation of the MCAR model. The partially observed
entry X(o)

ij is generated by the corresponding entries of (i) the full matrix Xij

and (ii) the binary mask Mij . The binary mask M does not depend on X and
is defined here from a single global effect parameter µ.

µMijXij

X
(o)
ij

Ai Cj

Figure 3: Graphical representation of the MAR model. The partially observed
entry X(o)

ij is generated by the corresponding entries of (i) the full matrix Xij

and (ii) the binary mask Mij . The binary mask M does not depend on X and
is and is defined by a global effect parameter µ and two latent variables A and
C that enable deviations from µ.

Missing At Random (MAR) Missingness depends on the observed data,
but not on the unobserved data. The previous missingness model can be en-
larged by allowing the propensity of missingness to depend on the row and
column indexes. To do so, we can introduce a latent variable for every row,
denoted A, and another one for every column, denoted C. For the sake of
simplicity, all latent variables Ai and Cj are assumed independent. They allow
deviations from the global propensity µ. The graphical representation of this
model is shown in Figure 3.

Missing Not At Random (MNAR) Missingness here depends on unob-
served data: the probability of observing the entries of the matrix depends on
their values, whether observed or not. We equip the previous model with two
additional latent variables to adapt the propensity of each entry of the data
matrix to the unobserved data, that is, to Xij . These new row and column
latent variables, B and D, adjust the propensity of missingness according to
the actual value of Xij . The graphical representation of this model is shown in
Figure 4.
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Ai Bi Cj Dj

µXij

X
(o)
ij

Mij

Figure 4: Graphical representation of the MNAR model. The partially observed
entryX(o)

ij is generated by the corresponding entries of (i) the full matrixXij and
(ii) the binary mask Mij . The binary maskM depends on X and is defined by
a global effect parameter µ, two latent variables A and C that enable deviations
from µ, and two latent variables B and D, which drive the deviations from the
MAR model.

We model the latent variables A, B, C, and D with Gaussian distributions
centered at zero with free variances σ2

A, σ
2
B , σ

2
C , and σ

2
D, respectively:

⎧⎪⎪
⎨
⎪⎪⎩

∀i, Ai
iid
∼ N(0, σ2

A), Bi
iid
∼ N(0, σ2

B)

∀j, Cj
iid
∼ N(0, σ2

C), Dj
iid
∼ N(0, σ2

D)
.

The global parameter µ and the latent variables define the propensity of miss-
ingness, that is, the log-odds of being missing as follows:

∀i, j Pij = {
µ +Ai +Bi +Cj +Dj if Xij = 1
µ +Ai −Bi +Cj −Dj if Xij = 0

. (1)

Then, given this propensity, every element Mij of the mask matrix is indepen-
dent and follows a Bernoulli distribution:

∀i, j Mij ∣Ai,Bi,Cj ,Dj ,Xij
ind
∼ B(expit (Pij)) , (2)

with expit(x) = 1/(1 + exp(−x)).
Note that, if we omit the latent variables Bi and Dj , the missingness model

follows the MAR assumption since Pij , and thus Mij , is then independent of
Xij . If we also omit the latent variables Ai and Cj , the missingness model
follows the MCAR assumption.

This model of missingness can be used for several applications. One of these,
collaborative filtering, uses the history of user ratings to build a recommendation
system. For this application, an MCAR modeling means that the probability
of observing a rating for a particular item does not depend on the user nor the
item; an MAR modeling means that missingness can depend on the user or the
item; for example, some people give their opinion more often than others. The
MAR simplifying assumption is often used in collaborative filtering. However,
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Marlin et al. [2007] show that there is often a dependency between the rating
frequency and the underlying preference level, lending support to the hypothesis
that ratings are generated by a MNAR process, where missingness depends on
the actual rating that would be given. Some people give their opinion more
often when they are satisfied and other ones when they are dissatisfied. Most
collaborative filtering methods do not have a principled method for extracting
information from missing data, which can lead to strong biases in estimations
that may in turn drastically affect predictions [Hernández-Lobato et al., 2014].
Our missingness model allows to account for the users’ propensity to give their
opinion, and for the items’ propensity to be rated, that is, their notoriety. These
propensities could also reflect exogenous factors such as price; for example, more
expensive items could be evaluated more often.

3.2 LBM with MNAR data
We extend the standard LBM using the previous modeling to MNAR data.
Given the full matrix X and the mask matrix M , all the elements of the

observed matrix X(o) are independent and identically distributed:

(X
(o)
ij ∣Xij ,Mij ) = {

Xij if Mij = 1
NA if Mij = 0

. (3)

Figure 5 summarizes the LBM extented to MNAR data.
X(o) taking its values in (0,1,NA), the same model can be rewritten with

a Categorial distribution using directly the latent variables of both models:

∀i, Y i
iid
∼ M(1;α)

∀j, Zj
iid
∼ M(1;β)

∀i, Ai
iid
∼ N(0, σ2

A)

∀i, Bi
iid
∼ N(0, σ2

B) (4)

∀j, Cj
iid
∼ N(0, σ2

C)

∀j, Dj
iid
∼ N(0, σ2

D)

∀i, j, X
(o)
ij ∣Yiq = 1, Zjl = 1,Ai,Bi,Cj ,Dj

ind
∼ Cat

⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
NA

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

p0
p1

1 − p0 − p1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠

with

p0 = (1 − πql) expit (µ +Ai −Bi +Cj −Dj) (5)
p1 = πql expit (µ +Ai +Bi +Cj +Dj) . (6)
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Y i Zj Ai Bi Cj Dj

LBM MNAR missingness model

Xij Mij

X
(o)
ij

Latent Block Model

Y i
iid
∼ M(1;α), α ∈ Sk1−1

Zj
iid
∼ M(1;β), β ∈ Sk2−1

(Xij ∣Yiq = 1, Zjl = 1)
ind
∼ B(πql), πql ∈ (0,1)

MNAR model

Ai
iid
∼ N(0, σ2

A), σ2
A ∈ R∗

+

Bi
iid
∼ N(0, σ2

B), σ2
B ∈ R∗

+

Cj
iid
∼ N(0, σ2

C), σ2
C ∈ R∗

+

Dj
iid
∼ N(0, σ2

D), σ2
D ∈ R∗

+

(Mij ∣Ai,Bi,Cj ,Dj ,Xij = 1)
ind
∼ B(expit (µ +Ai +Bi +Cj +Dj))

(Mij ∣Ai,Bi,Cj ,Dj ,Xij = 0)
ind
∼ B(expit (µ +Ai −Bi +Cj −Dj))

Observations are generated according to:

(X
(o)
ij ∣Xij ,Mij ) = {

Xij if Mij = 1
NA if Mij = 0

Figure 5: Graphical view and summary of the Latent Block Model extended
to MNAR missingness process. The observed data X

(o)
ij is generated by the

necessary information carried by the class and propensity of row i and by the
class and propensity of the column j.
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4 Inference in the extented LBM
The dependency between the full data matrix X and the mask matrix M

requires a joint inference of the LBM with the MNAR model. As the standard
maximum likelihood approach cannot be applied directly, we adopt a strategy
based on a variational EM.

During inference, we use the reformulation (Equation 4). We can split our
random variables into two sets: the set of unobserved latent variables and the
set of observed variables consisting of X(o) only. An observation of X(o) only
is called the incomplete data, and an observation of X(o) together with the
latent variables A, B, C, D, Y and Z is called the complete data. Given the
incomplete data, our objective is to infer the model parameters θ via maximum
likelihood θ̂ = arg maxθ p(X

(o); θ). We resort to the Expectation Maximization
(EM) algorithm to maximize p(X(o); θ) without explicitely calculating it. The
EM algorithm iteratively applies the two following steps:

E-step Expectation step: from the current estimate θ(t) of θ, compute the cri-
terion Q(θ∣θ(t)) defined as the expectation of the complete log-likelihood,
conditionally on the observations X(o):

Q(θ∣θ(t)) = EY ,Z,A,B,C,D∣X(o),θ(t) [log p(X(o),Y ,Z,A,B,C,D; θ)]

M-step Maximization step: find the parameters that maximize Q(θ∣θ(t)).

θ(t+1) = arg max
θ

Q(θ∣θ(t))

The computation of the complete log-likelihood at the E-step requires the
posterior distribution of the latent variables p(Y ,Z,A,B,C,D∣X(o)

) which is
intractable, because the search space of the latent variables is combinatorially
too large. This problem is well known in the context of co-clustering; for the
Latent Block Model, Celeux and Diebolt [1985], Keribin et al. [2015] propose a
stochastic E-step with Monte Carlo sampling, but this strategy is not suited to
large-scale problems. We follow the original strategy proposed by Govaert and
Nadif [2008], which relies on a variational formulation of the problem, since it
is more efficient in high dimension.

4.1 Variational EM
The variational EM (VEM) [Jordan et al., 1999, Jaakkola, 2000] introduces

q(⋅), a parametric inference distribution defined over the latent variables Y , Z,
A, B, C, D and optimize the following lower bound on the log-likelihood of
the incomplete data:

J (q, θ) = log p(X(o); θ) −KL(q(⋅) ∥ p(⋅∣X(o); θ)) , (7)
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where KL stands for the Kullback-Leibler divergence and q(⋅) denotes the vari-
ational distribution over the latent variables Y , Z, A, B, C and D. It can
be shown that J (q, θ) is a concave function of the variational distribution q

and that its maximum is reached for q(⋅) = p(⋅∣X(o); θ). Thus, maximizing
the criterion J is equivalent to minimizing the discrepancy between q(⋅) and
p(⋅∣X(o); θ), as measured by the Kullback divergence, and is also equivalent to
maximizing the likelihood. The minimization of this Kullback divergence re-
quires to explore the whole space of latent distributions; the difficulty of the
problem is equivalent, in terms of complexity, to the initial problem.

The criterion J (q, θ) can also be expressed as the sum of a negative “energy”
and the entropy of q hence its name “negative variational free energy” in analogy
with the thermodynamic free energy:

J (q, θ) = H(q) +Eq[log p(X(o),Y ,Z,A,B,C,D; θ)] , (8)

where H(q) is the entropy of the variational distribution and Eq is the expec-
tation with respect to the variational distribution. The criteria J can become
tractable if an exploration of a subspace, noted qγ , of the latent distributions
is made. However, this solution comes with the cost that the maximum found,
will be a lower bound of the initial criteria:

J (q, θ) ≥ J (qγ , θ) (9)

J (qγ , θ) is also known as the “Evidence Lower BOund” (ELBO) emphasizing
the lower bound property on the evidence of the data.

A wise choice of the restriction on the variational distribution leads a feasible
computation of the criterion. We choose to consider the following posterior
shapes on the latent variables:

∀i Y i∣X
(o)

∼
qγ
M(1; τ

(Y )
i )

∀j Zj ∣X
(o)

∼
qγ
M(1; τ

(Y )
j )

∀i Ai∣X
(o)

∼
qγ
N(ν

(A)
i , ρ

(A)
i )

∀i Bi∣X
(o)

∼
qγ
N(ν

(B)
i , ρ

(B)
i )

∀j Cj ∣X
(o)

∼
qγ
N(ν

(C)
j , ρ

(C)
j )

∀j Dj ∣X
(o)

∼
qγ
N(ν

(D)
j , ρ

(D)
j ) .

We also impose the conditional independence of the latent variables to get a
feasible computation of the entropy and of the negative “energy” (Equation 8)
under qγ . This conditional independence is widely known as the “mean field
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Algorithm 1: Variational Expectation Maximization algorithm.

Input: observed data X(o), k1 and k2 number of row groups and column
groups ;
- Initialize γ(0) and θ(0);
- while not convergence of criterion J do

VE-step: find the variational parameters γ(t+1) that optimize
J (γ, θ(t))

γ(t+1) = arg max
γ

J (γ, θ(t))

M-step: find the model parameters θ(t+1) that optimize J (γ(t), θ):

θ(t+1) = arg max
θ

J (γ(t), θ)

end
Result: θ and γ: model and variational parameters

approximation” [Parisi, 1988]. We finally get the following fully factorized shape:

qγ = ∏
n1

i=1M(1; τ
(Y )
i ) × ∏

n2

j=1M(1; τ
(Z)
j )

×∏
n1

i=1N(ν
(A)
i , ρ

(A)
i ) ×∏

n1

i=1N(ν
(B)
i , ρ

(B)
i )

×∏
n2

j=1N(ν
(C)
j , ρ

(C)
j ) ×∏

n2

j=1N(ν
(D)
j , ρ

(D)
j ) ,

where γ = (τ (Y ),τ (Z),ν(A),ρ(A),ν(B),ρ(B),ν(C),ρ(C),ν(D),ρ(D)) denotes the
parameters concatenation of the restricted variational distribution qγ .

The new criteria J (γ, θ) that we want to optimize from now on is:

J (γ, θ) = H(qγ) +Eqγ [log p(X(o),Y ,Z,A,B,C,D; θ)] (10)

and the initial estimates of the model parameters θ̂ are inferred as:

θ̂ = arg max
θ

(max
γ
J (γ, θ)) . (11)

This double maximization is realized with an iterative strategy and can be
seen as an extension of the EM algorithm. The two steps are described in
Algorithm 1.
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4.2 Computation of the variational criterion
The restriction on the space of the variational distribution simplifies the

computation of H(qγ) as entropy is additive across independent variables:

H(qγ) = −∑
iq

τ
(Y )
iq log τ

(Y )
iq −∑

jl

τ
(Z)
jl log τ

(Z)
jl +

1

2
∑
i

log (2πeρ
(A)
i )

+
1

2
∑
i

log (2πeρ
(B)
i ) +

1

2
∑
j

log (2πeρ
(C)
j ) +

1

2
∑
j

log (2πeρ
(D)
j ) .

The independence of latent variables allows to rewrite the expectation of the
complete log-likelihood as:

Eqγ [log p(X(o),Y ,Z,A,B,C,D)] = Eqγ [log p(Y )]

+Eqγ [log p(Z)] +Eqγ [log p(A)] +Eqγ [log p(B)]

+Eqγ [log p(C)] +Eqγ [log p(D)] +Eqγ [log p(X(o)
∣Y ,Z,A,B,C,D )] . (12)

Despite the variational approximation, the expectation of the complete log-
likelihood (12) can not be exactly computed as its last term involves an expec-
tation under qγ of nonlinear functions:

Eqγ [log p(X(o)
∣Y ,Z,A,B,C,D )] = ∑

ijql∶X(o)ij =0
τ
(Y )
iq τ

(Z)
jl Eqγ [log (p0)]

+ ∑

ijql∶X(o)ij =1
τ
(Y )
iq τ

(Z)
jl Eqγ [log (p1)] + ∑

ijql∶X(o)ij =NA

τ
(Y )
iq τ

(Z)
jl Eqγ [log (1 − p0 − p1)] , (13)

with p0 and p1 defined in Equations (5)–(6).
These expectations can be approximated by the delta method [Wasserman,

2004, p. 79]. Using a first order Taylor expansion would lead to a criterion with-
out maximum, so we use a second order Taylor expansion. The full expression
of the criterion is given in Appendix A.

4.3 Maximization of the variational criterion
The VEM Algorithm 1 alternates between a maximization with respect to

the variational parameters γ and a maximization w.r.t the model parameters
θ. For our model, there is no explicit solution for the two maximizations of
the criterion J (γ, θ), which are are carried out by the Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm. We used automatic dif-
ferentiation to compute the gradients needed for L-BFGS and for the Taylor
series used in the variational criterion. We chose the Autograd library from
HIPS and the submodule Autograd from PyTorch [Paszke et al., 2019]. These
libraries rely on a reverse accumulation computational graph to compute ex-
act gradients. Their high efficiency, even with large graphs, thanks to GPU
acceleration, makes them particularly well adapted for the VEM algorithm.
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4.4 Initialization
VEM does not ensure convergence towards a global optimum. The EM-like

algorithms are known to be sensitive to the initialization, particularly when ap-
plied to models with discrete latent space, and may get stuck into unsatisfactory
local maxima [Biernacki et al., 2003, Baudry and Celeux, 2015].

A simple solution consists in training for a few iterations from several random
initializations, and pursue optimization with the solution with highest value of
the variational criterion [see, e.g., small EM for mixtures Baudry and Celeux,
2015]. This exploration strategy spends a great deal of computing resources to
bring out only a few good estimates. Another solution is to rely on simpler
clustering methods, such as k-means or spectral clustering, to initialize the
algorithm [Shireman et al., 2015].

For the Stochastic Block Model, a close relative of the Latent Block Model
for graphs, Rohe et al. [2011] prove the consistency of spectral clustering to
identify the parameters of the Stochastic Block Model. Following this idea, we
use a double spectral clustering (with absolute eigenvalues of the Laplacian as
Rohe et al. [2011]) on rows and columns on similarity matrices, to initialize our
algorithm. Although this method is not designed for MNAR data, it can be
expected to provide a satisfying initialization of the Latent Block Model if the
missingness is not predominant. The parameters of our missingness model can
not be initialized with this procedure; they are randomly initialized. The overall
initialization procedure is described in Appendix B.

5 Model selection

5.1 Integrated Completed Likelihood criterion (ICL)
ICL, inspired by the Bayesian Information Criterion, was originally proposed

to select a relevant number of classes for mixture models [Biernacki et al., 1998].
It was extended to select an appropriate number of (row and column) clusters
in the standard Latent Block Model [Keribin et al., 2012]: for k1 row classes
and k2 column classes, the criterion reads

ICL(k1, k2) = log p(X,Y ,Z)

= log∫ p(X,Y ,Z ∣θ;k1, k2 )p(θ;k1, k2)dθ , (14)

with p(θ;k1, k2) the prior distribution of parameters. By taking into account
the latent variables Y ,Z, ICL is a clustering-oriented criterion , whereas BIC
or AIC are driven by the faithfulness to the distribution of X [Biernacki et al.,
1998].

For the LBM with MNAR missingness, ICL requires priors on the param-
eters of the missingness model. We chose independent and non informative
InverseGamma(β, β) distribution (where β tends to zero) for the parameters
σ2
A, σ

2
B , σ

2
C and σ2

D. As in [Keribin et al., 2012], we use non-informative Dirichlet
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distribution priors on the parameters α and β of mixing proportions of classes.
ICL reads

ICL(k1, k2) = log p(X,Y ,Z,A,B,C,D) (15)

= log∫ p(X,Y ,Z,A,B,C,D∣θ;k1, k2 )p(θ;k1, k2)dθ

Proposition 1. The ICL criterion for the LBM extended to the MNAR miss-
ingness process presented in Section 3.2 has the following asymptotic form for
a data matrix of size n1 × n2:

ICL(k1, k2) = max
θ

log p(X(o),Y ,Z,A,B,C,D; θ)

−
k1k2

2
log (n1n2) −

k1 − 1

2
log (n1) −

k2 − 1

2
log (n2)

+ n1 log (2π) − log (n1) + n2 log (2π) − log (n2)

+ o(logn1) + o(logn2) .

See proof in Appendix C.

Since the maximum of the complete log-likelihood required to calculate the
ICL is not available, in practice it is replaced by the lower bound provided
by the variational approximation (see equation 10). An ICL criterion for the
LBM with MAR missing data can be constructed in the same way, allowing for
comparison with the MNAR model (see details in Appendix C).

6 Experiments on simulated data
Simulated data brings all the elements to assess clustering algorithms in

controlled settings. Using controlled datasets provides the means to properly
test the ability of an algorithm to recover the known underlying structure.

6.1 Assessing the difficulty of a co-clustering task
In co-clustering, several loss functions are suited for measuring the discrep-

ancy between the underlying classes (Y , Z) and some predictions (Ŷ , Ẑ). For
our experiments, we will use the measure defined by Govaert and Nadif [2008],
that is, the ratio of misclassified entries in the data matrix:

litem(Y ,Z, Ŷ , Ẑ) =

1− 1
n1
∑i δYi,Ŷi

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

lrow(Y , Ŷ ) +

1− 1
n2
∑j δZj,Ẑj

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

lcol(Z, Ẑ) − lrow(Y , Ŷ ) lcol(Z, Ẑ)

where δ is the Kronecker delta.
In standard clustering, the difficulty of a task is often assessed by its Bayes

risk, that is, by the minimum of the expectation of the loss function, which
is typically approximated by Monte Carlo on simulated data. Co-clustering
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poses specific difficulties. Adding more rows or more columns alter its difficulty
because the dimensions of the spaces where the clustering is performed are
expanded. The duality between the rows and the columns imply that the size
of the matrix is a characteristic of a co-clustering problem. In other words,
given a fixed generative distribution, as the matrix size increases, the difficulty
of the task decreases, in contrast to simple clustering, where the difficulty, as
measured by the Bayes risk, remains constant when more examples (that is,
rows) are added.

A simple Monte Carlo approximation of the risk consists in averaging over
many statistical units. In simple clustering, this means generating a great num-
ber of rows in a data matrix. In co-clustering, the statistical unit is the whole
matrix, implying that a Monte Carlo approximation of the risk is obtained by
generating a great number of data matrices; which then involves a great compu-
tational time. Furthermore, estimating the Bayes risk from a single data matrix
is very inconstant; the risk may be very different between two data matrices
of same size generated from the same distribution. Hence the usual notion of
Bayes risk is not appropriate for co-clustering. Lomet et al. [2012] argue that
conditioning the Bayes risk on the observed matrix is more appropriate. They
give a protocol to simulate data matrices in which the difficulty of the clustering
task is controlled by the following conditional Bayes risk:

ritem(Ŷ , Ẑ) = E[ litem(Y ,Z, Ŷ , Ẑ)∣X(o)
] , (16)

where the expectation is taken over Y ,Z only and Ŷ , Ẑ are the clusterings
returned by the conditional Bayes classifier, that is, the maximum a posteriori :

(Ŷ , Ẑ) = arg min
(Y ,Z)

ritem(Y ,Z) = arg max
(Y ,Z)

∑
ij

p(Yi, Zj ∣X
(o)

) .

Lomet et al. [2012] released data sets, with different sizes and difficulties,
simulated from the Latent Block Model. Using their protocol, we generated
new data according the LBM with a MNAR missingness process. Data sets
are generated according to the LBM with three row and column classes, with
parameters

α = β =
⎛
⎜
⎝

1/3
1/3
1/3

⎞
⎟
⎠

and π =
⎛
⎜
⎝

ε ε 1 − ε
ε 1 − ε 1 − ε

1 − ε 1 − ε ε

⎞
⎟
⎠
, (17)

where ε defines the difficulty of the clustering task. The parameters of the
MNAR process are

µ = 1, σ2
A = 1, σ2

B = 1, σ2
C = 1, σ2

D = 1 , (18)

which gives an average proportion of 35% of missing values.
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Figure 6: Classification error with respect to the size of the data matrix (lower is
better); ★ is the median of the conditional Bayes risk; ▲ is the median prediction
error obtained by our algorithm.

6.2 Analyzing the classification of the proposed inference
We test here the ability of the proposed inference scheme to recover row

and column classes. To conduct the experiments, we generate an initial data
matrix of size n1 = n2 = 500 with a conditional Bayes risk of 5% set by choosing
ε (17) by trial and error. The size of this matrix is then progressively reduced,
removing rows and columns, to increase the difficulty of the classification task.
The conditional Bayes risk is re-estimated on each sub matrix to provide a ref-
erence. Our algorithm is then run on these data matrices using 20 initializations
for each run, as described in Section 4.4. We then predict the row and column
classes (Y ,Z) with their maximum a posteriori estimators on the variational
distribution. This whole process is repeated 20 times, leading to the results
presented in Figure 6.

As expected, the conditional Bayes risk decreases as the data matrices grow.
The predictions returned by our algorithm follow the same pattern, with a
diminishing gap to the conditional Bayes risk as the data matrices grow, which is
consistent with our expectations. Appendix D provides additional experimental
results that show consistent estimations of the model parameters.

6.3 Analyzing the benefit of a MNAR model versus a
MAR model for MNAR data

The importance of using the right missingness model is tested by comparing
the classifications returned by an LBM with and without an MNAR model.
A data set is generated according to the LBM with MNAR values where the
parameters α, β and π of the LBM are fixed as in (17), and ε is chosen in order
to get a conditional Bayes risk of 12%, for data matrices of size n1 = n2 = 100;
the MNAR model parameters µ, σ2

A and σ2
C all set to one which gives an average
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Figure 7: Classification error with respect to an increase of the MNAR effect
(lower is better); ★ is the median prediction error obtained with the MAR model;
▲ is the median prediction error obtained with the MNAR model.

proportion of 35% of missing values. Several data matrices are generated using
these parameters while varying the value of the σ2

B and σ2
D parameters that

govern the MNAR effects; these variations do not affect the conditional Bayes
risk nor the proportion of missing values. For each data matrix, we train the
LBM with either the MAR or the MNAR model. This process is repeated 20
times, starting from the generation of a new fully observed data matrix.

The median of the classification errors litem are presented in Figure 7 as a
function of the MNAR effect. They are essentially constant and close to the
conditional Bayes risk for the LBM with the MNAR model, whereas the LBM
with the MAR model is badly affected by MNAR data, eventually leading to
a classification close to a totally random allocation 1. Ignoring the nature of
the missingness process leads here to strong biases in estimation that in turn
drastically affect classification. Thankfully, the ICL criterion may be of great
help to select the right missingness model as shown in Section 6.5.

6.4 Analyzing the ability of the model selection criterion
to select the adequate number of classes

We reuse the parameters (17) and (18) to analyze the behavior of the ICL
criterion. We consider different sizes of data matrices, between (30,30) and
(150,150), with varying difficulty for each matrix size, with a conditional Bayes
risk (16) of respectively 5%, 12% and 20%

The results in Figure 8 show that, as expected, the ICL criterion tends to
select more often the right number of classes as the data matrices get larger and
also when classes are more separated. We also observe that the ICL criterion
tends to be conservative for small data matrices, by underestimating the number

1With equal class proportions, the expected classification error of a random allocation is
k1−1
k1
+ k2−1

k2
− k1−1

k1

k2−1
k2

, that is, 0.89 here where k1 = k2 = 3.
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ritem(Ŷ , Ẑ) = 5% ritem(Ŷ , Ẑ) = 12% ritem(Ŷ , Ẑ) = 20%

k2 k2 k2
2 3 4 5 2 3 4 5 2 3 4 5

n1 = n2 = 30 k1

2 9 2 13 3 14 2
3 1 7 2 2 2 1

4
5 1 1

n1 = n2 = 40 k1

2 4 2 17 1 17 1
3 14 1 1 1 1

4
5

n1 = n2 = 50 k1

2 1 11 2 15 1 2
3 2 17 7 1 1

4
5

n1 = n2 = 75 k1

2 1 9 13 2
3 1 17 1 9 4

4 1
5 1 1

n1 = n2 = 100 k1

2 2 11
3 19 18 1 7 1
4
5 1

n1 = n2 = 150 k1

2 1 1 5 1
3 14 2 1 18 1 11

4 1
5 2 2

Figure 8: Count number of (k1, k2) models selected by the ICL criterion among
20 data matrices for different difficulties, as measured by the conditional Bayes
risk, and different matrix sizes. All matrices are generated with the same number
of row and column classes: k1 = k2 = 3.

of classes. It could come to the fact that the size of the matrix is not large enough
to consider the asymptotic approximation as valid and/or it could come from
the approximations used to compute the log-likelihood J (variational restriction
and delta method).

6.5 Analysing the ability of the model selection criterion
to select the adequate missingness model

We use the models fitted in Section 6.3 to analyze the ability of the ICL
criterion to select the right missingness model (MNAR or MAR). The difference
in ICL between the MAR and MNAR models is computed for each data matrix,
assuming that the right numbers of classes (k1, k2) are known.

The results, presented in Figure 9, show that ICL rightfully opts for the
MNAR model almost everywhere, demonstrating the ability of this criterion to
select the adequate missingness model. The MAR model is only chosen for some
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Figure 9: Difference in ICL between the MAR and MNAR models with respect
to an increase of the MNAR effect, ★ is the median. The MNAR model is
selected when the difference in ICL is positive.

experiments with the lowest MNAR effect (σ2
B = σ2

D = 0.01), where the predic-
tion performances are almost identical (see Figure 7), with a median difference
in ICL of -0.51 (the MAR model is chosen 13 times over the 20 repetitions).

7 Experiments on real data
We consider voting records2 from the lower house of the French Parliament

(Assemblée Nationale). This dataset gathers the results of the 1256 ballots of
year 2018 of the 577 French members of parliament (MPs) for the procedural
motions and amendments for the 15th legislature (June 2017). For each text,
the vote of each MP is recorded as a 4-level categorical response: “yes”, ‘no”,
“abstained” or “absent”. Using our model, we bring out some relevant groups of
texts and MPs, as well as some structure in the behavior of nonvoters.

We gather the data in a matrix where each row represents an MP and each
column represents a text. To use our model, we reduced the 4 response levels to
3 (“yes”, ‘no”, “missing”) assuming that merging the “abstained” and “absent” cat-
egories would not affect much the underlying missingness process (“abstained”
votes represent about 4% of the expressed votes, “missing” responses represent
85% of all votes).

At the lower house of French Parliament, MPs may group together according
to their political affinities. Groups with less that 15 members or MPs who choose
to be independent are gathered under the “Non inscrits” (NI) label, giving a
heterogeneous range of political hues inside it. The names of the groups and
their frequency are detailed in Figure 10.

2Votes from the French National Assembly are available from http://data.
assemblee-nationale.fr/travaux-parlementaires/votes.
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Political groups from left-wing to right-wing

FI (17): France Insoumise
GDR (16): Groupe de la Gauche démocrate et républi-
caine
SOC (29): Socialistes
LT (19): Libertés et territoires
LaREM (304): La République En Marche
MODEM (46): Mouvement démocrate
UDI-AGIR (28): Les Constructifs
LR (104): Les Républicains
NI (13): Non inscrits (mixed left and right wings)

Figure 10: Hemicycle of the political groups of the French National Assembly

The ICL criterion, used to select both the numbers of classes and the type
of missingness, favors a MNAR missingness with k1 = 14 MP classes and k2 = 14
text classes against a MAR model with 19 MP classes 23 text classes. The
reordered data matrix derived from this block clustering is displayed in Fig-
ure 11. Fewer classes lead to over-aggregated components hiding the subtleties
of the network, but since they still correspond to well-identified groups and
are more friendly to visual analysis, we provide them as additional material in
Appendix E.

In Figure 11, classes of MPs are coherent to their political orientation: class 0
and 1 are mainly made up of left-wing MPs from the groups SOC, FI, GDR, LT,
classes 2 and 3 are mainly made up of right-wing MPs from LR and the classes
from 6 to 13 are mainly made up of centrist MPs from LaREM and MODEM
who are known to be political allies. Classes of texts can be analyzed with the
available metadata. A bipartite opposition system appears from classes A and
C. Texts from class A are the original articles of law proposed by the government
and are unsurprisingly voted positively by the MPs classes from 6 to 13 as they
are from the same political mould as the French government. Texts from class
C are mainly amendments proposed by minority and are voted positively by
both the left wing (class 0 and 1) and the right wing (classes 2 and 3) and
negatively by the MPs supporting the government (classes 6 to 13). The left
and right wings are yet divided by usual issues such as immigration regulation
amendments gathered in classes G and M or general economic matters gathered
in classes H and I.

In our model, the latent variables A and B characterize the propensity of
MPs to cast a vote. Figure 12 displays the scatter plot of ν(A)

i and ν
(B)
i , the

maximum a posteriori estimates of Ai and Bi for all MPs under the variational
distribution. The abscissa represents the propensity to vote3, with higher values
of ν(A) corresponding to a higher propensity to vote, and the ordinate ν(B)

represents the additional effect of casting a vote when supporting the text. The
membership of MPs to their political group is indicated by the plotting symbol.

We see two obvious clusters separated by the vertical axis ν(B): the bottom
cluster is essentially formed by MPs from the LaREM and MODEM political

3More rigorously, the abscissa represents the global deviation from the average propensity
to vote.
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0: SOC(25) FI(12) GDR(11) LT(7) NI(4)

1: GDR(5) SOC(4) FI(4) LT(2)
2: LR(9) NI(2)

3: LR(93) NI(5) UDI-AGIR(3)

4: LT(3) UDI-AGIR(3) LaREM(1) FI(1) LR(1)
5: UDI-AGIR(18) LT(4)

6: LaREM(60) MODEM(5) NI(1) LT(1) UDI-AGIR(1)

7: LaREM(44) MODEM(10)

8: LaREM(39) MODEM(11) LT(1) UDI-AGIR(1)

9: LaREM(25) MODEM(1)

10: LaREM(35) MODEM(7) UDI-AGIR(2) LT(1)

11: LaREM(42) MODEM(5)

12: LaREM(50) MODEM(6) NI(1)

13: LaREM(6)
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Figure 11: Left: matrix of votes reordered according to the row and column
classes, for the MNAR LBM model selected by ICL, with 14 MP classes and
14 text classes. The red lines delineate class boundaries. The counts of MPs
belonging to their political groups in each MP class is given on the left. Right:
summary of the inferred opinions (expressed or not) for all classes of texts and
MPs, as given by the estimated probability to support a text in each block of
the reordered matrix.

groups, which support the government, whereas the top cluster is formed by
the opposition political groups. The ν(B) estimates for the opposition cluster
are positive, meaning that these MPs come to parliament to vote positively.
This behavior is not surprising because the MPs of the opposition parties are
outnumbered by the MPs supporting the government, so they must be diligent if
they want their tabled motion or amendment passed. The dependency between
the political groups and the MNAR effect encoded in the estimates ν(B), which
is confirmed by an ANOVA test (with a p-value smaller than numerical error),
supports that the missingness patterns captured by our model are relevant for
the problem at hand. A similar analysis is developed on texts in Appendix E.

8 Conclusion
In many estimation problems, the absence of data conveys some information

on the underlying phenomenon that should be exploited for its modeling. We
propose a co-clustering model that accounts for this absence of data; it aims at
retrieving groups of rows and columns based on the complete data matrix instead
of considering only the partitioning of the observed data matrix. This model
consists of two building blocks: a co-clustering model (Latent Block Model)
of the full data matrix, and a missingness model that manages the censoring
that produces the observed data matrix. This missingness model preserves the
symmetry of the co-clustering model by allowing two MNAR effects, one on the
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Figure 12: Left: maximum a posteriori estimates of the MPs propensities (ν(A)
i ,

ν
(B)
i ), with their political group memberships. ν(A)

i drives the MAR effect and
ν
(B)
i drives the MNAR one. Right: ICL curve. Maximum is reached for k1=14
and k2=14

rows and the other on the columns. The overall model of the observed data
matrix results from the combination of the model of the complete data matrix
with the missingness model.

We used variational techniques and the Delta method to obtain a tractable
approximation of the lower bound of the observed log-likelihood. We proposed
a model selection criterion to select both the number of classes and the type of
missingness (MAR versus MNAR).

Our experiments on synthetic datasets show that ignoring an informative
missingness can lead to catastrophic co-clustering estimates, supporting the
value of using expressive missingness models on such type of data. We also
illustrate the use of our model on a real-world case where the missingness model
provides an interesting basis for analyzing and interpreting the motivations of
nonvoters.

Our model should also be useful in other fields such as in ecology, where the
probability of observing interaction between species derives from some factors
that also explain the true interactions [Vázquez et al., 2009], or in collaborative
filtering, where the probability of observing a rating depends on the actual rating
that would be given by the user [Marlin et al., 2007]. In the latter application,
the data sizes generally encountered in recommendation would require compu-
tational improvements in inference. Another useful future work is to extend our
model to non-binary data.
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A Computing the criterion J (qγ, θ)
The criterion to be optimized is :

J (qγ , θ) = H(qγ) +Eqγ [log p(X(o),Y ,Z,A,B,C,D; θ)] , (19)

where θ is the list of all model parameters: θ = (α,β,π, µ, σ2
A, σ

2
B , σ

2
C , σ

2
D).

We restrict the form of the variational distribution qγ to get a fully factorized
form:

qγ =
n1

∏
i=1
M(1;τ

(Y )
i ) ×

n2

∏
j=1
M(1;τ

(Z)
j ) ×

n1

∏
i=1
N(ν

(A)
i , ρ

(A)
i )×

n1

∏
i=1
N(ν

(B)
i , ρ

(B)
i ) ×

n2

∏
j=1
N(ν

(C)
j , ρ

(C)
j ) ×

n2

∏
j=1
N(ν

(D)
j , ρ

(D)
j ) ,

where γ denotes the list of parameters of the variational distribution:
γ = (τ (Y ),τ (Z),ν(A),ρ(A),ν(B),ρ(B),ν(C),ρ(C),ν(D),ρ(D)). The entropy is
additive across independant variables, so we get:

H(qγ) = −∑
iq

τ
(Y )
iq log τ

(Y )
iq −∑

jl

τ
(Z)
jl log τ

(Z)
jl + (n1 + n2)(log (2π) + 1)

+
1

2
∑
i

(log ρ
(A)
i + log ρ

(B)
i ) +

1

2
∑
j

(log ρ
(C)
j + log ρ

(D)
j ) .

The independence of the latent variables allows to rewrite the expectation
of the complete log-likelihood as:

Eqγ [log p(X(o),Y ,Z,A,B,C,D)] = Eqγ [log p(X(o)
∣Y ,Z,A,B,C,D )]

+Eqγ [log p(Y )] +Eqγ [log p(Z)] +Eqγ [log p(A)] +Eqγ [log p(B)]

+Eqγ [log p(C)] +Eqγ [log p(D)] ,
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with the following terms:

Eqγ [log p(Y )] = ∑
iq

EqγYiq logαq = ∑
iq

τ
(Y )
iq logαq

Eqγ [log p(Z)] = ∑
jl

EqγZjl logβl = ∑
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jl logβl
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2
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logσ2
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∑
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(C)
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log 2π −
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logσ2
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and

Eqγ [log p(X(o)
∣Y ,Z,A,B,C,D )] = ∑

ql,ij∶X(o)ij =1
τ
(Y )
iq τ

(Z)
jl Eqγ [log p1]

+ ∑

ql,ij∶X(o)ij =0
τ
(Y )
iq τ

(Z)
jl Eqγ [log p0] + ∑

ql,ij∶X(o)ij =NA

τ
(Y )
iq τ

(Z)
jl Eqγ [log (1 − p0 − p1)] , (20)

with p0 and p1 defined in Equations (5)–(6).
Equation (20) involves the computation of the expectations of the following

nonlinear functions:

f1(x, y) = log (πql expit (µ + x + y))
f0(x, y) = log ((1 − πql) expit (µ + x − y))
fNA(x, y) = log (1 − πql expit (µ + x + y) − (1 − πql) expit (µ + x − y)) .

The approximation of these expectations given by the second-order Delta
method with independent random variables X and Y reads:

E[f(X, Y )] ≈ f(EX, EY ) +
1

2
var(X)

∂2f(E[X], E[Y ])

∂(X)
2

+
1

2
var(Y )

∂2f(E[X], E[Y ])

∂(Y )
2

,
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which yields in our case:

Eqγ [f(Ai +Cj , Bi +Dj)] ≈ f(ν
(A)
i + ν

(C)
j , ν
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i + ν
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j )

+
1

2
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2
.

The criterion is now fully computable.
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B Initialization of the VEM algorithm with spec-
tral clustering.

Algorithm 2: Initialization of the VEM algorithm with spectral cluster-
ing.
Input:

• observed data X(o)

• k1 and k2 number of row groups and column groups

Function SpectralClustering(W adjacency matrix, k number of
clusters):

• Define D the diagonal matrix, element of Rn×n: Dii = ∑qWiq

• Define L =D−1/2WD−1/2

• Find the eigenvectors corresponding to the k eigenvalues of L that are
largest in absolute value. Form the matrix U = [U1, ..., Uk] ∈ Rn×k
concatenating the eigenvectors into columns.

Return results of k -means with k clusters on U .
begin

• Build Y the n1 × k1 indicator matrix of the row cluster memberships
with results of SpectralClustering(XXT , k1)

• Build Z the n2 × k2 indicator matrix of the column cluster memberships
with results of SpectralClustering(XTX, k2).

• α, β and π estimated from Y and Z

• µ initialized such as expit(µ) is the global missingness rate

• σ2
A, σ

2
B , σ

2
C and σ2

D sampled from U]0,1]

end
Result:

• θ = (α,β,π, µ, σ2
A, σ

2
B , σ

2
C , σ

2
D) the model parameters

• Y and Z the row and column cluster memberships
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C Asymptotic form of the Integrated Completed
Likelihood

C.1 ICL of the MNAR model
The ICL criterion of the LBM extended to the MNAR missingness process

presented in Section 3.2 has the following asymptotic form for n1 and n2:

ICL(k1, k2) =max
θ

log p(X(o),Y ,Z,A,B,C,D;θ) −
k1k2

2
log (n1n2)

−
k1 − 1

2
log (n1) −

k2 − 1

2
log (n2) (21)

+ n1 log (2π) − log (n1) + n2 log (2π) − log (n2)

+ o(logn1) + o(logn2) .

Proof. With independent latent variables and independent priors on the param-
eters, the ICL criterion reads

ICL = log p(X(o),Y ,Z,A,B,C,D)

= log∫ p(X(o),Y ,Z,A,B,C,D∣θ )p(θ)dθ

= log∫ p(X(o)
∣Y ,Z,A,B,C,D,π )p(π)p(µ)dπdµ (22)

+ log∫ p(Y ∣α)p(α)dα + log∫ p(Z ∣β )p(β)dβ

+ log∫ p(A∣σ2
A )p(σ2

A)dσ2
A + log∫ p(B∣σ2

B )p(σ2
B)dσ2

B

+ log∫ p(C∣σ2
C )p(σ2

C)dσ2
C + log∫ p(D∣σ2

D )p(σ2
D)dσ2

D .

As in the ICL developed by Keribin et al. [2012] for the standard LBM, we set
non-informative Dirichlet distribution D(a, ..., a) priors on α and β:

log p(Y ) = log∫ p(Y ∣α)p(α;a)dα

=∏
i

log∫ ∏
q

(αq)
Yiq 1

B(a)
∏
iq

(αq)
a−1

dα

= logB(a +∑
i

Y i) − logB(a)

= ∑
q

log Γ(Y∶q + a) + log Γ(k1a) − log Γ(n1 + k1a) − k1 log Γ(a) ,

where Y∶q = ∑i Yiq. The Stirling approximation log Γ(x) = x logx − x − 1
2

logx +
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o(logx) leads to the following asymptotic development of log p(Y ):

log p(Y ) = ∑
q

log Γ(Y∶q + a) − log Γ(n1 + k1a) + o(logn1)

= ∑
q

Y∶q logY∶q − n1 −
1

2
n1

− (n1 logn1 + k1a logn1 − n1 −
1

2
logn1) + o(logn1) .

With the non-informative Jeffrey prior a = 1
2
, this gives:

log p(Y ) = ∑
q

Y∶q log(
1

n1
Y∶q) −

k1 − 1

2
logn1 + o(logn1)

= max
α

log p(Y ;α) −
k1 − 1

2
logn1 + o(logn1) . (23)

Similarly, we get:

log p(Z) = ∑
l

log Γ(Z∶l + a) + log Γ(k2a) − log Γ(n2 + k2a) − k2 log Γ(a)

= max
β

log p(Z;β) −
k2 − 1

2
logn2 + o(logn2) , (24)

where Z∶l = ∑j Zjl.
We set non-informative InverseGamma(β, β) distributions (as β tends to

zero) as priors on σ2
A, σ

2
B , σ

2
C and σ2

D:

log p(A) = ∫ p(A∣σ2
A)p(σ

2
A;β) dσ2

A

=∏
i

log∫ (2σ2
A)

−n1
2 exp(−

∑A2
i

2σ2
A

)
ββ

Γ(β)
exp(−

β
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A
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−β−1
dσ2

A

= log
ββ
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2(−n1

2
)
∫ σ2

A
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A

) dσ2
A

= log
ββ
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2β (2β +∑Ai)

(−n1
2 −β)

Γ(
n1
2
+ β) .

To consider a non-informative InverseGamma(β, β) distribution, we realize a
first order Taylor development as β tends to 0:

log p(A) ≈ log Γ(
n1
2

) + logβ −
n1
2

log(∑A2
i ) .

Using the Stirling approximation of Γ(x) we get the following asymptotic de-
velopment of log p(A):

log p(A) =
n1
2

logn1 −
n1
2
−

1

2
logn1 −

n1
2

log∑A2
i + o(logn1)

= max
σ2
A

log p(A;σ2
A) +

n1
2

log(2π) −
1

2
logn1 + o(logn1) . (25)
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Similarly, we get:

log p(B) = max
σ2
B

log p(B;σ2
B) +

n1
2

log(2π) −
1

2
logn1 + o(logn1)

log p(C) = max
σ2
C

log p(C;σ2
C) +

n2
2

log(2π) −
1

2
logn2 + o(logn2) (26)

log p(D) = max
σ2
D

log p(D;σ2
D) +

n2
2

log(2π) −
1

2
logn2 + o(logn2) .

Using the standard BIC approximation, we have

log p(X(o)
∣Y ,Z) = log∫ p(X(o)

∣Y ,Z,π)p(π)p(µ)dπdµ

= max
π

log p(X(o)
∣Y ,Z;π, µ) +

k1k2
2

log(n1n2) (27)

+ o(logn1) + o(logn2) .

The ICL criterion 21 is directly derived from equations 22, 23, 24, 25, 26 and
27.

C.2 ICL of the LBM with MAR data
We consider the following LBM extended with the MAR missingness process:

Latent Block Model

Yi
iid
∼ M(1;α), α ∈ Sk1−1

Zj
iid
∼ M(1;β), β ∈ Sk2−1

(Xij ∣Yi = q,Zj = l )
ind
∼ B(πql), πql ∈ [0,1]

MAR data model

Ai
iid
∼ N(0, σ2

A), σ2
A ∈ R∗

+

Cj
iid
∼ N(0, σ2

C), σ2
C ∈ R∗

+

(Mij ∣Ai,Cj )
ind
∼ B(expit (µ +Ai +Cj))

Observations are generated according to:

(X
(o)
ij ∣Xij ,Mij ) = {

Xij if Mij = 1
NA if Mij = 0
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The ICL of this model has the following asymptotic form for n1 and n2:

ICL(k1, k2) = max
θ

log p(X(o),Y ,Z,A,C;θ) −
k1k2

2
log (n1n2)

−
k1 − 1

2
log (n1) −

k2 − 1

2
log (n2) (28)

+
1

2
(n1 log (2π) − log (n1) + n2 log (2π) − log (n2))

+ o(logn1) + o(logn2) .

D Supplemental figures for estimations
This section provides additional experimental results that show a consistent

estimation of the model parameters. We reuse the data matrices generated
by the LBM with missing data from Section 6.2. An initial data matrix of
size n1 = n2 = 500 with a conditional Bayes risk of 5% was generated and
progressively reduced, removing rows and columns, to increase the difficulty of
the classification task.

Figure 13 displays the maximum absolute error made on the parameters π
of the Bernoulli distributions that model the probability of X conditionally to
the row and column classes. This error decreases as the size of the data matrices
grows, which is consistent with our expectations.
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Figure 13: Maximum error between the true (π) and the estimated (π̂) proba-
bilities associated to the blocks of the data matrix X as a function of its size.

Figure 14 displays the mean squared error (MSE) between the generated
and estimated values of the latent variables A, B, C, D responsible for the
individual variability of missingness. The estimated values are given by the
maximum a posteriori of their corresponding variational distribution. The MSE
curves of the variables A and C are comparable as well as the curves of the
variables B and D. This is expected as the data matrices are generated with
symmetric characters in rows and columns.
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Figure 14: Mean squared error of the maximum a posteriori estimates of the
latent variables A, B, C, D governing the propensity of missingness.

Figure 15 compares the estimated values of A, B, C and D to their true
generated values for two different sizes of data matrices, all other parameters
being equal. A linear trend is exhibited from these scatter plots showing a good
aptitude of the proposed inference to recover extreme negative and positives
values.
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Figure 15: Maximum a posteriori estimates of the latent variables governing the
propensity of missingness versus their true generated values.Left: n1 = n2 = 168
and the conditionnal Bayes risk is 0.44; right: n1 = n2 = 500 and the conditionnal
Bayes risk is 0.05. The identity line is drawn in red for reference.

E Supplemental figures for the French national
assembly votes analysis

Figure 16 displays the reordered matrix of votes derived from a block clus-
tering with a small number of classes. Such a simplification may be helpful for
identifying global trends. With this model, the three MP classes are broadly
identified as gathering the right-wing (first class) and left-wing (second class)
opposition parties, the last class being formed of the political groups support-
ing the government. The opposition systems appear clearly: on the texts from
classes A and E, the votes contrast the membership to the opposition parties
versus the governmental alliance, whereas on texts from classes C and D, they
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Figure 16: Left: matrix of votes reordered according to the row and column
classes, for the MNAR LBM with 3 MP classes and 5 text classes. The red
lines delineate class boundaries. The counts of MPs belonging to the three
most represented political groups in each MP class is given on the left. Right:
summary of the inferred opinions (expressed or not) for all classes of texts and
MPs, as given by the estimated probability to support a text in each block of
the reordered matrix.

separate the left-wing from the right-wing oppositions. Class B gathers vari-
ous texts on topics of rather general agreement pertaining to social or health
matters.

Going back to the model selected by ICL described in Section 7, we ana-
lyze the text propensities to be voted upon and to be positively perceived by
nonvoters. These propensities are encoded in the values of the latent variables
C and D. Figure 17 displays the scatter plot of ν(C)

j and ν(D)
j , the maximum

a posteriori estimates of Cj and Dj under the variational distribution, for all
voted texts. The abscissa ν(C) reflects the mobilization on the texts, with higher
mobilization for higher values, and the ordinate ν(D) represents the additional
effect of mobilizing specifically supporting voters. The fourteen-cluster mem-
bership of texts (there is no obvious relevant classification for texts) is indicated
by the plotting symbol.

Some relationship between missingness and membership to text classes emerge
from this plot. A first cluster of text appears in the positive quadrant, with texts
mainly proposed by the government, categorized in text classes A and B. A sec-
ond cluster, smaller, on the upper left, is mainly formed by texts categorized in
class D, voted positively by few voters. All the texts are related to the same
law project regarding housing and were voted over a short period (06/03/2018
and 06/08/2018). The largest cluster, on the lower part of the graph, gathers
most of the remaining texts, that would have a tendency to be voted negatively
by nonvoters. These texts were proposed by either the right-wing or left-wing
opposition, and get little support from a vast majority of MPs. Note also that
the small group of highly voted texts, on the right-hand side, is made of texts
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Figure 17: maximum a posteriori estimates of the text propensities (ν(C)
j , ν(D)

j ),

with their clustering class memberships. ν(C)
j drives the MAR effect and ν(D)

j

drives the MNAR one.

belonging to six text classes. This reflects the fact that our model does not link
the MNAR effect to the LBM memberships.
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