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Abstract

We prove sharp uniform estimates for strong supersolutions of a large class of fully

nonlinear degenerate elliptic complex equations. Our �ndings rely on ideas of Kuo and

Trudinger who dealt with degenerate linear equations in the real setting. We also exploit

the pluripotential theory for the complex Monge-Ampère operator as well as suitably

tailored theory of Lp-viscosity subsolutions.
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1 Introduction

Various maximum principles play pivotal role in the study of elliptic second order equations.
In the case of a uniformly elliptic equation1

F (D2u) = f,

the basic version of the maximum principle says that f > 0 implies that a (suitably regular)
solution u does not achieve strict local maximum. More quantitative versions are also widely
studied in the literature and we refer to [PS07] for the details. One of the cornerstones in
this �eld is the Alexandrov-Bakelman-Pucci estimate which yields a uniform bound on u ∈
C2(Ω) ∩ C0(Ω) (Ω ⊂ Rn is a bounded domain) solving

F (D2u) ≤ f,

∗Institute of Mathematics, Jagiellonian University, Lojasiewicza 6, 30-348 Krakow, Poland
(Soufian.Abja@im.uj.edu.pl, Slawomir.Dinew@im.uj.edu.pl, math.golive@gmail.com).

1We shall use the sign convention so that F (D2u) = ∆u in the case of the Laplace operator.
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with F being a uniformly elliptic second order operator and f ∈ C0(Ω). If u ≥ 0 on ∂Ω it reads

sup
Ω

(−u) ≤ C(n,Ω, F ) ‖f+‖Ln(Ω) ,

where f+ = max(f, 0) denotes the positive part of f . In this article, we shall denote by
C(n), C(n,Ω), etc. a positive number that may change from line to line but that depends only
on the quantities indicated between the brackets.

Various generalizations to strong solutions2 inW 2,n(Ω) (see [CW98]) or to viscosity solutions
(see e.g. [CC95, Theorem 3.2]) are plentiful in the literature.

When the equation fails to be uniformly elliptic maximum principle still holds under rea-
sonable minimal conditions, see [RS64] and references therein. When it comes to quantitative
estimates for degenerate elliptic equations the available results are considerably more restric-
tive. In [KT07], the authors established the following estimate generalizing the Alexandrov-
Bakelman-Pucci estimate:

Theorem 1.1. Let Ω ⊂ Rn be a bounded domain. Let

Lu =
n∑

i,j=1

aij(x)uij,

be a second order linear operator with the coe�cient matrix A = (aij)1≤i,j≤n being symmetric
and positive de�nite. We assume that ρ∗k(A) > 0 for some k ∈ {1, . . . , n}, where

ρ∗k(A) = inf

{
1

n
Trace (AM)

∣∣∣∣ σk(λ(M)) ≥
(
n

k

)
, σ`(λ(M)) > 0, ∀` ∈ {1, · · · , k}

}
,

where σ` is the `-th elementary symmetric polynomial and λ(M) ∈ Rn is the vector of eigen-
values of M . Let q ≥ 1 be such that{

q = k if k > n/2,

q > n/2 if k ≤ n/2,

and f be such that f/ρ∗k(A) ∈ Lq(Ω). Then, for any function u ∈ W 2,q
loc (Ω)∩C0(Ω) that satis�es{

Lu ≤ f in Ω,

u ≥ 0 on ∂Ω,

we have

sup
Ω

(−u) ≤ C(n,Ω, q)

∥∥∥∥ f

ρ∗k(A)

∥∥∥∥
Lq(Ω)

.

2We recall that a strong solution is a function that belongs to W 2,r
loc (Ω) for some r ≥ 1 and that satis�es the

corresponding equation almost everywhere.
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In this note we shall investigate the complex analogues of Theorem 1.1 and their generaliza-
tions to nonlinear complex equations. In such a setting it is well-known that direct application
of real tools, such as Theorem 1.1, leads to non-optimal bounds in terms of the exponent q (see
[Wan12, DD20]). Instead, building on a fundamental theorem of Koªodziej [Koª98] we are able
to establish a fairly sharp Alexandrov-Bakelman-Pucci type estimates.

1.1 Assumptions on the class of nonlinear equations

Let us now detail the class of nonlinear complex elliptic equations that is considered all along
this article.

From now on, Ω ⊂ Cn is a bounded domain. The Euclidean norm of z ∈ Cn will be denoted
by ‖z‖. The open ball of center z ∈ Cn and radius R > 0 will be denoted by BR(z).

Let Hn denote the set of all Hermitian n×n matrices and let us introduce the classical cone

Cn = {A ∈ Hn | A > 0} .

In what follows we shall be interested in families (Γ(z))z∈Ω ⊂ Hn of open convex cones
subject to the following condition:

Cn ⊂ Γ(z), ∀z ∈ Ω. (1)

Examples will shortly be presented in Section 1.3 below.
For the rest of this article, (Γ(z))z∈Ω ⊂ Hn is now a �xed family of open convex cones

satisfying (1). Let us then introduce the set

Σ = {(z, A) | z ∈ Ω, A ∈ Γ(z)} .

This set is clearly nonempty as it contains (z, Id) for any z ∈ Ω by (1).
All along this work, we shall consider operators

G : Σ −→ R,

(and F = Gk, k > 0, for nonnegative G) subject to the following conditions:

(a) Regularity: Σ is measurable subset of Ω × Hn and G is a measurable function on Σ.
Furthermore, for a.e. z ∈ Ω, we have A 7→ G(z, A) ∈ C1(Γ(z)).

(b) Homogeneity: for a.e. z ∈ Ω, the function A ∈ Γ(z) 7−→ G(z, A) is positively homoge-
neous of degree 1 (that is G(z, αA) = αG(z, A) for every α > 0 and A ∈ Γ(z)).

(c) Concavity: for a.e. z ∈ Ω, the function A ∈ Γ(z) 7−→ G(z, A) is concave.

(d) Comparison: for a.e. z ∈ Ω, we have

G(z, P ) ≥ (det(P ))
1
n , ∀P ∈ Cn. (2)
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Once again, some examples will be presented in Section 1.3 below.
The key assumption is (d), which will allow a comparison with the Monge-Ampère equation.

Note that we do not require any regularity with respect to z.

Remark 1.2. The assumptions (a), (b), (c) and (d) are stable by �nite convex combination.
More precisely, if G1, . . . , G` are operators satisfying these assumptions, then so is G(z, A) =∑`

i=1 αi(z)Gi(z, A) for any measurable functions αi : Ω→ R with αi ≥ 0 and
∑`

i=1 αi = 1.

In what follows, we will use the standard notation

Gij̄(z, A) =
∂G

∂aij̄
(z, A), 1 ≤ i, j ≤ n.

Remark 1.3. Inspired from an argument of [CNS84, p. 269], we see that:

• Thanks to the homogeneity assumption (b), the concavity assumption (c) is equivalent
to the following property, which will play the role of a substitute to [KT07, Proposition
2.1]:

(c') For every A ∈ Γ(z) and B = (Bij̄)1≤i,j≤n ∈ Γ(z), we have

n∑
i,j=1

Gij̄(z, A)Bij̄ ≥ G(z,B). (3)

Indeed, introducing DG(A)B =
∑n

i,j=1G
ij̄(z, A)Bij̄, the concavity is equivalent to the

inequality DG(A)B ≥ G(z, B)−G(z, A)+DG(A)A and we have the identity DG(A)A =
G(z, A) (obtained by di�erentiating G(z, αA) = αG(z, A) with respect to α and taking
α = 1).

• Thanks to the assumptions (b) and (c), G satis�es (d) if, and only if,

(d') For every A ∈ Γ(z) and P ∈ Cn, we have

G(z, A+ P ) ≥ G(z, A) + (det(P ))
1
n .

Indeed, the concavity inequality G(z, A + P ) − G(z, A) ≥ DG(A + P )P , (c') and (d)
imply (d'); the converse is proved taking A = P in (d') and using the homogeneity.

In particular, note that our assumptions guarantee that G is elliptic.

4



1.2 Main result and comments

From now on, D2u =
(
uij̄
)

1≤i,j≤n denotes the complex Hessian of u, where we use the standard

notations uj and uj̄ to denote, respectively, ∂u
∂zj

= 1
2

(
∂u
∂xj
− i ∂u

∂yj

)
and ∂u

∂z̄j
= 1

2

(
∂u
∂xj

+ i ∂u
∂yj

)
.

The main result of the present paper is the following:

Theorem 1.4. Let (Γ(z))z∈Ω ⊂ Hn be a family of open convex cones satisfying (1) and let G
be an operator satisfying (a), (b), (c) and (d). Let

r > n, p > n. (4)

Let g ∈ Lp(Ω). Then, for any function u ∈ W 2,r
loc (Ω) ∩ C0(Ω) with (D2u)(z) ∈ Γ(z) for a.e.

z ∈ Ω and that satis�es {
G(z,D2u) ≤ g in Ω,

u ≥ 0 on ∂Ω,

we have
sup

Ω
(−u) ≤ C(n, diam Ω, r, p) ‖g+‖Lp(Ω) , (5)

where g+ = max(g, 0) denotes the positive part of g.

Note that this result can be in particular applied to linear equations. Then (for suitable G)
it can be seen as a complex counterpart of Theorem 1.1.

For nonlinear equations with operators which are positively homogeneous of degree di�erent
from 1, we have the following immediate consequence:

Corollary 1.5. Let (Γ(z))z∈Ω ⊂ Hn be a family of open convex cones satisfying (1). Let
F : Σ→ R be a nonnegative function such that, for some k, δ > 0, G = (F 1/k)/δ satis�es (a),
(b), (c) and (d). Let

r > n, p ≥ 1, p >
n

k
. (6)

Let f ∈ Lp(Ω) with f ≥ 0 in Ω. Then, for any function u ∈ W 2,r
loc (Ω) ∩ C0(Ω) with (D2u)(z) ∈

Γ(z) for a.e. z ∈ Ω and that satis�es{
F (z,D2u) ≤ f in Ω,

u ≥ 0 on ∂Ω,

we have
sup

Ω
(−u) ≤ C(n, diam Ω, r, p, k, δ) ‖f‖

1
k

Lp(Ω) .

This establishes Koªodziej type uniform bounds ([Koª98]) for a large class of nonlinear
equations. Note however that Corollary 1.5 is a uniform estimate for strong solutions, whereas
in the case of the Monge-Ampère equation, the result from [Koª98] is valid for more general
solutions. We also recall that for the Monge-Ampère equation the condition (6) for p, which
becomes p > 1, is optimal.
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Remark 1.6. All our arguments apply verbatim also to Lp-viscosity solutions once a com-
parison principle is established3. It is worth emphasizing that such a comparison principle is
lacking even for general uniformly elliptic equations, see e.g. [CCKS96]. We refer to [JS05] for
the up-to-date partial results on the comparison principle for uniformly elliptic equations and
to [ABT07] for analogous discussion in the special case of the real Monge-Ampère equation.

Remark 1.7. We wish to point out that the methods from [KT07] are also applicable in the
complex setting but yield estimates dependent on ‖f‖L2p(Ω). The improvement in the exponent
should be compared with the result in [Esc93] who improved thel regularity assumptions in the
setting of uniformly elliptic equations.

Remark 1.8. In case we only know that (D2u)(z) ∈ Γ(z) for a.e. z ∈ Ω, Theorem 1.4 and
its proof remain unchanged provided that there exists a set N ⊂ R such that, for a.e. z ∈ Ω,

G(z, ·) is C1 in a neighborhood of
{
A ∈ Γ(z), G(z, A) 6∈ N

}
and G(z, (D2u)(z)) 6∈ N .

Our proof is based on Lp-viscosity techniques suitably coupled with basic results from
pluripotential theory. Roughly speaking we produce a pluripotential subsolution to our equa-
tion and then show that it is also an Lp-viscosity barrier. This coupled with a maximum
principle for Lp-viscosity subsolutions yields the claim. Our �ndings in fact show that uniform
estimates for Lp-viscosity solutions to a large class of Hessian type equations can be deduced
through pluripotential theoretic tools even if a pluripotential theory cannot be developed for a
particular equation (see [Din20b] for a discussion of such a phenomenon).

The rest of this paper is organized as follows. In Section 1.3 we give some examples of Hessian
equations that are covered by Theorem 1.4 or Corollary 1.5. In Section 2 we introduce the notion
of W 2,r/Lp-viscosity subsolutions for general elliptic equations. In particular, Section 2.2 is
devoted to examples explaining the di�erences from standard Lp-viscosity theory in the absence
of uniform ellipticity. In Section 3 we show that pluripotential subsolutions to the complex
Monge-Ampère equation with Lp right-hand side are also W 2,r/Lp-viscosity subsolutions when
r > n. In Section 4 we prove a basic W 2,r/Lp-viscosity maximum principle. The �nal Section
5 is devoted to the proof of our main result Theorem 1.4.

1.3 Some examples for Hessian equations

In this work, our operators F are not necessarily Hessian but all our examples below will be.
For this reason, let us �rst recall the notion of Hessian type operators on Ω.

In this section, β will be a �xed smooth positive Hermitian (1, 1)-form. We recall that, given
a smooth real (1, 1)-form α on Ω (not necessarily positive) the eigenvalues of α with respect to
β at a point z are the solutions λ to the equation

(α(z)− λβ(z))n = 0.

3The comparison principle states that a subsolution is majorized by a supersolution once this holds on the
boundary.
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These eigenvalues are real and they will be denoted by λ1(z, α) ≤ . . . ≤ λn(z, α) and arranged
in

λ(z, α) = (λ1(z, α), · · · , λn(z, α)) .

We recall that the eigenvalues are continuous functions of z which are furthermore smooth o�
the branching locus. Equivalently, writing β = i

∑n
j,k=1Bjk̄dzj ∧ dz̄k and α = i

∑n
j,k=1 Ajk̄dzj ∧

dz̄k, where A = (Ajk̄)1≤j,k≤n and B = (Bjk̄)1≤j,k≤n are Hermitian matrices (d is the exterior
derivative), the eigenvalues are solutions to det(A(z)− λB(z)) = 0.

Remark 1.9. The choice β = i
∑n

j=1 dzj ∧ dz̄j (equivalently B(z) = Id) yields the standard
eigenvalues of a real (1, 1)-form. In applications however, especially when studying locally
equations on complex manifolds, it is more natural to work with a z-dependent background
form (see e.g. [DK14, p. 230]).

If M ∈ Hn, we simply denote by λj(z,M) the eigenvalues of the corresponding form α =
i
∑n

j,k=1Mjk̄dzj ∧ dz̄k with respect to β at the point z. When B does not depend on z, we shall
simply write λj(M) and λ(M).

Let us now give a precise statement of what we call an Hessian operator:

De�nition 1.10. Assume that the family (Γ(z))z∈Ω ⊂ Hn of open convex cones satis�es (1)
and

∀z ∈ Ω, ∀A, Ã ∈ Hn,
(
A ∈ Γ(z) and λ(z, Ã) = λ(z, A)

)
=⇒ Ã ∈ Γ(z). (7)

Then, a function F : Σ −→ R is said to be a Hessian operator if there is exists a function
F̂ : Σ̂ −→ R, where Σ̂ = {(z, λ(z, A)) | (z, A) ∈ Σ}, so that, for every (z, A) ∈ Σ, we have

F (z, A) = F̂ (z, λ(z, A)).

When F̂ does not depend on z, we shall simply write F̂ (λ(z, A)).

In the case B(z) = Id, the property (7) can be equivalently rephrased as the O(n)-invariance
(O(n) denotes the orthogonal group): we have A ∈ Γ(z) if, and only if,

O∗AO ∈ Γ(z), ∀O ∈ O(n), (8)

where O∗ denotes the Hermitian transposed matrix of O. This property (8) appears for instance
in [HL18, p. 778], where it is called �ST-Invariance� (it stands for Spherical Transitivity).

Before �nally presenting some examples, we recall the de�nition of the basic cones associated
to Hessian equations. For 1 ≤ m ≤ n, the cones Γm ⊂ Rn are de�ned as follows

Γm = {(λ1, . . . , λn) ∈ Rn | σq(λ1, . . . , λn) > 0, ∀q ∈ {1, · · · ,m}} ,

where
σq(λ1, . . . , λn) =

∑
1≤i1<···<iq≤n

λi1 · · ·λiq .

The cones λ−1(Γk) clearly satisfy the O(n)-invariance (8) and it can be shown that they are
convex (see e.g. [Bªo05, Section 2]).
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Example 1.11. Examples of equations covered by our framework of Section 1.1 and that are
Hessian equations include:

1) The complex Monge-Ampère equation:

Γ(z) = λ−1(Γn), F̂ (λ1, . . . , λn) =
n∏
i=1

λi.

Here, the degree of homogeneity of F is k = n, the concavity is well known and the
comparison (d) is trivial.

2) The complex m-Hessian operator: for 1 ≤ m ≤ n,

Γ(z) = λ−1(Γm), F̂ = σm.

Here, the degree is k = m, the concavity follows from Gårding's inequality, and the
comparison (d) follows from Maclaurin's inequality (see e.g. [Bªo05, Section 2]).

3) The complex m-Monge-Ampère operator (c.f. [HL18, Din20b, Din20a]): for 1 ≤ m ≤ n,

Γ(z) = λ−1 ({(λ1, . . . , λn) ∈ Rn | λi1 + · · ·+ λim > 0, ∀1 ≤ i1 < · · · < im ≤ n}) ,

F̂ (λ1, . . . , λn) =
∏

1≤i1<···<im≤n

(λi1 + · · ·+ λim).

Here, the degree is k =
(
n
m

)
, the operator is concave and the comparison (d) holds (see

e.g. [Din20a, Section 1.6] and [AO20]).

4) B(z) = Id and, for a ∈ [0, 1],

Γ(z) = λ−1(Γ2−a), Γ2−a =
{

(λ1, λ2) ∈ R2
∣∣ λ1 +a λ2 > 0, λ2 +a λ1 > 0

}
,

F̂ (λ1, λ2) = (1− a)2λ1λ2 + a(λ1 + λ2)2,

(the cones Γ2−a interpolate between Γ1 and Γ2). Here, the degree is k = 2, the concavity
and the comparison (d) are easily checked.

5) More generally, for any polynomial P hyperbolic with respect to v ∈ Rn (cf. [Går59,
CNS85, HL18]) of degree k, the operator F̂ (λ1, . . . , λn) = P (λ1, . . . , λn) de�ned on the
component of P 6= 0 in Rn containing v, satis�es (c). Whether it satis�es the comparison
(d) or not may depend on P .

6) An example of an operator meeting all the conditions above except (d) is the Hessian
quotient operator given by

Γ(z) = λ−1(Γm), F̂ (λ1, . . . , λn) =
σm(λ1, . . . , λn)

σ`(λ1, . . . , λn)
,

for 1 ≤ ` < m ≤ n. Here, the degree is k = m− ` and the operator is concave.
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2 W 2,r/Lp-viscosity subsolutions

As our analysis will be based on the pluripotential theory for the complex Monge-Ampère
equation, we need to recall that plurisubharmonic solutions to this equation, even for regular
right-hand side data, need not possess su�cient Sobolev regularity (see [BT82, Bªo99, Koª05,
DD20] and Section 2.2 below). Hence they are not strong solutions in general and as such
cannot be tested directly for other types of operators. On the other hand, as discussed in
[Din20b], a general Hessian operator, even one satisfying the hypotheses above, may fail to have
properties necessary to develop its own pluripotential theory. Hence in order to accommodate
pluripotential (sub)solutions it is necessary to develop another theory of weak solutions. As it
turns out a good choice is the Lp-viscosity theory which we shall brie�y sketch below. We refer
for instance to [CCKS96] for more background.

In all this section, we only need to assume that A 7→ F (z, A) is elliptic in Γ(z) for a.e.
z ∈ Ω.

2.1 De�nition and remarks

Below we introduce the notion of a W 2,r/Lp-viscosity subsolution associated to an operator F .
It is inspired from [CCKS96, De�nition 2.1] but also contains notable di�erences, see Remark
2.2 below.

First of all, when dealing with constrained elliptic equations (i.e. Γ(z) 6= Hn) it is a standard
and useful procedure in viscosity theory (see e.g. [CIL92, ABT07]) to extend the operator F
by −∞ outside the cone i.e.

F (z, A) = −∞, ∀z ∈ Ω, ∀A ∈ Hn\Γ(z). (9)

De�nition 2.1. Let F : Σ −→ R satisfy (9), r, p ≥ 1 and f ∈ Lp(Ω). An upper semicontinuous
function u : Ω −→ R is said to be a W 2,r/Lp-viscosity solution of

F (z,D2u) ≥ f in Ω,

if, for every lower semicontinuous function ϕ : Ω −→ R with ϕ ∈ W 2,r
loc (Ω), for every ε > 0 and

nonempty open subset U ⊂ Ω, if

F (z, (D2ϕ)(z)) ≤ f(z)− ε a.e. z ∈ U,

then u− ϕ cannot have a strict local maximum in U .

We will also say that u is a W 2,r/Lp-viscosity subsolution.

Remark 2.2. Let us comment this new de�nition:

9



• The functions ϕ in De�nition 2.1 are called test functions. If the class of W 2,r
loc testing

functions above is exchanged by the class of C2 tests we get the notion of C-viscosity
(sub)solutions. These are much better studied and we refer to [CIL92, CC95] for the
general theory of C-viscosity for uniformly elliptic equations. For complex equations, C-
viscosity has been considered �rst in [EGZ11] and then in [Wan12, Zer13] for the complex
Monge-Ampère equation and in [DDT19] for degenerate Hessian equations.

• The main di�erence with the de�nition introduced in [CCKS96, De�nition 2.1] is that our
operators are not uniformly elliptic and this is why we require in addition the condition
that the maximum is strict. We refer to Section 2.2 for some instructive examples.

• In Theorem 1.4 we assume that r > n, for which we have the Sobolev embedding
W 2,r

loc (Ω) ⊂ C0(Ω). However, there is no need to require such a condition in De�ni-
tion 2.1 since every quantity makes sense as it is introduced (compare with [CCKS96,
De�nition 2.1]).

• If F is a linear operator of type F (z,D2u) =
∑n

i,j=1 a
ij̄uij̄ with (aij̄)1≤i,j≤n ≥ 0, contrary

to the uniformly elliptic case (see [CCKS96]) we do not assume that the matrix entries
are essentially bounded, and hence F is in general not expected to send W 2,p functions
u to Lp.

Finally, the following observation will be used in the proof of the main theorem.

Remark 2.3. If A 7→ G(z, A) is linear and if u1 is aW 2,r/Lp-viscosity solution to G(z,D2u1) ≥
g1 in Ω and u2 is a W 2,r/Lp-viscosity solution to G(z,D2u2) ≥ g2 in Ω with u2 ∈ W 2,r

loc (Ω), then
u = u1 + u2 is a W 2,r/Lp-viscosity solution to G(z,D2u) ≥ g1 + g2 in Ω. This follows from
the de�nition as we can subtract u2 from any testing function ϕ ∈ W 2,r

loc (Ω) and the resulting
function is testing for u1.

2.2 The strict maximum condition

In this section, we explain why we have required that the maximum is strict in De�nition 2.1.
We discuss this for the complex Monge-Ampère equation and its linearization.

Recall once again that equations of Monge-Ampère type locally admit singular solutions no
matter how smooth the right-hand side is. The following example from [Bªo99] is modeled on
real Pogorelov type singular convex functions:

Example 2.4. Let n ≥ 2. Let u be the function de�ned for every z = (z1, z
′) ∈ Cn by

u(z) = ‖z′‖2(1− 1
n) (1 + |z1|2

)
. (10)

It is smooth o� {z′ = 0} and u ∈ W 2,r
loc (Cn) for any 1 ≤ r < n(n − 1) with (D2u)(z) ∈ Cn for

every z ∈ Cn\ {z′ = 0}. A computation shows that it is a strong solution to

det(D2u) = f in Cn, f(z) =

(
1− 1

n

)n
(1 + |z1|2)n−2. (11)
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It is also easily seen that u is a C-viscosity solution, the only problem is at {z′ = 0} and
there are clearly no C2-smooth di�erential tests from above, while C2 di�erential tests from
below have to vanish along {z′ = 0} and thus have vanishing Monge-Ampère operator [Zer13].

When it comes to W 2,r/Lp-viscosity things are substantially subtler. We have built the
following example:

Example 2.5. Let n ≥ 3 and R > 0 be �xed. Let u and f be the functions of Example 2.4.
Consider the function ϕ de�ned for every z = (z1, z

′) ∈ Cn by

ϕ(z) = ‖z′‖2(1− 1
n) (1 +R2 − ‖z′‖2

). (12)

We have ϕ ∈ W 2,r
loc (BR(0)) for every n < r < n(n − 1) and (D2ϕ)(z) ∈ Cn for every z ∈

BR(0)\ {z′ = 0}. As ϕ is a function of n− 1 variables, it is a strong solution to the equation

det(D2ϕ) = 0 in BR(0).

Besides, we can always �nd ε > 0 small enough so that 0 < f − ε. On the other hand, we
clearly have

u− ϕ ≤ 0 = (u− ϕ)|{z′=0}, in BR(0),

so that u− ϕ has no strict maximum in BR(0).
In conclusion, if we do not require the strict maximum condition in De�nition 2.1, then the

function u is a strong solution to det(D2u) = f but it would not be a W 2,r/Lp-viscosity solution
to det(D2u) ≥ f , whatever p ≥ 1 is (even if r > n). Note that this has nothing to do with the
regularity of the right-hand side since f ∈ C∞(Cn).

The previous example shows that imposing strict local maxima in the de�nition ofW 2,r/Lp-
viscosity solutions is essential for Hessian type equations. It turns out that the same example
works for the linearized equation provided r is taken su�ciently small.

Example 2.6. Let u, f, ϕ be the same functions as in Example 2.5 but consider this time the
following linear operator:

Luh =
n∑

i,j=1

aij̄(z)hij̄, aij̄(z) =
∂ det

∂aij̄
((D2u)(z)).

By homogeneity, we immediately have Luu = n det(D2u) = nf . On the other hand, for su�-
ciently small R, ε > 0, we will show that

Luϕ ≤ nf − ε in BR(0). (13)

Therefore, even for linear equations, the strict maximum condition that we introduced in De�-
nition 2.1 is needed if we at least want that strong solutions are W 2,r/Lp-viscosity solutions.

11



We provide the details of the inequality (13) for n = 3 only, the general case is analogous.
An explicit computation of the aij̄ and the fact that ϕ does not depend on z1 yield

3∑
i,j=1

aij̄(z)ϕij̄ = (u11̄u33̄ − |u13̄|2)ϕ22̄ + (u11̄u22̄ − |u12̄|2)ϕ33̄

+ (u31̄u12̄ − u11̄u32̄)ϕ23̄ + (u21̄u13̄ − u11̄u23̄)ϕ32̄.

From the expression (10) of u we have, for z′ 6= 0,

u11̄u33̄ − |u13̄|2 =
2

3

(
1 + |z1|2

)
‖z′‖

2
3 −

(
2

9
+

2

3
|z1|2

)
|z3|2 ‖z′‖−

4
3 ,

u11̄u22̄ − |u12̄|2 =
2

3

(
1 + |z1|2

)
‖z′‖

2
3 −

(
2

9
+

2

3
|z1|2

)
|z2|2 ‖z′‖−

4
3 ,

u31̄u12̄ − u11̄u32̄ =

(
2

9
+

2

3
|z1|2

)
z̄3z2 ‖z′‖−

4
3 ,

u21̄u13̄ − u11̄u23̄ =

(
2

9
+

2

3
|z1|2

)
z̄2z3 ‖z′‖−

4
3 .

From the expression (12) of ϕ we have, for z′ 6= 0,

ϕ22̄ = −5

3
‖z′‖

4
3 +

(
−10

9
|z2|2 +

2

3
(1 +R2)

)
‖z′‖−

2
3 − 2

9
(1 +R2)|z2|2 ‖z′‖−

8
3 ,

ϕ33̄ = −5

3
‖z′‖

4
3 +

(
−10

9
|z3|2 +

2

3
(1 +R2)

)
‖z′‖−

2
3 − 2

9
(1 +R2)|z3|2 ‖z′‖−

8
3 ,

ϕ23̄ = −10

9
z̄2z3 ‖z′‖−

2
3 − 2

9
(1 +R2)z̄2z3 ‖z′‖−

8
3 ,

ϕ32̄ = −10

9
z̄3z2 ‖z′‖−

2
3 − 2

9
(1 +R2)z̄3z2 ‖z′‖−

8
3 .

Therefore, for z′ 6= 0,

Luϕ = −
(

70

27
+

50

27
|z1|2

)
‖z′‖2

+
16

27
(1 +R2) +

8

27
(1 +R2)|z1|2

≤ 16

27
(1 +R2) +

8

27
(1 +R2)|z1|2.

As 3f = 24
27

+ 24
27
|z1|2 (recall (11)), we see that Luϕ < 3f for any R < 1√

2
, so that (13) holds

provided ε is taken small enough (since Luϕ and f are continuous on the closure of BR(0)).

3 W 2,r/Lp-viscosity subsolutions and pluripotential theory

All along this section, we denote the open unit ball by B1 = B1(0).
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Let FMA(A) = detA for A ∈ Cn and FMA(A) = −∞ otherwise. The goal of this section is
to show the following result:

Theorem 3.1. Let
r > n, q > 1, (14)

and let g ∈ Lq(B1) with g ≥ 0. Then, there exists a W 2,r/Lq-viscosity solution ρ ∈ C0(B1) of

FMA(D2ρ) ≥ g in B1,

with ρ = 0 on ∂B1 and which satis�es

sup
B1

(−ρ) ≤ C(n, q) ‖g‖
1
n

Lq(B1) .

3.1 Background on pluripotential theory

First of all, let us discuss some pluripotential tools. One of the main problems which pluripo-
tential theory handles is the solvability complex Monge-Ampère equation. For every function
ρ ∈ PSH(B1) ∩ C2(B1), the complex Monge-Ampère operator is given as follows:

(ddc ρ)n = 4nn! det
(
D2ρ

)
dV.

Here dV denotes the Lebesgue measure in Cn, d = ∂ + ∂̄, dc = i(∂̄ − ∂), PSH(B1) is the set of
plurisubharmonic functions in B1 i.e. the set of upper semicontinuous, locally integrable func-
tions ρ such that ddc ρ ≥ 0. The operator (ddc ρ)n is well de�ned on bounded plurisubharmonic
functions, as follows from the work [BT76] (see also [BT82]).

Below we consider the Dirichlet problem associated to the Monge�Ampère operator in the
ball B1. It reads: {

(ddc ρ)n = gdV in B1,

ρ = ψ on ∂B1,
(15)

where g ∈ Lq(B1) (q > 1) and ψ ∈ C0(∂B1). We recall now the following fundamental result
from [Koª98]:

Theorem 3.2. Let g ∈ Lq(B1) (q > 1) with g ≥ 0. There exists a unique solution ρ ∈
PSH(B1) ∩ C0(B1) of (15) with ψ = 0, and it satis�es

sup
B1

(−ρ) ≤ C(n, q) ‖g‖
1
n

Lq(B1) .

Consequently, we see that Theorem 3.1 will be a straightforward consequence of this result
if we manage to establish the following:

Proposition 3.3. Assume (14) and let g ∈ Lq(B1) with g ≥ 0. If ρ ∈ PSH(B1) ∩ C0(B1) is
a solution to (ddc ρ)n ≥ 4nn!gdV in B1 in the sense of currents, then ρ is a W 2,r/Lq-viscosity
solution to FMA(ρ) ≥ g in B1.

The proof of this proposition is the purpose of the next section.
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3.2 Comparison theorem for non PSH functions

In this part, B is any �xed open ball. In order to prove Propostion 3.3, we will use the following
comparison theorem between PSH and W 2,r functions, which is adapted from [RT77, Theorem
5.1] to our complex setting:

Theorem 3.4. Let v ∈ W 2,r(B) with r > n. Let u ∈ PSH(B) ∩ C0(B) satisfy

(ddc u)n ≥ ((ddc v)n)+ in B,

in the sense of currents, where ((ddc v)n)+ is by de�nition equal to (ddc v)n if the current
ddc v ≥ 0 (i.e. D2v ∈ Cn) and is equal to zero otherwise. Then, we have

max
z∈B

(u(z)− v(z)) = max
z∈∂B

(u(z)− v(z)). (16)

We would to emphasize that an essential di�erence in the proof of this result below compared
with the one of [RT77, Theorem 5.1] is that the complex Monge-Ampère operator, contrary to
the real one, is not continuous with respect to the weak convergence (see e.g. [Kli91, Section
3.8]). We will circumvent this by exploiting the stability properties of the Monge-Ampère
operator. This in particular is one of the reasons for the assumption r > n in this section.

Before proving Theorem 3.4, let us show how it leads to Proposition 3.3:

Proof of Proposition 3.3. Let ρ ∈ PSH(B1) ∩ C0(B1) be a solution to (ddc ρ)n ≥ 4nn!gdV in
B1 in the sense of currents. Let ϕ ∈ W 2,r

loc (B1) and a nonempty open subset U ⊂ B1 (ϕ is
continuous since r > n). Assume that u−ϕ has a strict maximum, say at z0 and in some small
ball BR(z0) ⊂ B1. Assume by contradiction that

FMA((D2ϕ)(z)) ≤ g(z) a.e. z ∈ BR(z0). (17)

If we show that this implies (ddc ρ)n ≥ ((ddc ϕ)n)+ in BR(z0), then Theorem 3.4 gives a con-
tradiction. We have to distinguish two cases. If the current ddc ϕ is not nonnegative, then
((ddc ϕ)n)+ = 0 by de�nition and the desired inequality holds since (ddc ρ)n ≥ 4nn!gdV and
g ≥ 0. Assume then that the current ddc ϕ is nonnegative, that is D2ϕ ∈ Cn. We have
((ddc ϕ)n)+ = 4nn! det (D2ϕ) dV by de�nition and the desired inequality will be proved if we
show that g ≥ det (D2ϕ) in BR(z0). On the measurable subset {z ∈ BR(z0) | (D2ϕ)(z) ∈ Cn}
we have FMA(D2ϕ) = det(D2ϕ), so that the previous inequality holds thanks to (17). On the
remaining set we have D2ϕ ∈ ∂Cn = {0}, so that previous inequality holds as well thanks to
g ≥ 0.

For the proof of Theorem 3.4, we need to recall two results. The �rst one is the following
comparison principle that follows from [BT82, Theorem 4.1] and which is by now a basic tool
in pluripotential theory.
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Theorem 3.5. Let u, v ∈ PSH(B) ∩ C0(B) satisfy

(ddc u)n ≥ (ddc v)n in B,

in the sense of currents. Then, the same equality as in (16) holds.

The second result that will be needed is [Sib77, Théorème 1] coupled with [Bªo96, Theorem
3.9]:

Theorem 3.6. Let v ∈ C2(B) ∩ C0(B). Let u ∈ PSH(B) ∩ C0(B) satisfy

(ddc u)n ≥ (ddc v)n in B,

in the sense of currents. Then, the same equality as in (16) holds.

Note that Sibony's theorem states (in modern terminology) that solutions of (ddc u)n ≥
fdV (for continuous f) in the sense of currents are C-viscosity subsolutions (see the proof of
Proposition 3.3).

We have now all the ingredients to prove the desired comparison theorem.

Proof of Theorem 3.4. We adapt the proof of [RT77, Theorem 5.1]. First of all, we note that
there exists a sequence (vj)j ⊂ C∞(Cn) such that

vj → v in W 2,r(B), (18)

vj → v in C0(B). (19)

Indeed, since B is a ball, there exists an extension operator E : W 2,r(B)→ W 2,r(Cn). Let then
ϕ ∈ C∞c (Cn) be a cut-o� function which is equal to 1 in B and 0 outside an open set ω such
that ω ⊃ B. Thus, v̂ = ϕEv ∈ W 2,r

0 (ω) and there exists a sequence (v̂j)j ⊂ C∞c (ω) such that
v̂j → v̂ in W 2,r(ω). We de�ne vj as the extension of v̂j by zero outside ω, which then satis�es
(18). The convergence (19) is consequence of (18) by the Sobolev embeddingW 2,r(B) ⊂ C0(B)
since r > n.

Let us now introduce the functions

gj =

{
4nn! det (D2vj) , if ddc vj ≥ 0,

0 otherwise,
g =

{
4nn! det (D2v) , if ddc v ≥ 0,

0 otherwise.

Thanks to (18), we have
gj → g in Lr/n(B). (20)

Since gj, g ≥ 0, from [BT82] and [Koª98] there exist wj, w ∈ PSH(B)∩C0(B), respective unique
solutions to {

(ddcwj)
n = gjdV, in B,

wj = vj, on ∂B,

{
(ddcw)n = gdV, in B,

w = v, on ∂B.

15



Moreover, Kolodziej's stability theorem (contained in the proof of [Koª96, Theorem 3]) states
that

‖wj − w‖L∞(B) ≤ ‖vj − v‖L∞(∂B) + C(n, r) ‖gj − g‖
1
n

L
r
n (B)

.

It follows that wj → w in C0(B) thanks to (19) and (20).
Since (ddcwj)

n ≥ (ddc vj)
n with wj = vj on ∂B and vj ∈ C2(B), we can apply Theorem 3.6

to obtain that
wj ≤ vj in B.

It follows that

w − v = w − wj + wj − vj + vj − v
≤ w − wj + vj − v.

Passing to the limit, we deduce that

w − v ≤ 0 in B. (21)

To complete the proof, note that for z ∈ B,

u(z)− v(z) = u(z)− w(z) + w(z)− v(z)

≤ u(z)− w(z) (by (21)),

≤ max
z∈∂B

(u(z)− w(z)) (by Theorem 3.5 since (ddc u)n ≥ gdV = (ddcw)n),

= max
z∈∂B

(u(z)− v(z)) (since w = v on ∂B).

4 Maximum principle for W 2,r/Lp-viscosity subsolutions

The starting point of any viscosity theory is the maximum principle. Below we prove a version
adapted to our setting. Similar result for smoother functions can be found in [RS64, Theorem
1].

Theorem 4.1. Let aij̄ : Ω −→ C (1 ≤ i, j ≤ n) be such that the coe�cient matrix (aij̄(z))1≤i,j≤n
is Hermitian and nonnegative for a.e. z ∈ Ω. Assume that there exists M > 0 such that, for
a.e. z ∈ Ω,

n∑
i=1

aīi(z) ≥M. (22)

Let u ∈ C0(Ω) be a W 2,r/Lp-viscosity solution (r, p ≥ 1) of

n∑
i,j=1

aij̄(z)uij̄ ≥ 0 in Ω. (23)

Then, maxΩ u = max∂Ω u.
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Proof. Suppose on contrary that the value maxΩ u is reached only in Ω and let

K =

{
z ∈ Ω

∣∣∣∣ u(z) = max
Ω

u

}
.

Clearly, K is compact and, by assumption, K ⊂ Ω. Our goal will be to construct a strictly
concave polynomial barrier at (some) point of K. This coupled with the properties of our linear
operator would lead to a contradiction.

Assume �rst that K is reduced to a point, or more generally that it has an isolated point
z0. Let then R > 0 be �xed such that BR(z0) ⊂ Ω and such that no other maximum lies
in BR(z0). Set h(z) = −ε ‖z − z0‖2 + u(z0). For ε > 0 small enough, the maximum of the
di�erence u − h is necessarily achieved inside BR(z0), say at some point z1. Then, for the
smooth function ϕ(z) = h(z) + ε

2
‖z − z1‖2, the di�erence u − ϕ has a strict maximum in

BR(z0). As ϕij̄(z) = − ε
2
δij, we have

n∑
i,j=1

aij̄(z)ϕij̄(z) = −ε
2

n∑
i=1

aīi(z) ≤ −ε
2
M,

and hence ϕ is a valid test function, which contradicts the fact that u is a W 2,r/Lp-viscosity
solution of (23) (see De�nition 2.1).

In general the set K need not contain isolated points and we proceed di�erently. Pick a
point x0 ∈ K and in�ate the balls centered at x0 up until the whole set K is inside. If K is
not reduced to a point, then R = maxz∈K ‖z − x0‖ is positive and we have K ⊂ BR(x0) and
K∩∂BR(x0) 6= ∅. Let then z0 ∈ K∩∂BR(x0). Rotating and shifting coordinates if necessary, we
may assume that x0 = (0, · · · , 0, R), K ⊂

{
‖z′‖2 + |zn −R|2 ≤ R2

}
and z0 = (0, · · · , 0) ∈ ∂K

(observe that the assumptions of the theorem are invariant under such transformations). Note
that any point z = (z′, xn + iyn) ∈ K has to satisfy

xn ≥
y2
n + ‖z′‖2

2R
.

Then �xing a constant C > 2R, for any η > 0 the set

Ûη =
{
z ∈ Cn

∣∣∣ Re zn = −η, (Im zn)2 + ‖z′‖2 ≤ Cη
}

∪
{
z ∈ Cn

∣∣∣ |Re zn| ≤ η, (Im zn)2 + ‖z′‖2
= Cη

}
,

is disjoint from K. Since Ûη is compact, it follows that maxÛη u < maxΩ u = u(0), so that there
is a δ > 0, such that

u|Ûη < u(0)− 2δ. (24)

Since 0 ∈ K ⊂ Ω, there is a ball Br(0) ⊂ Ω and for η small enough so that η2 + Cη < r2,
the domain

Uη =
{
z ∈ Cn

∣∣∣ |Re zn| < η, (Im zn)2 + ‖z′‖2
< Cη

}
,
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is such that Uη ⊂ Ω. Fix such an η and set U = Uη.
Consider now the quadratic polynomial

h(z) = − δ

4Cη
(‖z′‖2

+ (Im zn)2)− δ

3η2
(Re zn − η)2 +

δ

3
+ u(0).

By continuity, u−h has a maximum on U . Let us show that this value is necessarily reached
in U . On U , we have

h(z) ≥ −δ
4
− δ

3η2
(Re zn − η)2 +

δ

3
+ u(0).

On Ûη, using (24) we obtain

h(z) ≥ −5δ

4
+ u(0) > u(z).

On the remaining part of ∂U , i.e. on the piece where Re zn = η, we simply use that 0 ∈ K:

h(z) ≥ δ

12
+ u(0) > u(0) ≥ u(z).

In summary, u− h < 0 on ∂U . Since 0 ∈ U with u(0)− h(0) = 0, the maximum of u− h has
to be reached into U . We also have hij̄(z) = −εiδij for some εi > 0.

The conclusion is now as before: de�ne ϕ(z) = h(z) + ε
2
‖z − z1‖2, where z1 is a point of

maximum of u − h in U , so that the di�erence u − ϕ now has a strict maximum in U ; taking
ε < εi and using aīi ≥ 0, we have

n∑
i,j=1

aij̄(z)ϕij̄(z) = −
n∑
i=1

aīi(z) (εi − ε) ≤ −M min
1≤i≤n

(εi − ε) ,

and hence ϕ is a valid test function, which contradicts the fact that u is a W 2,r/Lp-viscosity
solution of (23).

5 Proof of the main result

In this section we �nally prove Theorem 1.4. All along this section, �x a su�ciently large ball
containing Ω. Without loss of generality, we assume that it is B1 = B1(0). We then extend g
by zero in B1\Ω (still denoted by g).

Let then ρ ∈ C0(B1) be the corresponding W 2,r/Lp/n-viscosity solution of

FMA(D2ρ) ≥ (g+)n in B1,

provided by Theorem 3.1 with q = p/n, whose hypotheses (14) are satis�ed thanks to our
assumption (4). It also satis�es ρ = 0 on ∂B1 and the Koªodziej's estimate

sup
B1

(−ρ) ≤ C(n, q) ‖g+‖Lp(B1) . (25)
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We will show that −ρ is an upper barrier for −u in Ω. The conclusion will then follow from
(25). Let Lu be the linearization of G about D2u:

Luh =
n∑

i,j=1

Gij̄(z, (D2u)(z))hij̄.

First of all, we have the following lemma:

Lemma 5.1. The function ρ is a W 2,r/Lp-viscosity solution of

Luρ ≥ g+ in B1.

Proof. Assume not. Then, there exist ϕ ∈ W 2,r
loc (B1), ε > 0 and an open subset U ⊂ B1 such

that, in U ,
Luϕ ≤ g+ − ε, (26)

and ρ − ϕ has a strict local maximum in U . Since ρ is a W 2,r/Lp/n-viscosity solution of
FMA(D2ρ) ≥ (g+)n in B1, by very de�nition we obtain that, for every η > 0, the set

Vη =
{
z ∈ U

∣∣ FMA(D2ϕ(z)) > (g+(z))n − η
}
,

has to be of positive measure. In particular, note that D2ϕ ∈ Cn a.e. in Vη since FMA is equal
to −∞ outside Cn by de�nition. In this set Vη, we have

Luϕ ≥ G
(
z,D2ϕ

)
(by (3)),

≥
(
det(D2ϕ)

) 1
n (by (2) since D2ϕ ∈ Cn),

≥ g+ − η
1
n (by de�nition of Vη and subadditivity of x 7−→ x

1
n ).

As ε > 0 is �xed, by taking η > 0 small enough we reach a contradiction with (26).

We can now prove our main result:

Proof of Theorem 1.4. By homogeneity, we have

Luu = G(z,D2u).

Therefore,
Lu(−u) = −G(z,D2u) ≥ −g ≥ −g+.

From Lemma 5.1 and Remark 2.3 we see that ρ− u is then a W 2,r/Lp-viscosity solution to

Lu (ρ− u) ≥ 0 in Ω.

We can check that aij̄(z) = Gij̄(z, (D2u)(z)) satisfy the assumptions of Theorem 4.1. Indeed,
the condition (22) follows from (3) (with B = Id) and the fact that G(z, Id) ≥ 1 (by (2)); the
nonnegativity of (aij̄(z))1≤i,j≤n follows from the ellipticity of A 7→ G(z, A). Therefore, using
this maximum principle, we obtain that (recall that ρ ≤ 0 in B1 and u ≥ 0 on ∂Ω)

ρ− u ≤ 0 in Ω.

The desired estimate (5) then follows from Koªodziej's estimate (25) of ρ.
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