Uniform estimates for concave homogeneous complex degenerate elliptic equations comparable to the Monge-Ampère equation - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2020

Uniform estimates for concave homogeneous complex degenerate elliptic equations comparable to the Monge-Ampère equation

Soufian Abja
  • Function : Author
  • PersonId : 1079763
Guillaume Olive
  • Function : Author
  • PersonId : 998458

Abstract

We prove sharp uniform estimates for strong supersolutions of a large class of fully nonlinear degenerate elliptic complex equations. Our findings rely on ideas of Kuo and Trudinger who dealt with degenerate linear equations in the real setting. We also exploit the pluripotential theory for the complex Monge-Ampère operator as well as suitably tailored theory of $L^p$-viscosity subsolutions.
Fichier principal
Vignette du fichier
maximum_principle.pdf (466.63 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02973743 , version 1 (21-10-2020)
hal-02973743 , version 2 (04-11-2020)

Identifiers

  • HAL Id : hal-02973743 , version 2

Cite

Soufian Abja, Sławomir Dinew, Guillaume Olive. Uniform estimates for concave homogeneous complex degenerate elliptic equations comparable to the Monge-Ampère equation. 2020. ⟨hal-02973743v2⟩

Collections

TDS-MACS
83 View
60 Download

Share

Gmail Mastodon Facebook X LinkedIn More