

Two-step procedure for selective recovery of bio-molecules from microalga Nannochloropsis oculata assisted by high voltage electrical discharges

Rui Zhang, Luc Marchal, Nikolai Lebovka, Eugène Vorobiev, Nabil Grimi

► To cite this version:

Rui Zhang, Luc Marchal, Nikolai Lebovka, Eugène Vorobiev, Nabil Grimi. Two-step procedure for selective recovery of bio-molecules from microalga Nannochloropsis oculata assisted by high voltage electrical discharges. Bioresource Technology, 2020, 302, pp.122893. 10.1016/j.biortech.2020.122893 . hal-02973713

HAL Id: hal-02973713 https://hal.science/hal-02973713

Submitted on 21 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1	Two-step procedure for selective recovery of bio-molecules
2	from microalga Nannochloropsis oculata assisted by high voltage
3	electrical discharges
4	Rui Zhang ^{1*} , Luc Marchal ² , Nikolai Lebovka ^{1,3} , Eugène Vorobiev ¹ , Nabil Grimi
5	
6	¹ Sorbonne University, Université de Technologie de Compiègne, ESCOM, EA 4297
7	TIMR, Centre de recherche Royallieu - CS 60319 - 60203 Compiègne cedex, France
8	² LUNAM Université, CNRS, GEPEA, Université de Nantes, UMR6144, CRTT,
9	Boulevard de l'Université, BP 406, 44602 Saint-Nazaire Cedex, France ;
10	³ Institute of Biocolloidal Chemistry named after F. D. Ovcharenko, NAS of Ukraine, 42,
11	blvr. Vernadskogo, Kyiv 03142, Ukraine
12	
13	*Corresponding Author Address:
14	Mrs. Rui Zhang
15	¹ Sorbonne University, Université de Technologie de Compiègne, ESCOM, EA 4297
16	TIMR, Centre de recherche Royallieu - CS 60319 - 60203 Compiègne cedex, France
17	E-mail address: rui.zhang@utc.fr

19 Abstract

20	Two-step procedure with the initial aqueous extraction from raw microalgae
21	Nannochloropsis oculata and secondary organic solvent extraction from vacuum dried
22	(VD) microalgae were applied for selective recovery of bio-molecules. The effects of
23	preliminary aqueous washing and high voltage electrical discharges (HVED, 40 kV/cm,
24	4 ms pulses) were tested. The positive effects of HVED treatment and washing on
25	selectivity of aqueous extraction of ionics and other water-soluble compounds
26	(carbohydrates, proteins and pigments) were observed. Moreover, the HVED treatment
27	allowed improving the kinetic of vacuum drying, and significant effects of HVED
28	treatment on organic solvent extraction of chlorophylls, carotenoids and lipids were
29	determined. The proposed two-step procedure combining the preliminary washing,
30	HVED treatment and aqueous/organic solvents extraction steps are useful for selective
31	extraction of different bio-molecules from microalgae biomass.
32	Keywords: Microalgae; High voltage electrical discharges; Vacuum drying; Pigments;
33	Lipids

1. Introduction

36	Nowadays, the recovery of bio-molecules from microalgae has attracted wide
37	attention of academic and industrial researchers (Mittal and Raghavarao, 2018).
38	Microalgae have high growth rate, photosynthetic efficiency, worldwide distribution,
39	and valuable bio-contents (Daneshvar et al., 2018). Due to high proportion of proteins
40	and micronutrients in extracts (Buchmann et al., 2019), they present promising source
41	for food and feed production. Moreover, the extracted pigments and polyphenols from
42	microalgae can be used in cosmetics and pharmaceutical industries (Rivera et al., 2018),
43	and their lipid extracts can serve as raw material for biofuels (Talebi et al., 2013).
44	Nannochloropsis sp. is a marine green microalgae belonging to the Eustigmataceae
45	family (Parniakov et al., 2015). The major photosynthetic pigments are violaxanthin,
46	vaucheraxanthin, and chlorophylls (Rebolloso-Fuentes et al., 2001). In favorable
46 47	vaucheraxanthin, and chlorophylls (Rebolloso-Fuentes et al., 2001). In favorable growing conditions (with adjustable temperature, salinity and additives), they can also
46 47 48	vaucheraxanthin, and chlorophylls (Rebolloso-Fuentes et al., 2001). In favorable growing conditions (with adjustable temperature, salinity and additives), they can also accumulate considerable amounts of lipids ranging from 12 to 60% w/w (Chiu et al.,
46 47 48 49	vaucheraxanthin, and chlorophylls (Rebolloso-Fuentes et al., 2001). In favorable growing conditions (with adjustable temperature, salinity and additives), they can also accumulate considerable amounts of lipids ranging from 12 to 60% w/w (Chiu et al., 2009; Doan and Obbard, 2015; Mitra et al., 2015). However, the extraction of bio-
46 47 48 49 50	vaucheraxanthin, and chlorophylls (Rebolloso-Fuentes et al., 2001). In favorable growing conditions (with adjustable temperature, salinity and additives), they can also accumulate considerable amounts of lipids ranging from 12 to 60% w/w (Chiu et al., 2009; Doan and Obbard, 2015; Mitra et al., 2015). However, the extraction of bio- molecules from <i>Nannochloropsis</i> sp. is not easy task. Their cells are near spherical with
46 47 48 49 50 51	vaucheraxanthin, and chlorophylls (Rebolloso-Fuentes et al., 2001). In favorable growing conditions (with adjustable temperature, salinity and additives), they can also accumulate considerable amounts of lipids ranging from 12 to 60% w/w (Chiu et al., 2009; Doan and Obbard, 2015; Mitra et al., 2015). However, the extraction of bio- molecules from <i>Nannochloropsis</i> sp. is not easy task. Their cells are near spherical with relatively small size (≈ 2.5 µm) and they are covered by rather thick rigid walls (≈ 60-
 46 47 48 49 50 51 52 	vaucheraxanthin, and chlorophylls (Rebolloso-Fuentes et al., 2001). In favorable growing conditions (with adjustable temperature, salinity and additives), they can also accumulate considerable amounts of lipids ranging from 12 to 60% w/w (Chiu et al., 2009; Doan and Obbard, 2015; Mitra et al., 2015). However, the extraction of bio- molecules from <i>Nannochloropsis</i> sp. is not easy task. Their cells are near spherical with relatively small size (≈ 2.5 µm) and they are covered by rather thick rigid walls (≈ 60- 110 nm) (Gerken et al., 2013). To facilitate extraction of intracellular compounds,
 46 47 48 49 50 51 52 53 	 vaucheraxanthin, and chlorophylls (Rebolloso-Fuentes et al., 2001). In favorable growing conditions (with adjustable temperature, salinity and additives), they can also accumulate considerable amounts of lipids ranging from 12 to 60% w/w (Chiu et al., 2009; Doan and Obbard, 2015; Mitra et al., 2015). However, the extraction of bio- molecules from <i>Nannochloropsis</i> sp. is not easy task. Their cells are near spherical with relatively small size (≈ 2.5 µm) and they are covered by rather thick rigid walls (≈ 60- 110 nm) (Gerken et al., 2013). To facilitate extraction of intracellular compounds, different chemical, enzymatic (Zhu et al., 2018a) and physical methods (Zhu et al.,
 46 47 48 49 50 51 52 53 54 	vaucheraxanthin, and chlorophylls (Rebolloso-Fuentes et al., 2001). In favorable growing conditions (with adjustable temperature, salinity and additives), they can also accumulate considerable amounts of lipids ranging from 12 to 60% w/w (Chiu et al., 2009; Doan and Obbard, 2015; Mitra et al., 2015). However, the extraction of bio- molecules from <i>Nannochloropsis</i> sp. is not easy task. Their cells are near spherical with relatively small size (≈ 2.5 µm) and they are covered by rather thick rigid walls (≈ 60- 110 nm) (Gerken et al., 2013). To facilitate extraction of intracellular compounds, different chemical, enzymatic (Zhu et al., 2018a) and physical methods (Zhu et al., 2018b) have been tested (for a recent review see (Zhang et al., 2018b)).

56	et al., 2015a, 2015b) and high voltage electrical discharges (HVED)) (Grimi et al., 2014)
57	for recovery intracellular compounds from Nannochloropsis sp. have been reported. The
58	PEF provoke electroporation of cell membranes, while the HVED can provoke the
59	damage of cell walls due to electrical breakdown and different secondary phenomena
60	(liquid turbulence, intense mixing, shock waves, and bubble cavitation, etc) (Barba et al.,
61	$\frac{2015}{2015}$. They can be easily done for algal slurries with the high moisture content of (\approx
62	80% wt). However, the effective extraction of hydrophobic bio-molecules, such as
63	pigments, lipids and phenolic compounds requires applications of more complex
64	techniques, including organic solvents extraction (Barba et al., 2015), high pressure
65	homogenization (Zhang et al., 2018a) and ultrasonication (Zhang et al., 2019), etc.
66	Moreover, the extraction of hydrophobic bio-molecules requires drying of algal
67	slurries with significant reducing of a moisture content up to $\approx 10\%$ that is time and
68	energy consuming process (Ansari et al., 2018; Bagchi et al., 2015; Hosseinizand et al.,
69	2018). Vacuum drying (VD) has been recently applied for processing of algal cells
70	(Makkar et al., 2016). Effects of VD on seaweed Pyropia orbicularis at the pressure of
71	15 kPa and drying temperatures at 40-80 °C were investigated (Uribe et al., 2018). The
72	high recovery yields of total phenolic, carotenoids, phycoerythrin and phycocyanin were
73	demonstrated. Furthermore, the pre-treatment by pulsed electric energy can also affect
74	the efficiency of VD (Liu et al., 2018).
75	The main aim of this work was efficiency testing of the two-step procedure for
76	selective recovery of bio-molecules from microalga Nannochloropsis oculata (N.

77	oculata)	assisted by	y HVED.	The	procedure	combined	washing	with	HVED	treatment	a
----	----------	-------------	---------	-----	-----------	----------	---------	------	-------------	-----------	---

- 78 the initial aqueous extraction step, and VD before at the final non-aqueous extraction
- 79 step. The effects of HVED pre-treatment on the extraction efficiencies of hydrophilic
- 80 components (ionics, carbohydrates, proteins and water-soluble pigments) (first step),
- 81 and hydrophobic components (pigments and lipids) (second step) were investigated.
- 82 Moreover, the impact of HVED treatment on VD kinetics was evaluated for the first
- 83 time.

84 **2. Materials and methods**

85 2.1 Microalgae

86 Microalga *Nannochloropsis oculata* (*N. oculata*) (provided by AlgoSolis, Saint-

- 87 Nazaire, France) was obtained as a frozen paste. The moisture content of biomass was
- measured at 105 °C for 24 h. Accounting for this content, the biomass, at the initial step,
- ⁸⁹ was diluted with deionized water to obtain 5% dry matter (DM) concentration.

90 **2.2 Design of experiments**

Fig. 1a presents the schema of experiments applied in the present study. It includes the preparation of samples (without or with preliminary washing), HVED treatment and aqueous extraction (first step for extraction of water-soluble components), and VD of sediments and organic solvent extraction (second step for extraction of pigments and lipids).

96 <u>2.2.1. Preparation of the samples</u>

In the supplied biomass paste, the water-soluble components were present in the 97 extracellular aqueous solution. In order to evaluate effects of these components on 98 extraction efficiency for different applied procedures, the samples with and without 99 100 washing were prepared. The initial samples with preliminary washing for 60 min were designed as S_0 . The 101 aqueous extraction for 30 min was performed for biomass (both unwashed and washed) 102 (Fig. 1a). Samples processed without preliminary washing were designed as S_1 103 (untreated) and S₂ (HVED treated). Samples processed with preliminary washing were 104 designed as S_3 (untreated) and S_4 (HVED treated). In the first washing step, the 105 106 suspension was diluted to 1% DM, agitated at 150 rpm for 10 min, and centrifuged for 10 min at 4600 g. Then supernatant was removed and sediment was diluted to 1% DM 107 and the next washing step was applied. The duration of one washing step was 20 min. 108 The analysis of supernatant for presence ionic components, proteins, and carbohydrates 109 was done (see Section 2.3 for the details). 110 2.2.2. High voltage electrical discharges (HVED) treatment 111

- 112 HVED treatment was applied using a high voltage pulsed power 40 kV-10 kA
- 113 generator (Basis, Saint-Quentin, France). HVED treatment was done in a 1-L cylindrical
- batch treatment cell with an electrode of needle-plate geometry (Fig. 1b). The distance
- between stainless steel needle and grounded plate was fixed to 1 cm, which
- 116 corresponding to E = 40 kV/cm of electric field strength. HVED treatment comprised of

117	the application of <i>n</i> successive pulses ($n = 1-400$) and a pulse repetition rate of 0.5 Hz.
118	The total time of electrical treatment was 0.01-4 ms. This discharge protocol with $E =$
119	40 kV/cm and $n = 400$ was shown to be effective for extraction of water-soluble
120	proteins (Grimi et al., 2014). The damped oscillations with effective decay time $t_p \approx 10$
121	$\pm 0.1 \mu s$ were observed in HVED mode (Fig. 1b). The 2 min of pause was done after
122	each 100 pulses to maintain temperature elevation after HVED treatment never
123	exceeded 30 °C. The total operation time for HVED experiment is 30 min. The 200 g of
124	suspension of microalgae (5% DM) was used in this study (samples S_2 and S_4). The
125	samples without HVED treatment keep for 30 min was used as control (samples S_1 and
126	S ₃). Then these samples were centrifuged at $14,100 \text{ g}$ for 10 min using a MiniSpin Plus
127	Rotor F-45-12-11 (Eppendorf, France). The supernatants were used for analyzing of
128	extracts and the sediments were dehydrated by VD.
129	2.2.3. Vacuum drying (VD) of sediments
130	The sediments were mixed with absolute EtOH (2:1, w/w). The 10 g of mixture
131	were spread uniformly with 7 mm of initial thickness in Petri dishes (6 cm inner
132	diameter and 2.5 cm inner depth) and kept for VD. The absolute EtOH was added to
133	centrifuged samples to facilitate detachment of cells from the centrifugation glass tubes.
134	Then the EtOH was evaporated quickly from the samples. VD experiment was carried
135	out in a vacuum chamber (Cole-Parmer, USA) connected with a vacuum pump
136	(Rietschle, Germany). The pressure of drying chamber was maintained at 30 kPa and
137	the drying temperature was fixed at 50 °C. The initial temperature of samples ($\approx 25^{\circ}$ C)

138	was measured before	VD experimen	nt. During the d	rying, the tem	perature inside centre
		1	6	2 0	1

- 139 of the sample, *T*, was recorded in the online mode using a thermocouple (K-type, NiCr–
- 140 Ni). The weight of the sample, *m*, was measured using a balance (GF-600, A & D,
- 141 Japan).
- 142 The moisture ratio, *MR*, of the sample during the drying was calculated as follows: $MR = (m - m_f)/(m_i - m_f)$ (1)
- 143 where m is the running weight of the sample, and the subscripts i and f refer to the initial
- 144 and final (completely dried) values, respectively. In experiments, the final (completely
- 145 dried) value was determined by oven drying samples at 105 °C for 24 h.
- 146 After VD processing, the dried biomass was respectively used for analysis of
- 147 pigments and lipids extraction.
- 148 2.3 Analysis of extracts
- 149 <u>2.3.1 Aqueous extracts</u>
- 150 The following aqueous suspensions were centrifuged at 14,100 g for 10 min. The
- supernatants were used for analyzing microalgae extracts. All characterization
- 152 measurements were done at ambient temperature.
- 153 The extent of the releasing of ionic components was characterized by measurements
- 154 of the electrical conductivity by the instrument InoLab pH/cond Level 1 (WTW,
- 155 Weilheim, Germany). The soluble matter content (°Brix) was measured by a digital
- 156 Atago refractometer (PR-101, Atago, 50 Tokyo, Japan). For determination of dry weight
- 157 content (DW), 150 mL of supernatant was placed in glass beaker and dried in an oven at

158	105 °C for 24 h. The value of DW was gravimetrically determined by weighting the
159	samples before and after drying. The results were expressed as mg of dry matter/g of
160	supernatant. The contents of carbohydrates, C_c , and proteins, C_p , were determined using
161	a phenol-sulfuric acid (Dubois et al., 1956) and Bradford's method (Bradford, 1976),
162	respectively. The pigments were determined using spectroscopic-based techniques by
163	UV/vis spectrophotometer (Thermo Spectronic Genesys 20, Thermo Electron
164	Corporation, MA).
165	Briefly, for determination of the content of carbohydrates, D-glucose standard
166	provided by Sigma-Aldrich (Saint-Quentin Fallavier, France) was used for the
167	calibration curve. The 1 mL of supernatants (diluted if required), 0.1 mL of 5% phenol
168	solution and 5 mL of concentrated sulfuric acid were mixed in glass tubes. The mixture
169	was incubated at 20 °C for 20 min. Absorbance was measured using at the wavelength
170	of 490 nm.
171	For determination of the content of proteins, the diluted supernatant (0.1 mL) was
172	mixed 1 mL of Bradford Dye Reagent (Thermo Fisher, Kandel, Germany) and kept for
173	5 min. The absorbance was measured at the wavelength of 595 nm. Bovine serum
174	albumin (BSA) provided by Sigma-Aldrich (Saint-Quentin Fallavier, France) was used
175	for the calibration curve.
176	For determination of the content of pigments, the supernatant was mixed with
177	EtOH (95%, v/v) (50 μ L sample + 950 μ L 95% EtOH). The absorbances of chlorophyll
178	a, chlorophyll b, and total carotenoids were measured at the wavelengths of 664, 649

- and 470 nm using 95% EtOH as blank. The concentrations of chlorophyll *a*, C_{ch}^{a} ,
- 180 chlorophyll b, C_{ch}^{b} , total chlorophylls, C_{ch} , and total carotenoids, C_{cr} , (µg pigment/mL
- supernatant) were calculated using the following equations (Gerde et al., 2012): $C_{ch}^{a} = 13.36 \times A_{1} - 5.19 \times A_{2},$ (2a)

$$C_{ch}{}^{b} = 27.43 \times A_2 - 8.12 \times A_1, \tag{2b}$$

$$C_{ch} = C_{ch}^{a} + C_{ch}^{b}, \qquad (2c)$$

$$C_{cr} = (1000 \times A_3 - 2.13 \times C_{ch}{}^a - 97.64 \times C_{ch}{}^b)/209,$$
(2d)

where A_1 , A_2 , A_3 are the absorbances measured at the wavelengths of 664, 649, and 470 nm, respectively.

184 The content of components released from microalgae was expressed as mg/g dry185 microalgae.

186 <u>2.3.2 Organic solvent extracts</u>

For analysis of extraction of pigments, the biomass obtained by VD with a final MR 187 of 0.01 and 0.2 was diluted with 95% EtOH to solid-liquid ratio of 1: 20. The extraction 188 was studied for 8 h under the stirring at 150 rpm. To avoid any evaporation, the 189 extraction cells were covered with aluminum foil during the extraction process. 190 For analysis of extraction of lipids, the standard lipid extraction procedure was used 191 according to the "whole cell analysis" (WCA) method (Van Vooren et al., 2012). Briefly, 192 in order to prevent oxidation of lipids, the dried samples ($MR_f = 0.01$) were first mixed 193 194 with 20 µL distilled water and 10 µL butylated hydroxytoluene (BHT, 20 µg/uL) in clean vials. Then the mixture was suspended in 6 mL of a chloroform/methanol (CHCl₃: 195

196	MeOH, 2:1, v/v) mixture. Vials were maintained for 6 h in the dark under slow agitation.
197	After extraction, the organic and aqueous phases were separated and the solvent of the
198	extracts was evaporated under N_2 flux. 1 mL of CHCl ₃ /MeOH (2/1, v/v) mixture was
199	then added and stored at -20 °C until analysis. Total fatty acids (TFA) contents in the
200	lipid extracts were quantified by Gas Chromatography-Flame Ionization Detector (GC-
201	FID) (Agilent Technologies Inc., Santa Clara, CA) analysis. Fatty acid methyl ester
202	(FAME) contents in the lipid extracts were quantified after a transesterification step.
203	More details can be found in (Van Vooren et al., 2012). The values of the total lipids
204	content, C_l , and relative content of fatty acids (saturated fatty acids (SFA, all single
205	bonds between carbon atoms), monounsaturated fatty acids (MUFA, one double bond)
206	and polyunsaturated fatty acids (PUFA, at least two double bonds) were evaluated.
207	2.3.3 Content of bio-molecules in totally disintegrated cells
208	For total disintegration of cells, the biomass was grinded using a bead-beating
209	method at 30 Hz (MM400 mixer mill, Retsch GmbH & co. KG, Haan, Germany). In this
210	method, the cells are mechanically disrupted by ceramic beads in the reaction vials. For
211	determination of maximum content of proteins, carbohydrates, chlorophylls, and
212	carotenoids in microalgae the washing procedure was initially applied. The biomass was
213	diluted to 1% DM, agitated at 150 rpm for 10 min, and centrifuged for 10 min at 4600 g.
214	Then supernatant was removed and the washing procedure was repeated 3 times. Finally,
215	the sediment was separated and lyophilization was applied for 64 h at -20 °C using a
216	MUT 002A pilot freeze-drier (Cryotec, France). The final MR of the sample was 0.08.

217	Then the dried biomass was grinded in a wet mode. The dried biomass was initially
218	diluted with distilled water for analysis of proteins and carbohydrates and 95% EtOH
219	for analysis of chlorophylls and carotenoids. The solid-liquid ratio was 1: 20 and the
220	grinding was done for 15 min. To avoid overheating during the grindings the 15 s
221	pauses after each minute were applied. The maximum contents were obtained: $C_p =$
222	47.67 \pm 0.83 mg/g DM (proteins), $C_c = 67.36 \pm 0.46$ mg/g DM (carbohydrates), $C_{ch} =$
223	$1.17 \pm 0.01 \text{ mg/g DM}$ (total chlorophylls), $C_{cr} = 0.256 \pm 0.001 \text{ mg/g DM}$ (carotenoids).
224	2.4 Statistical analysis
225	Each experiment was replicated three to five times. The error bars, presented on the
226	figures, correspond to the standard deviations. One-way analysis of variance (ANOVA)
227	was used to determine significant differences ($p \le 0.05$) among the samples with the
228	help of OriginPro 8.5 (OriginLab Corporation, USA). Differences between means were
229	detected using Tukey's test.

230 **3. Results and Discussion**

231 **3.1. Preliminary washing**

- Fig. 2 presents relative electrical conductivity, $Y = \sigma/\sigma^{o}$, concentration of proteins, Y
- 233 = C_p/C_p^o , and concentration of carbohydrates, $Y = C_o/C_c^o$, versus the number of washing
- steps, *N*. Here, the σ^o , C_p^o , and C_c^o correspond to the values for the initial suspension
- before washing. The relative electrical conductivity, $Y = \sigma/\sigma^{o}$, continuously decreased
- with increase of N that corresponds to the dilution of ionic solution in the extracellular
- aqueous solution. In contrast, the values of $Y = C_p/C_p^o$ (proteins) and $Y = C_o/C_c^o$

259	Moreover, the effect of HVED treatment on extraction of different components can
260	be characterized by ratio of different measured values, $R = HVED$ treated/untreated. Fig
261	3 presents the values of <i>R</i> , (ratios of electrical conductivity, σ ; soluble matter, ^o Brix; dry
262	weight, DW; contents of carbohydrates, C_c , proteins, C_p , chlorophylls, C_{ch} , and
263	carotenoids, C_{cr}) obtained for unwashed samples ($R = S_2/S_1$) (a) and for washed samples
264	$(R = S_4/S_3)$ (b). In all cases, the values of R were higher than 1. It reflects the positive
265	effect of HVED treatment on extraction of intracellular components. For unwashed
266	samples, the maximum ratios were observed for total chlorophylls ($R \approx \frac{1.59 \pm 0.01}{1.59 \pm 0.01}$,
267	carbohydrates ($R \approx 1.42 \pm 0.03$), proteins ($R \approx 1.36 \pm 0.03$) and carotenoids ($R \approx 1.33 \pm 1.33 \pm 1.33$
268	0.01). For washed samples, the maximum ratios were observed for proteins ($R \approx 30.1 \pm 10^{-10}$).
269	2.3), carotenoids ($R \approx 22 \pm 1.0$), and total chlorophylls ($R \approx 7.6 \pm 0.2$). The obtained
270	data evidenced the high efficiency of HVED application for recovery of different bio-
271	molecules. It can be explained by the feasibility of HVED to electroporate the cell
272	membrane and induce damage the microalgal cell walls (Grimi et al., 2014). All these
273	findings also confirmed the possibility to attain the selective extraction of different bio-
274	molecules by using the different modes of washing combined with HVED treatment.

275 **3.3.** Organic solvent extraction

In the second step, the organic solvent extraction was proceeded. To remove water from sediment the vacuum drying was initially performed. **Fig. 4** presents the moisture ratio, *MR*, and temperature inside centre of the sample, *T*, versus the drying time, *t*, for untreated (solid lines, filled symbols) and HVED treated (dashed lines, open symbols)

280	suspensions of unwashed samples $(S_1 \text{ and } S_2)$ (a) and washed samples $(S_3 \text{ and } S_4)$ (b).
281	During the VD, the values of MR continuously decreased for all samples (S ₁ -S ₄), and
282	HVED treatment noticeably accelerated the drying processes. No significant differences
283	in $MR(t)$ were observed for samples without and with washing.
284	Three different stages of the variation of temperatures $T(t)$ during the VD were
285	observed. During the first heating stage, the initial increase of temperature with water
286	evaporation from the surface of slurry was observed. During the drying stage, the
287	intensive evaporation of moisture with the stabilization of the temperature at near
288	constant temperatures level of $T \approx 40$ °C was observed. Finally, at long drying time and
289	relatively low <i>MR</i> below ≈ 0.2 , the reduced drying rate stage with further increase in
290	temperature up to the temperature of VD chamber, $T = 50$ °C, was observed.
291	The evolutions of temperature $T(t)$ were rather different for untreated (samples S ₁
292	and S_3) and HVED treated (samples S_2 and S_4) suspensions. Particularly, periods of the
293	near constant temperature ($T \approx 40$ °C) were more clearly displayed for untreated
294	suspensions (they lasted for $\approx 4000-7500$ s, samples S ₁ and S ₃), and the reduced drying
295	rate stages were started earlier for HVED treated suspensions (they lasted for ≈ 6000 s
296	for sample S ₂ , and for \approx 5000 s for sample S ₄). The HVED treatment accelerated the
297	drying, and the final moisture content of $MR = 0.01$ required VD time of ≈ 16200 s and
298	\approx 15000 s for untreated (samples S ₁ and S ₃) and HVED treated (S ₂ and S ₄ samples)
299	suspensions, respectively. It evidently reflected positive effects of HVED treatment of
300	acceleration of VD process.

301 <u>3.3.1 Extraction of pigments</u>

Fig. 5 presents the examples of extraction kinetics of pigments for unwashed (S_1 302 and S_2) and washed (S_3 and S_4) microalgae with different final values of MR_f after VD 303 $(MR_f = 0.01 \text{ and } 0.2)$. The content of total chlorophylls, C_{ch} , continuously increased with 304 305 increasing of extraction time, t_e, and no saturation was observed even at relatively long extraction time of $t_e = 28800$ s (8 h). For carotenoids, the near-saturation behaviour was 306 observed for extraction time above $t_e \approx 10000-15000$ s. 307 For HVED pretreated samples, the larger contents of extracted chlorophylls and 308 carotenoids were obtained. For example, for samples with $t_e = 28800$ s and $MR_f = 0.2$, 309 the following values were obtained: 310 for HVED treated suspensions; $C_{ch} \approx 0.95 \text{ mg/g DM}$ (unwashed), $C_{ch} \approx 1 \text{ mg/g DM}$ (washed) $C_{ch} \approx 0.71 \text{ mg/g DM}$ (unwashed), $C_{ch} \approx 0.80 \text{ mg/g DM}$ (washed) for untreated suspensions. 311 The washing favored the extraction efficiency, but the differences for unwashed 312 (Fig. 5a, c) and washed (Fig. 5b, d) were less significant. However, the extraction efficiency of both chlorophylls and carotenoids for less dried samples with $MR_f = 0.2$ 313 was significantly higher than for the samples with $MR_f = 0.01$. It evidently reflects the 314 315 retardation of extraction from overdried samples with less developed porous structure. 3.3.2. Extraction of lipids 316 The presence of moisture can hamper the lipids extraction from the microalgae and 317 moisture removal is an important factor to obtain high lipids extraction yield (Bagchi et 318

al., 2015). In our experiments, the extraction of lipids was studied for unwashed

320	(samples S_1 and S_2) and washed (samples S_3 and S_4) microalgae biomass with the final
321	value of $MR_f = 0.01$ after VD. For comparison, the extraction for the initial sample S ₀
322	(with washing for 60 min without any treatment) was also studied.
323	Fig. 6 compares the effects of different procedures performed in this study (Fig. 1)
324	on total lipids content (TLC), C_l , extracted from the microalgae sediment using non-
325	aqueous solvent CHCl ₃ /MeOH (2:1, v/v). The values of C_l for the samples S ₀ , S ₁ and S ₃
326	(without HVED treatment) were approximately the same ($C_l \approx 170 \pm 3.2 \text{ mg/g DM}$).
327	However, for the samples with HVED treatment (S_2 and S_4), the lipid content increased
328	up to $C_l \approx 200 \pm 2.1 \text{ mg/g DM}$. The significant effect of HVED treatment ($p < 0.05$) on
329	extraction of lipids can be explained by the breakdown of the microalgal cells.
330	Commonly, the HVED treatment is accompanied with different processes including the
331	electrical breakdown, propagation of streamer, bubble formation and cavitations, light
332	emission, appearing of localized regions with high pressure, and formation of shock and
333	acoustic waves (Boussetta and Vorobiev, 2014). The previous experiments evidenced
334	the presence of strong fragmentation of suspended biocells by HVED treatment (Grimi
335	et al., 2014; Shynkaryk et al., 2009). However, the differences between the unwashed
336	$(S_1 \text{ or } S_2)$ and washed $(S_3 \text{ or } S_4)$ samples were insignificant because the small extraction
337	efficiency of lipids in water.
338	The TLC includes different fatty acids such as SFA, MUFA and PUFA. The
339	composition of these lipids directly influences the efficiency of biofuel conversion and

340 its quality, being rich in SFA and MUFA (such as palmitoleic acid and oleic acid) are

341	most favourable for biodiesel production (Nascimento et al., 2013). The relative content
342	of the fatty acids (SFA, MUFA, and PUFA) in extracts were found to be rather similar
343	for different samples S ₀ -S ₄ ($R_{SFA} \approx 27-32\%$, $R_{MUFA} \approx 33-39\%$, and $R_{PFA} \approx 31-36\%$). It
344	reflects that washing mode and HVED treatment did not affect significantly the
345	composition of fatty acids in extracted lipids.
346	The relative content of different fatty acids methyl ester (FAME) was also
347	determined. A transesterification step was used to obtain FAME content. The palmitic
348	C16:0 (25-29%), palmitoleic C16:1n-7 (28-32%) and eicosapentaenoic C20: 5n-3 (24-
349	31%) acids were predominant in FAME profiles. For palmitic acid C16:0 and
350	palmitoleic acid C16:1n-7, the highest extractions were observed for the samples with
351	HVED treatment (samples S2 and S4). It correlates with data obtained for the TLC (Fig.
352	6). However, for eicosapentaenoic acid C20: 5n-3, the biggest value of the relative
353	content was observed for the sample S1. It reflects that preliminary washing and HVED

354 treatment can selectively affect the content of some FAME in non-aqueous extracts.

355 4. Conclusions

Two-step procedure with the initial aqueous extraction from raw microalgae and secondary organic solvent extraction from vacuum dried microalgae were applied for selective recovery of bio-molecules from *N. oculata*. The effects of preliminary washing and HVED pre-treatment were tested. The application of combined washing and HVED treatment significantly enhanced efficiency of aqueous extraction of ionics, carbohydrates, proteins and pigments. Moreover, HVED treatment noticeably

- 362 accelerated the VD process, and increased extraction yield of chlorophylls, carotenoids
- 363 and lipids in organic solvent. Partial drying (to 2% of residual moisture content) favored
- 364 extraction of chlorophylls and carotenoids.

365 Acknowledgements

- 366 Rui Zhang would like to acknowledge the financial support of China Scholarship
- 367 Council for thesis fellowship. The authors would like to thank Mrs. Delphine Drouin
- 368 and Mrs. Laurence Lavenant for their technical assistance. The authors would like to
- thank Mrs. Christa Aoude for editing the English language and grammar of the
- 370 manuscript.

371 Appendix. Supplementary data

372 E-supplementary data of this work can be found in online version of the paper.

373 Conflict of interest

The authors declare that they have no conflict of interest.

References

377	1. Ansari, F.A., Gupta, S.K., Nasr, M., Rawat, I., Bux, F., 2018. Evaluation of various
378	cell drying and disruption techniques for sustainable metabolite extractions from
379	microalgae grown in wastewater: A multivariate approach. J. Clean. Prod. 182,
380	634–643.
381	2. Bagchi, S.K., Rao, P.S., Mallick, N., 2015. Development of an oven drying protocol
382	to improve biodiesel production for an indigenous chlorophycean microalga
383	Scenedesmus sp. Bioresour. Technol. 180, 207–213.
384	3. Barba, F.J., Grimi, N., Vorobiev, E., 2015. New approaches for the use of non-
385	conventional cell disruption technologies to extract potential food additives and
386	nutraceuticals from microalgae. Food Eng. Rev. 7, 45-62.
387	4. Boussetta, N., Vorobiev, E., 2014. Extraction of valuable biocompounds assisted by
388	high voltage electrical discharges: a review. Comptes Rendus Chim. 17, 197–203.
389	5. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of
390	microgram quantities of protein utilizing the principle of protein-dye binding. Anal.
391	Biochem. 72, 248–254.
392	6. Buchmann, L., Frey, W., Gusbeth, C., Ravaynia, P.S., Mathys, A., 2019. Effect of
393	nanosecond pulsed electric field treatment on cell proliferation of microalgae.
394	Bioresour. Technol. 271, 402–408.

395 7. Chiu, S.Y., Kao, C.Y., Tsai, M.T., Ong, S.C., Chen, C.H., Lin, C.S., 2009. Lipid

396	accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2
397	aeration. Bioresour. Technol. 100, 833-838.
398	8. Daneshvar, E., Zarrinmehr, M.J., Hashtjin, A.M., Farhadian, O., Bhatnagar, A., 2018.
399	Versatile applications of freshwater and marine water microalgae in dairy
400	wastewater treatment, lipid extraction and tetracycline biosorption. Bioresour.
401	Technol. 268, 523–530.
402	9. Doan, Y.T.T., Obbard, J.P., 2015. Two-stage cultivation of a Nannochloropsis mutant
403	for biodiesel feedstock. J. Appl. Phycol. 27, 2203-2208.
404	10. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. t, Smith, F., 1956.
405	Colorimetric method for determination of sugars and related substances. Anal.
406	Chem. 28, 350–356.
407	11. Gerde, J.A., Montalbo-Lomboy, M., Yao, L., Grewell, D., Wang, T., 2012.
408	Evaluation of microalgae cell disruption by ultrasonic treatment. Bioresour.
409	Technol. 125, 175–181.
410	12. Gerken, H.G., Donohoe, B., Knoshaug, E.P., 2013. Enzymatic cell wall degradation
411	of Chlorellavulgaris and other microalgae for biofuels production. Planta 237,
412	239–253.
413	13. Grimi, N., Dubois, A., Marchal, L., Jubeau, S., Lebovka, N.I., Vorobiev, E., 2014.
414	Selective extraction from microalgae Nannochloropsis sp. using different methods
415	of cell disruption. Bioresour. Technol. 153, 254–259.
	21

416	14. Hosseinizand, H., Sokhansanj, S., Lim, C.J., 2018. Studying the drying mechanism
417	of microalgae Chlorella vulgaris and the optimum drying temperature to preserve
418	quality characteristics. Dry. Technol. 36, 1049–1060.
419	15. Liu, C., Grimi, N., Lebovka, N., Vorobiev, E., 2018. Effects of pulsed electric fields
420	treatment on vacuum drying of potato tissue. LWT 95, 289–294.
421	16. Makkar, H.P.S., Tran, G., Heuze, V., Giger-Reverdin, S., Lessire, M., Lebas, F.,
422	Ankers, P., 2016. Seaweeds for livestock diets: a review. Anim. Feed Sci. Technol.
423	212, 1–17.
424	17. Mitra, M., Patidar, S.K., Mishra, S., 2015. Integrated process of two stage
425	cultivation of Nannochloropsis sp. for nutraceutically valuable eicosapentaenoic
426	acid along with biodiesel. Bioresour. Technol. 193, 363-369.
427	18. Mittal, R., Raghavarao, K., 2018. Extraction of R-Phycoerythrin from marine
428	macro-algae, Gelidium pusillum, employing consortia of enzymes. Algal Res. 34,
429	1–11.
430	19. Nascimento, I.A., Marques, S.S.I., Cabanelas, I.T.D., Pereira, S.A., Druzian, J.I., de
431	Souza, C.O., Vich, D.V., de Carvalho, G.C., Nascimento, M.A., 2013. Screening
432	microalgae strains for biodiesel production: lipid productivity and estimation of
433	fuel quality based on fatty acids profiles as selective criteria. Bioenergy Res. 6, 1-
434	13.
435	20. Parniakov, O., Barba, F.J., Grimi, N., Marchal, L., Jubeau, S., Lebovka, N.,

436	Vorobiev, E., 2015. Pulsed electric field and pH assisted selective extraction of
437	intracellular components from microalgae Nannochloropsis. Algal Res. 8, 128–134.
438	21. Parniakov, O., Barba, F.J., Grimi, N., Marchal, L., Jubeau, S., Lebovka, N.,
439	Vorobiev, E., 2015a. Pulsed electric field and pH assisted selective extraction of
440	intracellular components from microalgae nannochloropsis. Algal Res. 8, 128–134.
441	https://doi.org/10.1016/j.algal.2015.01.014
442	22. Parniakov, O., Barba, F.J., Grimi, N., Marchal, L., Jubeau, S., Lebovka, N.,
443	Vorobiev, E., 2015b. Pulsed electric field assisted extraction of nutritionally
444	valuable compounds from microalgae Nannochloropsis spp. using the binary
445	mixture of organic solvents and water. Innov. Food Sci. Emerg. Technol. 27, 79-
446	85. https://doi.org/10.1016/j.ifset.2014.11.002
447	23. Rebolloso-Fuentes, M.M., Navarro-Pérez, A., García-Camacho, F., Ramos-Miras,
448	J.J., Guil-Guerrero, J.L., 2001. Biomass nutrient profiles of the microalga
449	Nannochloropsis. J. Agric. Food Chem. 49, 2966–2972.
450	24. Rivera, E.C., Montalescot, V., Viau, M., Drouin, D., Bourseau, P., Frappart, M.,
451	Monteux, C., Couallier, E., 2018. Mechanical cell disruption of Parachlorella
452	kessleri microalgae: Impact on lipid fraction composition. Bioresour. Technol. 256,
453	77–85.
454	25. Shynkaryk, M. V, Lebovka, N.I., Lanoisellé, JL., Nonus, M., Bedel-Clotour, C.,
455	Vorobiev, E., 2009. Electrically-assisted extraction of bio-products using high
456	pressure disruption of yeast cells (Saccharomyces cerevisiae). J. Food Eng. 92,

457 189–195.

458	26. Talebi, A.F., Mohtashami, S.K., Tabatabaei, M., Tohidfar, M., Bagheri, A.,
459	Zeinalabedini, M., Mirzaei, H.H., Mirzajanzadeh, M., Shafaroudi, S.M., Bakhtiari,
460	S., 2013. Fatty acids profiling: a selective criterion for screening microalgae strains
461	for biodiesel production. Algal Res. 2, 258–267.
462	27. Uribe, E., Vega-Galvez, A., Heredia, V., Pasten, A., Di Scala, K., 2018. An edible
463	red seaweed (Pyropia orbicularis): influence of vacuum drying on physicochemical
464	composition, bioactive compounds, antioxidant capacity, and pigments. J. Appl.
465	Phycol. 30, 673–683.
466	28. Van Vooren, G., Le Grand, F., Legrand, J., Cuine, S., Peltier, G., Pruvost, J., 2012.
467	Investigation of fatty acids accumulation in Nannochloropsis oculata for biodiesel
468	application. Bioresour. Technol. 124, 421–432.
469	29. Zhang, R., Grimi, N., Marchal, L., Lebovka, N., Vorobiev, E., 2019. Effect of
470	ultrasonication, high pressure homogenization and their combination on efficiency
471	of extraction of bio-molecules from microalgae Parachlorella kessleri. Algal Res.
472	40, 101524.
473	30. Zhang, R., Grimi, N., Marchal, L., Vorobiev, E., 2018a. Application of high-voltage
474	electrical discharges and high-pressure homogenization for recovery of
475	intracellular compounds from microalgae Parachlorella kessleri. Bioprocess
476	Biosyst. Eng. 1–8.

477	31. Zhang, R., Parniakov, O., Grimi, N., Lebovka, N., Marchal, L., Vorobiev, E., 2018b.
478	Emerging techniques for cell disruption and extraction of valuable bio-molecules
479	of microalgae Nannochloropsis sp. Bioprocess Biosyst. Eng. 1–14.
480	32. Zhu, Z., Li, S., He, J., Thirumdas, R., Montesano, D., Barba, F.J., 2018a. Enzyme-
481	assisted extraction of polyphenol from edible lotus (Nelumbo nucifera) rhizome
482	knot: Ultra-filtration performance and HPLC-MS2 profile. Food Res. Int. 111,
483	291–298.
484	33. Zhu, Z., Luo, X., Yin, F., Li, S., He, J., 2018b. Clarification of Jerusalem artichoke
485	extract using ultra-filtration: Effect of membrane pore size and operation
486	conditions. Food bioprocess Technol. 11, 864–873.
487	

490 Figure Captions

491	Fig. 1. The schema of the applied extraction procedures (a), and high voltage electrical
492	discharges (HVED) treatment cell applied in the present experiment (b).
493	Fig. 2. Relative quantities, <i>Y</i> , $(Y = \sigma/\sigma^o)$ for electrical conductivity, $Y = C_p/C_p^o$ for
494	concentration of proteins, and $Y = C_o/C_c^o$ for concentration of carbohydrates) versus the
495	number of washing steps, N. The σ^o , C_p^o , and C_c^o are the initial values before washing.
496	The measurements were done for 1% dry matter (DM) suspensions.
497	Fig. 3. The ratios of different measured values, $R = \frac{1}{10000000000000000000000000000000000$
498	(HVED) treated/untreated, (electrical conductivity, σ ; ^o Brix, dry weight, DW; contents
499	of carbohydrates, C_c , proteins, C_p , chlorophylls, C_{ch} , and carotenoids, C_{cr}) obtained for
500	unwashed samples ($R = S_2/S_1$) (a) and for washed samples ($R = S_4/S_3$) (b).
501	Fig. 4. Moisture ratio, MR , and temperature inside centre of the sample, T , versus the
502	vacuum drying (VD) time, t, for unwashed samples (S ₁ and S ₂) (a) and washed samples
503	$(S_3 \text{ and } S_4)$ (b) obtained for untreated (solid lines, filled symbols) and high voltage
504	electrical discharges (HVED) treated (dashed lines, open symbols) suspensions.
505	Fig. 5. The content of total chlorophylls, C_{ch} , and carotenoids, C_{cr} , versus the time of
506	EtOH (95%, v/v) extraction, t_e , for unwashed (S ₁ and S ₂) and washed (S ₃ and S ₄)
507	samples with different final moisture ratio, MR_f : S ₁ and S ₂ , $MR_f = 0.01$ (a), S ₃ and S ₄ ,
508	$MR_f = 0.01$ (b), S ₁ and S ₂ , $MR_f = 0.2$ (c) and S ₃ and S ₄ , $MR_f = 0.2$ (d) obtained for
509	untreated (solid lines, filled symbols) and high voltage electrical discharges (HVED)
510	treated (dashed lines, open symbols) suspensions.

- 511 **Fig. 6.** Total lipids content, C_l , extracted in chloroform/methanol (CHCl₃/MeOH, 2/1,
- 512 v/v) for 6 h for different samples S_0 - S_4 obtained for different procedures performed in
- this study. The microalgae sediment with the final value of moisture ratio, $MR_f = 0.01$
- 514 after vacuum drying (VD) was used. Different letters within the same column indicate a
- 515 significant difference (p < 0.05) according to Tukey's test.

Fig. 4a

Fig. 4b

Fig. 5a

Fig. 5b

Fig. 5c

Fig. 5d

Microalgal biomass + Water