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Abstract

This work aims at exploring a general framework embedding techniques from classifiers, Time Frequency
Distributions (TFD) and dissimilarity measures for epileptic seizures detection. The proposed approach
consists firstly in computing dissimilarities between TFD of electroencephalogram (EEG) signals and
secondly in using them to define a decision rule. Compared to the existing approaches, the proposed one
uses entire TFD of EEG signals and does not require arbitrary feature extraction. Several dissimilarity
measures and TFDs have been compared to select the most appropriate for EEG signals. Classifiers,
such as Artificial Neural Network (ANN), Support Vector Machine (SVM), Linear Discriminate Analy-
sis (LDA) and k-Nearest Neighbours (k-NN), have been combined with the proposed approach. In order
to evaluate the proposed approach, 13 different classification problems (including 2, 3 and 5-class) per-
taining to five types of EEG signals have been used. The comparison between results obtained with the
proposed approach and results reported in the literature with the same database of epileptic EEG signals
demonstrates the effectiveness of this approach for seizure detection. Experimental results show that
this approach has achieved highest accuracy in the most studied classification problems. A high value
of 98% is achieved for the 5-class problem. Further, in most classification problems with 2 and 3-class,
it also yields a satisfactory accuracy of approximately 100%. The robustness of the proposed approach
is evaluated with the addition of noise to the EEG signals at various signal-to-noise ratios (SNRs). The
experimental results show that this approach has a good classification accuracy at low SNRs.

Keywords: Epileptic seizure, EEG signals, Dissimilarity, Classification, ANN, SVM, LDA, k-NN, TFA,
TFD, SPWV, SNR

1. Introduction

Electroencephalography (EEG) is an important clinical tool that is used for studying the human brain
functions and neurological disorders [1]. Epilepsy is one of the most common disorders of the nervous
system and affects approximately 1% of the human population [2]. The detection of epileptic seizures
within EEG signals is an effective way of diagnosing epilepsy [3, 4].

Numerous signal analysis and statistical methods of EEG signals are used to identify the epileptic
seizures. Generally, the process of these methods is divided into two steps: feature extraction and clas-
sification. Feature extraction aims at extracting relevant information hidden in the EEG signals, which
directly dominates the accuracy of the final classification. However, feasible features might be difficult to
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obtain or inefficient for learning purposes, e.g., when experts cannot define features in a straightforward
way or when data is high dimensional and consist of a large set of attributes. Another drawback of the
use of features is that different objects may have the same representation as they differ from each other by
properties that were not expressed in the chosen feature set. This results in class overlap: in some areas in
the feature space, objects of different classes are represented by the same feature vectors. Consequently,
they cannot be distinguished, which leads to misclassification errors.

An alternative to the use of features is the dissimilarity representation approach based on direct pair-
wise object comparisons. This approach is often called dissimilarity-based classification and does not
require direct access to the features of the objects. If all the objects are considered in the comparison,
then only identical objects will have a dissimilarity of zero. For such a representation class overlapping
does not exist if the objects can be unambiguously labelled: there are no real-world objects in the appli-
cation that belong to more than one class. Only identical objects have a zero-distance and they should
have the same label as they are identical. Another advantage of the dissimilarity-based classification is
that it uses the expert knowledge in a different way. Instead of features, a dissimilarity measure has to be
supplied. The classification of objects using the dissimilarity-based approach has been an active research
topic [5–9], but no attention has been paid to use this approach for epileptic seizure detection.

Several methods have been applied to epileptic EEG signals for feature extraction [3, 4, 10–28], such
as representations based on the fast Fourier transform, discrete wavelet transform and time-frequency rep-
resentations (TFR). Fast Fourier transform methods [12] are based on previous observations that epileptic
seizures give rise to changes in certain frequency bands such as δ(0.4−4Hz), θ(4−8Hz), α(8−12Hz)
and β(12−30Hz). Since the nature of epileptic EEG signals is non-stationary, these methods are not suit-
able for the frequency decomposition of these signals. Methods based on linear and quadratic TFRs have
shown higher performance than conventional frequency analysis methods. From the variety of available
approaches, the wavelet transform (WT) is the most widely used on feature extraction of epileptic EEG
signals [3, 14, 19]. This can be explained by its excellent capabilities in multi-resolution representation.
Despite the various resolutions it allows, this tool does not make it possible to adapt to all signals, espe-
cially non-stationary and non-linear signals such as EEG signals. Quadratic TFDs have been previously
exploited in some works [11, 20, 22] to analyse epileptic seizures. In fact, these distributions have the
advantage of characterizing the signals thanks to their energy distribution in the time-frequency plane.
As shown in [29], quadratic TFDs provide a powerful framework for feature extraction and classification
of non-stationary phenomena in signals.

Classifiers such as Support Vector Machines (SVM) [13, 14, 17, 18, 21, 28, 30], k-Nearest Neighbors
(k-NN) [4] , Quadratic Discriminant Analysis (QDA) [16], Artificial Neural Network (ANN) [10, 22–27]
and Extreme Learning Machine (ELM) [3, 20] have been widely used to classify epileptic EEG signals.
However, these methods are performed in the space generated by features.

The dissimilarity-based approach differs from typical pattern recognition approaches where objects
to be classified are represented by feature vectors. In this approach, objects are described using pairwise
dissimilarities [5, 6]. The motivation of this proposal is that the proximity information is more important
for a class membership than features [7]. As a next step, the dissimilarity representation is transformed
into a vector space in which traditional statistical classifiers can be used. The dissimilarity-based ap-
proach offers thereby an alternative to kernel methods based on similarities. The dissimilarity measures
are more general than kernels. The later have to obey the Mercer condition so that the implicit con-
struction of classifiers, such as SVM, can be possible in the related kernel spaces [9]. The dissimilarity
approach has the advantage of using any measure as well as any classifier that works in vector spaces.
The goal of this work is to investigate this advantageous approach to classify EEG signals and contribute
to a better epileptic seizure detection. We propose an approach based on TFD and dissimilarity-based
approach, called dissimilarity-based TFD approach.
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Dissimilarity is a relative measure that quantifies the independency between two objects that have the
same nature or characteristics. The more the two objects resemble one another, the lower the dissimilarity
measure. In the case of classification problems, a dissimilarity measure is usually performed from a
distance function. This distance can be defined as metric or semi-metric. The distance is called metric
when conditions of reflectivity, positivity, symmetry and triangle inequality are verified. Moreover, the
distance is called semi-metric when the triangle inequality is not fulfilled [31, 32].

The main contributions of this work are: (1) address the use of quadratic TFD of EEG signals in or-
der to obtain the energy distribution in the time-frequency domain; (2) introduce the principle of the
dissimilarity-based TFD approach; (3) use the proposed approach to classify epileptic EEG signals.
Firstly, the proposed methods are presented in detail in section 2. Then, a description of the publicly
available database of epileptic EEG signals is carried out. This database consists in five different sets
of EEG signals. From these five sets, 13 different classification problems, including 2, 3 and 5-class,
are defined. In order to evaluate the performance of the dissimilarity-based TFD approach, different sta-
tistical measures have been used. These measures include the accuracy, the sensitivity, the specificity,
and the area under the Receiver Operating Characteristics (ROC) curve. The technique of 10-fold cross
validation is also used. Different dissimilarity measures and TFDs have been compared to select the most
relevant for epileptic EEG signals. Four classifiers, such as ANN, SVM, LDA and k-NN, are combined
with the proposed approach. The computational complexity and the robustness of the proposed approach
have been explored. The results obtained with the proposed approach under various classification prob-
lems are compared to results reported in literature with the same database of epileptic EEG signals. The
comparison demonstrates the effectiveness of the proposed approach for seizure detection.

2. Dissimilarity-based TFD approach

The aim of this section is to present the different methods that we combine to analyse and classify
the EEG signals. The main steps of the dissimilarity-based TFD approach are shown on Figure 1. Given
three sets of signals: the representation set R with k prototype signals, the training set T with n training
signals and the testing set S with m testing signals, the algorithm starts with the learning steps (first
row of the figure) and the computation of the TFDs of the training and prototype signals. From n and
k signals, a n x k training dissimilarity matrix D(T,R) is constructed. A given training signal is thus
described by k dissimilarities, coding its proximity to the prototype signals. Each of the k column of the
training matrix is then injected in the learning step of the classifier. After this step, the classifier can work
to test an unknown signal (second row of the figure). TFDs of the testing signals are computed. Theses
TFDs are compared to the TFDs of the prototype signals by computing an m x k testing dissimilarity
matrix D(S,R). This matrix is injected into the classifier to make decisions, producing labels for the m
testing signals.

The success of this approach depends on three fundamental issues, namely the choice of the dissimi-
larity measure, the choice of the TFD and the type of classifier. More details about these issues are given
in the next sections.

2.1. Dissimilarity-based classification
The dissimilarity representation has been discussed extensively [5–9], so here we will only focus on

some aspects that are essential for this paper. These aspects are obtained from the paper of Duin et al.
[6].

Unlike a feature-based approach, the idea of a dissimilarity-based approach is to represent an object
via a vector of its dissimilarities with respect to a collection of objects. Figure 2 represents the difference
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Figure 1: Flow diagram of dissimilarity-based TFD classification.

with respect to the representation between the traditional feature-based approach and the dissimilarity-
based approach [7]. Three sets of objects may be distinguished for constructing a dissimilarity represen-
tation [6]. This first set is a representation set R = {r1, ..., rk}. These are the objects we refer to. The
dissimilarities to the representation set have to be computed for training objects as well as for test objects
used for evaluation, or any objects to be classified later. The objects in the set R are called prototypes.
The second one is a training set T . These are the objects that are used to train classifiers. In many ap-
plications we use T := R, but R may also be just a (small) subset of T , or be entirely different from T .
The last set is a test set S. These are the objects that are used to evaluate classification procedures. After
determining these three sets of objects the dissimilarity matrices D(T,R), D(T, T ) and D(S,R) have to
be computed. The next problem is how to use these three matrices for training and testing. In this work,
two procedures have been considered :

• A direct approach to dissimilarities leads to the k-NN method. This rule is applied here toD(S, T ),
such as the test objects in the set S are classified to the class on which most frequently occurs
among the k nearest neighbours in T . The dissimilarity of two objects is determined using a
distance function.

The k-NN classifier is expected to perform well if a good distance function is found and a training
set T is representative. However, when a small representation set R is selected, the performance
of the k-NN rule can significantly deteriorate. In addition, the decision rule of the k-NN classifier
is based on local neighbourhoods only. It means that the k nearest neighbours found might not
include the best representatives of a class to which an object should be assigned. Moreover, the
k-NN does not work for an asymmetric distance measure. In such cases, a better generalization
can be achieved by a classifier built in a dissimilarity space.
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Figure 2: Difference between feature-based approach and dissimilarity-based approach.

• The dissimilarity space. This space is postulated as a Euclidean vector space defined by the dissim-
ilarity vectors d(., R) = [d(., r1), ..., d(., rk)] computed to the representation set R as dimensions.
The dissimilarity vectors serve as features for the objects in the training set, which can be used as
an input to any classifier [34].

2.2. Time-frequency representations
TFR have been developed to characterize the evolution of the frequency content of a non-stationary

signal as a function of time. The TFR map a one-dimensional signal of time s(t), into a two-dimensional
function of time and frequency TFRs(t)(t, f). From the variety of available approaches, the linear TFRs,
such as WT, are the most widely used on feature extraction of epileptic EEG signals. However, the time
resolution and frequency resolutions of the linear TFRs cannot be made arbitrarily well simultaneously.
The time and frequency resolution of the linear TFRs are determined by the time-frequency localization
of the used atoms. For example, WT analyses higher frequencies with good time resolution but poor
frequency resolution and vice versa. In this section, we present several TFRs. Their performances in the
problem covered in this paper are estimated and discussed in section 4.2.

Although the linearity of a TFR is a desirable property, the quadratic structure of a TFR is an intu-
itively reasonable assumption when we want to interpret a TFR as a time-frequency energy distribution.
Ideally, it is desirable to achieve energy distribution in the time-frequency plane without loss of resolu-
tion. Among the TFDs, the most famous one is that of Gabor known as the Short-Time Fourier Transform
(STFT). Given a signal s(t) and a short time window h(t), the STFT of s(t) is defined by:

STFTs(t, f) =

∫ +∞

−∞
s(u)h(u− t)e−2jπfudu (1)

Where, t is the time, f is the frequency.
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STFT compromises window length and frequency resolution (Heisenberg’s uncertainty principle). A
shorter window makes it possible to obtain a very good time resolution but a poor frequency resolution
and vice versa. To overcome this limitation, many TFDs have been proposed [35, 36]. The most of
these distributions are known as the Cohen’s class [37]. In this work, only a non-exhaustive list of TFDs
belonging to the Cohen’s class are presented and used. Thus, the general form of the Cohen’s class of
distributions is defined by:

Cs(t, f) =

∫ ∫ ∫
R3

s(u+
τ

2
)s∗(u− τ

2
)φ(v, τ)e−2jπfτ−j2πtv+j2πuvdudτdv (2)

Where s(t) is the signal, s∗(t) is its complex conjugate, and φ(v, τ) is a two-dimenional kernel function.
Each TFD of the Cohen’s class has its own kernel.

The most studied element of Cohen’s class is certainly the Wigner-Ville Distribution (WVD). How-
ever, The main problem in applying the WVD is the cross-terms (interference), which are the result of
the quadratic nature of this transformation. Cross-terms may mask low-energy components, especially
in the case of large dispersion of energy levels of individual components, and make the interpretation of
the WVD difficult. Time and frequency smoothing operations of the WVD reduce the influence of the
unwanted cross-terms. The obtained distribution from these operations is named the Smoothed Pseudo
Wigner-Ville Distribution (SPWVD) [38–40].

The WVD and the SPWVD are defined as :

WVDs(t, f) =

∫
s(t+

τ

2
)s∗(t− τ

2
)e−j2πfτdτ. (3)

SPWVDh,g
s (t, f) =

∫ ∫
h(t− u)ĝ(f − v)WVDs(t, f)dudv. (4)

Thanks to the smoothing operations, the SPWVD is certainly one of the elements of Cohen’s class
which provides a precise representation of the energy of the signal over the time-frequency plane. To
this end, the SPWVD has been compared to many TFDs of the Cohen’s class and then has been used
throughout this manuscript. Table 1 presents some TFDs of the Cohen’s class, which are used in our
study along with the corresponding kernels.

2.3. Dissimilarity measure
The dissimilarity is a useful tool to measure the internal relationship of any two objects [31, 32].

They are often defined as a distance function d. The lower the distance value, the larger the dissimilarity,
and vice versa. As mentioned in section 2.2, the performance of dissimilarity-based classifiers is directly
linked to a good choice of a distance function. Numerous distance functions are available, including
the p-norm distance, the correlation, the f-divergence and the spectral Log-deviation. In this section, a
non-exhaustive list of distances is presented. The performances of these dissimilarities, in the addressed
problem, are estimated and discussed in section 4.1.

To introduce the definition of each distance, let’s take two signals (S1, S2) and their TFDs (TFD1,
TFD2).

The p-norm distance (noted by dp) is defined by:

dp(TFDs1 ,TFDs2) =

[∫ ∫
|TFDs1(t, f)− TFDs2(t, f)|

p

dtdf

] 1
p

. (5)

We note that, for given values of p, there are particular cases of distances:
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Table 1: TFDs of Cohen’s class an their kernel functions.

Distribution Kernel (φ(v, τ))
WV 1
PWV h(τ)

h(τ) : window function
SPWV ĝ(v)h(τ)

g(v), h(τ) : window functions
Rihaczek (RIH) ejπvτ

Margenau-Hill (MH) cos(πvτ)
Pseudo Margenau-Hill (PMH) h(τ)ejπvτ

h(τ) : window function
Choï-Williams (CW) e−

1
2
(πvτ
σ

)2

σ : scaling factor
Born-Jordan (BJ) sin(πvτ)

πvτ

Zhao-Atlas-Marks (ZAM) h(τ) sin(πvτ)πvτ
h(τ) : window function

Generalized Rectangular (GRECT)
sin( 2πvσ|τ |α )

πv
σ : scaling factor, α : dissymmetry ratio

Reduced Interference (RI)
∫ +∞
−∞ h(t)e−2jπvτtdt

h(t) : hamming window

• p=1: Manhattan distance.

• p=2: Euclidean distance.

• p=∞ : infinity norm distance also called Chebyshev distance.

The correlation distance (noted dcorr) is defined by:

dcorr(TFDs1 ,TFDs2) =
[d2(TFDs1 ,TFDs2)]

2∫ ∫
|TFDs1(t, f)|

2dtdf +
∫ ∫
|TFDs2(t, f)|

2dtdf
. (6)

One weakness of the basic p-norm distance functions is that if one of the input attributes of an object
has a relatively large range, then it can overpower the other attributes. Therefore, the TFDs are often
normalized by:

NTFD(t, f) =
|TFD(t, f)|∫ ∫
|TFD(t, f)|dtdf

. (7)

The p-norm distance between two normalized TFDs gives a new family of distance (noted dNp) :

dNp(TFDs1 ,TFDs2) = dp(NTFDS1 ,NTFDS2). (8)

We also note that, for a particular case of p=1 in the dNp distance, the obtained distance is the Kol-
mogorov distance.

The f-divergence [41] makes it possible to have a family of distances parametrized by two functions.
f is a continuous convex function on R+ and g an increasing function on R. The f -divergence between
two probability density p1(x) and p2(x) is defined by:
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df−div(p1, p2) = g

{
E1

[
f

(
p2(x)

p1(x)

)]}
(9)

Where E1 is the expectation operator with respect to p1.
The quadratic time-frequency analysis presents the energy distribution of a signal in the time-frequency

domain, therefore it is considered like a density of probability. The normalized TFD is positive, therefore
the f-divergence can be applied as:

df−div(TFDS1 ,TFDS2) = g

[∫ ∫
f

(
TFDS2(x)

TFDS1(x)

)
TFDS1dtdf

]
. (10)

The table 2 presents a list of some f-divergence commonly used in signal processing for TFD classi-
fication [42] .

The Kullback-Leibler divergence measure is not symmetric. This measure can be adapted to the TFDs
like a distance as follows:

d(TFDS1 ,TFDS2) = df−div(TFDS1 ,TFDS2) + df−div(TFDS2 ,TFDS1). (11)

The spectral Log-deviation [43] (noted dSLDp) is defined by the p-norm distance between the loga-
rithm of two normalized TFDs. The logarithm is used here to lower the influence of the high peak values
of the TFD.

dSLDp(TFDs1 ,TFDs2) = dp(log(|NTFDs1|), log(|NTFDs2|). (12)

3. Database of epileptic EEG signals

The EEG signals used in this study are from the publicly available database provided by Andrzejak
et al. [47]. This database consists in five different sets of EEG signals. The EEG signals of the first set
(denoted A) have been recorded from surface EEG recordings carried out on five healthy volunteers. The
EEG signals of the second set (denoted B) have been collected from surface EEG recordings of the same
five healthy volunteers with eyes closed. The EEG signals of the third set (denoted C) and the fourth
set (denoted D) were obtained during seizure-free intervals (interictal periods) of five epileptic patients.
EEG signals of the set C were recorded from hippocampal formation of opposite hemispheres of the
brain. EEG signals in the set D were recorded from the epileptogenic zone. The EEG signals of the
last set (denoted E) were recorded during seizure activity (ictal periods). Each set consists in 100 single
channel EEG segments of 23.6 s duration, which were digitized at a sampling rate of 173.61 Hz and 12
bits A/D resolution. Figure 3 shows an example of an EEG signal from each set.

The pre-processing step (noise reduction, signal alignment, etc.) of the EEG signals of this database
is not studied in this paper. In this paper, we follow the same validation procedure in [4-25], where only
raw signals are processed, without any pre-processing.

Table 2: f-divergence commonly used in signal processing for TFD classification.

Divergence f(x) g(x) df−div(NTFDS1 ,NTFDS2)

Kolmogorov x |1− x|
∫ ∫
|NTFDS1(t, f)−NTFDS2(t, f)|dtdf

Matusita x1/2 |1− x1/2|2 [
∫ ∫
|(NTFDS1(t, f))

1/2 − (NTFDS2(t, f))
1/2|2dtdf ]1/2

Kullback x (x− 1)log(x)
∫ ∫
|NTFDS1(t, f)−NTFDS2(t, f)| log

NTFDS1 (t,f)

NTFDS2 (t,f)
dtdf

Kullback-Leibler x −log(x)
∫ ∫

NTFDS1(t, f) log
NTFDS1 (t,f)

NTFDS2 (t,f)
dtdf

8



Figure 3: Examples of EEG signals from the used epileptic database [47].

4. Results and discussion

The dataset presented in section 3 is used to evaluate the performance of our approach. 13 classifi-
cation problems, including 2, 3, and 5-class, are considered to test the used approach. The classification
instances are shown in Table 3. Because of the small size of this database, the training set T and the
representation set R are considered as the same (T := R) throughout this paper.

In order to evaluate the classification performance of the dissimilarity-based TFD approach, different
statistical measures have been used in this work. These measures include the accuracy, the sensitivity, the
specificity, and the Area Under the ROC Curve (AUC) [44]. The technique of 10-fold cross validation
[45] is also used.

The total classification accuracy is defined as: TP+TN
TP+TN+FP+FN

.
The specificity is defined as: TN

FP+TN
.

The sensitivity is defined as: TP
FN+TP

.
where TP and TN represent the total number of correctly detected true positive signals and true

negative signals. The FP and FN represent the total number of false positive signals and false negative
signals.

The ROC graph plots sensitivity and specificity values. The AUC is a scalar value, pertaining to
the interval [0, 1], obtained by measuring the area under the ROC curve. The AUC of a classifier is
equivalent to the probability that this classifier gives a better rank to a positive element compared to a

Table 3: Classification instances of the three classification problems of EEG signals.

Number of Classification class class class class class
class instance 1 2 3 4 5

A, E - - -
2 B, E Normal ictal - - -

AB, E - - -
C, E - - -

2 D, E interictal ictal - - -
CD, E - - -

2 ACD, E - - -
BCD, E Normal + interictal ictal - - -
ABCD, E - - -
A, C, E - -

3 A, D, E Normal interictal ictal - -
AB, CD, E - -

5 A, B, C, D, E Normal Normal interictal interictal ictal
(eyes open) (eyes closed) (epileptogenic) (hippocampal)
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negative element, both randomly selected from the learning database. A perfect classifier possesses an
AUC equal to 1. More details about the ROC graph and the AUC can be found in [46].

This section includes seven subsections. The goal of the first and the second one is to compare
different dissimilarity measures and TFDs in order to choose the most appropriate one. The aim of the
third is to evaluate the proposed approach using various classifiers. The primary focus of the fourth and
the fifth ones is to provide an idea about the computational complexity and the robustness of the proposed
approaches, respectively. The main goal of the sixth subsection is to compare the results obtained by the
proposed approach with the literature results. In the last one, we present and discuss the obtained results.

4.1. Dissimilarity measures evaluation
In section 2.2, we have seen that the dissimilarity-based approach requires a dissimilarity measure

(distance). The performance of the classifiers based on this approach is directly linked to the best choice
of this distance. The distance should be defined for any pair of samples and should be a metric or a semi-
metric one. Different types of distances, including the p-norm distance, the correlation, the f-divergence,
and the spectral Log-deviation, can be used to compare TFDs.

To choose the appropriate distance for the proposed approach, the SPWV distribution with a Gaussian-
smoothing window, the k-NN classifier-based dissimilarity as distance, ANN, SVM and LDA classifier
based dissimilarity as features, the 5-class classification problem (instances: A, B, C, D, E), the accuracy
and the 10-fold validation were used. Eight distances have been tested, such as Euclidean, correlation,
Kolmogorov, Kullback, Matusita, Kullback-Leiber, dSLD1 and dSLD2 distance. The obtained results are
reported in Table 4.

The higher classification accuracies of the all classifiers are obtained by the distances based on the
normalized TFDs (Table 4). However, the best classification accuracy of each classifiers was obtained
with the same dissimilarity measure (spectral Log-deviation dLSD1). For that, in the following section
only the k-NN classifier based dLSD1 as distance is used to determine an appropriate TFD for the proposed
approach.

4.2. TFDs evaluation
To choose an appropriate TFD for the proposed approach, the 5-class classification problem (in-

stances: A, B, C, D, E), the k-NN classifier based dissimilarity as distances, the dLSD1 distance, the
accuracy and 10-fold cross-validation were used.

11 TFDs were tested and divided into three categories, the first includes distributions that do not use
smoothing windows (MH, RIH, WV), the second includes distributions that use frequency-smoothing
windows (PMH, PWV) and the third category presents distributions that use both frequency and time
smoothing windows (SPWV, CW, GRECT, RI, ZAM, BJ). For categories two and three, a Gaussian-
smoothing window is used. The k-NN classifier was ran for each TFD and the obtained accuracies were
noted. The results obtained are shown in Table 5.

For the first category of distributions, the higher accuracy (86.60%) is obtained by the WV distribu-
tion. For the second one, the higher accuracy (89.60%) is obtained by the PWV distribution. Finally, for

Table 4: Classification accuracies of the k-NN, SVM, ANN, and LDA classifier using different distances. Performance
evaluation using the 5-class classification problem (instances: A, B, C, D, E) with 10-fold cross validation.

Dissimilarity measures Euclidean Correlation Kolmogorov Kullback Matusita Kullback- dSLD1
dSLD2

Approach Classifier Leiber
ANN 80.20 94.60 94.80 92.20 91.20 94.40 96.60 95.60

dissimilarity as feature SVM 34.40 90.00 93.40 90.40 78.80 90.00 94.00 94.00
LDA 82.60 94.80 96.20 94.80 92.00 72.80 97.60 97.00

dissimilarity as distance k-NN 22.40 90.20 88.00 90.20 89.60 90.20 94.40 93.60
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the third category of distributions, the higher accuracy (94.40%) is obtained by the SPWV distribution.
The TFDs which use both frequency and time windows present excellent classification accuracy results.
It means that the elimination of cross-terms significantly increases the quality of the classification. In all
categories, the higher accuracy values were obtained by the WV distribution and its extensions (PWV,
SPWV). However, the best accuracy of all categories of TFDs was obtained by the SPWV distribution
(94.40%).

To eliminate cross-terms, many time and frequency smoothing windows can be used. To choose the
best one, six of them (Gaussian, Hamming, Hanning, Rectangular, Parzen and Kaiser) with a window
length of 128-points were tested. The SPWV distribution, k-NN classifier, accuracy, and the 5-class
classification (instances: A, B, C, D, E) with 10-fold cross-validation were used. The obtained results are
presented in Table 6. According to the results, the best accuracy classifications (95.40%) were obtained
by Hanning and Parzen smoothing windows. For this reason, the SPWV distribution with a Hanning
smoothing window was selected in the following to evaluate the proposed approach.

4.3. Evaluation of classifiers
The goal of this section is to evaluate the proposed approach using different classifiers. Firstly, the

performances of these methods are detailed and compared using the 5-class classification problem. Sec-
ondly, the performance of the same methods is checked under the 2 and 3-class classification problems.
To evaluate the performance of these methods, the SPWV with Hanning smoothing window is used with
the dLSD1 distance. The classification performances were checked using the 10-fold cross-validation,
AUC, specificity, sensitivity and accuracy.

Four classifiers have been compared, k-NN based dissimilarity as (features, distances), ANN, SVM
and LDA based dissimilarity as features. k-NN number of neighbours, ANN architecture, SVM and
LDA parameters are derived by trial and error. For the ANN classifier, a three-layer feedforward neu-
ral network architecture is used. The complexity of this architecture is characterized by the number of
neurons in the hidden layer. A linear kernel is used to perform the SVM classifier. All these classifiers
were implemented by using the MATLAB software with neural-networks toolbox, statistics and machine
learning toolbox. The default parameters of the pre-implemented classifiers have been used. For each
classifier, the new parameters that give the highest accuracies are presented in Table 7. And the obtained
results are summarized in Table 8.

From table 8, it can be observed that the highest performances of all classifiers are obtained for
classes A, B and E. The specificity and the sensitivity obtained in these classes are about 100% and the
AUC is approximately 1. However, low performances of these classifiers are obtained in class C and

Table 5: Classification accuracies of the k-NN based dissimilarity as distance classifier using the first, second and third
category of TFDs. The dLSD1 distance is used. Performance evaluation using the 5-class classification problem (instances:
A, B, C, D, E) with 10-fold cross validation.

Categorie 1 2 3
Distribution WV RIH MH PWV PMH SPWV CW GRECT RI ZAM BJ

Accuracy (%) 86.60 66.80 65.80 89.60 74.20 94.40 86.60 86.40 85.00 83.80 88.00

Table 6: Classification accuracies of the k-NN based dissimilarity as distances classifier using the SPWV distribution with
different smoothing windows. The dLSD1 distance is used. Performance evaluation using the 5-class classification problem
(instances: A, B, C, D, E) and the 10-fold cross validation.

Smoothing window : Gaussian Hamming Hanning Rectangular Parzen Kaiser
Accuracy (%) : 94.40 88.80 95.40 79.40 95.40 95.00
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D. According to accuracy and the average of the AUC, It is obvious that the LDA based dissimilarity
as features is first ranked in terms of its classification accuracy of the EEG signals (98%), while the
ANN base dissimilarity as features came second (97.60%). The SVM based dissimilarity as feature and
k-NN based dissimilarity as distances had approximately the same accuracy (∼ 95%). The k-NN based
dissimilarity as features ranked last in terms of its classification accuracy (88.80%). In addition, when the
AUC is examined, the LDA and ANN based dissimilarity as features achieved high classification success
with the values of 0.9875 and 0.9850 respectively. Thus, it can be seen that the performance of the SVM
based dissimilarity as feature was approximately the same as that of the k-NN based dissimilarity as
distances (∼ 0.9720). Finally, the k-NN based dissimilarity as distances achieved a low AUC of 0.9300
compared to other classifiers.

Summary: The highest classification accuracy and AUC are obtained by the LDA (98%, 0.9875) and
ANN (97.60%, 0.9850) based dissimilarity as features. The second-highest classification accuracy and
AUC are obtained by the k-NN (95.40%, 0.9738) based dissimilarity as distances and SVM (94.20%,
0.9698) based dissimilarity as features. Thus, for all used classifiers, most errors are due to the misclas-
sification between classes C and D. It should be mentioned that this does not have a major impact on the
study, since both these sets are obtained during seizure-free instances of the same epileptic patients. The
only difference between the EEG signals of the sets C and D is the zone of the brain from which they

Table 7: Parameter values of the proposed classifiers.

Classifier parameter Value
ANN Number of neurons in the hidden layer 100
SVM The parameter C that controls the trade-off between the complexity of

decision rule and the training-error rate [48]
100

k-NN The number of neighbours k 1
LDA No change

Table 8: Classification performance of EEG epileptic signals using ANN, SVM, k-NN, ANN, based dissimilarity as features
and k-NN based dissimilarity as distances. The SPWV distribution with Hanning smoothing window and the dLSD1 distance
were used. 5-class classification problem (instances: A, B, C, D, E). Performance evaluation using the 10-fold cross validation.

Approach Classifier Class Specificity (%) Sensitivity (%) AUC AUC (average) Accuracy (%)
A 100 100 1
B 99.00 100 0.9988

ANN C 96.80 92.00 0.9562 0.9850 97.60
D 92.40 97.00 0.9750
E 100 99.00 0.9950
A 84.70 100 1
B 99.00 99.00 0.9938

SVM C 94.50 86.00 0.9238 0.9698 94.20
D 96.70 87.00 0.9388

Dissimilarity E 98.00 99.00 0.9925
as feature A 99.00 99.00 0.9938

B 97.00 96.00 0.9763
k-NN C 78.40 80.00 0.8725 0.9300 88.80

D 76.30 74.00 0.8413
E 93.10 95.00 0.9663
A 100 100 1
B 100 100 1

LDA C 95.00 96.00 0.9738 0.9875 98.00
D 95.00 95.00 0.9688
E 100 99.00 0.9950
A 91.50 97.00 0.9738

Dissimilarity B 96.80 90.00 0.9463
as distance k-NN C 93.30 98.00 0.9813 0.9738 95.40

D 97.90 95.00 0.9725
E 100 99.00 0.9950
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were recorded. Which means that the EEG signals of these two sets are more similar compared to the
signals of the other sets (A, B and E). As shown below, when sets C and D are considered as the same
class, all classifiers achieved highest accuracies in most classification problems.

Tables 9 and 10 show the classification performances obtained by ANN, LDA, SVM based dissimi-
larity as features and k-NN based dissililarity as distances over the classification instances of the 2 and
3-class classification problems. We can clearly see that all the classifiers had high performances in all
studied instances. For all problems, all the classifiers had an AUC greater than or equal to 0.9900 and an
accuracy greater than or equal to 99.30

4.4. Approach complexity
Complexity can be viewed as two parameters i.e.: 1) time complexity, which is a measure or estimate

of the running time of an algorithm, and 2) memory complexity, which is the storage space required
by an algorithm to complete its execution. In the following, Complexity of the proposed approach is
evaluated experimentally and approximated using the Big-O notation. Firstly, the running time, and
memory space of the algorithm are measured according to the size of the learning database. Secondly,
the results obtained are plotted and fitted using various functions. Finally, functions that give the best fit
are considered.

-Time complexity:
The algorithm of the dissimilarity-based TFD approach is divided into three steps. The first one

aims at extracting the TFDs from the EEG signals. The learning matrix (dissimilarity matrix) is assessed
from the TFDs in the second step. The third one includes the learning and the testing algorithms of the
classifier. To assess the complexity of each step, the running time is measured according to the number
of signals in the learning database. Figures 4 and 5 plot curves of the running times for the three executed
steps. The Table 11 summarizes the Big-O notation and the function name of the time complexities of
each step.

In this experiment, the algorithm of the proposed approach is programmed using MATLAB. This
software is installed on a computer with the following specifications: Intel(R) Xeon(R) CPU E5-1620
v2-3.70GHz, RAM-8Go, Windows 8 (64bits) operating system.

Table 9: Classification of EEG signals using ANN, LDA, and SVM (with linear kernel) based dissimilarity as features and
k-NN based dissimilarity as distances. The SPWV distribution with Hanning smoothing window and the dLSD1 distance were
used. 2-class classification problem. Performance evaluation using the 10-fold cross validation.

classifier ANN LDA k-NN SVM
Instance AUC Accuracy (%) AUC Accuracy (%) AUC Accuracy (%) AUC Accuracy (%)

A, E 1 100 1 100 1 100 1 100
B, E 1 100 1 100 0.9950 99.50 1 100
C, E 0.9500 99.50 1 100 1 100 0.9950 99.50
D, E 0.9950 99.50 0.9950 99.50 1 100 0.9950 99.50

AB, E 0.9950 99.70 1 100 0.9950 99.70 1 100
CD, E 0.9950 99.70 0.9950 99.70 1 100 0.9950 99.70

ACD, E 0.9933 99.50 0.9950 99.80 1 100 0.9950 99.80
BCD, E 0.9933 99.50 0.9950 99.80 0.9950 99.80 0.9950 99.80

ABCD, E 0.9938 99.60 0.9950 99.80 0.9950 99.80 0.9900 99.60

Table 10: Classification of EEG signals using ANN, LDA, and SVM (with linear kernel) based dissimilarity as features and
k-NN based dissimilarity as distances. The SPWV distribution with Hanning smoothing window and the dLSD1

distance were
used. 3-class classification problem. Performance evaluation using the 10-fold cross validation.

classifier ANN LDA k-NN SVM
Instance AUC Accuracy (%) AUC Accuracy (%) AUC Accuracy (%) AUC Accuracy (%)
A, C, E 0.9975 99.70 0.9975 99.70 0.9975 99.70 0.9975 99.70
A, D, E 0.9975 99.70 0.9975 99.70 0.9975 99.70 0.9975 99.70

AB, CD, E 0.9942 99.40 0.9964 99.60 0.9950 99.40 0.9938 99.20
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The results obtained show that the complexity of the first and the second steps are O(n) and O(n3),
respectively. The complexity of the third step depends on the type of classifier used. Note that the first
and the second are the most time consuming. For example, with a learning database of 400 signals,
914 seconds are required to extract TFDs from the EEG signals, and 1076 seconds to calculate the
dissimilarity matrix.

Firstly, the time complexities of the different steps of the algorithm are estimated separately. Now, in
order to estimate the time complexity of the proposed approach, the running time of the whole algorithm
is measured according to the number of signals in the learning database.

Figure 6 plots the curves of the running time of the proposed approach combined with the LDA, ANN,
SVM and k-NN classifiers. One can clearly note that the time complexity of the proposed approach is
O(n3) whatever the classifier. This is due to the fact that the algorithm for calculating the dissimilarity
matrix is the one that determines the complexity time of the proposed approach.

-Memory complexity:
The algorithms of the proposed approach use numerical data like TFDs and dissimilarity matrix. This

data is firstly stored in the memory and is subsequently used by the algorithms. To assess the memory
consumption of the proposed approach, the memory required to store the data is studied according to the
size of the learning database (Figure 7). Note that the data is stored as numerical values with a double-
precision floating point. Based on the fitted curve in figure 7, one can note that the space complexity of
the proposed approach is O(n).

4.5. Robustness of the approach
To get an idea about the influence of noise on the applicability of the proposed approach, the perfor-

mance of classifiers are evaluated according to the signal-to-noise ratios (SNRs) of clean EEG signals.
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Figure 4: The running time of the first (TFD) and the second (Dissimilarity matrix) steps, as a function of the learning database
size (number of signals)

Table 11: Time complexities of the three steps of the algorithm used in the proposed approach.

Algorithm step TFD dissimilarity matrix LDA ANN SVM k-NN
Big-O notation O(n) O(n3) O(n) O(n3) O(n3) O(n)
Function name linear time Quadratic time linear time Quadratic time Quadratic time linear time
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Figure 5: The running time of the third step using the classifier: LDA, ANN, SVM and k-NN, as a function of the learning
database size (number of signals)

The SNR is given as: SNR(dB) = 10log(Ps/Pn), where Ps and Pn are the signal and noise powers,
respectively. We have considered EEG signals of the entire database corrupted with white Gaussian noise
at a given SNR range from 0 dB to 50dB. Classifiers are turned using 2-class (instance: ABCD-E), 3-
class (instance: AB-CD-E) and 5-class classification problems and their performances are checked using
10-fold cross validation and accuracy. Figures 8-a, 8-b and 8-c plot the classification accuracy as function
of the SNR.

As shown in Figures 8-a and 8-b, the proposed approach performs better in the 2-class and 3-class
classification problems, the classification accuracy values are generally insignificantly deteriorated as the
SNR decreases. For example, at 0db SNR, there is less than 3% and 10% deterioration for the 2-class
and 3-class classification problems, respectively. In addition, for each classifier, there is no significant
change in the classification accuracy under clean conditions and at 1 dB SNR.

As shown in figure 8-c, the performance of the proposed approach in the 5-class classification prob-
lem is far from satisfactory when the SNR is less than 10db. The classification accuracy values are
significantly deteriorated as the SNR decreases. This is because of the high dependency between classes
C and D, where most errors are due to misclassification between them. However, for each classifier, there
is no significant change in the classification accuracy under clean conditions and at 20 dB SNR.

These results clearly indicate that the proposed approach is robust to noise. Even though unsatisfac-
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Figure 6: The running time plot of the whole algorithm of the proposed approach combined with LDA, ANN, SVM and the
k-NN classifiers, as a function of the learning database size (number of signals).
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Figure 7: Plots and fitted curve of the memory consumption by the proposed approach, as a function of the learning database
size (number of signals).

tory accuracy is obtained in the 5-class classification problem, a low SNR cannot affect the applicability
of the proposed approach to discriminate EEGs signals of healthy people from those of epileptic patients.
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Figure 8: Classification accuracy as function of the SNR. (a) Classifiers evaluated using the 2-class classification problem. (b)
Classifiers evaluated using the 3-class classification problem. (c) Classifiers evaluated using the 5-class classification problem.

4.6. Comparison with the literature results
The proposed approach is combined with four different classifiers. The performance of these classi-

fiers is evaluated against 13 classification problems. Experimental results showed that the used classifiers
achieved highest accuracies in most of the studied classification problems. However, in order to com-
pare the developed approach with the literature approaches, it is necessary to select the most efficient
classifier. Thus, the selection strategy based on accuracy competence allowed the LDA classifier to be
select because it is the one reaching the highest accuracies in the most classification problems (10 out of
13 classification problems). For this reason, only the classification accuracies of the LDA classifier are
compared to the literature results.
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The comparison of the results in terms of accuracy reported in literature for EEG epileptic classi-
fication approaches published from 2008 to 2018 [3, 4, 10–28] with those of the proposed approach is
presented in Tables 12, 13, 14, and 15. All of these approaches are evaluated on the same database [47]
as for the proposed approach. The results of the proposed approach that have been compared are those
obtained by the LDA classifier. Although Dhiman et al. [18] and Das et al. [21] reported a 100% classi-
fication rate for classification instances A-E, B-E, C-E, D-E, AB-E, ABCD-E, and A-D-E, respectively,
the proposed approach outperforms approximately the same results for the remaining classification in-
stances but without using features extraction. Yet, the proposed approach has the best classification rate
for classification instances A-B-C-D-E (98%), ACD-E (99.80%), BCD-E (99.80%), CD-E (99.80%), A-
C-E (99.70%), and AB-CD-E (99.60%) compared to the reported results by Ahnaf et al. [19], Mousavi
et al.[10], and Kumar et al. [4].

4.7. Discussion
Table 12 shows a brief summary of studies that present various approaches to epileptic seizure de-

tection. It is very important to note that almost all-known classifiers were used for detection of epileptic
seizures in EEG signals. All these classifiers were performed using the approach of features extraction.
However, when the features are not appropriate for the given classification problem, the performances ob-
tained are unsatisfactory. Because of the improper features, the classification algorithm cannot generate
high performances. Therefore, it is mandatory to find and extract suitable features from the raw signals
to be able to obtain good classification results. On the other hand, our study showed that the detection
of epileptic seizures in EEG signals can now be carried out using the dissimilarity-based approach and
without using features extraction. Except for the choice of an appropriate TFD and dissimilarity measure,
the dissimilarity-based approach has the advantage of being generalized for all medical signals, which is
not the case for the feature-based approach.

Table 12: Various approaches used for detection of epileptic seizures applied to dataset [47]. Works published from 2004 to
2018.

Authors Year Feature Classifier
Mousavi et al.[10] 2008 AR model , wavelet decomposition Multi-Layer Perceptron(MLP)
Tzallas et al. [11] 2009 Features based TFD SVM
Liang et al.[13] 2010 Fast Fourier Transform, approximate en-

tropy analysis
SVM

Kumar et al. [14] 2014 Digital Wavelet Transform based fuzzy ap-
proximate entropy

SVM

Kang et al. [16] 2015 Short-Time Fourier Transform Quadratic Discriminant Analysis
Dhiman et al. [18] 2016 Wavelet Packet Transform Twin SVM
Ahnaf et al. [19] 2016 Tunable-Q factor wavelet transform Bootstrap aggregating
Das et al. [21] 2016 Dual-tree complex wavelets, inverse Gaus-

sian
SVM

Alcin et al. [20] 2016 STFT, Gray Level Co-occurrence Matrix,
Fisher Vector

Extreme Learning Machine

Bhati et al. [22] 2017 Time–frequency localized three-band syn-
thesis filter bank

MLPNN

Biju et al. [23] 2017 Energy/entropy of IA and SD of IF from
Hilbert-Huang Transform

ANN

Li et al. [24] 2017 DWT-based EA Neural Network Ensemble
Sharma et al. [25] 2017 analytic time-frequency flexible wavelet

transform and fractal dimension
LS-SVM

Tiwari et al. [30] 2017 Key-Point Descriptor of EEG Signals SVM
Zahra et al. [26] 2017 Multivariate EMD ANN
Jaiswal et al. [27] 2017 Local Neighbor Descriptive Pattern and

One-dimensional Local Gradient Pattern
feature extraction techniques

ANN

Li and al. [28] 2018 wavelet packet transform Least squares support vector machine
This work 2018 dissimilarity-based TFD ANN, LDA, k-NN, SVM
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Table 13: Comparaison of accuracy of the various methods for detection of epileptic seizures applied to dataset from [47].
Comparison of previously reported results for 2 class classification problem. Classification instances out of (A, B, C, D, E).

Work A, E B, E C, E D, E AB, E CD, E ACD, E BCD, E ABCD, E
[14] 100 100 99.60 95.80 - - 98.15 98.22 97.38
[16] 100 100 99.86 97.97 - - - - -
[18] 100 100 100 100 - - - - 100
[19] 100 - 100 100 - - - - 99.60
[21] 100 - 100 100 - - - - 100
[22] - - - - - 99.33 - - -
[23] - - - 100 - - - - -
[25] 100 100 99 98.50 100 98.67 - - 99.20
[30] - - - - 100 99.45 - - 99.31
[27] 99.82 99.25 99.10 99.07 - 98.88 - - 98.72

This work 100 100 100 99.50 100 99.70 99.80 99.80 99.80

Table 14: Comparison of accuracy of the various methods for detection of epileptic seizures applied to dataset from [47].
Comparison of previously reported results for 3-class classification problem. Classification instances out of (A, B, C, D, E).

Work A,C,E A,D,E AB,CD,E
[10] 91-96 - -
[21] - 100 96.28
[19] - 98.67 98.40
[24] - 98.78 -
[30] - - 98.80
[27] - 98.22 -
[28] - 99.60 -

This work 99.70 99.70 99.60

Table 15: Comparison of accuracy and AUC of the various methods for detection of epileptic seizures applied to dataset from
[47]. Comparaison of previously reported results for 5-class classification problem. Classification instances: A, B, C, D, E.

Work Instance Accuracy (%)
[11] A, B, C, D, E 89
[13] A, B, C, D, E 85.90
[20] A, B, C, D, E 96.40
[26] A, B, C, D, E 87.20

This work A, B, C, D, E 98.00

Tables 13, 14, and 15 present the comparison of the results in terms of classification accuracy reported
in literature for EEG epileptic classification with those of the proposed approach. The proposed approach
achieved high classification performances in the 13 classification problems studied (2, 3, and 5-class
classification problems). For the reported 2-class classification problems, the accuracy obtained from the
proposed approach is the best presented for the instances (A-E, B-E, C-E, CD-E, ACD-E and BCD-E) and
is the second-best presented for the instances D-E and ABCD-E. For the reported 3-class classification
problems, the accuracy obtained from the proposed approach is the best presented for the instances (AB-
CD-E and A-C-E) and is the second-best presented for the instance A-D-E. For the reported 5-class
classification problem, the accuracy obtained from the proposed approach is the best presented for the
instance A-B-C-D-E.

For most of the classification problems of EEG signals studied, classifiers combined with the proposed
approach achieved highest accuracies and AUC. Errors were mainly due to the misclassification between
classes C and D. That can be explained by the high dependence between classes C and D (interictal EEGs
of epileptic patients recorded by intracranial electrodes). However, that does not affect the applicability
of the proposed approach to discriminate:

• EEGs signals of the healthy people and ictal patients.

• EEGs signals of the healthy people and interactal patients.
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• EEGs signals of the ictal and interactal patients.

5. Conclusion

Several solutions have been proposed to automate the classification of EEG signals for epileptic
seizure detection. In the traditional approach, firstly, feature vectors are extracted from the TFD of
EEG signals. Secondly, classifiers are ran on the feature space in order to construct a decision rule. The
success of this approach heavily depends on the best choice of the feature.

In this paper, we proposed an approach for the classification of EEG signals based on dissimilarities
between their TFDs, called dissimilarity-based TFD. This approach did not require direct access to the
features of signals. Classifiers based on this approach estimated the class label of a test signal based on
the dissimilarity between the TFD of the test signal and TFD of labeled training signals. Experimental
results showed that the proposed approach achieved highest accuracy in most of the classification prob-
lems studied. A high value of 98% was achieved for the 5-class problem. Further, in most classification
problems with 2 and 3-class, it also yielded a satisfactory accuracy of approximately 100%. The com-
parison between the proposed approach and literature studies, confirmed that the proposed approach had
a potential in the classification of EEG signals and the detection of epileptic seizures.

The robustness of the proposed approach was explored with the addition of noise to the EEG signals
at various SNRs. The experimental results showed when SNR>=1dB, the classification accuracies were
more than 98%, 95% and 82% for the 2-class, 3-class and 5-class classification problems. These results
clearly indicated that the proposed approach was robust to noise. And the latter could not affect the
applicability of this approach for the diagnosis of epilepsy using EEG signals.

The dissimilarity-based TFD approach required the use of a TFR and a dissimilarity measure to
compute a dissimilarity matrix. Thus, a classifier combined with this approach used the dissimilarity
matrix in order to build its decision rule. Indeed, the success of this classifier was directly related to a
wise choice of TFD and a dissimilarity measure. A bad choice of one of these two could considerably
degrade the accuracy of the classifier. On the other hand, the dissimilarity matrix represented the pairwise
dissimilarities between TFDs of the learning objects. Thus, the choice of the TFR and the dissimilarity
measure could depend on the learning objects.

The main problem of the dissimilarity-based approach remained in the high dimensionality of the
spatial features related to the resulting dissimilarity. As shown in the experimental results, complexi-
ties of the algorithms used in the proposed approach with the different classifiers were O(n3) for time
complexity and O(n) for space complexity.

We suggest three types of solutions to solve the problem of the complexity of the proposed approach.
The first consists in building the dissimilarity space using all available objects, and subsequently applying
some standard dimensionality reduction techniques (such as principal component analysis, t-distributed
stochastic neighbour embedding ...). The second one is to reduce the dissimilarity space dimension by
using an approach of prototype selection [49]. The third one can be conducted by directly choosing a
small set of objects.
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