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Abstract

This paper focuses on experimental validation and investigation of the
validity of a 3D beam model for representing the assembly of flexible stranded
cables in automotive industry. For this purpose, an original test bench has
been designed. It allows quasi-static manipulation of cables with a robotic
arm and retrieval of the cables 3D centerline position with a system of cam-
eras. Investigation is carried out in three parts. Firstly, the beam param-
eters are identified with a single buckling test set up on the bench. Along
with buckling theory analytical developments, this test leads to homogenized
bending and shearing stiffness parameters. The torsional stiffness is esti-
mated from the shearing parameter and cables measurement. Axial stiffness
is calculated from the composite theory. Then, other loading experiments
are performed. The results of the latter experiments are compared to nu-
merical simulations based on a geometrically exact beam model and using
both the identified beam parameters and the initial geometry of the cables
as inputs. Lastly, a numerical analysis of the effects on the final geome-
try of uncertainties, for both identified parameters and initial geometry, is
performed. The whole process provides clues on the validity of beam mod-
els for representing stranded cables: it gives good results for the prediction
of the final geometry and average results for the reaction forces ; torsional
stiffness, bending stiffness and initial geometry seem as the most influential
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parameters of the model ; a buckling test seems to be a viable mean for iden-
tifying cable parameters.

Keywords: Stranded cables ; Parameter estimation ; Timoshenko beam
model ; Shape prediction ; Shearing study

1 Introduction

1.1 Context

(a) Real cable (signal wires strand): picture of the cross-section on the left
; approximate reconstruction of the real cable cross-section (middle and
right).

(b) Idealized (theoreti-
cal) stranded cable.

Figure 1: Cross-section of a stranded cable.

In automotive industry, it is necessary to simulate accurately and with fast
computations the behavior of stranded or multi-stranded cables (figure 1) dur-
ing an assembly operation. Because of the flexibility of electrical cables, large
displacements/ rotations based physical models need to be developed. In this con-
text, most of the current numerical tools are based on 3D geometrically exact beam
models [Reissner, 1981, Irschik and Gerstmayr, 2011, Simo and Vu-Quoc, 1986].
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These models assume rigidity of the cable cross-sections which are subjected to a
particular kinematics justified by its slenderness. They lead to a great reduction of
the number of degrees of freedom in comparison to full 3D models. This reduc-
tion leads to fast computations and still allows to describe very complex physical
phenomena.
Depending on the chosen cross-sections kinematics, two main types of models
compete against each other: models without shearing to which we will refer as
Euler-Bernoulli models (EBM) and models with shearing to which we will refer
as Timoshenko models (TM). The effect of shearing in a homogeneous beam is
directly dependent of the thickness to length ratio of the beam: the thicker is the
beam, the larger is the shearing deformation effect. As a result, for a very slender
beam, the EBM is usually chosen. In addition, this method may lead to very fast
algorithms [Bertails et al., 2006, Linn et al., 2008]. For a thick beam, the TM is
usually preferred because it is physically more accurate.

Stranded cables are not homogeneous structures yet (see figure 1) and the
type of models described above are theoretically not applicable for this purpose.
The interested reader will consult for instance the outstanding review proposed
by Spak et al. [Spak et al., 2013] to have a wide view of all stranded cables
models such as the thin rod models [Huang, 1978, Sathikh et al., 1996] and the
semi-continuous models [Raoof and Hobbs, 1988, Jolicoeur and Cardou, 1996].
This complex structure also involves another physical phenomenon not taken
into account into the beam models: dry friction. This stick-slip phenomenon
is evidenced by cyclic tests on stranded cables which show hysteretic behav-
ior on the force-displacement diagram (see for instance experimental results of
[Yu, 1949]). A lot of analytical models have been designed to take this effect into
account, see for instance the review [Cardou and Jolicoeur, 1997] and the numer-
ous references within, such as [Utting and Jones, 1987a, Utting and Jones, 1987b,
LeClair and Costello, 1988]. Nevertheless, this effect leads to computationally
costly algorithms and involves identifying additional frictional parameters. One
of the goals of this paper is thus to evaluate if it is possible to neglect this phe-
nomenon.
Indeed, one may assume that a stranded cable, as a whole structure, behaves as a
homogeneous beam. In this case, the beam parameters are obtained by homoge-
nization on the cross-section. With this method, and as advised by [Goodding et al., 2008],
one may hope modeling the slipping between wires by shearing for example. The
applicability of this homogenized beam model may however only be proved by
experimental testing.

The above-mentioned beam parameters are 6 in number for the TM and 4 for

3



the EBM [Love, 1944]. They correspond to the stiffnesses for each generalized
strain component. The 4 parameters in common to be determined are the axial
stiffness EA, the torsional stiffness GJ and the bending stiffnesses in the two prin-
cipal directions of the cross-section EI2 and EI3, in which (for a homogeneous
beam) E is the Young’s modulus, G the shear modulus, A the cross-sectional area
and I2, I3 the second moments of area in the two principal directions. The two
additional parameters of the TM are the shearing stiffnesses in the two principal
directions GA2 and GA3, with A2, A3 being the shearing areas in the two principal
directions.
The literature dedicated to the identification of these parameters is very dense for
dynamical models [Castello and Matt, 2011, Spak et al., 2014], mainly developed
for aeronautic applications [Ardelean et al., 2014] [Coombs et al., 2011]. The sev-
eral methods of identification have been developed by supposing that a stranded
cable has an idealized helicoidal structure made of a central wire (core), sur-
rounded by layers of wire. Let us notice that this structure is adapted for structural
cables but not very representative of automotive cables. Regardless, the methods
of determination of the equivalent homogenized beam parameters may then be
classified in two different categories: using cable measurement and material prop-
erties as input of a composite theory; experimental (and most of the time dynami-
cal) testing.
The former method has the advantage of not requiring any costly experimental
tests. However, it is based on a model which does not necessarily represent well
the reality and thus does not allow a good accuracy. This type of method is thus
more often used to narrow the properties in a theoretical range [Spak et al., 2014].
The experimental determination is often based on dynamical tests. For instance,
among the existing experimental methods, let us mention the notable work of
Goodding et al. [Goodding et al., 2011] in which the Young’s modulus of the ca-
ble is determined by a static axial test while the shear modulus is obtained from
curve fitting a FRF model on experimental transverse test data. Nevertheless, this
method compels to design two different test benches. Besides, there also exist
other techniques to determine the bending stiffness thanks to quasi-static bend-
ing tests such as the classic three point bending test or the work of Filiatrault and
Stearn [Filiatrault and Stearns, 2005]. However, these methods do not give any
information on the shearing stiffness.

As previously said, these methods have been set up for dynamical purposes in
which the interest stands in the determination of the natural frequencies and the
damping ratio. If the parameters are the same for dynamical models and quasi-
static models, the studied outputs are different since the latters focus on the de-
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formed shape of the cable and on the reaction forces at the boundaries. It is thus
of great interest to see the efficiency of the identification for a quasi-static manip-
ulation of cables. However, only few studies have been carried out for quasi-static
purposes and the existing ones focus on completely different fields of applica-
tions, such as structural cables [Chen et al., 2015] and transmission line conduc-
tors [Papailiou, 1997] or give few insight on the physical model [Papacharalampopoulos et al., 2016].
By way of consequence, the literature lacks information on this topic.

1.2 Motivations and outline of the paper
In the context described above, we have devised a test bench in order to answer
the following questions:

• Is it possible to simulate the quasi-static assembly of stranded cables with
an homogenized equivalent beam model ?

• Is the shearing deformation relevant for modeling the potential slipping be-
tween the wires of the cables ? And, as a result, is the Timoshenko model
more realistic than the Euler-Bernoulli model for modeling cables ?

• What parameters have a paramount importance in the predicted geometry
and in the predicted reaction forces of the cables ?

To fulfill these purposes, it was straightforward to design a quasi-static loading
experiment and fill the literature loophole. Taking advantage of the presence of a
robotic arm in the laboratory, we have decided to use this device to apply step-by-
step displacements/rotations to one extremity of samples of cables while the other
is clamped. As the outputs of interest are the deformed shape of the cables and
the evolution of the reaction forces, a force sensor is mounted on the robot and
a vision system has been designed to get the 3D centerline of the cables. These
data are used to perform a comparison to the numerical simulation developed in
[Cottanceau et al., 2018].
As the test rig conceived is versatile and allows to perform several types of test
(by means of the robotic arm), we have decided to also use it for the identification.
Taking advantage of the closed-form expression of the transverse displacement as
a function of the mechanical parameters for a buckling test, we thus propose a
novel method for determining the beam parameters with only one test.
With that in hands, the experimental study is carried out with the following ap-
proach for several cables. The buckling test is performed and through the mathe-
matical developments given in section 3, the mechanical parameters are identified
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for both the EBM and the TM in section 4. Two other loading experiments pre-
sented in sections 5 and 6, referred as validation tests, are performed on the same
cables and the deformed shapes and the reaction forces through the loading ex-
tracted. The identified parameters are used as inputs of the numerical algorithm
which is run twice for each validation test: once with the EBM parameters and
once with the TM parameters. Numerical and experimental results are finally
compared. Finally, an experimental study on the influence of uncertainties of the
mechanical parameters and of the initial geometry on the final geometry is carried
out in section 7 and helps at commenting the experimental results. Synthesis of
these results and further comments are provided as a conclusion in section 8.

2 Experimental setup

2.1 General description

Fx, Fy Fz Tx, Ty, Tz

Sensing ranges ±330N ±990N ±30Nm

Resolution 1/8N 1/4N 10/1333Nm

Table 1: Force/torque sensor ATI Delta SI-330-30 characteristics.

The test bench, used for both identification of parameters and validation of the
3D beam model, is illustrated on Fig. 2. This bench is composed of two main
parts: one for manipulating the cable and one for determining the 3D position of
the cable.

On the first hand, a Staüblir TX90 6-axis robotic arm is equipped at its ex-
tremity with a 6-axis force sensor ATIr Delta SI-330-30 whose characteristics are
given on Table 1. This sensor is connected to a National Instrumentsr data acqui-
sition card whose data are read through the Matlabr Data Acquisition Toolbox.
The numerical data obtained are the values of the 6 components of forces/torques
with respect to time at a sampling rate of 2000 scans per second. These com-
ponents are denoted Fx(t), Fy(t), Fz(t), Tx(t), Ty(t) and Tz(t) with Fi and Ci re-
spectively representing the force reactions in direction i and the torque reactions
around direction i, for i being one of the axis x, y or z represented on figure 2. The
cable is attached to the robot through an interface which is linked to the force sen-
sor (itself linked to the robotic arm). The other extremity of the cable is attached
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Robot Staübli TX90

Camera 2
LED ring

Camera 1

Sensor/cable interface

Clamping

Cable under study

Arm/sensor interface

Camera 1

Camera 2

x

y

Robot arm

Cable manipulation area

Force/torque
sensor

Cable under study

Camera 1

LED ring

xy

z

Figure 2: Illustration of the test bench and its various components: pictures with
elements description (left), schematic representation of the bench from the right
side (top right) and from above (bottom right).

to the robot platform through a second interface. Both interfaces, which follows
the same principle, have been designed so that rotations nor translations are al-
lowed (see Fig. 3): the fixation consists in a cylindrical hole of 18mm-diameter
machined in a metallic part and in which the cable is tucked while two lateral cap
screws squeeze the cable into the hole. The test boundary conditions are thus a
clamping of one end and a prescribed 3D displacement/rotation of the other end.
The prescribed displacement/rotation is applied by defining the trajectory of the
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(a) (b)

Cable

Hole

Metallic part

Cap screw

(c)

Figure 3: Fixation system: pictures of the robot platform interface (a) and of
the robot tip interface (b) ; schematic representation of the interface functioning
principle (c).

robot extremity through the robot software. The trajectory is decomposed in sev-
eral steps of equal displacement/rotation increment: for each one of these steps,
the robot applies the displacement/rotation increment and then makes a (motion-
less) pause of 5 s before resuming the motion at the next step. This step-wise
motion is necessary to synchronize the force sensor data and the displacement
obtained from vision system (robot controllers are not used as inputs of the exper-
iment).

On the second hand, a vision system has been set up to recover the 3D cen-
terline of the cable at each increment of displacement/rotation. This system is
made up of two numerical cameras Logitechr HD Pro Webcam C920 mounted
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Figure 4: Illustration of the calibration of camera 2 with a checkerboard.

on two tripods and disposed perpendicularly as illustrated on Fig. 2. As a first
step, the two cameras are calibrated one after the other to insure the perpendicu-
larity of their optical axis as well as their right orientation. For the calibration, a
checkerboard is positioned vertically in the cable manipulation area (Fig. 4). By
means of the Matlabr Computer Vision System Toolbox, the square corners of
the checkerboard are detected and the camera orientation is tuned so that its op-
tical axis is normal to the plane of the checkerboard and so that it is horizontally
aligned with the checkerboard. The checkerboard is then moved and positioned
perpendicularly to its first position (still in the cable manipulation area and ver-
tically). The calibration is then repeated for the second camera. This calibration
aims at simplifying the mapping from the 3D object (the cable) to the 2D images
captured by the cameras. Thereby, neglecting the distortion effects and as a first
order calibration, the distances in the camera images are linearly related to the
distances in the cable plane. The linear coefficient linking the pixel size in the
cable plane to its real size is calculated through a second calibration step for each
camera. Finally, from the data of the two perpendicular cameras, the 3D position
of any point in the cable manipulation area may be reconstructed. Besides, sev-
eral reflective tapes are stuck regularly along the centerline of each cable, with a
distance of around 20 mm between each tape (see Fig. 5). A LED ring oriented
toward the cable is fastened on each camera and lights up the reflective tapes. Im-
age processing performed through a C++ program based on the Computer Vision
System toolbox OpenCV [Ope, 1999] allows to detect each lightened reflective
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tape on the cable and to find their centroid position (see Fig. 5). As aforemen-
tioned, the 3D positions of these points is found from the data of both cameras.
Hence, the centerline may be reconstructed by interpolating these experimental
points with cubic splines.

Figure 5: Camera centerline detection: view of the cable with reflective tapes from
the camera (left); view of the cable after camera processing - green line around
the tape detected and red point at the centroid (right).

2.2 Bench features
This original test bench exhibits several attractive features. Firstly, it allows a
quasi-static manipulation of electrical cables whereas most tests on such cables
are dynamical tests, as explained in introduction. Besides, a robotic arm allows to
apply incrementally combination of rotations and translations in a 3D space. This
versatility implies that a lot of different tests may be applied on this same bench,
unlike most test benches which are very unidimensional. In addition, as a robotic
arm is thought as a human arm, the trajectory applied to the extremity of the cable
may be very human-like. It is then possible to carry out experiments very close
to the human assembly of a cable. Finally, for well-chosen tests (without image
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covering) our vision system allows to build the full 3D position of the centerline,
whereas most experiments only give 2D positions.

3 Identification method on a buckling test: theory

3.1 General methodology
As already mentioned in introduction (section 1), the 3D beam model requires
6 input mechanical parameters: the axial stiffness EA, the bending stiffnesses
EI2, EI3, the torsional stiffness GJ and the shearing stiffnesses GA2, GA3. The
geometry of the stranded cables cross-section leads to the fair approximation of
an idealized circular and symmetrical cross-section such as illustrated in figure
1b, which conducts to the further assumption of equality of the parameters EI2 =
EI3 =EI and GA2 =GA3 =GA in the two principal directions of the cross-section.
The identification then comes down to 4 parameters which depict the stiffness for
each of the three following deformation modes:

• tension/compression for EA,

• bending for EI and GA,

• torsion for GJ.

As a result, three distinct identification tests should be carried out for the full deter-
mination of the parameters. However, as a cable is very stiff in the axial direction
and that pulling is proscribed during an assembly operation, the axial stiffness EA
is not preponderant in the numerical simulation and hence is easily reckoned from
material and geometrical properties. For this parameter, following the approach
of Spak et al. [Spak et al., 2014], the cable is supposed to be a composite made of
parallel fibers in a concentric matrix and the equivalent Young’s modulus is thus
calculated with the formula [Sendeckyj, 2016]:

E =VfEf +VmEm +
2(νf−νm)

2(1−νf)EmVfEf

(1−Vm)Em(1−νf−2ν2
f )+Ef ((1−νm−2ν2

m)Vm +(1+νm))
,

(1)

with indices f and m representing the fiber and the matrix values respectively,
V• being the volume fraction, E• the Young’s modulus and ν• the Poisson’s ra-
tio. This formula is a modified rule of mixture for a cylindrical fiber-reinforced
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composite which takes into account the dilatation/contraction of the fibers in the
transverse direction due to the axial elongation/compression [Hill, 1964]. The ex-
pression (1) is then multiplied by the maximal cross-sectional area Amax = πR2, R
being the radius of the cable, to obtain the axial stiffness.

Taking advantage of the versatility offered by our test bench for applying sev-
eral types of displacements/rotations, we have set up a buckling test for evaluating
the bending behavior of the cables. The 2D theory of buckling for the Timoshenko
model indeed links both EI and GA to the critical buckling load and the transverse
displacement. Likewise, the buckling theory for the EBM relates the two last
quantities to EI. As a result, we propose here a novel method to determine the
coefficients characterizing the bending behavior of cables using a single test for
both the EBM and the TM. The theoretical developments necessary to understand
the process of identification are presented in the next section. At the same time,
the parallel is made between the EBM and the TM by stating the main differ-
ences between each one of the models and thereby well understanding the stakes
of choosing one or the other method.
The last parameter GJ is usually reckoned through a torsion test. However, ac-
cording to the designed bench, such a test revealed difficult to set up for two rea-
sons: the fixation system (Fig. 3) is not adapted to pure torsion (slipping between
the wires and the protection is likely to occur) and the vision system does not al-
low to measure the variation of twist angle. To avoid designing another setup, we
have thus decided to simply evaluate the torsional stiffness GJ from the identified
GA and its geometrical properties. For a homogeneous TM beam, the torsional
stiffness is related to the shearing stiffness by

GJ =
GA

Amax
Jmax, (2)

with Jmax = π
R4

2 being the maximal polar second moment of area. As a first order
approximation, this formula has been transposed to our cable model. In addition,
as one of the study prime interests is to determine the influence of the shearing,
the same torsional stiffness is used for the EBM so that the comparison is only
focused on the shearing.

3.2 Buckling theory of an Euler-Bernoulli beam and a Timo-
shenko beam

Within the framework of the 2D buckling theory, an initially perfectly straight
homogeneous beam of length L subjected to an axial compressive load P is con-
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Figure 6: Buckling of a clamped-clamped Timoshenko beam: schematic repre-
sentation and notations.

sidered (see Fig. 6). Under this load, the beam fails and undergoes a transverse
deflection w. The calculations are developed for the deformed shape of the beam
(after buckling) at 2nd order (moderate rotations hypothesis) and leads, for a per-
fect TM beam, to the governing equations [Bažant and Cedolin, 2010]

θ
′′′(x)+

P
EI

(
1+

P
GA

)
θ
′(x) = 0,

w′(x) = θ(x)− EI
GA+P

θ
′′(x),

(3)

where the transverse displacement w and the angle of rotation of the cross-section
θ are the unknowns of the problem which depend solely on the abscissa along the
beam x. EI is the bending stiffness and GA is the shearing stiffness. Depending
on the shearing force used for defining the shearing stiffness, this latter coefficient
may have different values (see [Bažant and Cedolin, 2010], pp. 34). Let us point
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out that the shearing force used here is the one of the geometrically exact beam
model [Cottanceau et al., 2018], that being the force contained in the plane of the
cross-section and not necessarily normal to the centerline, T (see Fig. 6). The
prime symbol ′ denotes the derivative with respect to x.
In absence of shearing, the shearing coefficient GA tends toward infinity and equa-
tion (3b) becomes θ(x) = w′(x), which reads as the cross-sections remaining nor-
mal to the centerline along the deformation. In that case, introducing (3b) in (3a)
simplifies in

w′′′′(x)+
P
EI

w′′(x) = 0, (4)

which is the equation governing the buckling of a EBM beam. Solving these
equations for a clamped-clamped beam, i.e with the boundary conditions w(0) =
w(L) = 0 and w′(0) = w′(L) = 0 for the EBM and θ(0) = θ(L) = 0 for the TM
leads to the respective critical forces

PEB
cr =

4π2EI
L2 , PT

cr =
GA
2

(√
1+16π2 EI

GAL2 −1

)
. (5)

In a real case, such as the experimental bench, the beam is not perfect. The theory
of imperfect beams is herein developed solely for the TM, and the few important
results are deduced for the EBM by making GA tend to infinity. The presence of
an initial flaw (w0(x),θ0(x)) is taken into account by replacing w and θ by w+w0
and θ + θ0 respectively in equation (3). It is assumed that initially there is no
shearing so that θ0(x) = w′0(x). In addition, when the load P is equal to 0 the
beam is undeformed and thus w(x) = θ(x) = 0: introducing these hypotheses in
equation (3) leads to θ ′′0 (x) = w′′′0 (x) = 0. Accounting for all these points leads to
the imperfect TM beam governing equations

θ
′′′+

P
EI

(
1+

P
GA

)
(θ ′+w′′0) = 0,

w′ = θ − EI
GA+P

θ
′′.

(6)

Now introducing the dimensionless variables

θ̄ = θ , w̄ =
w
h

and x̄ =
x
L
, (7)

in (6), with h being the characteristic length of the cross-section (diameter for a
circular cross-section or thickness for a rectangular cross-section), one can write
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the dimensionless equations governing the flawed beam (where the dependency
in x has been dropped for simplicity)

θ̄
′′′+ k̄2

θ̄
′ =−α k̄2w̄′′0,

w̄′ =
1
α

θ̄ − η

α(1+η k̄2
0)

θ̄
′′.

(8)

In equation (8) the following dimensionless characteristic parameters have been
introduced:

α =
h
L
, η =

EI
GAL2 , k̄2

0 =
PL2

EI
, k̄2 = (1+η k̄2

0)k̄
2
0 =

(
1+

P
GA

)
PL2

EI
, (9)

where α is the height to length ratio, η is the bending to shearing stiffness ratio,
k̄0 the dimensionless wave number of an Euler-Bernoulli beam and k̄ the dimen-
sionless wave number of a Timoshenko beam. Among these parameters, η is of
paramount importance in understanding the influence of shearing since it is the
only parameter which depends on GA (k̄ depends indirectly on GA through η).
As a result, the Euler-Bernoulli model is obtained from the Timoshenko model
by setting η = 0. Therefore, by applying η = 0 in the expressions (9) above, the
characteristic parameters of the Euler-Bernoulli beam reduce to only α and k̄0 and
the equilibrium equation of the imperfect EBM becomes simply

w′′′′+ k̄2
0w′′ =−k̄2

0w′′0. (10)

In the case of a clamped-clamped beam, one may decently assume that the initial
deflection writes w̄0(x) = ā0 (1− cos(2π x̄))/2 with ā0 = a0/h and a0 being the
magnitude of the initial flaw at the middle of the beam (x̄ = 1/2). The system
(8) is a nonhomogeneous system of two linear differential equations with constant
coefficients. Summing the general solution of the homogeneous system associ-
ated to (8) and a particular solution of the full system searched under the form(
wP(x) = F cos(2πx), θP(x) = Gsin(2πx)

)
, F,G ∈R, gives the general solution

of (8) depending on 4 real constants. These constants are determined with the 4
boundary conditions of a clamped-clamped beam w̄(0) = θ̄(0) = w̄(1) = θ̄(1) = 0
and leads to the solution

w̄(x) =
āT

2
(1− cos(2π x̄)) ,

θ̄(x) = āT
πα(1+η k̄2

0)

1+η
(
k̄2

0 +(2π)2
) sin(2π x̄).

(11)
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In this equation, āT is the maximal transverse displacement (in x̄= 1/2) and writes
as a function of the load P (implicitly, inside k̄0 and k̄), of the initial flaw ā0 and
of the parameters of the problem:

āT (P, ā0) = ā0k̄2
0(P)

1+η
(
k̄2

0(P)+(2π)2)
(2π)2− k̄2(P)

. (12)

Consequently, it is noticed that for P = 0, k̄(0) = 0 and thus āT (0) = 0.
Besides, for η = 0 (and k̄ = k̄0), the maximal displacement of a Euler-Bernoulli
beam is deduced and equals

āEB(P, ā0) = ā0
k̄2

0(P)
(2π)2− k̄2

0(P)
. (13)

3.3 Models comparison

(a) (b)

Figure 7: Influence of the shearing on the critical force: (a) ratio of the TM critical
force to the EBM critical force as a function of the shearing parameter η ; (b)
ratio of the partial derivatives with respect to GAL2 and EI, r =

∣∣∣ ∂PT
cr/∂ (GAL2)

∂PT
cr/∂ (EI)

∣∣∣, as a
function of η .
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(a) EBM axial load vs. transverse displacement equilibrium curves for several values
of the normalized initial deflection ā0.

(b) TM axial load vs. transverse displacement equilibrium curves for several values of
the shearing parameter η and a fixed initial deflection ā0 = 2. The result is compared
to the EBM equilibrium curve with the same ā0.

Figure 8: Normalized equilibrium curves for the TM and the EBM and influence
of the main parameters.
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The model described above requires a few comments. The influence of shear-
ing in the TM is observed first by studying the evolution of the critical load as a
function of shearing stiffness. From formulas (5), one can write the ratio of TM
to EBM critical loads as

PT
cr

PEB
cr

=
1

8π2η

(√
1+16π2η−1

)
. (14)

On figure 7(a), the evolution of this ratio with respect to η is depicted. One notices
that for small values of η (η < 10−4) the critical force is almost identical for both
the EBM and the TM. For higher values (η > 10−4), the influence of shearing
becomes significant and the TM critical loads highly decrease for increasing η :
for instance, for η = 5 · 10−2, the TM critical loads are twice smaller than the
EBM critical load.
Then, to compare the influence of the stiffnesses GAL2 and EI on the TM critical
load, the ratio r of the partial derivatives of the critical load with respect to both
these parameters is examined :

r =
∣∣∣∣∂PT

cr/∂ (GAL2)

∂PT
cr/∂ (EI)

∣∣∣∣= ∣∣∣∣η− 1
8π2

(√
1+16π2η−1

)∣∣∣∣ . (15)

The meaning of this ratio is easily understood by observing limit cases:

• r −→ 0 interprets as a null dependency of PT
cr in GAL2 with respect to EI:

bending totally overrides shearing for influencing the critical load;

• r = 1 means that the variations of GAL2 and EI equally influence the vari-
ation of PT

cr: shearing and bending equivalently influence the critical load
;

• r −→ ∞ interprets as a null dependency of PT
cr in EI with respect to GAL2:

shearing totally overrides bending for influencing the critical load.

The evolution of r as a function of η is exhibited on Fig. 7(b). When η � 1 this
quantity becomes r≈ 4π2η2. This equation and the figure 7(b) thus demonstrates
that, the more η is small, the more the influence of the shearing stiffness GAL2

on the critical force is weak in comparison to EI. In a general manner, as η is
usually lower than 1, the influence of GAL2 is always smaller than the influence
of EI (r < 1): by way of consequence, bending stiffness has a higher influence on
the buckling load than shearing stiffness.
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From the expression of the TM critical load (5), one may introduce the quan-
tity γ which solely depends on the shearing parameter η and is defined by

γ(η) =
PT

cr
GA

=
1
2

(√
1+16π2η−1

)
. (16)

Using this new variable and the normalized axial load P̄T = P
PT

cr
, the normalized

transverse displacement āT expressed in (12) comes

āT =−ā0
γ(η)P̄2

T +(1+ γ(η)+ γ2(η))P̄T

γ(η)P̄2
T + P̄T − (1+ γ(η))

. (17)

Similarly, the normalized EBM transverse displacement (13) writes

āEB = ā0
P̄EB

1− P̄EB
, (18)

with the normalized axial load P̄EB = P
PEB

cr
. The rewriting of these normalized

quantities shows that the normalized transverse displacement depends only on the
initial default ā0 and on the shearing parameter η for the TM and only on the
initial default ā0 for the EBM. Plots of the TM and the EBM transverse displace-
ment with respect to the applied axial load are depicted on figure 8 for several
values of the parameters ā0 and η . These curves show that the initial deflection
softens the right angle of the perfect beam equilibrium curve: the change of slope
due to buckling is more abrupt when the initial deflection is small and thus tends
toward the perfect beam model when ā0 tends toward 0. This interprets as a ear-
lier buckling for a structure with initial deflection which hence is more sensitive
to buckling phenomena. The shearing parameter in the TM has almost the same
role, but the TM tends toward the EBM for a decreasing η and an identical initial
deflection instead of the perfect model. The shearing thus add flexibility to the
structure.

Besides, the 2nd order TM buckling theory is also compared to the geometri-
cally exact beam theory (GEBM) [Cottanceau et al., 2018] on figure 9. The equi-
librium curves for several values of η show that the 2nd order theory agrees with
the exact theory on a large range of applied force and that the curves depart from
each other when approaching the critical force value. The divergence starts be-
coming significant at around 95 % of the critical force value. After this point, the
beam modeled with the geometrically exact theory becomes stiffer.
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Figure 9: Normalized equilibrium curves for the simulation
[Cottanceau et al., 2018] based on a geometrically exact beam model (TM).
The results are presented for several values of η and compared to the 2nd order
TM buckling theory.

3.4 Identification
As explained before, the identification process is based on the beam model with
an initial flaw which is more realistic and allows fitting on experimental data.
For facilitating the optimization process of the TM, the TM transverse displace-
ment (12) is first rewritten under the form

aT = a0
P
P0

1+η

(
(2π)2 + P

P0

)
(2π)2−

(
1+η

P
P0

)
P
P0

= a0 fopt(P,P0,η), (19)

with P0 = EI
L2 . Fitting the parameters ā0, P0 and η is carried out in the least-

squares sense, using the experimental transverse displacement aexp and the ap-
plied axial load Pexp as the observed outputs and inputs of the problem respec-
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tively. The Optimization toolbox of Matlabr is used to run a multistart opti-
mization on the fitting problem (19) based on the trust-region-reflective algorithm
[Coleman and Li, 1996a, Coleman and Li, 1996b]. As the problem is linear into
a0, a splitting between the linear part and the nonlinear part fopt is done, so that the
optimization algorithm is only performed on P0 and η . Indeed, at each iteration k
of the optimization algorithm, candidate values of P0 and η are tested, which we
denote Pk

0 and ηk. As a result, it comes from(19) that aexp = a0 fopt(Pexp,Pk
0 ,η

k) =
a0 f k

opt, with f k
opt being a known coefficient at iteration k for any given value of

Pexp. As a result a0 is obtained at each step of the iterative process by linear
regression.

The parameters P0 and η are searched into the respective ranges [0, 105] and
[10−8, 2.5 ∗ 10−2]. From the parameters obtained after the optimization process,
one deduces easily the material parameters EI = P0L2 and GA = P0

η
.

For the EBM, the expression of the transverse displacement (18) is rewritten with
the help of the expression (5)

āEB = ā0

1
4π2

P
P0

1− 1
4π2

P
P0

. (20)

The Southwell plot method [Bažant and Cedolin, 2010] could have been used as
identification method for the EBM. However, for keeping consistency in the iden-
tification process of the two methods, the same method as for the TM is used with,
this time, an optimization focusing only on P0 searched into the range [0, 105].
An illustration of the experimental points and the corresponding fitted curves is
provided on figure 10(b).

3.5 Optimization process testing
To determine the robustness of the optimization process developed in section 3.4,
a reverse testing has been set up. For this purpose, 3 sets of mechanical param-
eters have been chosen, covering a range of η from 2.5 10−4 to 2.5 10−2, and
supplied in "theoretical" rows of table 2. With these data, the buckling test exhib-
ited on figure 6 has been simulated with the beam simulation algorithm described
in [Cottanceau et al., 2018]. From the simulation, the equilibrium curve repre-
senting the theoretical transverse displacement at the middle of the beam ath as a
function of the applied axial force Pth is obtained. Then, selecting and using 20
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equidistant points on this curve which act as virtual experimental points, the op-
timization process of section 3.4 is launched for both the EBM and the TM. The
identified beam parameters, which are EI, GA and a0, are finally compared to the
initially chosen parameters in table 2.
The results show that:

• The initial deflection is well predicted.

• The fitted mechanical parameters for the TM are very close to the theoretical
values for a large η and drift apart when η decreases. This is very significant
for the error on GA value and less for the error on EI value which is at worst
of 9.3 % on the chosen tests.

• Conversely, the fitted bending stiffness for the EBM is very close to the
theoretical values for a small η and drift apart when η increases.

These results match well with the fact that for a very stiff beam in shearing di-
rection, GA has a lower influence on the buckling effect (figure 7), and by way of
consequence is harder to identify with our model. Conversely, the results are very
encouraging for a small shearing stiffness. For the EBM, the results are reversed
since it is harder to fit a no-shearing model on a beam with a large shearing defor-
mation with accuracy, while the algorithm behaves well for a beam with almost
no shearing.

3.6 Example of identification
To check the reliability of our method, the identification process has been first
tested on a ruler made of homogeneous steel and whose material and geometrical
properties are provided in table 3. These data along with equation (5) lead to the
TM critical load 42.5 N.
The test bench described in section 2 is used to apply the buckling test to the steel
ruler (see Fig. 10(a)). Post-processing of the data given by the force sensor and
the vision system gives the experimental axial force vs. transverse displacement
equilibrium curves (Fig. 10(b)). Applying the identification method described in
section 3.4, leads to beam parameters EI = 45.56 10−3 Nm2 and GA = 23.4 103

N for the TM and EI = 45.47 10−3 Nm2 for the EBM.
The value of the shearing stiffness is quite far from the expected value. However,
as the ruler is very stiff in this strain direction (theoretical bending to shearing
ratio ηth = 1.39 10−6), the impact of GA on the reaction force is very small (as
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Timoshenko Euler-Bernoulli

EI (N.m2) GA (N) a0 (mm) η EI (N.m2) a0 (mm)

Test 111

Theoretical 1.018 367 2.0 2.5 10−2 1.018 0.002

Fitted 1.021 384 2.0 2.44 10−2 0.64 2.4

Relative error 000...333% 444...888% 000...777% 444...333% 333777% 222000...999%

Test 222

Theoretical 1.018 3.67 103 2.0 2.5 10−3 1.018 2.0

Fitted 1.022 4.63 103 2.0 2.0 10−3 0.95 2.0

Relative error 000...444% 222666...333% 000...444% 222000...555% 666...555% 000...888%

Test 333

Theoretical 1.018 3.67 104 2.0 2.5 10−4 1.018 2.0

Fitted 1.11 4.82 103 2.0 2.1 10−3 1.032 2.0

Relative error 999...333% 888666...888% 000...555% 777333222% 111...444% 111...000%

Table 2: Optimization algorithm testing.

Material Cross-section Length Beam parameters

E ν w h L EI GA

203 GPa 0.33 18.1 mm 0.52 mm 200mm 43.1 10−3 Nm2 718 103 N

Table 3: Steel ruler geometrical and mechanical properties

demonstrated by figures 7(a)-(b) for small η). As a result, a high accuracy was not
expected (see also section 3.5 for a discussion around this topic). Nevertheless,
the identified GA is high (experimental ηexp = 4.87 10−5) which is in accordance
with the ruler shearing stiffness and we expect better accuracy for more flexible
cables. The identified EI for the EBM and the TM are in agreement with each
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(a) (b)

Figure 10: Fitting of Euler-Bernoulli and Timoshenko curves on experimental
data for a steel ruler: picture of the ruler during a test (left); experimental and
fitted curves (right).

other and the error with respect to the theoretical value is around 6%. It thus
proves the fidelity of this identification for the bending modulus.

4 Identification method on a buckling test: experi-
mental results

4.1 Cables under study
The whole identification process described in section 3 is here applied to 5 sam-
ples of cables. These samples, representative of the stranded cables that can be
found in automotive industry and pictured figure 11 will serve as a basis for all
the experimental results presented in this section and the following.
The samples that we will denote from 1 to 4 are made of 50 signal wires whose
core is made up of 18 annealed copper filaments of Young’s modules Ecu =
120GPa and Poisson ratio νcu = 0.33 surrounded by an insulating elastomer of
polypropylene (PP) of Young’s modulus EPP = 1GPa and Poisson ratio νPP =
0.42. The filaments diameter is equal to d1

cu = 220µm, the core diameter is equal
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to dsig
int = 0.98mm while the external diameter dsig

ext ranges in [1.38 1.78]mm. The
total diameter of each one of these stranded cables is dsig

cab = 18.1 mm. The dif-
ference between the four cables stands in the protection covering the wires. The
four samples are surrounded by respectively: an anti-noise tape, a textile sheath,
a smooth sheath and a ringed sheath (see Fig. 11).
The sample 5 is made of 5 power wires whose core is made of 105 annealed cop-
per filaments surrounded by an insulating elastomer of cross-linked polyethylene
(PE/PP) whose Young’s modulus is EPE = 1Gpa and Poisson ration is νPE = 0.4.
The filaments diameter is d2

cu = 280µm, the core diameter is dpow
int = 2.98mm and

the external diameter dpow
ext ranges in [3.62 4.50]mm. Its total diameter is dsig

cab = 13
mm. This sample protection is the same ringed sheath as sample 4.
With all these data, and using the expression (1), the axial Young’s modulus for
the samples 1 to 4 is in the range [33.7 55.4] GPa and for the sample 5 is in the
range [49.3 75.7] GPa. Numerically, the axial stiffness being nonessential, the
upper bound is arbitrary chosen as nominal value.

Figure 11: Cables under study numbered from 1 to 5, from top to bottom.
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4.2 Test description/measure

Figure 12: Illustrative scheme of the experimental buckling test seen from camera
1 point of view.

The clamped-clamped buckling test configuration is such as illustrated on fig-
ure 12. The loading consists in applying an axial displacement to the top extrem-
ity of the cable, achieved in Nincr = 40 increments, while the other extremity is
clamped. Each one of these increments corresponds to an out-of-charge displace-
ment of norm ∆z = 1.75 mm operated by the robot, so that the total displacement
is Nincr∆z= 70 mm. In practice, as the robot has its own flexibility, it is not the real
displacement applied. However, we are able to get the applied force through the
force sensor and the displacement applied may be found a posteriori thanks to the
vision system. The transverse displacement at the middle of the cable between the
initial position and the current position is measured via the vision system. With
all these data, the experimental equilibrium curve is obtained (Fig. 13).

4.3 Identification
From the experimental equilibrium curve, the identification process expressed in
section 3.4 may be applied. As the 2nd order theory is valid only for moderate ro-
tations, solely the first points of the equilibrium curve are used for identification.
An example of identification curve for samples 4 and 5 is presented on figure 13.
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The mechanical properties obtained from the identification process explained in
section 3 for the EBM and the TM are summarized in table 4. Let us first notice
that the range of the identified bending stiffness is very narrow, which is quite
reassuring since the cables have all a similar internal structure, except sample 5.
A rough qualitative analysis of the samples protections gives the following expec-
tations for the results:

• the ringed sheath of samples 4 and 5 is only surrounding the cables without
sticking to them and as it is smooth does not prevent slipping between the
wires;

• the anti-noise tape of sample 1 sticks to the wire but it is not fully covering
the sample (gap between the coils) so it weakly blocks the slipping;

• the smooth sheath of sample 3 does not stick to the wires but is not ex-
tensible and thus there is a contact interaction between the cable and the
protection during bending which makes the cable stiffer in bending direc-
tion;

• the textile sheath of sample 2 is very extensible and does not block the
slipping between wires.

One would hence expect a low shearing stiffness for samples 1, 2, 4 and 5 and
a high shearing stiffness for sample 3. It thus coincides with the results of table
4 except for sample 2 which have a high GA. With respect to the identification
results, in the following, we will classify these cables into two categories: low
shearing stiffness cables (samples 1, 4 and 5); high stiffness cables (samples 2
and 3).
The values of the experimental maximum initial deflections have also been re-
ported in table 4. They are indeed the only parameters identified that can be
compared to measures. There is a quite large discrepancy between the identified
deflections and the true initial deflections: for all samples the identified deflec-
tion has order of magnitude 1 mm while the real deflection order of magnitude
is 10 mm. This discrepancy explains first by the difference between the real ini-
tial shape and the model initial shape: the maximum initial deflection does not
represent the exact same measure for both cases. It may also simply originate
from an error due to the optimization process. Indeed, while not having the same
exact contribution (see equation (19)), initial deflection has an effect similar to
shearing on the equilibrium curve (see figure 8). As a result, the two parameters
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might compensate each other’s influence on the actual deflection. In that case,
the smaller identified initial deflection would mean that the shearing parameter is
underestimated by the optimization process.

Figure 13: Identification curves on the buckling test for samples 4 and 5.

4.4 Comparison to literature values
It is interesting to compare the results from the identification process with the the-
oretical results from the literature. According to [Filiatrault and Stearns, 2005],
the theoretical bending stiffness ranges in [EImin EImax]. In this range, the minimal
bending stiffness EImin corresponds to all the wires of the cable slipping against
each other and thus writes as the sum of the bending stiffness of each wire, that

be EImin = NEcomp
πd4

wire
64 for N wires of same diameter dwire and Young’s modu-

lus Ecomp obtained from the composite formula (1). The maximal stiffness EImax
corresponds to all the wires sticking against each other and thus forming a unique

beam whose stiffness writes EImax = Ecomp
πd4

cab
64 for a cable of total diameter dcab.

With these expressions, the parameters values from section 4.1 and using equation
(1) for calculating the Young’s modulus Ecab, one demonstrated that the ranges are
equal to [3.19 80.3] Nm2 for the samples 1 to 4 and [3.19 41.4] Nm2 for the sam-
ple 5. The results found in table 4 are far below these ranges. Even if surprising,
this result find two explanations. Firstly, there exist uncertainties on the values
of the Young’s moduli given in section 4.1 which have been obtained from text-
books on the given materials and not by experimental characterization. Secondly,
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Cable Sample 111 Sample 222 Sample 333 Sample 444 Sample 555

Id
en

tifi
ed

(c
f.

3.
4) Timoshenko

EIT (mN.m2) 95.3 64.1 71.9 74.9 79.2

GAT (N) 43.5 9710 2322 37.8 36.5

η 7.38 10−3 2.08 10−5 1.04 10−4 6.67 10−3 7.31 10−3

aT
0 (mm) 0.14 0.93 1.2 1.7 1.9

Euler-Bernoulli
EIEB (mN.m2) 59.2 63.9 70.9 47.8 49.4

aEB
0 (mm) 0.20 0.93 1.2 2.0 2.2

E
q.

(1
)

Common parameters
EA (mN) 14.3 14.3 14.3 14.3 10.0

E
q.

(2
)

GJ (mN.m2) 1.8 397.6 95.1 1.5 0.77

True initial deflection aexp
0 (mm) 10.8 9.2 12.2 8.6 10.5

Table 4: Identification results for the 5 samples: values of all the identified or
calculated parameters for both the EBM and the TM.

each individual wire of the stranded cables tested is too flexible to be tested on
our test bench. As a result, the bending modulus of the wires (which also have
a complex internal structure since their core is braided) could not be determined
experimentally. As the error on individual wires bending stiffness strongly affects
the theoretical range, it is the second main source of error. Let us point out that
these conclusions also show that experimental testing is very hard to outmatch by
analytical theories for modeling non homogeneous cables.
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5 Post-buckling test

5.1 Experimental vs. numerical approach
In the previous sections, the EBM and the TM referred to the 2D buckling theories
which were developed for applying the identification process, for understanding
the role of shearing in the TM and for comparing both methods. As all these
topics have been treated, both these theories are not apropos anymore in the de-
velopment of this article. For this reason, from this point forward and until further
notice, the EBM and the TM will not refer anymore to the buckling theories but
in a more general fashion to the 3D nonlinear beam models respectively without
shearing and with shearing. In particular, these abbreviations will often refer to
the numerical model [Cottanceau et al., 2018] used with or without shearing.
In the coming sections, several experimental results, obtained from the test bench,
are compared to numerical results originating from [Cottanceau et al., 2018]. Even
though this simulation is based on a geometrically exact beam model, the me-
chanical parameters found through the identification process described in section
3 (originating from the 2D buckling theory) are used in the simulation, since one
assumes they are identical. This simulation is TM-based and takes into account
shearing. Nevertheless, as it was shown before, the TM is strictly equivalent to the
EBM for η = 0. For this reason, what is called EBM simulation in the following
corresponds to the use of the same numerical tool with the shearing parameter η

set to 10−8. Additionally, this numerical simulation takes into account the initial
curvature of the cables. As simulations may be run for both the true (real) initial
geometry of the cable obtained from the vision system and for an initially per-
fectly straight (idealized) cable, both cases will be distinguished. The former will
be called real or imperfect cable while the latter will be called idealized or perfect
cable.
As a last warning, to avoid confusions, as numerical and experimental results will
be mixed for comparison, it will always be clarified in the main body and the fig-
ures which one is discussed, except if it is self-evident.
Finally, let us notice that the following comparisons focus both on the final de-
formed shapes and on the equilibrium curves during loading. If not explicitly
mentioned, the color map on numerical deformed shapes depicts the Von Mises
stress on the surface of the cable (computed only for numerical simulations).
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5.2 Test description
5.2.1 Experimental

The current section test, denoted post-buckling test, actually corresponds to the
continuation of the buckling test. It is therefore exactly such as described in sec-
tion 4.2 and on figure 12. However, in section 4, solely the first points of the
equilibrium curve were exploited for identification and there was no comparisons
of the geometries nor of the last points of the equilibrium path.
Let us also notice that, for some of the experimental tests, unloading was also
recorded. For these tests, once the Nincr = 40 loading increments were achieved,
40 supplementary increments of identical size were applied but in the opposite
direction, that being in the z-positive direction.

5.2.2 Numerical

In the numerical simulation, one extremity of the beam is clamped while the other
extremity rotations are blocked and its displacements prescribed. As already said
in section 4.2, the displacement commanded to the robot corresponds to its out-
of-charge displacement and not to the true displacement, since the cable stiffness
alters the robot motion. In addition, there might exist a slight bias between the
commanded trajectory of the robot (a straight line in the z-axis direction) and the
real trajectory (a straight line but not perfectly aligned with the z-axis) due to
calibration error. As a result, for a more accurate comparison, the displacement
applied in the numerical simulation corresponds to the displacement of the robot
tip extracted from the vision system data.
The real simulation is run normally, the initial geometry being extracted from the
vision system. For the idealized case, no buckling direction is favored, and the
cable could possibly buckle in any direction. For this reason, an initial deflec-
tion similar to the one of the analytical model (section 3, of the form w0(x) =
a0
2

(
1− cos

(2πx
L

))
) was added. As this perturbation is purely artificial and deter-

mines the buckling direction, it is not relevant to compare the geometry of the
idealized case to the experimental geometry. The idealized case is thus restricted
to the equilibrium curves comparison.

5.3 Results
The equilibrium curves of samples 2 and 4 for the post-buckling test are depicted
respectively on figures 14 and 15. The corresponding deformed shapes in initial
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Figure 14: Post-buckling test - Equilibrium curves for sample 2 (large identified
GA): transverse displacement of the beam middle vs. axial displacement (left)
and axial force (right).

Figure 15: Post-buckling test - Equilibrium curves for sample 4 (small identified
GA): transverse displacement of the beam middle vs. axial displacement (left)
and axial force (right).

and final configurations are pictured on figures 16 and 17. Samples 2 and 4 were
chosen as illustration here because the sample 2 is representative of the samples
with a large identified GA while the sample 4 represents the samples with a small
identified GA (see section 4.3).
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Figure 16: Post-buckling test - Final deformed shape of sample 2 with TM, EBM
vs. experimental deformed shape.

Observing the force-based equilibrium curves, the reader will notice that the nu-
merical model (for both EBM and TM) do not superimpose well with the experi-
mental points even for the idealized model, especially for sample 4. It may look
erroneous but, as explained in section 5.2.2, the numerically applied displacement
is not solely an axial displacement but the displacement extracted from the vision
system, which may have small components in x and y direction as well but is a
more objective measure of the real loading. It is thus common sense that the curve
does not match perfectly the idealized analytical curve which was used for identi-
fication.
This difference aside, the first comment one can made on equilibrium curves is
that while the numerical curves have qualitatively the same form as the experimen-

33



Figure 17: Post-buckling test - Final deformed shape of sample 4 with TM, EBM
vs. experimental deformed shape.

tal curves, the values are different. For displacement-based curves, the transverse
displacement is always greater on numerical simulations. The more likely expla-
nations are the unexpected local and sometimes abrupt changes of curvature due
to local phenomena observed on the deformed shapes (see Fig.16 and 17). These
local phenomena may appear because the cable is not totally homogeneous along
its centerline and local weaknesses appear. The non-homogeneity is caused by un-
conventional arrangements of the wires and the interaction between the wires and
the protection. For the force-based equilibrium curves, even if the order of magni-
tude is acceptable, there exists a significant difference between the real simulation
and the experimental points. This difference comes from a flaw which is greater
in the real cable than the flaw a0 of the analytical model obtained by the optimiza-
tion process: this initial curvature plays a softening role, as justified in section 3.3,
and explains why the reaction force is systematically underestimated in the real
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simulation.
Besides, one notices that equilibrium paths are very similar for both the EBM and
the TM whether displacement-based or force-based curve and whether idealized
or real model are looked at. For the large GA case (sample 2), the EBM and the
TM even coincide almost perfectly and illustrate the fact that the EBM is the limit
case of the TM when GA tends to infinity. When GA is smaller, the transverse
displacement is slightly greater for the TM because the shearing makes the cable
more flexible but stay very close to the EBM.
Finally, in both models, it looks like accounting for initial curvature does not im-
prove the results on this example and that the buckling direction prediction is not
very robust (looks well for the sample 2 and not well for the 4) as proved by
displacement-based paths and deformed shapes. However, as a buckling test is
very sensitive to any perturbation, these errors may be easily understood .
As a last and purely experimental remark, the experimental force-based curve of
figure 15 which contains the unloading step reveals an hysteresis: the reaction
force is smaller on the way back. It is clearly explained by dry friction as ex-
plained in introduction of this paper.

6 3D displacement
The procedure for this test is exactly the same as the procedure described in sec-
tion 5.1 for the post-buckling test and is not recalled here.

6.1 Test description
Experimentally, the 3D displacement test configuration is such as illustrated on
figure 18. The loading consists in applying a 3D displacement (not only in axial
direction) to the top extremity of the cable, achieved in Nincr = 36 increments,
while locking its rotational degrees of freedom and with the bottom extremity
clamped. Each one of these increments corresponds to an out-of-charge displace-
ment ∆uuu = [∆x ∆y ∆z]T with ∆x =−4 mm, ∆y = 0.5mm and ∆z =−3 mm.
Numerically, the simulation is set up following the exact same procedure as in
section 5.2.2, except for the initial geometry of the idealized case which is here
perfectly straight (unlike buckling test, there is no need of initial perturbation).
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Figure 18: 3D displacement test illustrative scheme seen from camera 1’s point of
view (left) and from above (right).

Figure 19: 3D displacement test - Equilibrium curves for sample 1: transverse
displacement at beam middle vs. axial displacement (left) and axial force (right).

6.2 Results
The equilibrium curves of samples 1 and 3 for the 3D displacement test are de-
picted respectively on figures 19 and 20. The corresponding deformed shapes in
the final configuration are pictured on figures 22 and 23. The evolution of the
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Figure 20: 3D displacement test - Equilibrium curves for sample 3: transverse
displacement at beam middle vs. axial displacement (left) and axial force (right).

Figure 21: 6 reaction forces and torques during loading for the experiment and the
real Timoshenko model - sample 1.
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Figure 22: 3D displacement test - Final deformed shapes of sample 1 with TM,
EBM vs. experimental deformed shape.

Figure 23: 3D displacement test - Final deformed shapes of sample 3 with TM,
EBM vs. experimental deformed shape.
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reaction forces and torques along loading are also provided for sample 1 in figure
21.
The numerical force-based equilibrium curves are quite different from the exper-
imental ones, even the equilibrium path shape being unalike. Despite that, the
order of magnitude predicted, which is what really matters in an industrial envi-
ronment, is fairly good for all samples. In addition, the evolution of the reaction
force components shows that the numerical model predicts well the main contri-
bution of forces in x and z directions, even if the values are different. As for the
post-buckling test, the reaction force of the real beam is lesser than the idealized
beam on the equilibrium curve in this example because of the bigger initial flaw.
These results are confirmed by the evolution of the forces components.
The displacement-based paths evidence a very good prediction of the geometry
by the numerical model, confirmed by the deformed shapes: the numerical shapes
differ only from the experimental shapes because they are smoother (no local
changes of curvature). Accounting for the initial curvature in this example leads
to a great improvement of the geometry and the displacement-based curves in this
configuration almost match perfectly the experimental ones which is really note-
worthy.
As for the post-buckling test of section 5, the difference between the EBM and
the TM on the geometry is very subtle, even for the small GA case (sample 1, Fig.
22). The difference is more noticeable for the reaction forces of sample 1 but stay
very alike for both models.
Finally, the experimental force vs. displacement curves evidence again a different
path between loading and unloading, justified by dry friction. Additionally, one
observes even during loading a large force drop which was also noticeable on the
post-buckling test for sample 2 in a less significant manner (Fig. 14). This phe-
nomenon is probably due to a relaxation process at the boundary conditions. The
struggle to apply a strict clamping to a structure is indeed a well known problem
[Ritto et al., 2008] which we choose to put aside in this paper but which necessar-
ily alters the results on force reaction.

7 Influence of uncertainties on deformed shapes
In this section, the 3D displacement test described in section 6.1 is again studied
but only numerically. Hereinafter, influence of uncertainties on the identified pa-
rameters and on the initial geometry for the TM, which are the main inputs of the
simulation, is observed.
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7.1 Influence of shearing stiffness identification
7.1.1 Test description

This section focuses on the validity of the shearing stiffness identification and
its role on the final deformed shape. In this first uncertainties study, the axial
stiffness EA and the bending stiffness EI are kept constant and equal to their
nominal value identified in section 4.3. If we denote GAid the value of shearing
stiffness identified in section 4.3, the shearing stiffness is herein taken into the
range [0.1GAid ,10GAid]. Since the torsional stiffness chosen for the simulation
depends on the identified GA, one study two cases here:

• a case in which GJ is kept constant and equal to its identified nominal value;

• a case in which it is calculated from the shearing stiffness with the formula
(2).

This allows to assess the choice we have made to determine GJ without devising
another test.
Then, the numerical simulation is run for the two cases, for 50 values of GA
linearly chosen on a logarithmic scale of the range mentioned above. All the
final geometries are then gathered and a surface surrounding these geometries is
generated, which corresponds to the volume swept by the cable for the varying
GA.

7.1.2 Results

The results of this test for the samples 1 and 3 are displayed on figures 24 and 25.
These figures have several common features which leads to several significant
results:

• The volume covered is very wide, which demonstrates the importance of
well chosen parameters. In particular, for the sample 1, there exists two
main types of deformed shape: either the cable bends in the Y -positive di-
rection either it bends in the Y -negative direction. A bad identification may
thus lead to very erroneous solution.

• The volume covered is quite wide for both cases but there are not any im-
provements on the geometries predicted (see figures 22 and 23): it thus
strengthens the choice of the method of identification described in section
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(a) Varying GJ.

(b) Fixed GJ.

Figure 24: Volume swept by the cable in the final configuration for a varying GA
- sample 1.
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3.4. In particular, the venture of calculating GJ from GA as for a homo-
geneous beam seems to give good results. Let us denote that although the
experimental cable is not contained in this volume, it is mainly due to im-
precision on the length of the cable and not on the identified parameters.

• Both cases, especially the sample 3, evidence the paramount importance
of the torsional stiffness. For the sample 3, the geometry almost does not
change at all when GJ does not vary while it changes a lot in the second
case. GJ looks much more important than GA on the predicted deformed
shape. For the sample 1, it is less obvious but when GJ is kept constant
the volume covered is smaller and only one of the two branches (the good
one) cited above persists, which confirms this result: GA needs to be well
identified but have a limited impact on the geometry compared to GJ.

7.2 Influence of bending stiffness identification
7.2.1 Test description

This section focuses on the validity of the bending stiffness identification and its
role on the final deformed shape. In this second uncertainties study, the axial
stiffness EA, the torsional stiffness GJ and the shearing stiffness GA are kept
constant and equal to their nominal value identified in section 4.3. If we denote
EIid the value of bending stiffness identified in section 4.3, the bending stiffness is
herein taken into the range [0.1EIid ,10EIid]. For 50 values of EI linearly chosen
on a logarithmic scale of the range mentioned above, the numerical simulation is
run. All the final geometries are then gathered and a surface surrounding these
geometries is generated, which corresponds to the volume swept by the cable for
varying EI.

7.2.2 Results

The outcomes of this test for the samples 1 and 3 are displayed on figures 26
and 27. The first striking observation originating from these curves is that the
volume swept is almost identical to the volume swept for the first case of section
7.1 (figures 24(a) and 25(a)). The torsional stiffness and the flexural stiffness have
the same effect on the geometry.
Besides, in both experiments, the ratio of flexural over torsional stiffness belongs
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to the same range :
EI
GJ
∈
[
0.1, 10

]
· EIid

GAid

Jmax

Amax
. (21)

As a result, a possible explanation to the almost identical results is the very influ-
ential role of the ratio EI

GJ on the final geometry. The study of this factor is out of
the scope of this article.
As a consequence of the similarity between section 7.1 and the present results, the
conclusions are the same. In particular, our identification process seems to give
good results since the geometry is not improved by varying EI.

7.3 Influence of the initial geometry
7.3.1 Test description

This section focuses on the role played by the initial geometry on the final de-
formed shape. For that, a random initial configuration was generated by creating
10 equally-spaced points along the z-direction. The transverse coordinates of the
8 interior points were chosen according to a uniform law for x and y on the respec-
tive ranges [−Xmax

0 , Xmax
0 ] and [−Y max

0 , Y max
0 ], with Xmax

0 and Y max
0 the maximal

values of the coordinates in x and y directions of the real cable in its initial config-
uration: the points are thus contained in the right prism surrounding the real cable.
The first and the last of these 10 points were chosen such that their position co-
incides with the extremities of the real cable. The 10 points are then interpolated
by a 3D spline to form the initial centerline. For each of the 50 random initial
geometry, the simulation is then run and the final deformed shape obtained. All
the final geometries are then gathered and a surface surrounding these geometries
is generated, which corresponds to the volume swept by the cable for the varying
initial geometry.

7.3.2 Results

The results of this test for the samples 1 and 3 are displayed on figures 28 and
29. They clearly demonstrate two main results. Firstly, the volume covered by the
final shapes is very large in comparison to the initial volume: for the sample 1, it
is around 4.5 times superior to the initial volume and for the sample 2 it is 2.35
times superior. It hence shows that a small change in the the initial configuration
may lead to a large change in the final deformed shape and that initial geometry
plays a very important role on the final geometry.
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Besides, in spite of the large volume covered, the experimental deformed shape is
not contained in the volume predicted for both cases. It is noticeable in a moder-
ate way for sample 1 which is on the border of the volume but very noteworthy
for sample 3 for which the experimental geometry is clearly outside. When one
compares this result to the very good prediction observed on figure 23, it appears
very influential: it means that making one simulation is the good initial geometry
is better than a large number of simulations using a randomly generated initial
geometry. Consequently, it proves that not taking into account initial curvature
may lead to a considerable imprecision on the results.

8 Conclusion
In this paper, an experimental method for the validation of a numerical 3D ge-
ometrically exact beam model for the simulation of cables assembly has been
presented. As part of this method, a test bench allowing a quasi-static study of the
cables behavior has been devised. This bench allows to apply 3D displacements
and rotations to one end of the cable while the other end is clamped. The reaction
force and the centerline position are extracted thanks to respectively a force sen-
sor and a vision system. Taking advantage of the bench versatility, a buckling test
has been set up and, with the help of the buckling theory, is used for identification
of the homogeneous beam shearing parameter GA and bending stiffness EI of 5
samples of cables. The axial stiffness EA, which has less importance in the indus-
trial field of use, is reckoned from the geometrical and material properties of the
cable. The torsional stiffness GJ is retrieved from the identified GA and geomet-
rical properties. This identification features only one test for the determination of
the mechanical parameters and avoids devising another setup.
Using these identified parameters as inputs of the numerical model, two other
experiments are confronted with the simulation: a post-buckling study and a 3D
displacement test. The comparison is carried out on the deformed shape and on
the equilibrium curve. Lastly, a numerical study is carried out focusing on the
uncertainties of the parameter identification and of the initial geometry and their
impact on the final geometry.
Gathering the results of all these studies, which reveal several common features,
allows to draw the following conclusions:

• The Timoshenko model and the Euler-Bernoulli model give very similar
results even for a beam with low shearing stiffness. This conclusion stands
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for both the deformed shape and the reaction force prediction. As a result,
the shearing has a very small role for modeling the quasi-static behavior of
stranded cables, which is confirmed by the uncertainties study.

• The torsional stiffness GJ plays an important role on the final geometry. As
a proof, the uncertainties study of section 7 shows that a large variability in
the final shape is observed when GJ varies. Furthermore, the ratio EI

GJ looks
like a very influential mechanical parameter for the final geometry (see the
common results of sections 7.1 and 7.2).

• The buckling test seems as a good way to identify beam parameters since
only one test is necessary. In particular, the determination of GJ from GA
value gives very good results. It is confirmed by the fact that the geometry
is not improved by taking GJ values in a wide range surrounding the value
identified.

• The beam model used with the identification presented with this article
gives:

– Excellent results for the final geometry. It is amazingly good for the
3D displacement test, apart from a few local changes of curvatures
which do not spoil the final geometry. It looks less true for the post-
buckling example but it is a very demanding test. There indeed exists
a wide range of buckling directions possible for a loading case which
does not favor any deformation direction. In this case, the internal
structure, local phenomena or simply the error of measure of the ini-
tial deformed shape are perturbations that may explain the bad predic-
tion. However, in an industrial environment, such a demanding case
is pretty rare, and this conclusion should not question the good results
obtained for the 3D displacement.

– Only average results for the reaction forces likely because of dry fric-
tion. Nevertheless, let us notice that the order of magnitude is correct
and that the dominating force components are well predicted, which is
a fair point for automotive industry purposes.

– The two points above are true for the 5 samples tested. It thus seems
that despite their variety, the model works identically for any protec-
tion used.

45



• The initial geometry which was accounted for in the numerical model is
also of paramount importance for the final shape prediction. It seems that
not considering it may lead to very erroneous results.

• The values of bending stiffness obtained from the identification are not even
contained in the classical range of values of the literature. It thus seems that
analytically homogenized values may give wrong results.

To support these conclusions, additional experimental tests focusing on the quasi-
static manipulation of stranded cables in the 3D space should be carried out. In-
deed, the lack of a wide literature on this topic prevents from generalizing these
results to all sorts of stranded cables. In addition, an analytical study of the ra-
tio EI

GJ influence on the geometry seems as an interesting sequel to this work, as
it looks preponderant in the model. Besides, dry friction is clearly present in this
type of structures. Future researches on a way to account for the dry friction effect
in the beam model without spoiling its benefits (few parameters to identify, small
number of degrees of freedom) are also of great concerns. Likewise, pre-strains
have been studied in this paper but a thorough study of pre-stresses is of interest.
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(a) Varying GJ.

(b) Fixed GJ.

Figure 25: Volume swept by the cable in the final configuration for a varying GA
- sample 3.
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Figure 26: Volume swept by the cable in the final configuration for a varying EI -
sample 1.

Figure 27: Volume swept by the cable in the final configuration for a varying EI -
sample 3.
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Figure 28: Volume swept by the cable in the final configuration for a varying
initial geometry - sample 1.
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Figure 29: Volume swept by the cable in the final configuration for a varying
initial geometry - sample 3.
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