N

N

AgEBO-Tabular: Joint Neural Architecture and
Hyperparameter Search with Autotuned Data-Parallel
Training for Tabular Data
Romain Egele, Prasanna Balaprakash, Venkatram Vishwanath, Isabelle

Guyon, Zhengying Liu

» To cite this version:

Romain Egele, Prasanna Balaprakash, Venkatram Vishwanath, Isabelle Guyon, Zhengying Liu.
AgEBO-Tabular: Joint Neural Architecture and Hyperparameter Search with Autotuned Data-
Parallel Training for Tabular Data. SC ’21: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov 2021, St. Louis, Missouri, United
States. 10.1145/3458817.3476203 . hal-02973288

HAL Id: hal-02973288
https://hal.science/hal-02973288
Submitted on 21 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02973288
https://hal.archives-ouvertes.fr

AgEBO-Tabular: Joint Neural Architecture and
Hyperparameter Search with Autotuned
Data-Parallel Training for Tabular Data

Romain Egele
MSc&T AlViC
Ecole polytechnique
Palaiseau, France
romain.egele @polytechnique.edu

Prasanna Balaprakash
Mathematics and Computer Science Division
Argonne Leadership Computing Facility
Argonne National Laboratory
Lemont, Illinois, USA

Venkatram Vishwanath
Argonne Leadership Computing Facility
Argonne National Laboratory
Lemont, Illinois, USA
venkat@anl.gov

pbalapra@anl.gov

Isabelle Guyon
INRIA-LRI, Université Paris-Saclay
Orsay, France
& ChaLearn, USA
guyon@chalearn.org

Abstract—Developing high-performing predictive models for
large tabular data sets is a challenging task. The state-of-the-
art methods are based on expert-developed model ensembles
from different supervised learning methods. Recently, automated
machine learning (AutoML) is emerging as a promising approach
to automate predictive model development. Neural architecture
search (NAS) is an AutoML approach that generates and eval-
uates multiple neural network architectures concurrently and
improves the accuracy of the generated models iteratively. A key
issue in NAS, particularly for large data sets, is the large com-
putation time required to evaluate each generated architecture.
While data-parallel training is a promising approach that can
address this issue, its use within NAS is difficult. For different
data sets, the data-parallel training settings such as the number
of parallel processes, learning rate, and batch size need to be
adapted to achieve high accuracy and reduction in training time.
To that end, we have developed AgEBO-Tabular, an approach
to combine aging evolution (AgE), a parallel NAS method that
searches over neural architecture space, and an asynchronous
Bayesian optimization method for tuning the hyperparameters
of the data-parallel training simultaneously. We demonstrate the
efficacy of the proposed method to generate high-performing
neural network models for large tabular benchmark data sets.
Furthermore, we demonstrate that the automatically discovered
neural network models using our method outperform the state-
of-the-art AutoML ensemble models in inference speed by two
orders of magnitude while reaching similar accuracy values.

Index Terms—AutoML, Deep Learning, Data Parallelism, Tab-
ular, Big Data

I. INTRODUCTION

Tabular data sets are often diverse. They are obtained from
multiple sources and modes, where combining certain inputs
using problem-specific domain knowledge typically leads to
better and physically meaningful features and consequently
robust models [1]], [2]]. Many high-performing predictive mod-

Zhengying Liu
TAU, INRIA-LRI-CNRS

Orsay, France
zhengying.liu@inria.fr

els for tabular data are based on classical supervised machine
learning (ML) methods such as bagging, boosting, and kernel-
based methods. Specifically, ensemble methods that combine
models obtained from different supervised ML methods have
emerged as state-of-the-art for a wide range of predictive
modeling tasks with tabular data. However, design and de-
velopment of such ensemble models is a highly iterative,
manually intensive, and time-consuming task. Typically an
ML pipeline for tabular data is composed of several compo-
nents: data processing, dimension reduction, data balancing,
feature selection, hyperparameter tuning, model selection, and
ensemble strategy (such as stacking, bagging, and weighted
combination). Given the design choices for each component,
the complexity of designing an effective ML pipeline for
tabular data is often beyond nonexperts.

Deep neural networks (DNNs) have achieved significant
success in overcoming the issues of manual feature engineer-
ing and the complexities of developing classical supervised
ML pipeline. Nevertheless, designing DNNs for tabular data
has received relatively less attention compared with image
and text data. From the methodological perspective, there are
two main reasons. First, given the diversity of tabular data,
designing DNNs with shared patterns such as convolutional
and recurrent units is not meaningful unless further assump-
tions about the data are made. Second, fully connected DNNss,
which are typically used for tabular data, can potentially
lead to unsatisfactory performance because they can have
large numbers of parameters, overfitting issues, and a difficult
optimization landscape with low-performing local optima [3].

Automated machine learning (AutoML) is a promising ap-
proach to address the methodological challenges in developing
DNNs for tabular data. Neural architecture search (NAS), a

class of AutoML, is an approach to automate development of
customized DNNs for a given data set. The NAS methods can
be grouped into individual search methods and weight-sharing
methods. The former generate a large number of architectures
from a user-defined search space, train and validate each of
them, and use the accuracy values to improve the generated
architectures. The main advantage of these methods is par-
allelization: the generated architectures are independent, and
they can be trained simultaneously. The disadvantage is that
since each architecture is trained from scratch, architecture
evaluation is expensive and becomes a bottleneck for effective-
ness. To alleviate this issue, researchers proposed a different
approach where the trained weights or computations are shared
from an architecture to another during the search. This is
enabled by defining a search space as an overparameterized
network [4] (also named hypernetwork), where the search
samples subarchitectures and leverages the trained weights
and computations from previously trained subarchitectures.
This results in significant reduction of evaluation time for
several tasks. Nevertheless, the disadvantage of these methods
is the instability due to the optimization gap between the
supernetwork and its subarchitectures. In particular, optimizing
the hypernetwork does not necessarily results in high-quality
subarchitectures [5]].

We focus on individual NAS search for large tabular data
because of its ability to leverage multiple compute nodes to
find high-performing neural networks. Specifically, we adopt
aging evolution (AgE) [|6], a parallel NAS method that gen-
erates a population of neural architectures, training them con-
currently using multiple nodes, and improves the population
by performing mutations on the existing architectures within
a population. To reduce the training time of each architecture,
we utilize the widely used distributed data-parallel training
technique. In this approach, the large training data is split into
shards and distributed to multiple processing units. Multiple
models with the same architecture are trained on different data
shards, and the gradients from each model are averaged and
used to update the weights of all the models. Combining an
individual NAS search method with distributed data-parallel
training is a challenging task because the combination of
the two methods requires nested parallelism. Moreover, the
distributed data parallelism requires data-set-specific tuning of
parallelism, learning rate, and batch size in order to maintain
accuracy and reduce training time. To that end, we make the
following contributions:

o We develop AgEBO-Tabular, a joint neural architecture
and hyperparameter search that combines aging evolution
(AgE), a parallel NAS method [6] for searching the
neural architecture space, and an asynchronous Bayesian
optimization method for tuning the hyperparameters of
data-parallel training. AgEBO-Tabular searches the ar-
chitecture space and the hyperparameters of data-parallel
training simultaneously.

o We evaluate the efficacy of the proposed approach on
four large tabular data sets and show that AgE with the

autotuned data-parallel training outperforms the accuracy
of the AgE method by an order of magnitude less
computation time.

o We demonstrate that an automatically discovered single
neural network model is faster than the state-of-the-art
automatically generated ensemble models with respect to
inference speed by two orders of magnitude.

The novelty of our work is fourfold: developing a new method
for joint neural architecture and hyperparameter search, accel-
erating NAS with data-parallel training, using asynchronous
Bayesian optimization for tuning the hyperparameters of data-
parallel training, and advancing the state-of-the-art in the
design of DNNs for large tabular data.

II. PROBLEM FORMULATION

Let Dyrain, Dyatid, and Dyesy are the training, validation,
and test data, respectively. A neural architecture configuration
h, is a vector from the neural architecture search space H,,
defined by a set of neural architecture decision variables. A
hyperparameter configuration h,, is a vector from hyperparam-
eter search space H,, defined by a set of hyperparameters. The
joint neural architecture and hyperparameter search space H
is given by H, X H,,. The problem of joint neural architecture
and hyperparameter search can be formulated as the following
bilevel optimization problem:

hi hi = argmax M2 (hg, hy)
(hashm)€EHax Hy,)

s.t.w* = argmin £}/ (w),

w

where M2% (hy, hy,) is the validation accuracy that needs to
be maximized on D,,;;q and E}f:}{; (w) is a loss function
that needs to be minimised by optimizing the weights w of
the neural network configured with (hg,h.,) using Dyyqin. The
test data Dy, is used only for the final evaluation.

The architecture search space differs from the hyperparam-
eter search space with respect to the values that the decision
variables take. All the decision variables in the architecture
search space belong to categorical (nonordinal) type, where
different values for a given variable do not have any particular
order. On the other hand, the hyperparameter search space
is characterized by mixed-integer variables. This comprises
integer, real, binary, and categorical types. Often, the number
of categorical hyperparameters is relatively smaller than that of
other types. Note that when all the variables in hyperparameter
search space belong to a categorical type, explicit partitioning
in the search space is not required; consequently, a custom
method such as our proposed AgEBO-Tabular for joint neural
architecture and hyperparameter search becomes less relevant.

In our study, H, is defined by the decision variables to con-
struct fully connected neural networks with skip connections
for tabular data, and H,, is defined by the hyperparameters of
the data-parallel training (learning rate, batch size, and number
of parallel processes).

III. AGEBO-TABULAR

The AgEBO-Tabular approach that we propose comprises
three components: neural architecture search space for tabu-
lar data, tunable data-parallel training as evaluation strategy,
and the AgEBO algorithm for joint neural architecture and
hyperparameter search.

A. Neural architecture search space for tabular data

We model the search space of the neural architecture using
a directed acyclic graph, which starts and ends with input
and output nodes, respectively. They are fixed based on the
input and output dimensions of the tabular data, respectively.
Between these two nodes are intermediate nodes, each of
which can be a variable or a skip-connection node. Each node
represents a categorical decision variable that can take a list
of nonordinal values. Each variable node represents a dense
layer with a list of different layer types; the choice is made by
the NAS method. The skip connections between the variable
nodes are created by using skip-connection nodes. This type
of node has two choices: zero for no skip connection and
identity for the creation of skip connection. Given a pair of
consecutive variable nodes Ny, N1, three skip-connection
nodes SCZfé, SCZS, SCZﬂ are created. The choice of iden-
tity for these skip-connection nodes respectively allows for
connection to the three previous nonconsecutive variable nodes
Ni—3,Nj_2,Ni_1. For example, if identity is chosen for
SCZﬂ, a skip connection is made between Ny_1 and N1
by passing the tensor output from N_; through a linear layer
and a sum operator. The linear layer is used to project the
tensor from Nj_; to a correct shape. This is required for the
creation of skip connections between Aj,_1 and Nj1; when
their number of neuron units is different. The sum operator
adds the projected input tensor from N}, and the tensor from
Nk, passes the summed tensor through the ReLu activation
function, and sends the resulting tensor as input to Njj1.
When SC Zf% and SCﬁfé take identity values, the tensors from
Ni_2 and Nj_3 undergo the same linear projection, and the
tensor is given to the sum operator. When there is no skip
connection, SCZfé,SCZf;,SCZﬂ are set to zero; N} and
Nj11 are fully connected without the linear layer and the
sum operator. The same process is repeated for each of the m
variable nodes. See Figure || for an example.

The dense layer type is defined by the number of units
and the activation function. For the former and the latter we
used {16, 32, 48, 64, 80, 96} and {Identity, Swish [7]], ReLu,
Tanh, Sigmoid}. These resulted in 31 (6 units x 5 activation
functions, and an identity) dense layer types for each variable
node. Although one can order the 31 values using the number
of units in the layer, we did not consider and leverage such
order from the generality perspective. For example, if we
consider only one value for the unit and different activation
functions, then we cannot order the values in the list and
cannot leverage the ordering in the NAS search. We set the
maximum number of variable nodes to 10. Consequently, we
have 37 decision variables composed of 10 variable nodes and
27 skip-connection nodes. The first variable node will not have

a skip connection node. The second and the third variable
nodes have 1 and 2 skip-connection nodes, respectively. The
fourth to tenth variable nodes have 3 skip-connection nodes
each. The output node has 3 skip connections as well. Conse-
quently, the total number of architectures in the search space
is 3110 x 227 ~ 1.1 x 1023,

M
idp ® Dense(16,idg) ® Dense(16, Swish)®. ..
®Dense(96, Tanh) ® Dense(96, Sigmoid)

sc
00 idz
idp @ Linear(n)

Sc3
0@ idg
idg ® Linear(n)

Na
idg & Dense(16,idr) & Dense(16, Swish)®. ..
®Dense(96, Tanh) & Dense(96, Sigmoid)

v

idp @ Linear(n)

Output
Dense(noutputs, Softmaz)

Fig. 1: Neural architecture search space. The nodes N;
and N> represent dense layers Dense(x,y), where z is the
number of neurons and y is the activation function. The
nodes SC7,SC? SC35 represent the possible skip-connection
nodes, when idg is chosen for each of them. The node N5
is connected to input node through SC%. The output node
is connected to input and A nodes through SC? and SC3,
respectively. The nodes shown in red are used to manage
the different tensor sizes and apply an element-wise sum
(represented by the cross inside a circle).

B. Tunable data-parallel training as evaluation strategy

The evaluation of an architecture in the individual NAS
method consists of training the network and computing the
validation accuracy. To speed up the evaluation, we use
distributed data-parallel training. Given a neural architecture
A, the training data set is split in n mutually exclusive subsets
called shards, which are given to n parallel processes. Each of
the n processes trains a copy of the same neural architecture
A on its own shard. The gradients from each copy of neural
architecture are synchronized and are used to update the
weights. Moreover, we use the widely used linear scaling rule
[8]] to adapt the learning rate and batch size depending on the
level of parallelism in the data-parallel training. This heuristic

states that the learning rate [r, and batch size bs, with n
processes should be scaled linearly with respect to n:

lr, =nxlry;bs, = n*bsy,

2

where [r1,bs; are respectively the learning rate and batch
size used for training with a single process. We treat n, lrq,
and bs; as hyperparameters and tune them using Bayesian
optimization. By leveraging the linear scaling rule, we try to
achieve linear scaling for training time; however, there is an
upper linear scaling limit above which the accuracy will suffer
(without advanced and sophisticated layer-wise learning rate
and adaptive batch size). Therefore, by tuning n, Iry, and bsy,
we try to find the upper linear scaling limit that gives maximal
reduction in training time without losing accuracy.

C. AgEBO: Aging evolution with Bayesian optimization

To perform joint a neural architecture and hyperparame-
ter search, we propose aging evolution with Bayesian opti-
mization (AgEBO). Our method combines AgE, a parallel
NAS method, for searching over the architecture space, and
asynchronous Bayesian optimization (BO), for tuning the
hyperparameters data-parallel training.

Algorithm|1{shows the pseudo code of AgEBO. The method
follows the manager-worker paradigm for parallelization. It
starts with W workers, each with a maximum of n,, 4, parallel
processing units for data-parallel training. The initialization
phase starts by allocating an empty queue for the population of
size P and BO optimizer object. It is followed by sampling W
architecture configurations and hyperparameter configurations,
respectively, and concatenating them. The neural network
models are built by using the resulting configurations and are
sent for concurrent evaluation on W workers by using the
submit_evaluation interface (lines 3—7). Each worker uses the
learning rate, batch size, and number of processes from the
configuration that it received to run the data-parallel training.
The iterative part of the algorithm consists of collecting the
results (validation accuracy values) once workers finish their
evaluation (line 9) and using them for generating the next set of
architecture and hyperparameter configurations for evaluation.
The BO optimizer object takes the hyperparameter configura-
tions and their corresponding validation accuracy values and
generates a |results| number of hyperparameter values (using
optimizer.tell and optimizer.ask interfaces, respectively, lines
12-13). To generate |results| number of architecture configu-
rations, the following steps are performed repeatedly: random
sampling S architecture configurations from the incumbent
population, selecting the best, and applying a random muta-
tion to generate a child model hyperparameter configuration
(lines 16-18). The generated architecture and hyperparameter
configurations are concatenated and sent for evaluation. Note
that in the beginning of the search, the population queue
does not have P number of finished evaluations (given that
all evaluations do not necessarily finish in the same time).
Therefore, the architecture configurations are generated at
random while the population size is smaller than P (line 20)
The mutation corresponds to choosing a different operation

for one variable node in the search space. This is achieved
by first randomly selecting a variable node and then choosing
(again at random) a value for that node excluding the current
value. Then, the child is added to the population by replacing
the oldest member of the population.

Algorithm 1: AgE (black) and AgEBO (black + blue)

inputs : P: population size, S: sample size, W: workers
output: highest-accuracy model in history

1 population <— create_queue(P)

2 optimizer <— optimizer()

3 for i < 1 to W do

4 | model.h, < random_point (Hg)
5 | model.hy, < random_point (H)
6 | submit_evaluation (model)

7 end

8 while not done do

9 | results < get_finished_evaluations ()
10 | if |results| > 0 then

11 population.push (results)

12 optimizer.tell (results.hm, results.valid_accuracy)
13 next < optimizer.ask (|results|)

14 for i + 1 to |results| do

15 if |population| = P then

16 sample < random_sample (population,S)
17 parent < select_parent (sample)

18 child.h, < mutate (parent.hg)

19 else

20 | child.hg < random_point (Hq)

21 end

2 child.hy, < nextli].hm

23 submit_evaluation (child)

24 end

25 | end

26 end

The BO component of AgEBO optimizes the hyperparame-
ters (h,,) by marginalizing the architecture decision variables
(hg). The BO method generates hyperparameter configurations
as follows. It starts by sampling a large number of unevaluated
hyperparameter configurations. For each sampled configura-
tion h?,, it uses a model M to predict a point estimate (mean
value) u(hi)) and standard deviation o(h‘)). The sampled
hyperparameter configurations are ranked by using the upper-
confidence bound (UCB) acquisition function:

UCB(h,) = u(hy,) + ko (hi,), 3)

where £ > 0 is a parameter that controls the trade-off between
exploration and exploitation. A value of x = 0 corresponds
to pure exploitation, where the hyperparameter configuration
with the lowest mean value is always selected. A large
value of x corresponds to exploration, where hyperparameter
configurations with large variance are selected. Evaluation of
such configurations results in improvement of the model M.
A typical BO optimization method with UCB is sequential

and generates only one hyperparameter configuration at a time.
This is not useful in our setting given the scale required by the
AgE method. Therefore, to generate multiple hyperparameter
configurations at the same time, we adopt an asynchronous
BO that leverages multipoint acquisition function based on
a constant liar strategy. This approach starts by selecting a
hyperparameter that maximizes the UCB function. The model
M is retrained with the selected hyperparameter configuration
and a dummy value (lie). The next hyperparameter configu-
ration is obtained by maximizing the UCB function using the
updated model. The process of selecting a configuration and
retraining the model with a lie is repeated until a required
number of configurations are sampled. The mean of all the
validation accuracy values found up to that point is used as
a lie. While several sophisticated asynchronous BO methods
exist, the adoption of the constant liar strategy is motivated
by its computational simplicity and low overhead. Since the
mutation operation in AgE method is simple, the BO method
needs to generate multiple configurations in short computation
time. Failure to do so will adversely affect the overall node
utilization.

D. Implementation details

We implemented AgEBO in DeepHyper [9], open-source
scalable AutoML software designed for neural architecture and
hyperparameter search. A high-level implementation overview
of the AgEBO method is shown in Figure Algorithm
runs on a single process P. DeepHyper leverages the
Balsam workflow system [[10] to schedule the evaluation of
architectures concurrently. Specifically, the submit_evaluation
interface of AgEBO calls the Balsam workflow system, which
is responsible for running the architecture training on W work-
ers (via mpirun), collecting the validation accuracy values,
and returning the results through a get_finished_evaluations
interface. We allocate one compute node for the search. For the
BO module implementation, we used scikit-optimize package
[11]] and its ask and tell interface. The random forest method is
used as the model M within BO. We use the Horovod library
[12] for the distributed data-parallel training implementation
within AgGEBO. The AgEBO-Tabular code is open-sourced and
accessible on the DeepHyper Github repo

IV. EXPERIMENTS

We used four large tabular data sets from the OpenML [13]]
benchmark. The selection was motivated by a tabular data
benchmark study using AutoGluon [1], a recently proposed
state-of-the-art AutoML method for tabular data. Among all
the data sets benchmarked with AutoGluon, we selected the
following four largest data sets having the largest number of
data points:

1) Covertype [14]: It contains 581,012 data points, 54 input
features, and 7 classes. The task is to predict the forest
cover type given cartographic variable input data.

Uhttps://github.com/deephyper/NASBigData

Search Launcher

: P : F<—mpirun— : P :
i mpirun
Worker 1 /mplrun Worker W\
PP LT
PP PP

Fig. 2: Overview of AgEBO implementation. The AgEBO
search runs on a single process and uses the Balsam workflow
system to run the architecture evaluation on W workers using
the mpirun interface.

2) Airlines [15]: It contains 539,383 data points, 8 input
features, and 2 classes. The task is to develop a model
to indicate whether a given flight will be delayed or not
given input data of the scheduled departure.

3) Albert [16]: It contains 425,240 data points, 79 input
features, and 2 classes from the AutoML Challenge
series (2015-2018).

4) Dionis [16]: It contains 416,188 data points, 61 input
features, and 355 classes from the AutoML Challenge
series (2015-2018).

For each data set, we grouped the data for training, validation,
and testing as in the Auto-PyTorch benchmark study. Specifi-
cally, we used 42% for training, 25% for validation, and 33%
for testing. In all the AutoML methods, we used the training
and validation data set within AgEBO-Tablular. The selected
best model was evaluated on the testing data.

Experiments were run on the Theta supercomputer at the
Argonne Leadership Computing Facility (ALCF). Theta is
a Cray XC40 11.69-petaflops system composed of 4,392
nodes with Intel Knights Landing CPUs of 64 cores each
equipped of 192 GB of DDR4 memory. Since the data
set that we consider fits in a single-node memory, we did
not utilize multinode data-parallel training. Instead, the data-
parallel training within AgEBO was limited to single node;
however, it uses multiple processes within the single node to
accelerate training. The number of threads per process within
the single node, tpr, is set to the ratio of the number of
threads per node, tpn, and the number of process per node,
rpn. The threading is configured based on guidelines provided
by the ALCF, which is based on TensorFlow documentation:
intrathreads = OMP_NUM_THREADS = tpr; interthreads =
2; CPU affinity = depth (equivalent to: KMP_AFFINITY =
“granularity=fine,verbose,compact,1,0”); KMP_BLOCK_TIME
=0.

By default, the NAS experiments were run for a wall time
of 3 hours on 129 nodes of Theta. One node was reserved for
the search, and 128 nodes were used as workers to train and
validate the models within AgEBO.

AgE was used as the baseline. The optimizer was set to

https://github.com/deephyper/NASBigData

Adam [17]], and each model was evaluated for 20 epochs of
training. A gradual warmup strategy [18]] was employed for the
first 5 epochs. A callback was used to automatically reduce
the learning rate on a plateau with a patience of 5 epochs.
The objective in the AutoML methods is to maximise the
the validation accuracy. For the search, the population (P)
and sample sizes (S) were set to 100 and 10, respectively.
The batch size and learning rate were set to 256 and 0.01,
respectively. AgEBO variants adopt the same training strategy
as AgE uses. The difference between AgEBO variants and
AgE is that the values of the batch size, learning rate, and
number of processes for data-parallel training can be tuned
concurrently along with the architecture search.

The range for hyperparameters of data-parallel training was
set as follows: batch size (bs1) € [32, 64, 128, 256, 512, 1024];
learning rate (Ir;) € (0.001, 0.1), which are sampled in a
log-uniform scale within BO; and number of processes (n) €
[1,2,4,8].

A. Impact of static data-parallel training on AgE

We show that the accuracy of the architectures discovered
by the AgE method with data-parallel training deteriorates
significantly without tuning the learning rate, batch size, and
number of processes.

We evaluated AgE with data-parallel training without BO
but varied the number of processes. We used the default
learning rate and batch size for n = 1. The learning rate and
batch size for different numbers of processes were scaled by
using the linear scaling rule. We ran the experiments on the
Covertype data set.

The results are shown in Figure [3] and Table [I, where AgE-
n refers to AgE with n processes for data-parallel training.
From the results, we observe that increasing the number of
ranks from 1 to 4 per evaluation increases the accuracy.
This increase can be attributed to the reduced training time
for architecture evaluation, which increases the number of
evaluated architectures from 632 to 2,421. Nevertheless, for
AgE-8, we observe that the accuracy significantly decreases
despite the large number (4,221) of evaluated architectures.
The poor accuracy of AgE-8 can be attributed to the scaled
learning rate and batch size values for 8 processes and/or the
possibility that 8 is not right value for achieving reduction in
training time without losing accuracy.

AgE-1 AgE-2 AgE-4 AgE-8
Number of 632 1764 2421 4221
architectures
Training time (min.) | 26.54 +7.68 | 8.97+0.76 | 538+ 0.4 | 3.19+0.29
Validation accuracy 0.918 0.925 0.925 0.902

TABLE I: Results for static data-parallel training in AgE.

B. Impact of autotuned data-parallel training within AGEBO

Here, we show that tuning the learning rate, batch size, and
number of processes through BO improve both the accuracy
and time to solution.

o

=}

N
1

0.88 1

Validation Accuracy

Fig. 3: Search trajectory of AgE with different numbers of
processes for data-parallel training on Covertype data set. The
thick lines denote the best validation accuracy over time for
each method so far. The dots denote the validation accuracy
of each architecture found during the search.

9
© 0.92
o
(W]
(W)
< i 3
5 0.88 7% i@~ AgEBO-8-LR
& —#— AgEBO-8-LR-BS
% AgEBO
> = T T
0 1 2 3
Time (h.)

Fig. 4: Search trajectory of AgEBO variants and AgE-8 on
Covertype data set. See Fig. [3] caption for the notations used
(LR - learning rate, BS — batch size).

To analyze the effectiveness of BO within AgEBO, we com-
pared it with two of its variants. AGEBO-8-LR and AgEBO-
8-LR-BS. In the former, only the learning rate was tuned by
setting the batch size and the number of processes for the data-
parallel training to the default batch size and 8, respectively.
In the latter, the batch size and learning rate were tuned by
setting the number of processes to 8. As a baseline, we used
AgE-8. The experiments were run on the Covertype data set.

The results are shown in Figure f] We can observe that
the AgEBO variants outperform AgE-8 with respect to both
accuracy and the time to reach that accuracy. The comparison
between AgEBO-8-LR and AgE-8 shows that tuning the
values of the learning rate leads to significant improvement
with respect to both accuracy and time to solution. Similarly,
AgEBO-8-LR-BS achieves a higher accuracy value than that of
AgEBO-8-LR within a shorter time. However, AgEBO, which
tunes all three hyperparameters, outperforms AgEBO-8-LR-
BS. An exception is in the initial phases of the search (first
30 minutes), which is due to the initial rank exploration of
AgEBO and its impact on the training time. Specifically, this
can be attributed to the exploration of different parallelism
settings during that phase, which increases the evaluation time
of the architectures.

To ensure that the observed superior accuracy of AgEBO is
not by chance, we analyzed the number of unique architectures
found over time that have a validation accuracy higher than
0.90 for AgE-n variants and AgEBO. The threshold of 0.90
is computed by taking the minimum of 0.99-quantiles of
validation accuracy for each variant. The results are shown
in Figure [5] We observe that AGEBO obtains a larger number
of high-performing architectures than that of AgE-n variants.
Moreover, despite given the same number of nodes, AgEBO is
twice as fast as AgE-n variants in reaching the same number of
high-performing architectures. Specifically, AgE-4 and AgE-
8 obtain 10? high-performing architectures in 180 minutes
whereas AgEBO obtains the same number within 90 minutes.

=)

[+)] 3

=] 1 =¥~ AgE-1

Al 1 =& AgE2

o 2

= 1073

g

g 101

5]

5 10°=

c T T
0 1 2 3

Time (h.)

Fig. 5: Number of unique high-performing models obtained
by AgEBO and AgE-n variants on the Covertype data set.

C. Comparison with AutoGluon and Auto-PyTorch

Here, we show that the prediction accuracy of our method
is better than or comparable to that of the two state-of-the-art
AutoML software AutoGluon [1] and Auto-PyTorch [2] while
reducing the inference time of final models.

The two methods rely on ensemble approaches to boost their
prediction accuracy values. AutoGluon combines different su-
pervised learning models such as neural networks, LightGBM,
CatBoost, random forest, extra trees, and K-nearest neighbors,
the hyperparameters of which are automatically tuned. On the
other hand, Auto-PyTorch adopts only neural network models
but uses an ensemble strategy to improve the accuracy. We
compared AgEBO with AutoGluon and Auto-PyTorch on all
four data sets. We used AgE-1 as a baseline.

AutoGluon was run on a single node with a time limit
of 4 hours for the call to the fit method to compen-
sate for possible issues with the time estimation performed
by the software. The hyperparameter_tune=True and
auto_stack=True were set to maximise the accuracy as
much as possible. The test accuracy was computed separately
by reloading saved models. Table |lI| shows the accuracy values
of the best models and the corresponding inference time of
AgEBO and AutoGluon. We observe that the test accuracy
values of AgEBO and AutoGluon are comparable on all four
data sets. However, the key advantage stems from the inference
time with the trained model. Given that AGEBO generates a
single neural network model, the inference time is between

2.7 and 4.3 seconds. On the other hand, AutoGluon relies on
stacking a number of models, resulting in an inference time
of about 7 minutes.

For Auto-PyTorch, since we cannot install the software in
our ALCF Theta software stack because of software depen-
dency issues, we used the results from the LCBench data base
[19], which stores the results of experimental runs of the four
data sets. We note, however, that although we used the same
proportion of the training, validation, and testing split, the
exact data splits were not used, the details of which are not
available. Moreover, we did not compare against test accuracy
from the ensemble strategy from Auto-PyTorch because we
cannot retrieve ensemble strategy results from the LCBench
data base. Therefore, we focus on comparison with validation
accuracy values. Figure [6] shows the comparison between the
best validation accuracy values found by AgEBO and Auto-
PyTorch. We can observe that AgEBO achieves validation
accuracy values that are higher than those of Auto-PyTorch
within 30 minutes of search time. The observed differences in
the accuracy values can be explained by two factors. First,
Auto-PyTorch is not designed to generate a single neural
network model but to generate multiple models and combine
them using an ensemble strategy to have a good accuracy.
Second, the architecture space of Auto-PyTorch is restricted to
a smaller number of trainable parameters and smaller number
of layers.

The comparison between AgE-1 and AgEBO in Figure []
summarizes the benefits of autotuned data-parallel training.
For the Airlines data set, the maximal accuracy found with
AgE-1 is 0.647 at 121 minutes, whereas AgEBO finds a
greater accuracy after 14 minutes and reaches its maximal
accuracy of 0.652 after 163 minutes. For the Albert data
set, the maximal accuracy found with AgE-1 is 0.662 at 147
minutes, wheress AgEBO achieves a higher accuracy after
36 minutes and reaches its maximal accuracy of 0.665 after
49 minutes. For Covertype, the maximal accuracy found with
AgE-1 is 0.918 at 164 minutes, whereas AgEBO achieves a
greater accuracy after 20 minutes and reaches its maximal
accuracy of 0.927 after 165 minutes. For the Dionis data
set, the maximal accuracy found with AgE-1 is 0.869 at 163
minutes, whereas AgEBO achieves a greater accuracy after
11 minutes and reaches its maximal accuracy of 0.900 after
147 minutes. In summary, AgEBO outperforms the AgE-1
with respect to both accuracy values and time to reach those
accuracy values.

AgEBO AutoGluon
data set Test Inference | Test Inference
Accuracy Time (s) Accuracy | Time (s)
Airlines 0.652 + 0.002 3.1 0.641 11249
Albert 0.661 + 0.001 2.7 0.688 409.3
Covertype 0.963 + 0.001 4.3 0.961 906.6
Dionis 0.915 + 0.0005 32 0.907 1900.5

TABLE II: Test accuracy values and inference times obtained
by AgEBO and AutoGluon on the four data sets.

Across all the four data sets, we observed that the node

30.66 g
=] =]
g 0.65 S
< z A
i c 0.66 PN - St RSN
o 0.64 2 5 —¥— AgE-l
§ : AQEBO 5 i AQEBO
= Auto-Pytorch I Auto-Pytorch
> 0.63 > 0.65 S
0 1 2 3 0 1 2 3
Time (h.) Time (h.)
(a) Airlines (b) Albert

> N >
3092 50901
5 0.88 1 3 0.881
e) o
< 0.84 < 1
< < 0.86 T
S 0.801 —¥- AgE'L 2 0.84 D
g | AgEBO g AgEBO
= 0.76 Auto-Pytorch = 0.82+ y Auto-Pytorch
- 072g 1 ; T
Time (h.) Time (h.)
(c) Covertype (d) Dionis

Fig. 6: Search trajectory of AgE-1, AgEBO, and Auto-Pytorch on the four data sets. A horizontal dotted line shows the
validation accuracy at the 20" epoch of the model with the best validation accuracy found by Auto-PyTorch. See Fig.

caption for the notations used.

utilization of AgEBO is similar to that of AgE—both reach
an average value of ~94%. This can be attributed to the
effectiveness of the asynchronous BO that generates hyper-
parameter configurations with minimal overhead, which are
combined with architecture decision variable values and sent
for evaluation with minimal delay.

Table shows the best hyperparameters obtained by
AgEBO for the top 5 best-performing models on the four
data sets. Note that AgEBO finds different hyperparameter
configurations for different data sets to accelerate data-parallel
training. Within the same data set, the hyperparameter config-
urations obtained for the best models are similar. These results
demonstrate the need for data-set-specific hyperparameter tun-
ing for data-parallel training, which is enabled by AgEBO.

We visualized the top 1% configurations based on the
validation accuracy values obtained on all four data sets using
principal component analysis. This is done by projecting the
37 architecture decisions and 3 hyperparameters of the top 1%
configurations into two dimensions, respectively. The results
are shown in Figure [7] From the results we can see a similar
pattern. Each data set requires different values for architecture
decision variables and data-parallel training hyperparameters.

batch | learning no. of validation
size rate processes | accuracy
64.0 | 0.001474 2.0 0.652008
64.0 | 0.001250 2.0 0.651774
Airlines 128.0 | 0.001541 2.0 0.651086
128.0 | 0.001742 2.0 0.651086
64.0 | 0.001538 2.0 0.65090
128.0 | 0.005726 4.0 0.664827
64.0 | 0.002226 2.0 0.664808
Albert 64.0 | 0.002304 2.0 0.664552
64.0 | 0.002490 2.0 0.664446
64.0 | 0.002154 2.0 0.664190
256.0 | 0.001392 1.0 0.927418
256.0 | 0.001371 1.0 0.927325
Covertype | 256.0 | 0.001409 1.0 0.927317
256.0 | 0.001394 1.0 0.927309
256.0 | 0.001394 1.0 0.927294
256.0 | 0.001201 4.0 0.899902
256.0 | 0.001237 4.0 0.899192
Dionis 256.0 | 0.001211 4.0 0.898837
256.0 | 0.001159 4.0 0.898482
256.0 | 0.001159 4.0 0.898260

TABLE III: Data-parallel training hyperparameter values ob-
tained by AgEBO for the top 5 best models on the four data
sets.

Hm
- D frmmmm]
L : @ arlines H
20 B : i albert H
= : = L A covertype ...
RN
o : : ; : :
3, B I
. E = B
E & i+ B 4
10 W IR - ; ®
i + : + :
-20 0 20 -100 0 100

Dim 1 (47.81%) Dim 1 (99.99%)

Fig. 7: Principal component analysis projection of top 1%
configurations of architecture decision variables (H,) and
data-parallel training hyperparameters (H,,). The % on each
axis shows the conserved variance (more than 80%) in two-
dimensional projections.

D. Exploration and exploitation in AgEBO

Here, we study the effect of exploration and exploitation of
BO within AgEBO by varying « values. We show that stronger
exploitation is critical for the effectiveness of AgEBO.

The « value in Eq. [3] controls the trade-off between ex-
ploration and exploitation in BO. In addition to the default
value of 0.001, we ran AgEBO with two values: {1.96, 19.6}.
Note that 1.96 is the typical x value in Scikit-Optimize, which
provides a balance between exploration and exploitation. The
value of 19.6 is selected to enforce large exploration. We ran
the experiments on the Covertype and the Dionis data sets.

Figure[8|shows the number of high-performing architectures
found by AgEBO for three different « values. The threshold
was computed by computing 99% quantiles of the validation
accuracy values for the three variants and taking the smallest
value. We can observe that for both data sets, AGEBO with
the default x value of 0.001 (stronger exploitation) completely
outperforms those with 1.96 (balance between exploration and
exploitation) and 19.6 (stronger exploration) with respect to
the number of high-performing architectures (between one
and two orders of magnitude) and time needed to reach the
number of the other two variants (between 2x and 3x faster).

The exploration of hyperparameter values in AgEBO with &
value of 0.001 happens only in the random initialization phase.
During the iterative phase, given the stronger exploitation
setting, hyperparameter configurations are generated close the
best ones found so far in the search. On the other hand, there
is a significant degree of exploration with « values of 1.96
and 19.6. This results in increased data-parallel training time,
which eventually reduces the generation of number of high-
performing architectures.

o ® 103
2 AGEBO-0.001 3 'AgEB0-0.001
N 102 —@ AEBO-1.96 N -@- AEBO-1.96
< AGEBO-19.6 T 102 AgEBO-19.6
g [
]
g =2
g 10'3 e A0 f P R
‘s J’ = 5 e
s 10°4 g 1004 <ed
2 : : 3 :
0 1 2 3 0 1 2 3
Time (h.) Time (h.)
(a) Covertype (b) Dionis

Fig. 8: Number of unique high-performing architectures dis-
covered by AgEBO over time with different x values.

V. RELATED WORK

From the novelty perspective, our method has four com-
ponents: hyperparameter search for data-parallel training, ac-
celeration of NAS with data-parallel training, joint NAS and
HPS, and application to tabular data. We review the related
work from the perspective of each component and highlight
our contributions.

The literature on HPS for tuning the hyperparameters on
distributed data-parallel training to optimize learning rate,
batch size, and number of processes is limited. A commonly
used approach to adapt learning rate and batch size in dis-
tributed data-parallel training is the linear scaling rule. The
values of the learning rate and batch size used for the single-
process training are multiplied by the number of processes in
distributed data-parallel training. In an Amazon blog [20], the
importance of tuning learning rate and batch size for a given
number of GPUs in data-parallel training has been discussed.
Specifically, the Amazon SageMaker HPO tool has been used
as a proof of concept; but the study was not performed at
scale, and the effectiveness was not assessed on wide rage of
data sets. The use of BO to tune the learning rate, batch size,
and number of parallel processes in distributed training has
never been investigated in the literature.

Within NAS, several approaches have been proposed to
reduce the training time. Examples include using smaller
architectures for the search and stacking them at the last
step [21]], [22], reducing the number of epochs [23], com-
puting the validation performance from a randomly initialised
DNN [24], estimating the accuracy performance of DNN for
a large budget (time) when trained with a smaller budget [25]],
sharing the weights of previously trained DNN [4]], imposing
a time budget [26]], and using information from data relatively
to an initialised DNN (but only for convolution NN) without
training [27]]. These methods have several limitations. Stacking

the simpler model is feasible for image data sets but can lead
to overfitting in tabular data sets; and reducing the epochs and
time budget during NAS can lead to poor relative ranking be-
tween the small and extensive budget and eventually result in
low performing model [23]]. Compared with all these methods,
distributed data-parallel training is a generic and promising
approach because of its ability to match with the learning curve
of the classical training while consequently speeding up the
training [18[]. Nevertheless, the use of data-parallel training
within NAS was not investigated in the literature.

The joint NAS and HPS approach that we propose is similar
to BO Hyperband (BOHB) [23]]. It considers the joint space
and uses a multivariate kernel density estimation model to
sample promising configurations. The sampled configurations
are evaluated by using a successive halving approach, where
promising configurations are allowed to run longer with more
resources. Our approach differs from BOHB in the following
ways. BOHB does not differentiate the model hyperparameters
from algorithmic hyperparameters. It does not utilize data-
parallel training to speedup the search, instead adopt suc-
cessive halving. This is a blocking approach. Although quite
effective under limited compute resource setting, scaling the
successive halving method can lead to poor node utilization.

AutoML for tabular data has received considerable attention
in recent years. Notable examples include auto-sklearn [23],
Auto-WEKA [29]], H20 AutoML [30], and TPOPT [31]. A
benchmark [32] of these methods was conducted to compare
their performance on different data sets. The auto-sklearn
approach proved more robust in general. Recently, Auto-
Gluon [1]] and Auto-PyTorch [2] have emerged as state-of-
the-art AutoML methods for tabular data. AutoGluon uses
an ensemble of many different learning algorithms to then
boost their performance. Auto-PyTorch also uses an ensemble
approach, but models are restricted to DNNs. We showed that
the prediction accuracy of AgEBO is better than or compa-
rable to that of AutoGluon and Auto-PyTorch and provides a
significant advantage with respect to the inference time.

VI. CONCLUSION AND FUTURE WORK

We developed AgEBO-Tabular, a joint neural architec-
ture and hyperparameter search method to discover high-
performing neural network models for tabular data. We de-
veloped an architecture search space for generating fully
connected neural networks with skip connections. The search
method combines two distinct methods: (1) aging evolution
(AgE), a parallel neural architecture search method to search
over the architecture decision variables; and (2) an asyn-
chronous Bayesian optimization (BO) method to automatically
tune the hyperparameters of data-parallel training in order to
reduce evaluation time of each architecture.

We showed that using data-parallel training in AgE without
tuning the learning rate, batch size, and number of pro-
cesses can affect the accuracy. Then, we demonstrated that
AgEBO can improve the accuracy of the discovered models
and the time to generate high-performing neural networks.
We compared the best-discovered models from AgEBO with

AutoGluon and Auto-Pytorch, two state-of-the-art AutoML
methods for tabular data, and showed the efficacy with respect
to inference time and accuracy. The analysis of the best values
obtained by AgEBO showed the need for data-set-specific
tuning. Moreover, we showed that, unlike typical BO that bal-
ances the exploration and exploitation, a stronger exploitation
is critical for AgEBO for generating high-performing models
in short computation time.

Our future work will include (1) applying AgEBO to
generate neural architectures for other data types such as im-
age, texts, and graphs; (2) developing multinode data-parallel
training within NAS for large data sets; and (3) developing
meta-learning and transfer learning approaches to reuse the
knowledge and results from previous experimental runs for
related data sets.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department of
Energy (DOE), Office of Science, Office of Advanced Scientific Computing
Research, under Contract DE-AC02-06CH11357. This research used resources
of the Argonne Leadership Computing Facility, which is a DOE Office of
Science User Facility.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

REFERENCES

N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li,
and A. Smola, “AutoGluon-Tabular: Robust and Accurate AutoML
for Structured Data,” arXiv:2003.06505 [cs, stat], Mar. 2020, arXiv:
2003.06505. [Online]. Available: http://arxiv.org/abs/2003.06505

L. Zimmer, M. Lindauer, and F. Hutter, “Auto-PyTorch Tabular:
Multi-Fidelity MetaLearning for Efficient and Robust AutoDL,”
arXiv:2006.13799 [cs, stat], Jun. 2020, arXiv: 2006.13799. [Online].
Available: http://arxiv.org/abs/2006.13799

M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do
we Need Hundreds of Classifiers to Solve Real World Classification
Problems?” p. 49.

H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient
Neural Architecture Search via Parameter Sharing,” arXiv:1802.03268
[cs, stat], Feb. 2018, arXiv: 1802.03268. [Online]. Available:
http://arxiv.org/abs/1802.03268

X. Chu, T. Zhou, B. Zhang, and J. Li, “Fair DARTS: Eliminating Unfair
Advantages in Differentiable Architecture Search,” arXiv:1911.12126
[cs, stat], Mar. 2020, arXiv: 1911.12126. [Online]. Available:
http://arxiv.org/abs/1911.12126

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized
Evolution for Image Classifier Architecture Search,” arXiv:1802.01548
[cs], Feb. 2018, arXiv: 1802.01548. [Online]. Available: http:
/larxiv.org/abs/1802.01548

P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” 2018. [Online]. Available: https://openreview.net/forum?id=
SkBYYyZRZ

P. Goyal, P. Dollar, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
SGD: training imagenet in 1 hour,” CoRR, vol. abs/1706.02677, 2017.
[Online]. Available: http://arxiv.org/abs/1706.02677

P. Balaprakash, R. Egele, M. Salim, V. Vishwanath, S. Wild,
D. Jha, M. Dorier, K. G. Felker, R. Maulik, and B. Lusch,
“deephyper/deephyper: 0.1.12,” Oct. 2020. [Online]. Available: https:
//github.com/deephyper/deephyper

M. A. Salim, T. D. Uram, J. T. Childers, P. Balaprakash, V. Vishwanath,
and M. E. Papka, “Balsam: Automated Scheduling and Execution
of Dynamic, Data-Intensive HPC Workflows,” arXiv:1909.08704
[cs], Sep. 2019, arXiv: 1909.08704. [Online]. Available: http:
/larxiv.org/abs/1909.08704

T. Head et al, “scikit-optimize/scikit-optimize: v0.5.2,” Mar. 2018.
[Online]. Available: https://doi.org/10.5281/zenodo.1207017

A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed
deep learning in TensorFlow,” arXiv:1802.05799 [cs, stat], Feb. 2018,
arXiv: 1802.05799. [Online]. Available: http://arxiv.org/abs/1802.05799

10

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

M. Feurer, J. N. van Rijn, A. Kadra, P. Gijsbers, N. Mallik, S. Ravi,
A. Miiller, J. Vanschoren, and F. Hutter, “Openml-python: an extensible
python api for openml,” arXiv:1911.02490, 2019.

S. Hettich and S. D. Bay. (1999) The uci kdd archive. [Online].
Available: http://kdd.ics.uci.edu

E. I. Albert Bifet. (2009) Airlines dataset inspired in the regression
dataset from elena ikonomovska. the task is to predict whether a given
flight will be delayed, given the information of the scheduled departure.
[Online]. Available: http://kt.ijs.si/elena_ikonomovska/data.html

I. Guyon, L. Sun-Hosoya, M. Boullé, H. J. Escalante, S. Escalera,
Z. Liu, D. Jajetic, B. Ray, M. Saeed, M. Sebag, A. Statnikov, W. Tu,
and E. Viegas, “Analysis of the automl challenge series 2015-2018,”
in AutoML, ser. Springer series on Challenges in Machine Learning,
2019. [Online]. Available: https://www.automl.org/wp-content/uploads/
2018/09/chapter10-challenge.pdf

D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv:1412.6980 [cs], Jan. 2017, arXiv: 1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, Large Minibatch
SGD: Training ImageNet in 1 Hour,” arXiv:1706.02677 [cs], Apr. 2018,
arXiv: 1706.02677. [Online]. Available: http://arxiv.org/abs/1706.02677
L. Zimmer, “data_2k.zip,” Jan 2020. [Online]. Available: https:
//figshare.com/articles/dataset/data_2k_zip/11662428/1

“The importance of hyperparameter tuning for scaling
deep learning training to multiple GPUs, howpublished
https://aws.amazon.com/blogs/machine-learning/the-importance-of-
hyperparameter-tuning-for-scaling-deep-learning-training-to-multiple-
gpus/, note = Accessed: 2020-10-08.”

B. Zoph and Q. V. Le, “Neural Architecture Search with Reinforcement
Learning,” arXiv:1611.01578 [cs], Nov. 2016, arXiv: 1611.01578.
[Online]. Available: http://arxiv.org/abs/1611.01578

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Transferable
Architectures for Scalable Image Recognition,” arXiv:1707.07012
[cs, stat], Jul. 2017, arXiv: 1707.07012. [Online]. Available: http:
/larxiv.org/abs/1707.07012

A. Zela, A. Klein, S. Falkner, and F. Hutter, “Towards Automated
Deep Learning: Efficient Joint Neural Architecture and Hyperparameter
Search,” arXiv:1807.06906 [cs, stat], Jul. 2018, arXiv: 1807.06906.
[Online]. Available: http://arxiv.org/abs/1807.06906

A. Zela, J. Siems, and F. Hutter, “NAS-BENCH-1SHOT1: BENCH-
MARKING AND DISSECTING ONE-SHOT NEURAL ARCHITEC-
TURE SEARCH,” p. 20, 2020.

X. Zheng, R. Ji, Q. Wang, Q. Ye, Z. Li, Y. Tian, and Q. Tian,
“Rethinking Performance Estimation in Neural Architecture Search,”
arXiv:2005.09917 [cs], May 2020, arXiv: 2005.09917. [Online].
Available: http://arxiv.org/abs/2005.09917

P. Balaprakash, R. Egele, M. Salim, S. Wild, V. Vishwanath,
F. Xia, T. Brettin, and R. Stevens, “Scalable Reinforcement-
Learning-Based Neural Architecture Search for Cancer Deep Learning
Research,” Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis on -
SC 19, pp. 1-33, 2019, arXiv: 1909.00311. [Online]. Available:
http://arxiv.org/abs/1909.0031 1

J. Mellor, J. Turner, A. Storkey, and E. J. Crowley, “Neural Architecture
Search without Training,” arXiv:2006.04647 [cs, stat], Jun. 2020, arXiv:
2006.04647. [Online]. Available: http://arxiv.org/abs/2006.04647

M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter,
“Auto-sklearn 2.0: The next generation,” 2020.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-
WEKA: Combined selection and hyperparameter optimization of clas-
sification algorithms,” in Proc. of KDD-2013, pp. 847-855.

H20.ai, H20 AutoML, June 2017, h20 version 3.30.0.1. [Online].
Available: http://docs.h20.ai/h20/latest-stable/h20-docs/automl.html

R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, “Evaluation
of a tree-based pipeline optimization tool for automating data science,” in
Proceedings of the Genetic and Evolutionary Computation Conference
2016, ser. GECCO ’16. New York, NY, USA: ACM, 2016, pp. 485-
492. [Online]. Available: http://doi.acm.org/10.1145/2908812.2908918
P. Gijsbers, E. LeDell, S. Poirier, J. Thomas, B. Bischl, and
J. Vanschoren, “An open source automl benchmark,” arXiv preprint
arXiv:1907.00909 [cs.LG], 2019, accepted at AutoML Workshop at
ICML 2019. [Online]. Available: https://arxiv.org/abs/1907.00909

http://arxiv.org/abs/2003.06505
http://arxiv.org/abs/2006.13799
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1911.12126
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1802.01548
https://openreview.net/forum?id=SkBYYyZRZ
https://openreview.net/forum?id=SkBYYyZRZ
http://arxiv.org/abs/1706.02677
https://github.com/deephyper/deephyper
https://github.com/deephyper/deephyper
http://arxiv.org/abs/1909.08704
http://arxiv.org/abs/1909.08704
https://doi.org/10.5281/zenodo.1207017
http://arxiv.org/abs/1802.05799
http://kdd.ics.uci.edu
http://kt.ijs.si/elena_ikonomovska/data.html
https://www.automl.org/wp-content/uploads/2018/09/chapter10-challenge.pdf
https://www.automl.org/wp-content/uploads/2018/09/chapter10-challenge.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1706.02677
https://figshare.com/articles/dataset/data_2k_zip/11662428/1
https://figshare.com/articles/dataset/data_2k_zip/11662428/1
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1807.06906
http://arxiv.org/abs/2005.09917
http://arxiv.org/abs/1909.00311
http://arxiv.org/abs/2006.04647
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
http://doi.acm.org/10.1145/2908812.2908918
https://arxiv.org/abs/1907.00909

	Introduction
	Problem formulation
	AgEBO-Tabular
	Neural architecture search space for tabular data
	Tunable data-parallel training as evaluation strategy
	AgEBO: Aging evolution with Bayesian optimization
	Implementation details

	Experiments
	Impact of static data-parallel training on AgE
	Impact of autotuned data-parallel training within AgEBO
	Comparison with AutoGluon and Auto-PyTorch
	Exploration and exploitation in AgEBO

	Related Work
	Conclusion and Future Work
	References

