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Abstract: Taylor’s power law (or fluctuation scaling) states that on comparable populations, the vari-
ance of each sample is approximately proportional to a power of the mean of the population. It has been
shown to hold by empirical observations in a broad class of disciplines including demography, biology,
economics, physics and mathematics. In particular, it has been observed in the problems involving pop-
ulation dynamics, market trading, thermodynamics and number theory. For this many authors consider
panel data in order to obtain laws of large numbers and the possibility to fit those expressions; essentially
we aim at considering ergodic behaviors without independence. Thus we restrict the study to stationary
time series and we develop different Taylor exponents in this setting. From a theoretic point of view,
there has been a growing interest on the study of the behavior of such a phenomenon. Most of these
works focused on the so-called static Taylor related to independent samples. In this paper, we introduce a
dynamic Taylor’s law for dependent samples using self-normalised expressions involving Bernstein blocks.
A central limit theorem (CLT) is proved under either weak dependence or strong mixing assumptions for
the marginal process. The limit behavior of such a new index involves the series of covariances unlike the
classic framework where the limit behavior involves the marginal variance. We also provide an asymptotic
result for for a goodness-of-fit testing suited to check whether the corresponding dynamical Taylor’s law
holds in empirical studies. Moreover, we also obtain a consistent estimation of the Taylor’s exponent.

MSC2020 subject classifications: Primary 60G99, 60F05; secondary 62P12.
Keywords and phrases: Self-Normalized Sums, Taylor’s Law, Weak dependence, Central Limit Theo-
rem.

1. Introduction

An important criterion used to describe the dynamic of populations is exhibited in [7], among others, through
the expression known as Taylor’s laws. This originated as an empirical pattern in ecology in such a way that, on
comparable populations, the variance of each sample was approximately proportional to a power of the mean of
that sample. Thousands of papers have been dedicated to the study of Taylor’s Law. This limits our ability to
provide a comprehensive review. An important survey on the topic is [19]. A key motivation for our work can
be found in [21] which provides a central-limit-like convergence that explains Taylor’s Law (TL) as well as [6]
which introduces a self-normalized empirical version of Taylor’s law for some distributions with infinite mean.

The question set here is about what happens in case one observes only one trajectory of a random phenomenon.
We clearly need ergodicity conditions to consistently investigate the expressions related with TL. We thus develop
a theory for TL under dependence in the case when only a trajectory of the process of interest (Xt)t∈Z is observed.
It can be of course accommodated to the context of independent copies of the process (Xt)t∈Z observed over
different samples. This is, for instance, the case when dealing with mortality time series over ages or even regions
[5], which means that the dependence in the sample has already been considered. In order to obtain laws of
large numbers and the possibility to fit those expressions we restrict our paper to a specific frame. Essentially,
we aim at considering ergodic behaviors and focus on stationary time series. In this case we are in position to
define general TL possibly taking into account the dynamic behaviour of the process of interest and not only its
marginal distribution.

To achieve this we proceed in two steps. Firstly we extend strictly the TL to the ergodic (dependent setting)
which we will call a static TL since it only relies on the marginal distribution of the stationary process (Xt)t∈Z.
Secondly, we introduce an alternative dynamic TL. The main input of the paper is to introduce such a TL which
does not only involve the marginal distribution of X0 but instead, relies on the whole second order structure of
the process (Xt)t∈Z, and thus accounts for the dependence of the blocks. Recall, for example, that the sample
average and variance are accurate measures of the mean and variation in the population which gives sense to
TL along some trajectory. However, the timeliness of our approach is supported by the findings of [23] where
it is shown that changes in synchrony (that may be caused by climate change) modifies and can invalidate the
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TL. By incorporating the entire history of the time series, our dynamic approach to Taylor’s law may mitigate
the effect of these changes.

The current work is developed in the context of weakly dependent variables which include for example
Bernoulli shifts of i.i.d. r.v.’s such as Xt = F (Xt−1, Xt−2, . . . ; ξt) [18], which depends on the complete past
history of the process and some innovations; the simplest model of it is the case of ergodic Markov chains
Xt = F (Xt−1; ξt) but also infinite moving averages of iid inputs Xt =

∑∞
j=0 ajXt−j + ξt are such models. Larges

classes of examples including ARCH, GARCH-type models or integer valued GLM models possibly integer val-
ued may be found both in [11] and in [10], see also e.g. [13], [20] and [17] for more models. Note that those
classes of models and many others may easily seen to fit the conditions in the current results, which gives sense
to our settings and to our results. Such models include dependence over the time and should rather be used in
order to describe dynamical evolution of a population [7]. It is, in fact, relevant in populations dynamics and in
particular for ecological application, see also [8, 27] and the reference therein.

The static Taylor’s law is a proper characteristic of marginal distributions. Since we consider dynamical issues
we think that a Taylor’s law depending on the whole distribution of the analysed process is more adapted. In [7],
the question of checking the validity for Taylor’s law for some random phenomenon is addressed in the setting
of i.i.d. sequences. Formally, for an integer k > 1 and a sequence of positive random variables, the relation
VarY = c(EY )α with c ∈ R and α > 0 was shown to hold in many empirical applications. This means that the
consistency of empirical counterparts for those expressions is proved for the convergence in mean of the following
expressions

c ≈ V̂arY

(ÊY )β
, with ÊY = Y =

1

k

k∑
i=1

Yi, and V̂arY =
1

k − 1

k∑
i=1

(Yi − Y )2.

Here, the expressions of the variance VarY and EY make sense since those parameters provide a first approx-
imation to the distributions of i.i.d. samples. Another analogous expression emerges in actuarial and financial
sciences related to the so-called measures of variation, e.g. [2, 1]. It is strongly related to the ratio

d ≈ ÊY 2

(ÊY )β
, with ÊY 2 =

1

k

k∑
i=1

Y 2
i .

In [1], the convergence of such self-normalised sums is investigated in details. For instance, it is proved that the
convergence in distribution of suitably normalised ratios holds for heavy or light tailed distributions. In [2] the
above approximation is proved to holds in Lp through the limit expression for each of the moments of the above
ratio. Unlike these examples, our paper is principally concerned with dependent random variables that have
received less attention in the literature. Indeed, the theoretical literature has thus far, treated the independent
case, also referred to as the classic Taylor’s law. However, we will restrict ou work to random variables with
moments with order greater that 4, but we will deal with dependent random variables and thus handle the case
of time series. To the best of our knowledge, the current paper is the first attempt to include the dependence
structure in such Taylor’s laws. To achieve this, we first consider stationary and ergodic processes (Xi)i∈Z to
decompose the sequence of interest into Bernstein blocks. This allows to divide the data up into blocks in such
a way to control adequately the dependence between blocks. This will be crucial to investigate the asymptotic
distribution of the considered quantities in order to derive statistical properties for the two different Taylor’s
laws (static and dynamic). Formally, we show that the above expressions admit convergent behaviours. This
follows the same idea as for the “classic” behaviour of such laws. Indeed, the variance involved in the above
mentioned expressions has a counterpart in the weakly dependent cases. Namely, as stressed out for example in
[11, 15, 24] or [12], under an adapted weak dependence assumption the partial centred sums renormalised with
a
√
n−factor are proved to converge to a centred Gaussian distribution with variance σ2 such that

σ2 =

∞∑
j=−∞

Cov (X0, Xj). (1)

Accordingly, the extension of the Taylor’s law will inevitably incorporate the series of covariances and not just
over the marginal distribution. By doing so, we advocate that such an index has a different meaning that the
usual Taylor’s law which only depends on marginal distributions. However, this topic exceeds the scope of this
paper. Formally, will be concerned with limit behaviours of such a new index. The results developed throughout
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the paper take into account this new dynamic exponent as well as the classical (static) Taylor’s exponent; both
are considered for general classes of dependent random processes.

The paper is organised as follows. First, in Section 2 we introduce the empirical expressions necessary to deal
both with the dynamic and static Taylor’s laws in a dependent setting. In Section 3 we deal with limit theory
under these laws. To this aim we describe a Bernstein’s blocks technique used throughout the paper in order
to control the dependence. Hence, the limit distribution of suitably normalised expressions for both static and
dynamic indices is thus proved in Section 3. Finally, Section 4 is dedicated to statistical applications which are
respectively a test of goodness-of-fit for the dynamic Taylor’s law to hold, and a consistent estimation of those
Taylor’s exponents. This means that both results together will ensure a test for both Taylor’s laws to hold. The
necessary dependence tools and technical results are introduced in the Appendices.

2. Self-normalised sums

Let (Yi)i∈Z and (Xi)i∈Z be two sequences of non-negative and identically distributed random variables. Since
the paper is aimed at looking at dependent and dynamic samples, we will denote, henceforth, by (Yi)i∈Z the
statistics under consideration and the sequence (Xi)i∈Z will be associated to the classic Taylor’s law. Here, we
first recall the statistics associated with the usual Taylor’s laws. Formally, with k > 0, we define Sk as the ratio

Sk =

∑k
j=1 Y

2
j /k(∑k

j=1 Yj/k
)2 = k

∑k
j=1 Y

2
j(∑k

j=1 Yj

)2 .
Hence, with Y = (

∑k
j=1 Yj)/k we can write

Sk =

∑k
j=1 Y

2
j /k

Y
2 =

k − 1

k
· Tk + 1, (2)

where we denote by Tk the Taylor’s law statistics defined as

Tk =

∑k
j=1(Yj − Y )2/(k − 1)

Y
2 . (3)

This is a plug-in estimate of T = σ2/m2, with m = EY1 and σ2 = VarY1. Notice that since we can write

Tk =
k

k − 1
· (Sk − 1), (4)

the asymptotic behaviour of Tk results may be plugged into those for Sk. The above relation provides us with a
link between results for the self-normalised statistics Sk and for Taylor’s statistics Tk. More generally for β > 0,
as in [7], we consider Taylor’s law with order β in case σ2 = cmβ , whose corresponding statistics can be written
as

Tk,β =

∑k
j=1(Yj − Y )2/(k − 1)

Y
β

.

In this case, set Wk =
∑k
j=1(Yj − Y )2/(k − 1), then:

Sk,β =

∑k
j=1 Y

2
j /k

Y
β

=
k − 1

k
· Tk,β + Y

2−β
=
k − 1

k
·
∑k
j=1(Yj − Y )2/(k − 1)

Y
β

+ Y
2−β

=

(
k − 1

k
· Tk + 1

)
Y

2−β

In the dependent framework of a stationary time series, we make use of the Bernstein’s block idea to divide
the sample X1, . . . , Xn, for n > 0, into blocks of a given size in such a way to control the dependence between
the blocks. To this end, we consider an integer pn ∈ {1, . . . , n} and let kn = [n/pn]. We then denote Y (n)

i the
sequence of partial sums over observations in block Bi,n, i.e.
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Y
(n)
i =

1

pn

∑
j∈Bi,n

Xj , Bi,n = [(i− 1)pn + 1, ipn]
⋂

N, 1 ≤ i ≤ kn. (5)

Hence, the statistics under consideration defined in (3) and (2) with k = kn can now be denoted respectively as
S
(n)
β and T (n)

β :

Y
(n)

=
1

knpn

kn∑
i=1

Y
(n)

i ,

S
(n)
β =

∑kn
j=1(Y

(n)
j )2/kn

(Y
(n)

)β
,

T
(n)
β =

∑kn
j=1(Y

(n)
j − Y (n)

)2/(kn − 1)

(Y
(n)

)β
.

Moreover for the sake of homogeneity we denote S(n) the expression S(n)
2 .

Remark 2.1 (Bernstein’s Blocks). First, the reader is deferred to Appendix A.2 for a second order analysis of
the behaviour of partial sums processes in (5), and A.3 for an higher order analysis.

Second, we should note that, to the cost of an additional block with size less than pn, we can also use all
the data set, i.e. X1, . . . , Xn, by setting Bkn+1,n = [knpn + 1, n]. By doing so, we do not affect the behaviour of
partial sums when kn → ∞. Indeed, if the condition a > 1 is fulfilled in (27), see Appendix A.2, we can show
that

Var
( ∑
j∈Bkn+1,n

Xj

)
= O(pn)� n,

which entails that partial sums up to n behave the same way as sums over all blocks with size pn as soon as
σ2 6= 0. In fact, in this case, we shall have limp↑∞Var

(∑p
i=1Xi/

√
p
)

= σ2. Therefore, for the sake of readability,
we will not consider this correction term in the sequel.
Remark 2.2 (Dynamic Taylor’s law with exponent β). For β > 0, we extend the above expressions for dynamic
Taylor’s law with order β. Recall that in this case, we are expecting a relationship of the form σ2 = cmβ . In
fact, T (n) is associated with Taylor’s law with exponent β = 2 and the following simple algebraic relation allows
to consider all the possible exponents β. In fact, we shall remark that:

S
(n)
β =

∑kn
j=1

(
Y

(n)
j

)2
/kn(

Y
(n))β =

(
kn − 1

kn
· T (n) + 1

)
(Y

(n)
)2−β , (6)

which allows us to consider the Taylor’s laws for more general settings.

3. Limit theory in distribution

Note that in this dependent framework Y ≡ X
(n)

= (X1 + · · · + Xn)/n is simply the empirical mean of the
observed process (Xi)i∈Z. Under basic ergodic assumptions we have:

lim
n
X

(n)
= EX = m, a.s.

Hence, the asymptotic behaviour of the expression T (n) corresponding to Tk in (4) for this dependent setting is
that of

T̄ (n) =
1

m2
· 1

kn

kn∑
i=1

(Y
(n)
i −X(n)

)2,
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which means that limn T
(n)/T̄ (n) = 1. Henceforth, we let

T̃ (n) =
1

m2
· 1

kn

kn∑
i=1

(Y
(n)
i −m)2.

Using assumption (1), in case limn pn =∞, standard conditions imply that

Gi,n =
√
pn(Y

(n)
i −m), for all 1 ≤ i ≤ kn, (7)

has a N (0, σ2)−standard Gaussian asymptotic behaviour for each i ≥ 1.
Moreover, we have

lim
n

E(Gi,n)2 = σ2, ∀i ≥ 1. (8)

Remark 3.1. Remark that the classic (or static) Taylor’s law corresponds to pn = 1; in this case the corresponding
block are no more asymptotically Gaussian and thus the above asymptotically Gaussian behaviour does not hold.
Thus a separate discussion will be needed.

The relation (8) entails that we need to center by force the expression of G2
i,n. Thus, with the notation (7)

we define the centred sequence

Ui,n = G2
i,n − EG2

i,n, for all 1 ≤ i ≤ kn, (9)

thus,

T̃ (n) =
1

nm2

kn∑
i=1

Ui,n +
1

nm2

kn∑
i=1

EG2
i,n,

=
1

nm2

kn∑
i=1

Ui,n +
1

pnm2
σ2 +

EG2
i,n − σ2

pnm2
.

We now use the bound (29) to derive EG2
i,n − σ2 = O

(
1/pn

)
. To this end, by setting

Gn =
1

m2
√
kn

kn∑
i=1

Ui,n, (10)

we deduce that

g(n) ≡
√
kn

(
pnT̃

(n) − σ2

m2

)
= Gn +O

(√kn
pn

)
,

or equivalently,

g(n) = Gn +O
(√ n

p3n

)
,

since n = knpn.
Next, we will prove in Theorem 3.3 that Gn admits a Gaussian asymptotic behaviour N (0,Σ2) by using

Lemma 3 in [4]. We will refer to the Appendix A.4 to derive the necessary dependence conditions. To this
end, assume that for some r > 4, E|X0|r < ∞; then Lemma A.1 (see also [10, Equation (4.2.6)]) implies that
|Cov (U0,n, Uq,n)| ≤ C(θUn (q))

r−2
r−1 from weak dependence conditions for q 6= 0. Moreover conditions for moments

of Gi,n with order δ > 2 to be bounded are given in Lemma A.1. Now in order to derive Lemma 3.1 we note that
Lemmas A.2 and A.3 provide us with conditions to ensure the existence of some r > 4 such that ‖X0‖r < ∞.
In fact, one needs conditions (32), or (33) to hold, as well as the following limit behaviours

lim
n→∞

p2n

∞∑
`=1

α
r−4
r (pn`) = 0, and lim

n→∞
p2n

∞∑
`=1

θ
r−4
r−2 (pn`) = 0.

Under such conditions we can state the following lemma.
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Lemma 3.1. Assume that ‖X0‖r < ∞ for some r > 4, and either α(q) = O(q−α) or θ(q) = O(q−θ) holds for

α > 2 · r

r − 4
, or θ > 2 · r − 2

r − 4
. Then we have

lim
n→∞

∑
` 6=0

|Cov (U0,n, U`,n)| = 0.

Also we have

Σ2 =
1

m4
lim
n

E(U0,n)2.

Proof. Letting X̃i = Xi −m for i ≥ 1, we can write:

Σ2 =
1

m4
lim
n

1

kn
Var

(
kn∑
i=1

Ui,n

)
=

1

m4
lim
n

E(U0,n)2 =
1

m4
lim
n

VarG2
0,n,

=
1

m4
lim
n

1

p2n

pn∑
i,j,i′,j′=1

Cov (X̃iX̃i′ , X̃jX̃j′) =
1

m4

pn∑
i,j′=1

Cov (X̃0X̃i, X̃0X̃j).

Remark 3.2 (Cumulants). Notes that this last expression is related to the cumulants κ(X0, Xu, Xv, Xw). Recall
that κ(X,Y, Z, T ) is the coefficient of t1t2t3t4 in the Taylor expansion of logE exp(it ·V) if t = (t1, t2, t3, t4) and
V = (X,Y, Z, T ). Note that if the process is Gaussian then the cumulants with order great that 2 all vanish. In
any case using [22] (see also [26] or [3]) we can show hat if all the moments are well defined, then

Cov (XY,ZT ) = κ(X,Y, Z, T ) + Cov (X,Z)Cov (Y, T ) + Cov (X,T )Cov (X,Z),

since

κ(X,Y, Z, T ) = Cov (XY,ZT )− Cov (X,Y )Cov (Z, T )

− Cov (X,Z)Cov (Y, T )− Cov (X,T )Cov (X,Z).

Thus Remark 3.2 implies that

Cov (XiXi′ , XjXj′) = κ(Xi,Xi′ ,Xj ,Xj′)+Cov (Xi, Xj)Cov (Xi′Xj′)

+ Cov (Xi, Xj′)Cov (Xi′ , Xj).

It thus follows that we may write m4Σ2 = limnAn with

An =
1

p2n

pn∑
i,j,i′,j′=1

Cov (XiXi′ , XjXj′) = 2Bn + Cn,

Bn =
1

p2n

pn∑
i,j,i′,j′=1

Cov (Xi, Xj)Cov (Xi′Xj′),

Cn =
1

p2n

pn∑
i,j,i′,j′=1

κ(Xi, Xj , Xi′Xj′).

Hence it is easy to prove that limnBn = σ4, and limn Cn = 0 when the cumulant sums condition (11) holds.
This assumption writes:

∞∑
i,=1

∞∑
j=1

∞∑
k=1

|κ(i, j, k)| <∞, with κ(i, j, k) = κ(X0, Xi, XjXk). (11)

We have thus proved, using Lemma 3.1, that if (11) holds then Proposition 3.2 allows to specify the limit variance
Σ in the CLT.
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Remark 3.3 (Sufficient conditions). The condition (11) is widely discussed in [25] and Theorem 4 on p. 138
provides a sufficient condition for (11) to hold, see also [26]. This condition is also used as condition M in [3].
In this work a precise study provides the reader with sufficient strong mixing conditions and under θ−weak
dependence. More precisely, if E|X0|r < ∞, then the condition (11) holds if one of the following additional
conditions hold:

∞∑
j=1

j
2
r−4α(j) <∞, and

∞∑
j=1

θ
r−4
r−1 (j) <∞.

We should note that those conditions are not necessary for (11) but they are implied by the assumptions in
Theorem 3.3.

Proposition 3.2. Assume that conditions in Lemma 3.1 and (11) hold then:

Σ2 = 2 · σ
4

m4
. (12)

Now assume that limn→∞ n/p3n = 0, simply let

pn = [κnζ ], with ζ >
1

3
. (13)

Then we will prove that: √
knT̄

(n) = Gn +
σ2

m2
+
√
kn(T̄ (n) − T̃ (n)) +O

(√ n

p3n

)
. (14)

For this we remark that the centred Taylor’s statistics may be decomposed as follows

T̄ (n) − T̃ (n) =
1

m2
(X

(n) −m)

(
1

kn

kn∑
i=1

(Y
(n)
i −m) + (X

(n) −m)

)
.

The bound X
(n) − m = O(1/

√
n) holds from (26). Similarly, we have Var (Y

(n)
i − m) = O(1/pn) and if (27)

holds for a > 2 then Var
( kn∑
i=1

(Y
(n)
i −m)

)
= O(kn/pn). Indeed, we can see that

Var

(
kn∑
i=1

Y
(n)
i

)
= s

∑
|`|<kn

(kn − |`|)Cov (Y
(n)
0 , Y

(n)
` ),

≤ O
(
kn
pn

)
+ 2kn

kn∑
`=1

|Cov (Y
(n)
0 , Y

(n)
` )| (15)

Thus,

Var

(
kn∑
i=1

Y
(n)
i

)
= O

(
kn
pn

)
. (16)

This is, however, not straightforward as it needs a thorough investigation of the second term in left-hand side
of (15). In fact, in order to prove this, we need to decompose Y (n)

0 = Y− + Y+ such that

Y− =
1

pn

pn−qn∑
i=1

Xi, Y+ =
1

pn

pn∑
i=pn−qn+1

Xi,

for some q ≡ qn < pn, which will be specified on the sequel. Then with k̃n = [n/(pn + qn)] we obtain

|Cov (Y
(n)
0 , Y

(n)
` )| ≤ |Cov (Y−, Y

(n)
` )|+ |Cov (Y+, Y

(n)
` )|.
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Indeed, if (27) holds for a > 1 then, VarY (n)
` = O(1/pn) and thus leads to

|Cov (Y+, Y
(n)
` )| ≤ 1

pn

pn∑
j=pn−qn+1

|Cov (Xj , Y
(n)
` | ≤ qn

pn

√
VarX0 ·VarY (n)

` .

This writes

|Cov (Y+, Y
(n)
` )| = O

(
qn

pn
√
pn

)
. (17)

Hence, the sum of the kn corresponding terms admits a contribution with order qnk̃n/pn
√
pn. In case qn =

O(
√
pn/k̃n) = O(p

3/2
n /n) this contribution admits the order O (1/pn). Moreover, letting qn = [nν ], the previous

inequality holds in case 0 < ν ≤ 3ζ − 1, which is only possible when ζ > 1
3 in (13). Now using the fact that

qn < pn we have

|Cov (Y−, Y
(n)
` )| ≤ 1

p2n

pn∑
j=pn−qn+1

∑
u∈B`,n

|Cov (Xj , Xu)|,

= O
( qn
p2n

) ∑
i≥`pn

i−a = O
(
qn
p2n

(`pn)1−a
)

= `1−aO
(
qn
pn
p−an

)
,

thus,

|Cov (Y−, Y
(n)
` )| = `1−aO

(
p−1n
)
, (18)

since a > 1. Hence, from summation, the relations (16) with a > 2 and (18) together imply

kn∑
`=1

|Cov (Y−, Y
(n)
` )| = O

(
p−1n
)
.

Finally, this allows to conclude that the relation (16) holds for some a > 2. Accordingly, the relations (28) and
(16) together imply

T̄ (n) − T̃ (n) = O
( 1

n
+

√
kn

kn
√
pnn

)
= O

( 1

n

)
. (19)

Now, if we go back to (14), we can show that if we assume that a > 2 in (27) we can write

√
knT̄

(n) = G(n) +
σ2

m2
+
√
kn(T̄ (n) − T̃ (n)) +O

(√ 1

kn
+

√
1

n

)
, (20)

thus G(n) converges to N
(
0,Σ2

)
with Σ2 defined from (12) provided that 1

3 < ζ < 1 in (13).

Theorem 3.3. With the notations (9) and (10), assume that for some r > 4, ‖X0‖r <∞ and that (11) holds
as well as limn(k3nqn/n) = 0. If moreover one of the following conditions is fulfilled:

α(q) = O(q−α), with α > 2 · r

r − 4
, and limn knα(qn) = 0 ,

θ(q) = O(q−θ), with θ > 2 · r − 2

r − 4
, and limn nknθ

r−2
r+2 (qn) = 0,

then

Gn →
n→∞

N
(

0, 2 · σ
4

m4

)
, in distribution.

Proof. According to notations (9) and (10) we set, for 1 ≤ j ≤ kn,

Gj,n =
1

m2
√
kn

j∑
i=1

Ui,n.
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A dependent version of Lindeberg lemma (see Lemma 3 in [4]) requires the existence of some γ > 2 and that
the three following conditions hold

lim
n→∞

1

m4
lim
n

1

kn
Var

(
kn∑
i=1

Ui,n

)
= Σ2 exists, (21)

lim
n→∞

kn∑
j=2

|Cov (eitGj,n , eitUj,n)| = 0, (22)

lim
n→∞

k
− γ2
n

kn∑
j=1

E |Uj,n|γ = 0. (23)

We will thus successively consider each of those three relations.

Relation (21) The relation (21) is proved in Proposition 3.2 together with the expression

Σ2 = 2 · σ
4

m4
.

Relation (22) The term (22) is somehow tricky. First notice that

Cov (eitGj,n , eitUj,n) = Cov (eitGj,n − eitGj−1,n , eitUj,n) + Cov (eitGj−1,n , eitUj,n),

and since

E|eitGj,n − eitGj−1,n | ≤ 1

m2
√
kn

E|Uj,n| = O(
1√
kn

),

we obtain

|Cov (eitGj,n − eitGj−1,n , eitUj,n)| ≤ 2

m2
√
kn

E|Uj,n| = O(
1√
kn

).

Then summing up kn terms as above provides an expression with order O(
√
kn) which does not tend to 0.

This means that additional work has to be processed to derive (22). Consider thus the following decomposition
Gj,n = Gj,n + (Gj−1,n−A) + Gj−1,n +A, with A = G2−EG2 and G = 1√

pn

∑jpn−1
i=jpn−qn Xi, such as the term G is

negligible. Remark that G− = Gj−1,n+A is qn-distant from Gj,n, and Gj,n−(Gj−1,n+A) = G2
j,n−G2−E(G2

j,n−G2).
Therefore, we have

E|G2
j,n −G2| ≤ E|Gj,n −G|2 + 2E|(Gj,n −G)Gj,n|+ 2E|(Gj,n −G)G| = O(

√
qn
pn

).

In order to prove (22) we first need limn kn
√

qn
knpn

= 0 which holds if limn qnkn/pn = 0. This is achieved when

pn ∼ nu and qn ∼ nv provided that u > 1
2 and 0 < v < 2u− 1. Finally, what is left is to bound the second term,

namely

|Cov (eitGj−1,n , eitUj,n)| ≤ |Cov (eitG
−
, eitUj,n)|+ |Cov (eitG

(n)
j−2(eitUj−1,n − eitA), eitUj,n)|,

≤ |Cov (eitG
−
, eitUj,n)|+ 2tE|G2

j,n −G2 − E(G2
j,n −G2)|,

≤ |Cov (eitG
−
, eitUj,n)|+O(

√
qn
pn

).

To this end, we distinguish the two following cases.

(i) In the strong mixing case

|Cov (eitG
−
, eitUj,n)| ≤ α(qn).
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Thus condition (22) occurs in case both conditions limn k
2
nqn/pn = 0 and limn knα(qn) = 0 are fulfilled.

(ii) In the θ−weakly dependent case the situation is more intricate since the heredity of such conditions is less
straightforward. Set eitUj,n = f ◦ g ◦ h((Xi)i∈Bj,n), with f(z) = eitz, g(z) = z2 − EG2

1,n and h(x1, . . . , xpn) =
1√
pn

∑pn
i=1 xi. Hence Lip f = |t| and Liph = 1√

pn
. We let U j,n Gj,n be the recentred truncations1 at a level

M > 0 to be precisely settled later of Uj,n and Gj,n, respectively.
Then with the help of Lemma A.1 we can write

|Cov (eitG
−
, eitUj,n)| ≤ |Cov (eitG

−
, eitUj,n) + |Cov (eitG

−
, eitUj,n − eitUj,n)|,

≤ 2pn
|t|M2

√
pn

θ(qn) + 2|t|E|Uj,n − U j,n|,

≤ 2
√
pn|t|M2θ(qn) + 2|t|

√
E|Gj,n +Gj,n||Gj,n −Gj,n|,

≤ 2
√
pn|t|M2θ(qn) + 4|t|

√
EG2

j,nE|Gj,n −Gj,n|2,

≤ 2
√
pn|t|M2θ(qn) +O(1)

√
pnE|X0|rM2−rθ(qn),

= O(
√
pnθ

1
2
r−2
r+2 (qn)), with M = θ−

2
2+r (qn).

Thus condition (22) follows in case limn k
2
nqn/pn = 0 and limn nknθ

r−2
r+2 (qn) = 0.

Relation (23) Lemma A.1 allows to deal with condition (23) since

E |Uj,n|γ = E|G2
j,n − EG2

j,n|γ ≤ 2γE|Gj,n|2γ = O(1),

follows from a convexity argument. Now (23) holds for γ > 2 if a moment with order δ = 2γ > 4 fits Lemma A.1.
This requires that decays in the strong mixing or θ-weak dependence both satisfy α, θ ≥ 2 · r−2r−4 which follows
from the assumptions yielding (21).

First notice that by using the weak Law of Large Numbers (LLN), it is simple to prove that the asymptotic be-
haviours of

√
knpnT

(n) and
√
knpnT̄

(n) are analogous. Then the central limit theorem
√
knT

(n) → N
(
σ2

m2 , 2 · σ
4

m4

)
follows from a direct use of Theorem 3.3, together with (6) and (14). More generally, we can state the following
result.

Theorem 3.4. Assume that conditions in Theorem 3.3, then we obtain√
kn(T

(n)
β −m2−β) →

n→∞
N
(
σ2

mβ
, 2 · σ

4

m2β

)
,

in distribution.

In order to check that the conditions in Theorem 3.4 are consistent we state them for power decay cases.

Corollary 3.5. Let pn = [nu], and qn = [nv] for 0 < v < u < 1. Assume that u > 2/3 and v < 3u − 2. The
conclusions of Theorem 3.3 hold if for some r > 4, ‖X0‖r < ∞, (11) holds as well as I one of the following
conditions:

α(q) = O(q−α), with α > 2 · r

r − 4
∨ 1− u

v
,

θ(q) = O(q−θ), with θ > 2 · r − 2

r − 4
∨
(2− u

v
· r + 2

r − 2

)
.

Remark 3.4 (Static Taylor’s law). Notice that when pn = 1 we are left with the classic (or static) Taylor’s law,
for which kn = n and Y (n)

i = Xi and Gi,n = Y
(n)
i −m = Xi−m. In this case the above reasoning does not apply

and some further modifications are needed in the proof for a CLT. Specifically (14) does not hold a it requires

1Let X be a real valued random variable and M > 0. Set X̂ =
(
X̃ ∨ (−M)

)
∧M and X = X̃ − X̂ at a level M > 0; then

|X| ≤ 2|X̃|11(|X̃| ≥M). A centred version of this truncation writes X = X̂ − EX̂.
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pn > 1. Thus, in order to handle this case we need to analyse throughly the corresponding expressions. In that
case we develop

Gn =
1

m2
√
n

n∑
i=1

((Xi −m)2 −VarX0), T̃ (n) = Gn +
1

m2
VarX0

Thus using Appendix A.3 with δ = 2 entails that T̄ (n) − T̃ (n) = 2
m2 (X

(n) −m)2 = O( 1
n ). As a consequence we

obtain
√
nT̄ (n) = Gn +

σ2

m2
+O

(√ 1

n

)
.

Also, we need to recall that from (19) limn
√
nE|T̄ (n) − T̃ (n)| = 0. Thus we have the following limit behavior:

√
n(T̃ (n) − ET̃ (n)) =

1

m2
· 1√

n

n∑
i=1

((Xi −m)2 −VarX0) −→ N (0,Σ2
0/m

4),

with Σ2
0 =

∑∞
j=−∞ Cov ((X0 − m)2, (Xj − m)2), in case E|X0|r < ∞ for some r > 4. Moreover, according

respectively to [16] or to Corollary 1 in [9] and to the heredity result Proposition 2.1 in [10] (see also Appendix
A.4), the CLT holds for squared variables (Xi − m)2. Hence, these make it possible to prove a central limit
theorem when pn = 1. In order to make the assumptions in the forthcoming result more simple, note that these
conditions imply that Appendix A.3 holds for δ = 2.

We can now state the central limit theorem for the case pn = 1.

Theorem 3.6 (Static Taylor’s law). Assume that E|X0|r <∞ for r > 4 and the following weak dependence or
α-mixing conditions hold

∞∑
j=1

j
2
r−4 α(j) <∞, and

∞∑
j=1

j
2
r−4 θ

r−2
r−1 (j) <∞.

Then we have √
kn(T

(n)
β −m2−β) →

n→∞
N
(
σ2

mβ
,

Σ2
0

m2β

)
,

in distribution, with

Σ2
0 =

∞∑
j=−∞

Cov ((X0 −m)2, (Xj −m)2).

Remark 3.5 (Practical sufficient conditions). If respectively α(q) ≤ cq−α, or θ(q) ≤ cq−θ holds then the conditions
of Theorem 3.6 hold if

α >
r + 2

r − 4
, or θ >

r + 2

r − 4
· r − 1

r − 2
.

Remark 3.6 (Self-normalized expressions). The relation (6) yields analogous results for the self-normalized statis-
tics S(n)

β in both Theorems 3.4 and 3.6.

4. Statistical applications

4.1. Test of goodness-of-fit

For goodness-of-fit testing purposes, one needs to estimate empirically m, e.g. by the empirical mean m̂ = Xn;
while many solutions are known in order to fit the limit variance σ2, by a convenient estimate σ̂2 as it was
suggested in [14] and in the included references. By doing so, we have m̂ − m = O(1/

√
n) while the rate of

convergence for σ̂2 is nonparametric, since a typical estimate of σ2 is the value at 0 of the spectral density of X
at the origin. Now, multiplying the conclusion of Theorem 3.4 by the constant mβ/σ2 we obtain

√
kn ·

mβ

σ2

(
T

(n)
β −m2−β

)
→ N (1, 2) , in distribution.
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This will be crucial in developing a testing procedure. Indeed, assume that τ is a quantile of the Normal
distribution such that P(|N (0, 2)| > τ) = η. A confidence interval is constructed as follows

lim sup
n→∞

P(T
(n)
β /∈ [an(β), bn(β)]) ≤ η,

where

an(β) = m̂2−β + (1− τ)
1√
kn
· σ̂

2

m̂β
, bn(β) = m̂2−β + (1 + τ)

1√
kn
· σ̂

2

m̂β
.

This leads to a test suitable to check whether β = β0 or β 6= β0, by rejecting the hypothesis in case T (n)
β0

/∈
[an(β0), bn(β0)], with an asymptotic level η.
Remark 4.1 (Test for the static Taylor’s law). From Theorem 3.6, we can derive analogous confidence intervals
when kn = n corresponding the static Taylor’s law. In fact, we have the following the asymptotic behavior√

kn ·mβ
(
T

(n)
β −m2−β

)
→ N

(
σ2,Σ2

0

)
,

in distribution. Hence a test of goodness-of-fit in this case may directly be considered. Similarly, this will also
need the estimation of Σ2

0.
Remark 4.2 (An heuristic for the case of contiguous alternatives). This test may be proved to be asymptotically
powerful under contiguous series of alternatives. Namely we may test hypotheses β = β0 against |β − β0| ≥ δn
for some δn ↓ 0 with limn

√
knδn/pn = ∞. We simply sketch its asymptotic power. To this end, assume that

limn p
3
n/n = 0. Hence, we should prove that limn

√
kn|T (n)

β −T (n)
β0
| =∞ as in the following heuristic expressions:

T
(n)
β − T (n)

β0
=

1

kn

kn∑
j=1

(Y
(n)
j )2

(
1(

Y
(n))β − 1(

Y
(n))β0

)
∼ E(Y

(n)
0 )2

(
1

mβ
− 1

mβ0

)

∼ − lnm ·m−β0

pn
(β − β0) (24)

Note that the function f(β) = m−β decays providing that m > 1, which makes the above lower bound possible
when β > β0 + δn. Hence with a large probability there exists a constant c such that:√

kn|T (n)
β − T (n)

β0
| ≥ cδn

√
kn
pn

,

is unbounded. This, as well as different counter hypotheses, will be rigorously investigated in further works.
Remark 4.3. The chain or equivalences (24) may also be useful to derive the estimation of β0 as well as a central
limit theorem for pn√

kn
(β̃ − β0).

It is worth pointing out that analogous results hold for the simpler static Taylor’s law following the same lines.

4.2. Estimation of Taylor’s indices

Estimation of β is crucial in many applications. To this end, it is possible to derive from the above results the
following.

Corollary 4.1. Assume that the assumptions of the Theorems 3.4 and 3.6 hold, respectively. We also obtain
that T (n)

β −m2−β = OP(1/
√
kn). Thus setting β̂D = 2 − lnT

(n)
β we obtain an estimator of β for the dynamic

Taylor’s law such that
β̂D →P β.

Remark 4.4. All the chain of approximations to Gn is proved in L2. Moreover equation (21) proves that the
sequence Gn is bounded in L2, which prove the first result. Note that the previous result also entails that
T

(n)
β /m2−β → 1 in probability. Thus

2− lnT
(n)
β / lnm→ β .

Accordingly, we obtain an estimator of β, consistent in probability, in case m is known. The convergence rate is
again OP(1/

√
kn).
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Remark 4.5 (Estimation of the Static Taylor’s exponent). Thus in case kn = n, using now Theorem 3.6 and
Remark 4.2, we set β̂S = 2 − lnT

(n)
β to obtain an estimator β̂S consistent in probability of β for the static

Taylor’s law.
The difference between both exponents relie of the fact that the statistic T (n)

β is currently considered with kn = n
while the Bernstein blocks needed in the dynamic Taylor’s law rely on the relation limn kn/n = 0.
To the best of our knowledge, nothing exists so far in the literature related to the limit behaviour in distribution
for such quantities. Thus testing hypotheses β = β0 against β 6= β0 is possible thanks to the tests described in
Subsection 4.1.

Conclusions

The present paper introduces a new dynamic Taylor’s law. We prove a central limit theorem, in the dependent
setting, for properly normalised relevant expressions related to both this new Dynamic Taylor’s law as well as
the static (or classic) one. Our frame is however restricted to light tails processes and much more is needed
to understand Taylor’s laws under weaker assumptions. Many future issues will be considered in forthcoming
publications.
Remark 4.6 (Control of the moments). The study of convergence in Lp is deferred to a forthcoming paper; let
us simply quote that in the dependent cases it seems hard to reach low moment assumptions because of the
systematic use of covariance inequalities. High moment assumptions allow to conduct equivalents for the moments
of T (n)

β under dependence under heavy calculations. Anyway this study is more adapted for developments in a
more probabilistic review.
Remark 4.7 (Comparing Taylor’s laws). Empirical studies will also be conducted to investigate the respective
domain of validity of those two different Taylor’s law. We suspect that the new dynamic Taylor’s law may be
more relevant for some specific cases as those discussed in [8, 27]. Ecological considerations will be highlighted
in such data studies.
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Appendix A: Technical and Useful Tools

In this Appendix we set up the dependence considerations useful in the core of the paper.

A.1. Notions of dependence

For the Euclidean space Rd equipped with some norm ‖ · ‖ and for a function h : Rd → R, let us denote by

Lip(h) = sup
x 6=y

|h(x)− h(y)|
‖x− y‖

.

Define the space Λ1

(
Rd
)
by the set of functions h : Rd → R such that Lip(h) ≤ 1. Furthermore, let us denote

by ‖h‖∞ = supx∈Rd |h(x)|. To be more specific, let (Ω,G,P) be a probability space. Following either [11] or [24],
recall that for integers 1 ≤ u, v ≤ ∞, the strong mixing coefficient is defined by

αu,v(q) = sup |P(U ∩ V )− P(U)P(V )|,
α(q) = α∞,∞(q).
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Here, the supremum is taken over U ∈ U , and V ∈ V; with U = σ(Xi1 , . . . , Xiu), and V = σ(Xj1 , . . . , Xjv ) for
integers i1 ≤ · · · ≤ iu ≤ iu + q ≤ j1 ≤ · · · ≤ jv; the suprema first run over all such integers and second over the
σ-fields U ,V.
On the other hand, the θ -coefficients ([9] or [10]) are defined as the least nonnegative number θ(q) such as∣∣Cov (f(Xi1 , . . . , Xiu), g(Xj1 , . . . , Xjv ))

∣∣ ≤ vLip g ‖f‖∞θ(q), (25)

for integers i1, . . . , iu, j1, . . . , jv which satisfy i1 ≤ · · · ≤ iu ≤ iu + r ≤ j1 ≤ · · · ≤ jv, and functions f, g defined
respectively on the sets (Rd)u and (Rd)v equipped with the following norm

‖(x1, . . . , xu)‖ = ‖x1‖∞ + · · ·+ ‖xu‖∞, x1, . . . , xu ∈ Rd,

where ‖x‖∞ = maxj |xj |, for any x ∈ Rd. The function g is assumed to be Lipschitz.
The sequence (Xi)i is said strong mixing or θ-weakly dependent in case limq α(q) = 0, or respectively if
limq θ(q) = 0. In case of any doubt concerning the process under consideration those coefficients will respectively
be denoted αX(q) or θX(q).
Remark A.1. From a simple inclusion αY (q) ≤ αX(q) in case Yt = h(Xt) but that the same heredity relation
does not hold for the weak dependence coefficients as θ; more tricky arguments as the Proposition 2.1 in [10]
are needed.

A.2. Second order behaviour

For a stationary dependent sequence with mean m, (Xi)i∈Z, we assume that partial sums are asymptotically
Gaussian, in such a way that the following convergence holds with σ2 defined from (1)

Γp →
p→∞

N (0, σ2), in distribution, (26)

with Γp ≡ √
p · 1

p

p∑
i=1

(Xi − EXi).

Remark A.2. The above assumption holds e.g. in case the condition of [16] or [9] hold. Assumptions considered
in the paper are strong mixing [11] or weak dependence conditions, [15]. Many alternative assumptions such as
Wu’s physical measure of dependence or Mixingale assumptions are also often used.
As an assumption, let us also assume that there exist constants c > 0 and a > 1 such that

|Cov (X0, Xj)| ≤ c(|j|+ 1)−a, ∀j ∈ Z. (27)

Hence, if a ≥ 2 in the assumption (27) we first derive that

EΓ2
p = O(1), if a ≥ 2. (28)

We now need to bound EΓ2
p − σ2. A simple decomposition yields

σ2 − EΓ2
p =

∑
|j|>p

Cov (X0, Xj) +
1

p

∑
|j|≤p

|j|Cov (X0, Xj).

Then for a suitable constant ζ(a) only depending on a, we can write

|σ2 − EΓ2
p| ≤ 2c

∑
j>p

(|j|+ 1)−a +
c

p

∑
|j|≤p

(|j|+ 1)1−a ≤ ζ(a)c
(
p1−a +

1

p

)
,

≤ 2ζ(a)c

p
, if a ≥ 2.

Finally, we have

σ2 − EΓ2
p = O

(1

p

)
, if a ≥ 2. (29)

Remark A.3. When 1 < a ≤ 2, we observe the weaker bound σ2 − EΓ2
p = O

(
p1−a

)
. More generally, the above

bound may be written as σ2 − EΓ2
p = O

(
p−{1∧(a−1)}

)
for each a > 1. For the sake of simplicity we will assume

that a > 2.
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A.3. Moments of approximate Gaussian sums

Let I ⊂ Z be an interval with cardinal p, and let (X̃i)i∈Z be a stationary sequence of centred random variables
(in the current setting we simply write X̃i = Xi −m), we consider in this section the behaviour of approximate
Gaussian sums of an independent interest.

GI =
1
√
p

∑
i∈I

X̃i. (30)

In Subsection A.2, we consider the second order behaviour of normalised partial sums Γp = G[1,p]. The present
section aims at setting higher order considerations providing asymptotic functional behavior for the process
(G[t+1,t+p])t∈Z as p → ∞. We will need such dependence assumptions ensuring that there exist a constant C
such that if the interval I ⊂ Z includes less than p values, then:

EG4
I ≤ C4. (31)

For instance, Lemma 2 and Corollary 2 (with p = δ in their notation) in [9] allow to state the following result.

Lemma A.1 ([9]). Let (X̃i)i∈Z be a stationary centred sequences. Define normalised sum in (30) over an interval
I = [a, b] with 0 ≤ b− a ≤ p, then it exists a constant C such that for each p, and for each interval with cardinal
less or equal to p, so that

‖GI‖δ ≤ C.

holds if respectively α-mixing or θ−weak dependence hold and

‖X̃0‖r
∞∑
q=1

q
δr−2r+1
r−δ α(q) < ∞,

‖X̃0‖r
∞∑
q=1

q
δr−2r+1
r−δ θ(q) < ∞.

Remark A.4. The case δ = 4 is of a special interest and conditions to ensure that (31) holds become respectively
under the following α-mixing or θ−weak dependence :

‖X̃0‖r
∞∑
q=1

q
2r+1
r−4 α(q) < ∞, (32)

‖X̃0‖r
∞∑
q=1

q
2r+1
r−4 θ(q) < ∞. (33)

In case α(q) = O(q−α), θ(q) = O(q−θ) satisfy respectively α > 2 · r−2r−4 or θ > 2 · r−2r−4 , then there also exists δ > 4
such that the conclusions of Lemma A.1 still hold.
Let I, J be two such disjoints sets with cardinal at most equal to p, then we will need to prove that

lim
p

Cov (G2
I , G

2
J) = 0.

First note that
Cov (G2

I , G
2
J) =

1

p2

∑
i,j∈I

∑
k,`∈J

Cov (X̃iX̃j , X̃kX̃`).

This expression is bounded by using the following bounds.
(i) First, note that |Cov (X̃iX̃j , X̃kX̃`)| ≤ 2EX̃4

0 follows from a systematic application of Cauchy-Schwartz
inequality. Hence, if now d({i, j}, {k, `}) ≥ q then we have

• Under strong mixing, the covariance inequality in [24] ensures that

|Cov (X̃iX̃j , X̃kX̃`)| ≤ 6‖X̃0‖4r α
r−4
r (q).
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• Under θ-weak dependence, we use a truncation at a level M > 0 to be settled later on, i.e. X =
(
X̃ ∨

(−M)
)
∧M and X = X̃ −X, then |X| ≤ 2|X̃|11{|X̃|≥M} and

|Cov (X̃iX̃j , X̃kX̃`)| ≤ |Cov (XiXj , XkX`)|+
7∑

u=1

Au ≤ 2M2θ(q) +

7∑
u=1

Au.

Terms Au, for u = 1, . . . , 7, are obtained through expansions X̃ = X+X. Thus each term Au is a covariance
of products including at least one factor X. Therefore, Markov inequality, with µ = E|X̃0|r and with the
coefficient 112 = 7 · 24, leads to

|Cov (X̃iX̃j , X̃kX̃`) ≤ 2M2θ(q) + 112E|X̃0|411{|X̃0|≥M} ≤ 2M2θ(q) + 112M4−rE|X̃0|r,

≤ 4(56µ)
2
r−2 θ

r−4
r−2 (q), with M =

( 56µ

θ(q)

) 1
r−2

≤ cθ
r−4
r−2 (q).

Hence now we may come to precise bounds.
(i) Now, if d(I, J) ≥ q, then

|Cov (G2
I , G

2
J)| ≤ p2εq,

with, for a convenient constant c > 0, and such that

εq = 6‖X̃0‖4r α
r−4
r (q), under strong mixing,

εq = c θ
r−4
r−2 (q), under θ-dependence.

Lemma A.2. Let (X̃i)i∈Z be a stationary centred sequences and define normalised sum (30) over intervals I, J
with cardinal less or equal to p and distant at least equal to q. Then, if the sequence is either strong mixing or
θ-dependent and ‖X̃0‖r for some r > 4, there exists a constant c > 0 such that

|Cov (G2
I , G

2
J)| ≤ cp2 α

r−4
r (q), and |Cov (G2

I , G
2
J)| ≤ cp2 θ

r−4
r−2 (q),

respectively, under strong mixing and θ-dependent conditions.

(iii) Finally, if d(I, J) < q, and q < p then let I ′ ⊂ I be such that distance of I ′ to J is more than q (if I = [a, b]
then either I ′ = [a, b− q] or I ′ = [a+ q, b]) we set GI = G+G′ with

G =
1
√
p

∑
i∈I′

X̃i.

Then, using Cauchy-Schwartz inequality together with Lemmas A.1 and A.2, we obtain, with the notation (34),
that

|Cov (G2
I , G

2
J)| ≤ |Cov (G2, G2

J)|+ 2|Cov (GG′, G2
J)|+ |Cov (G′2, G2

J)|,
≤ p2εq + 4(EG4)

1
4 (EG′4)

1
4 (EG4

J)
1
2 + 4(EG′4)

1
2 (EG4

J)
1
2 ,

≤ p2εq + 4C4

√
q

p
+ 4C4 q

p
,

≤ p2εq + 8C4

√
q

p
. (34)

In this way, if conditions (32) or (33) hold then limp p
2α(p) = 0 or limp p

2θ(p) = 0 since 2r+1
r−4 > 2. This allows

to find q ≡ q(p)� p such that the right-hand side of (34) tends to zero as p→∞.
Now, more quantitatively, let us assume that εq ≤ c′q−κ. Then a choice q = pε for some 0 < ε = 5

2κ+1 < 1
gives the following bound for a constant c0 > 0,

|Cov (G2
I , G

2
J)| ≤ c0p

− κ−2
2κ+1 .

These bounds all require that κ > 2 which means that if α(q) = O(q−α), θ(q) = O(q−θ) we will need respectively
α > 2 · r

r−4 or θ > 2 · r−2r−4 . Elementary calculations prove that conditions in Lemma A.1 require exactly the same
assumptions and Remark A.4 even ensures that ‖GI‖4 ≤ C whatever p is and the interval I such that #I ≤ p
in this case.
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Lemma A.3. Let (X̃i)i∈Z be a stationary centred sequence with ‖X̃0‖r < ∞ for some r > 4 then defining
normalised sum in (30) over intervals I, J with cardinal less or equal to p .

1. Assume that either condition (32) or (33) holds then

lim
p

sup
(I,J)∈C(p)

Cov (G2
I , G

2
J) = 0,

where the supremum is considered over the collection of intervals (I, J), with I, J ⊂ Z, #I ≤ p, #I ≤ p,
and I ∩ J = ∅.

2. Assume now that either strong mixing or θ-dependence holds, i.e. α(q) = O(q−α), θ(q) = O(q−θ); then in
case α > 2 · r

r−4 or θ > 2 · r−2r−4 , there exists a constant γ such that:

|Cov (G2
I , G

2
J)| ≤ γp−a, a =


α(r − 4)− r
2α(r − 4) + r
θ(r − 4)− r
2θ(r − 4) + r

, respectively.

Remark A.5. If I = [a, b], J = [c, d] then 0 ≤ b− a ≤ p, 0 ≤ d− c ≤ p and c > b in Lemma A.3, or c ≥ b+ q in
Lemma A.2.

A.4. Dependence properties of expressions of interest

In this appendix we will recall more heredity considerations as extensions to Bernstein blocks variants of Propo-
sition 2.1 in [10].
(i) If the process (Xi)i∈Z is strong mixing then heredity is simple and

αUn (q) ∨ αGn (q) ≤ α((q − 1)pn + 1).

(ii) If the process (Xi)i∈Z is θ-weakly dependent, then heredity is more tricky. For this we will use heredity
results in Lemma 6 in [3] to show that the sequence (Ui,n)i∈N is also θUn (q)-weakly dependent. To this end, we
first consider the normalised partial sums process Gi,n. Let f : Ru → R and h : Rv → R be functions as in (25),
then set S = Bi1,n ∪ · · · ∪Biu,n and T = Bj1,n ∪ · · · ∪Bjv,n. Finally, denote

Fn((xs)s∈S) = f
( 1
√
p
n

( ∑
s∈Bi`,n

(xs −m)
)
1≤`≤u

)
,

Hn((xt)t∈T ) = h
( 1
√
p
n

( ∑
t∈Bj`,n

(xt −m)
)
1≤`≤v

)
.

Thus #T ≤ vpn, ‖Fn‖∞ = ‖f‖∞ and LipHn ≤ 1√
p
n
now the distance between the sets of indices S and T is at

least (q − 1)pn and we thus calculate∣∣Cov (f(Gi1,n, . . . , Giu,n), h(Gj1,n, . . . , Gjv,n))
∣∣ =

∣∣Cov (Fn((Xs)s∈S), Hn((Xt)s∈T )
∣∣,

≤ vpn ·
1
√
p
n

LipHn ‖Fn‖∞θ((q − 1)pn + 1),

≤ v
√
pnLiph ‖f‖∞θ((q − 1)pn + 1),

≤ vLiph ‖f‖∞θGn (q).

Thus, we have

θGn (q) ≤ √pnθ((q − 1)pn + 1). (35)

Next, we use Lemma 6 in [3] to derive that θUn (q) ≤ C
(
θGn (q)

) r−2
r−1 for a constant C > 0, if E|X0|r <∞. Finally,

from (35), it follows that

θUn (q) ≤ Cp
r−2

2(r−1)
n θ

r−2
r−1 ((q − 1)pn + 1).


