Statistical Field Theory and Networks of Spiking Neurons - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Statistical Field Theory and Networks of Spiking Neurons

Pierre Gosselin
  • Fonction : Auteur
Aïleen Lotz
  • Fonction : Auteur
Marc Wambst
  • Fonction : Auteur
  • PersonId : 964354

Résumé

This paper models the dynamics of a large set of interacting neurons within the framework of statistical field theory. We use a method initially developed in the context of statistical field theory [44] and later adapted to complex systems in interaction [45][46]. Our model keeps track of individual interacting neurons dynamics but also preserves some of the features and goals of neural field dynamics, such as indexing a large number of neurons by a space variable. Thus, this paper bridges the scale of individual interacting neurons and the macro-scale modelling of neural field theory.

Dates et versions

hal-02973182 , version 1 (20-10-2020)

Identifiants

Citer

Pierre Gosselin, Aïleen Lotz, Marc Wambst. Statistical Field Theory and Networks of Spiking Neurons. 2020. ⟨hal-02973182⟩
69 Consultations
0 Téléchargements

Altmetric

Partager

More