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We numerically investigate reheating after quadratic inflation with up to 65 fields, focusing on the
production of non-Gaussianity. We consider several sets of initial conditions, masses, and decay rates.
As expected, we find that the reheating phase can have a significant effect on the non-Gaussian signal, but
that for this number of fields a detectable level of non-Gaussianity requires the initial conditions, mass
range, and decay rates to be ordered in a particular way. We speculate on whether this might change in the
N-flation limit.
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I. INTRODUCTION

The theory of inflation has been extremely successful in
explaining the initial state of the hot big bang, simulta-
neously providing a mechanism that generates the initial
seeds of structure [1–5]. Yet the underlying details of the
physics of inflation are still far from clear. While models of
inflation based on the dynamics of a single scalar field
slowly rolling on a concave potential are in full agreement
with all present constraints, the high energies at which
inflation occurs motivate models with many light degrees
of freedom [6,7].
In addition to being well motivated from the fundamental

theory point of view, many-field inflation has a rich phe-
nomenology, the consequences of which are not yet fully
understood. For example, despite its increased complexity, it
has been argued that many-field inflation typically gives
simple predictions for observables at the end of inflation that
converge statistically toward values in agreement with
current experimental constraints [8–13] (although depend-
ence on the choice of prior remains [14]). In many cases,
however, there are still isocurvature modes present at the end
of inflation [9,11], which may lead to observables quantities
subsequently evolving. Of particular interest is local non-
Gaussianity, which remains a key target of upcoming
cosmological surveys [15–19] and an observable level of
which requires superhorizon evolution [20–26].
After inflation, the energy stored in the scalar field(s) is

converted to other particles and fields during reheating
[27–32]. In single-field scenarios, this process changes
only the time at which the observed scales exit the horizon
[33,34], since the uniform density curvature perturbation ζ
remains conserved after horizon crossing [35–39]. In

contrast, when multiple fields are active during inflation,
isocurvature fluctuations may later be converted into
curvature fluctuations, thus triggering the superhorizon
evolution of ζ. As a consequence, all predictions from
multifield models can be sensitive to the details of reheating
when isocurvature modes persist.
Reheating, and the propagation of perturbations through

reheating, is, in general, extremely challenging to under-
stand analytically [40–43] or numerically [44–55] (see
Refs. [56–58] for reviews). Progress can be made in
calculating the observational consequences of many-field
reheating, however, by assuming reheating can be modeled
as a perturbative process that obeys simple coupled
equations. Although a simplification, this approach is
self-contained and internally consistent, has been taken
for small numbers of fields in the past [41,59–61], and
recently for many fields by Hotinli et al. [62]. This latter
study, however, considered only two-point statistics that
can be mimicked by single-field models. In the present
paper, we aim to revisit many-field reheating but consider
also local non-Gaussianity, which can be used to distin-
guish between single- and multifield scenarios.

II. THE MODEL

We consider Nϕ canonical scalar fields ϕI with potential
V ¼ P

I m
2
Iϕ

IϕI. This model is chosen both to ensure that
any observable non-Gaussian signal is purely due to the
effects of reheating and to make contact with earlier work
[62]. Although, in principle, the different fields could
reheat into any number of fluids, we will assume that after
reheating all species are in thermal equilibrium.1 This is

*p.gregoriocarrilho@qmul.ac.uk

1This implies that isocurvature fluctuations [63,64] do
not survive after reheating, which is consistent with Planck
constraints [65].
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equivalent to having only one effective radiation fluid ρr
into which all fields decay.
In the present study, we make some further simplifying

assumptions that we now discuss. Each scalar field falls into
the minimum of the potential when the Hubble rate falls
below that field’s effective mass. If a field reaches the
minimum shortly before inflation ends, or thereafter, it
begins to oscillate, and it is only during these oscillations
that the phenomenological description of perturbative reheat-
ing is expected to be accurate. This phase can last for many
e-folds during which the frequency of the oscillations grows
exponentially. Tracking these oscillations numerically can
therefore be extremely challenging. To circumvent this issue,
wewill treat oscillating fields as matter fluids. This is a good
approximation for scalar fields oscillating in a quadratic
minimum [66]. To avoid having to impose a transition from
oscillating field to matter fluid by hand, we simply introduce
as many dust fluids ρmðIÞ as there are fields, and introduce
decay couplings between each field and its corresponding
fluid, effectively making the fields “decay” into dust, before
these dust fluids decay into radiation. We then remove fields
from the system when field’s energy density is negligible
relative its corresponding dust fluid. These approximations
introduce negligible error in predictions, while accelerating
numerical implementations substantially.
With these modifications, our final evolution equations

become

ϕ00
I ¼ −

�
H0

H
þ 3

�
ϕ0
I −

∂IV
H2

− ΓmðIÞ ϕ
0
I

H
; ð1Þ

ρ0mðIÞ ¼ −3ρmðIÞ þHϕ02
I ΓmðIÞ −

1

H
Γr
mðIÞρmðIÞ; ð2Þ

ρ0r ¼ −4ρr þ
1

H

X
I

Γr
mðIÞρmðIÞ; ð3Þ

where for later convenience we have written the equations
using e-fold number N as the measure of time
[N ¼ logða=aiÞ, where ai is the initial value of the scale
factor a] and a dash denotes a derivative with respect to N.
Here ΓmðIÞ indicates the decay rate of the Ith field into its
corresponding dust fluid, and Γr

mðIÞ the decay rate of this
fluid into radiation. H ≡ _a=a is the Hubble rate (where a
dot denotes a derivative with respect to cosmic time), and
we assume a flat Friedmann-Lemaître-Robertson-Walker
universe such that

H2 ¼ VðϕÞ þ ρr þ ρm
3 − 1

2
ϕ02 ;

H0 ¼ −
1

2
Hϕ02 −

3ρm þ 4ρr
6H

; ð4Þ

where we have used ρm to represent the sum of the densities
of all dust fluids, and ϕ02 is the sum of squares of all field
velocities.

Naturally, the effective dust species can only exist once
the fields begin oscillating, thus we only activate the decay
rates ΓmðIÞ at that time. This makes ΓmðIÞ a function of the
fields and fluids present. A sharp transition would give rise
to pathologies in the perturbation equations, as we will see,
and so we parametrize the transition using

ΓmðIÞ ¼ 1

2
Γ̄mðIÞ

�
1þ tanh

�
π

T

�
1 −

H
HI

���
; ð5Þ

where T parametrizes the width of the transition, HI is the
Hubble rate when the transition happens, and Γ̄mðIÞ are the
final values of the decay rates after the transition. We
choose HI ¼ mI=

ffiffiffiffiffi
10

p
, where mI is the mass of field I, to

ensure that the fields are starting to oscillate, and
Γ̄mðIÞ ¼ 5mI , to guarantee that the fields convert quickly
to the dust fluids, which is essential for a fast numerical
solution. The couplings between dust and radiation Γr

mðIÞ
are also activated in the same way and using the same
parametrization, but with Γ̄r

mðIÞ being chosen according to
the case under study.

III. PERTURBATIONS

We are interested in studying the evolution of perturba-
tions through reheating, in particular, the two- and three-
point correlation functions of the curvature perturbation ζ
and the two-point correlations of tensor fluctuations hij.
We evolve these correlations using the transport approach
[38,67–74]. This approach takes equations for the evolution
of perturbations and uses them to evolve the correlations
directly. This can be done using the full wavelength-
dependent equations from quantum initial conditions on
subhorizon scales, and numerical packages including
PyTransport [75,76] and CppTransport [77,78] implement this
approach for models with many fields. Unfortunately,
neither yet supports reheating, and indeed we are updating
PyTransport with a more general version of a bespoke code
developed for this paper.
To evolve the correlations of interest through reheating,

we need evolution equations for perturbations to the fields
and fluids up to second order in perturbation theory. One
approach would be to use full cosmological perturbation
theory. However, given that all observable wavelengths are
larger than the cosmological horizon at the time of
reheating and become wavelength independent, we can
instead generate completely equivalent perturbation equa-
tions using the separate universe approach. This assumes
that, on the largest scales, cosmological fluctuations can be
modeled by different background patches evolving under
the same evolution equations, but having slightly different
initial conditions. If different patches are always compared
after the same number of e-folds, differences in scalar
quantities between them (such as values of the field)
correspond to perturbations on flat hypersurfaces.
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A. δN

At the end of our evolution, the curvature perturbation
can be extracted by calculating the perturbative difference
in expansion between neighboring patches needed to reach
the same uniform density hypersurface. This “δN” quantity
gives the curvature fluctuation on uniform density hyper-
surfaces ζ and can be expanded in terms of the field and
fluid fluctuations at the end of our evolution as

ζ ¼ NaδXa þ 1

2
NabδXaδXb; ð6Þ

where δXa represents fluctuation in the fields, field veloc-
ities (with respect to e-fold number), and fluids, and where
a sum over repeated indices is implicit. One form of the
tensors Na, Nab is given by

Na ¼ −
∂aH
H0 ; ð7Þ

Nab ¼ −
∂a∂bH2

2HH0 − ∂ðaðHH0Þ−1∂bÞH2

þ H
H0 ∂cðHH0Þ−1Xc0∂aH∂bH; ð8Þ

in which ∂a denotes derivatives with respect to any variable
Xa ¼ fϕI;ϕI0; ρmðIÞ; ρrg. These expressions are to be
evaluated at the end of our evolution using the expressions
for the H and H0 in Eqs. (4). See Ref. [38] and references
therein for a detailed derivation of these coefficients using
both the separate universe approach and cosmological
perturbation theory for the case of multiple fluids, which
can trivially be extended to include fluids.

B. Evolution on a flat slicing

Because Eqs. (1)–(3) are written using the time variable
N, together with Eqs. (4) they can be used to derive
evolution equations for the perturbations on flat (constant
N) hypersurfaces by simply perturbing them up to second
order in fluctuations. A general variable δXa evolves
according to

δX0
a ¼ uabδXb þ uabc

1

2
δXbδXc; ð9Þ

with the coefficients given by

uab ¼
∂X0

a

∂Xb
; ð10Þ

uabc ¼
∂2X0

a

∂Xb∂Xc
; ð11Þ

where X0
a is expression for the background evolution of the

quantity Xa given by Eqs. (1)–(3) (note the ϕ00 equation
must be split into two first order equations).

In is extremely important to recognize that, because the
decay rates are time dependent, the evolution equations
involve fluctuations of the decay rates

δΓ≡ ∂Γ
∂Xb

δXb þ
1

2

∂2Γ
∂Xb∂Xc

δXbδXc; ð12Þ

which must be present for self-consistency. The formalism
employed here shows that turning on the Γ’s instantane-
ously at some time in the perturbation equations (no matter
how they are derived) without altering the evolution
equations, as has been done in the past, is inconsistent.

C. Transport

We define correlations of our perturbations as

hδXaðk1ÞδXbðk2Þi ¼ ð2πÞ3δðk1 þ k2ÞΣabðk1Þ; ð13Þ

hδXaðk1ÞδXbðk2ÞδXcðk3Þi ¼ ð2πÞ3δðk1 þ k2 þ k3Þ
× αabcðk1; k2; k3Þ; ð14Þ

where Σab is the power spectrum of the perturbations and
αabc is the bispectrum. It is straightforward to show, using
Eq. (9), that these spectra evolve according to

Σ0
ab ¼ uacΣbc þ ubcΣac; ð15Þ

α0abc ¼ uadαbcd þ uadeΣdbΣec þ perms: ð16Þ

The power spectrum Pζ and bispectrum Bζ of the curvature
fluctuation are similarly defined as

hζðk1Þζðk2Þi ¼ ð2πÞ3δðk1 þ k2ÞPζðk1Þ; ð17Þ

hζðk1Þζðk2Þζðk3Þi ¼ ð2πÞ3δðk1 þ k2 þ k3ÞBζðk1; k2; k3Þ;
ð18Þ

and are given by

Pζðk1Þ ¼ Σabðk1ÞNaNb; ð19Þ

Bζðk1;k2;k3Þ¼ αabcðk1;k2;k3ÞNaNbNc

þΣadðk1ÞΣbcðk2ÞNabNcNdþperms; ð20Þ

where Na and Nab are given in Eqs. (7) and (8).
Finally we note that tensor fluctuations are constant on

superhorizon scales.

D. Selecting the scale to evolve

If we wished to evolve correlations from quantum
subhorizon scales until the end of reheating, the
existing implementation of the transport formalism within
PyTransport could be employed, stopping the evolution
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sometime before or shortly after the end of inflation when
all observational scales have left the horizon. We could then
restart the evolution using the output of PyTransport as initial
conditions for the superhorizon equations (9) that include
the reheating dynamics. Indeed, this is our intention for the
aforementioned updates to PyTransport. In the present case,
however, because the inflationary model is so simple, it will
suffice to use analytic initial conditions for the correlations
evaluated at horizon crossing (which is the usual procedure
in, for example, the standard δN formalism) and evolve the
fluctuations from horizon crossing onward. Indicating
quantities at horizon crossing with an �, these are given by

Σðk�ÞIJ ¼
H2�

ð2πÞ2 δIJ;

αðk�; k�; k�Þabc ≈ 0; ð21Þ
where all other elements of Σ are zero. The tensor
spectrum is

PT ¼ 4H2�
k3

: ð22Þ

Following this procedure, the scale k under consideration
can be defined purely by the horizon crossing time at which
one chooses to set the initial conditions. In this project,
we will be interested in evolving solely the pivot scale
used in standard cosmic microwave background analysis,
k� ¼ 0.05 Mpc−1. Therefore, we require the number of
e-folds before the end of inflation at which this scale leaves
the horizon (k� ¼ a�H�). We use the following formula to
relate the pivot scale to the number of e-folds [62,79]:

k�

a0H0

¼ a�

areh

areh
aeq

aeq
a0

H�

H0

; ð23Þ

where subscript 0 indicates quantities today, eq quantities at
matter-radiation equality, and reh quantities at the end of
reheating. One finds

a�

areh
¼ e−N

�−ΔNreh ; ð24Þ

where N� is the number of e-folds of inflation and ΔNreh is
the duration of reheating. We employ the approximation
that between reheating and matter-radiation equality (aeq)
the Universe is radiation dominated, such that H ∝ a−2

during that stage. This allows us to write

areh
aeq

¼
ffiffiffiffiffiffiffiffiffi
Heq

Hreh

s
: ð25Þ

Additionally, the ratio aeq=a0 is simply given by the
redshift at equality aeq=a0 ¼ ð1þ zeqÞ−1, and H0 is the
measured Hubble constant. An iterative algorithm is then

used to determine the remaining factors in Eq. (23), which
are tuned to give the correct scale by varying the number
of e-folds of inflation and the energy scale of inflation,
while also guaranteeing the scalar amplitude As agrees with
observations.
This algorithm works as follows: We start with an initial

guess for the number of e-folds N0 and evolve the two-
point function up to the end of reheating to compute the
scale being evolved, k0. If k0 ≈ k� ¼ 0.05 Mpc−1 to 1%
accuracy, we stop. Otherwise, we generate a new guess for
the number of e-folds N1 via

N1 ¼ N0 þ log
k0
k̄�

; ð26Þ

which approximates the number of e-folds by assuming the
exponential factor e−N

�−ΔNreh is the dominant source of
variation in Eq. (23). Using this new guess, we repeat the
evolution of the two-point function and perform the same
check again. While this is often sufficient to achieve 1%
precision, the algorithm repeats this procedure up to 3 times
until it converges. This guarantees that we always evolve
the fluctuations for the correct scale, even in scenarios
where a secondary stage of inflation occurs.

IV. NUMERICAL RESULTS

We are now in a position to generate results. To solve this
system of many fields including reheating, we have
developed a PYTHON package to evolve Eqs. (1)–(4) for
the background and Eqs. (15) for the perturbations from
initial conditions in Eq. (21). We solve the Σ equations for
two length scales close to the pivot scale to estimate the
spectral index ns via ns ¼ d log k3Pζ=d log k. At this scale,
the spectral index is constrained to be ns ¼ 0.965� 0.004
[65]. Finally, we solve for α for a single scale in order to
estimate the local fNL parameter via

fNL ¼ 5

18

Bζðk; k; kÞ
PζðkÞ2

; ð27Þ

constrained by Planck to be fNL ¼ −0.9� 5.1 [80]. We are
implicitly assuming that the bispectrum is well approxi-
mated by the local shape, as is expected in canonical
multifield models [81–83]. In addition, we compute the
tensor-to-scalar ratio r defined by

r ¼ PT

Pζ
; ð28Þ

whose upper bound is r < 0.06 [84].

A. Multicurvaton setup

We consider several different setups for our choices of
masses, decay rates, and initial conditions.
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First, we follow Hotinli et al. [62] and consider masses
logarithmically sampled in the interval mI ∈ Λ½1; 103�,
where Λ is an overall scale to be adjusted to fit the
measured amplitude of perturbations, choosing the decay
rates according to

Γ̄r
mðIÞ ¼ 10−4Hend

�
mI

mmax

�
α

; ð29Þ

where Hend is the value of the Hubble rate at the end of
inflation, mmax is the largest mass in the system, and α is a
parameter controlling the relative hierarchy of the different
decay rates. For the background fields, the initial conditions
are set in the same order as the masses in the interval
ϕI ∈ ½10−3; 20�, while field derivatives are set using the
slow-roll approximation ϕ0

I ¼ −∂IV=V.
These initial conditions select the trajectory in field space

followed by the fields, but the initialization of field
perturbations are only set a number of e-folds before the
end of inflation N�. This number is determined by
approximating the scale under evaluation k� to be the pivot
scale using the method described in Sec. III D via a search
algorithm, with the overall scale of the potential Λ selected
to ensure Pζ is in agreement with observation.
The choice of aligning the hierarchy of masses with that

of decay rates allows the lightest fields to oscillate for
longer, thus resulting in a lengthy dust-dominated stage
during reheating, and the choice of initial conditions
ensures the long-lived fields are close to the minimum
initially. This enhances curvaton(s)-like behavior [85–100],
such as the production of isocurvatures and later conversion
into curvature perturbations, as well as the consequent
generation of relatively large non-Gaussianity. Hence we
expect this setup to give the most dramatic effects, and it
can be seen as a many-field curvaton model.
The results given in Fig. 1 show the dependence of ns, r,

and fNL on the parameter α and the number of active fields
Nf. We qualitatively reproduce the results of Ref. [62] in ns
and r. In addition to this, we find that, in this setup, the non-
Gaussianity parameter fNL peaks at certain values of α,
decaying into negative values for large α. This is similar to
what occurs in the curvaton scenarios with all fields
becoming massive before they decay (as in cases 4–6
described by Ref. [100]). The parameter α determines the
constant temporal separation (in e-folds) between each
decay. Thus, for very small α all decays happen close
together, such that most of the contribution from the
curvature perturbation is from the inflaton(s). This results
in observables that are close to those obtained when
reheating is neglected. As α increases to ∼4, the decays
happen sufficiently apart for some of the isocurvature
perturbations to contribute substantially to the curvature
perturbation, while their corresponding energy densities are
small when they decay, generating large non-Gaussianity
and increasing ns toward scale invariance. Further increase

of α induces the initially subdominant fields to dominate
the total energy density upon their decay, which reduces
non-Gaussianity until it reaches the asymptotic value of
fNL ¼ −5=4. In addition to fNL, both ns and r approach the
same curvaton limit, with r → 0 and ns → 1 − 2ϵ�, with ϵ�
being the first slow-roll parameter at horizon crossing.
Those limits are approached slightly faster for a smaller
number of fields and give different values for ns because of
the dependence of ϵ� on the horizon crossing time, which
changes depending on the number of fields. As the number
of fields increases, the different effects arise from multiple
fields, instead of having one “inflaton” and one “curvaton.”
With many fields, an approximate continuum exists
between fields behaving like inflatons and those behaving
like curvatons, with those in an intermediate category not
contributing substantially to modify the overall behavior
away from that expected in a single-field scenario. This
makes it more difficult to generate large non-Gaussianity.
In addition, since the mass distribution is the same for all
numbers of fields, the time separation between decays
shortens as Nf increases, thus requiring larger α to get
similar effects, explaining the deviation of the peak in fNL.
Regarding comparison with observations, our results

show that low values of α are not compatible with the
constraint on r, while low numbers of fields are in conflict

FIG. 1. Numerical results for ns (top), r (middle), and fNL
(bottom), as a function of the parameter α in the original setup,
using Eq. (29). Different lines correspond to different values of
the number of fields, as labeled in the legend.
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with the ns constraint, given the required large value of α.
Our non-Gaussianity results again imply that only suffi-
ciently large values of α or large Nf are in agreement with
current constraints on fNL.

B. Modified setups

We now study modifications from the first setup chosen
above with initial conditions given by ϕI ∈ ½10−3; 20�,
masses bymI=Λ ∈ ½1; 103�, and decay constants by Eq. (29).
We began by modifying the prefactor in Eq. (29) ranging

from 10−2 to 10−8, finding negligible variation of the results
with respect to those obtained with 10−4. This is well
explained by the interpretation outlined above and shows
again that the time separation between decay times, para-
metrized by α, is the most relevant parameter to explain the
variation of observables.
We also explored scenarios in which the dependence of

the decay constants Γ on mass is motivated by the type of
particle into which the scalar fields decay. It is well known
that decay into scalar particles results in Γ ∝ m−1, while
decay into fermions gives Γ ∝ m [32]. While the latter case
is already contained in Eq. (29) by choosing α ¼ 1, the case
Γ ∝ m−1 is not, so we explore it separately by modifying
that equation into

Γ̄r
mðIÞ ¼ 10−4βHend

�
mI

mmin

�
−1
; ð30Þ

where β is an additional parameter varied between 10−2

and 102, and the minimum mass is now used instead of
the maximum mass to guarantee that Γr

mðIÞ < Hend. This

inversion implies that the order of decays is also inverted,
such that the lightest fields now decay first and essentially
do not contribute to the curvature perturbation. This case
then mimics the results obtained with low values of α in the
first setup shown above, with no specific multifield effects
appearing. Similar to the previous setup, varying the overall
factor β does not change results substantially. Varying the
exponent from the physically motivated value of −1 to
more negative values also does not change observables
substantially, since broadening the distribution of decay
times simply dilutes multifield effects further. The inver-
sion of decay times was also effectively investigated in
Ref. [62], in which the authors randomized the order of
decay times and found that nearly only the original ordering
generated multifield effects.
The final modifications we study involve modifying

initial conditions away from ϕI ∈ ½10−3; 20�. We begin by
varying the initial condition for each field independently
according to a uniform distribution in log10 ϕI with standard
deviation σ, which we vary in the range ½10−3; ffiffiffi

3
p �. We plot

the results in Fig. 2.
We find that deviations away from the original setup

progressively eliminate non-Gaussianity, with fNL

reaching, on average, values of the order of slow-roll
parameters, thus making these scenarios extremely difficult
to detect or distinguish from single-field models. While the
results shown in Fig. 2 are for 15 fields, the trend presented
there is also observed for different numbers of fields, with
the variance in observables decreasing as a function of
number of fields. For small Nf, it is thus possible that one
finds initial conditions that also give enhanced multifield
effects, such as larger fNL than in the original scenario.
However, these cases are rare and become rarer with
number of fields, thus demonstrating that multifield effects
are generally generated only in fine-tuned situations, at
least for the model under study. This confirms some of the
conclusions of Ref. [62] regarding the necessity of fine-
tuning, extending them to non-Gaussianity.
Next, we explore the effects of increasing the range of

initial conditions to include smaller values, i.e., we set
ϕI ∈ ½ϕlower; 20�. In Fig. 3, we show the results for local
non-Gaussianity for different values of the lower limit of
the initial condition range ϕlower. We see that the peak value
of fNL shifts toward larger α and increases proportionally to
ϕ−1
lower, to good approximation. These variations are

explained by the fact that decreasing the initial conditions
of the lightest fields reduces their contribution to the energy
density initially. This implies that a larger value of α is
required to ensure that lighter fields give a substantial

FIG. 2. Numerical results for ns (top), r (middle), and fNL
(bottom), as a function of the dispersion σ around the original
initial conditions, for 15 fields and α ¼ 4.5.
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contribution to ζ. However, at the point in which this is
attained, the effects on non-Gaussianity are larger, exactly
because the contribution of these fields to the energy
density is smaller. This is again in agreement with the
view that this model represents a many-field curvaton, as
this is precisely what occurs in the curvaton case.

V. DISCUSSION AND CONCLUSIONS

In this paper we have investigated the effect of pertur-
bative reheating after quadratic inflation with many fields.
Our focus has been on the non-Gaussian signal generated
by many-field reheating, which complements earlier work
at the level of the power spectrum by Hotinli et al. [62]. In
our work, we considered up to 65 fields and we found that
an observable non-Gaussian signal is consistently found
only in the case where long-lived fields, which decay at the
end of the evolution, are initially close to their minimum
(by this we mean a field displacement much less that the
Planck mass). We found that the energy density in these late
decaying fields needed to grow significantly with respect to
the radiation produced by other decays for them to
contribute to ζ and produce a non-Gaussian signal. In this
sense, the setup is required to be like a many-field curvaton
model, and we found that as we moved away from this
setup the nonsingle-fieldlike behavior disappeared in the
majority of runs. We also found that keeping the range
of initial conditions the same, but introducing more fields,
and hence more densely populating the space of initial
conditions, decreased the amount of non-Gaussianity
produced. While extending the initial condition range to

include initial conditions closer to the fields’ minima
increases the amount of non-Gaussianity produced.
A motivation for our work is the question of how

common non-Gaussianity is in multifield inflation. This
is important to address in light of the hunt for local non-
Gaussianity in future surveys and how any signal that is
observed, or not observed, should be interpreted. It is well
known that producing non-Gaussianity during inflation in
models with a small number of fields requires features
such as hilltops and ridges to be present and also requires
particular initial conditions close to such features that could
be considered finely tuned [59,101,102]. Moreover, in
many-field models where the potential is randomly
generated a non-Gaussian signal appears to be rare
[12,103,104]. On the other hand, in models like axion
inflation, although the initial conditions needed to produce
non-Gaussianity look finely tuned when only a few fields
are considered, in the N-flation limit where very many
fields all contribute to sustain inflation such initial con-
ditions become typical [105,106]. Turning to reheating, in
quadratic potentials, it would be interesting to ask whether
something similar happens when the N-flation limit is
reached; i.e., when inflation can be sustained with all fields
initially close to their minima, how common is non-
Gaussianity if a range of reheating times is considered?
To answer this would require simulations with more than a
thousand fields, which is computationally prohibitively
expensive with our current approach and so beyond the
scope of our paper. In our study, however, we have already
seen that non-Gaussianity decreases in this model when the
initial condition space is densely populated, and that fields
closest to the minimum also need to be the ones that decay
last. This is suggestive that non-Gaussianity is not generic
even in the N-flation limit, but further study of this
possibility is needed to provide a definitive answer.
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FIG. 3. Numerical results for fNL, as a function of α, for
15 fields, varying the lower value of the range of initial
conditions ϕlower.
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