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ABSTRACT
Main-sequence stars and compact objects such as white dwarfs and neutron stars are usually embedded in magnetic fields that
strongly deviate from a pure dipole located right at the stellar centre. An off-centred dipole can sometimes better adjust existing
data and offer a simple geometric picture to include multipolar fields. However, such configurations are usually to restrictive,
limiting multipolar components to strength less than the underlying dipole. In this paper, we consider the most general lowest
order multipolar combination given by a dipole and a quadrupole magnetic field association in vacuum. Following the general
formalism for multipolar field computations, we derive the full electromagnetic field outside a rotating quadridipole. Exact
analytical expressions for the Poynting flux and the electromagnetic kick are given. Such geometry is useful to study the
magnetosphere of neutron stars for which more and more compelling observations reveals hints for at least quadridipolar fields.
We also show that for sufficiently high quadrupole components at the stellar surface, the electromagnetic kick imprinted to a
neutron star can reach thousands of km s−1 for a millisecond period at birth.
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1 IN T RO D U C T I O N

Stars, wherever from the main sequence or being compact objects,
are usually rotating at various speeds and possess a magnetic field
of various strengths, depending on their internal structure, reflecting
the pressure and density conditions inside the star. The interplay
between rotation and magnetic field induces an electric field that has
far reaching consequences for the fate of massive stars. Magnetic
fields indeed play a central role in the evolution of star and in their
final fate into compact objects such as white dwarfs, neutron stars,
and black holes.

There exist increasing evidences that a star-centred magnetic
dipole is unable to explain the wealth of observations in many
types of stars. Sometimes an off-centred dipole suffices to reconcile
the model with the data. For instance, for magnetic white dwarfs,
radio polarization profiles are satisfactorily fitted by an off-centred
dipole (Putney & Jordan 1995) or a dipole+quadrupole. For strongly
magnetized neutron stars, the off-centring could explain the high-
velocity kick at birth (Harrison & Tademaru 1975; Lai, Chernoff
& Cordes 2001). The electromagnetic kick arises mainly from the
interaction between a magnetic dipole and a magnetic quadrupole.
This configuration can also explain the time delay between radio
pulses and thermal X-rays (Pétri & Mitra 2020). For an off-centred
dipole, the quadrupole strength is bounded by the distance d to the
centre of the star of radius R. It is at most of the same magnitude
as the dipole, linearly scaling with ε = d/R � 1. This explains
why the kick cannot be as high as those observed in some neutron
stars (Johnston et al. 2005). Therefore, to circumvent this limit,
Kojima & Kato (2011) looked for less restrictive field topologies
where the quadrupole is unconstrained and unrelated to the dipole. A
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general-relativistic description of a dipole+quadrupole system has
been considered by Gralla, Lupsasca & Philippov (2017). Last but
not least, the recent fitting of the polar cap thermal X-ray emission
of the millisecond pulsar PSR J0030+0451 confirms the view of a
dipole+quadrupole field at the surface (Bilous et al. 2019; Miller et
al. 2019; Riley et al. 2019). Force-free quadridipole magnetospheres
are thus relevant to compute in order to extract radio and gamma-
ray light curves as tempted by Chen, Yuan & Vasilopoulos (2020).
Plasma filled magnetospheres are the regime to tend to but in this
exploratory work, we look for simple and analytical expressions to
get more insight into the quadridipole topology for any geometry.

Different scenario are at hand to explain neutron star kicks like
asymmetric neutrino emission during the collapse with possible spin–
kick correlation, hydrodynamical instabilities leading to asymmetric
explosion and electromagnetic thrust operating on a longer time-
scale. Rankin (2007) further found evidence of spin–kick alignment
by analysing polarization position angle variation. Johnston et al.
(2007) also found a plausible alignment for seven more pulsars.

In this paper, we compute exact analytical expressions for the elec-
tromagnetic field in vacuum outside a rotating arbitrary quadridipole
configuration. Section 2 reminds the basic solutions for a single
multipole of any order � and m. In Section 3, the associated spin-down
luminosity and electromagnetic force expected from the quadridipole
are derived. We finish by a discussion on possible neutron star
electromagnetic kicks at birth in light of observations in Section 4.
Conclusions are summarized in Section 5.

2 ROTATI NG MAG NETI C MULTI POLES

In this section, we remind the essential results found by Pétri (2015)
for single multipolar fields. We then specialize to the quadridipole
configuration. The star is rotating at an angular speed � and the

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/3/4445/5932314 by guest on 28 M
ay 2024

http://orcid.org/0000-0003-3790-8066
mailto:jerome.petri@astro.unistra.fr


4446 J. Pétri

transition region between the static zone and the wave zone occurs
around the light cylinder defined by rL = c/� meaning that inside
r � rL it resembles a static multipole in corotation and outside, at
large distances r � rL it corresponds to a plane electromagnetic
wave radiating energy and angular momentum responsible for the
spin-down torque and kick.

2.1 Analytical solutions

The quadridipole model is built on the exact analytical expressions
for an arbitrary rotating multipolar magnetic field in vacuum derived
by Pétri (2015). He showed that the vacuum solution is fully
determined by the radial magnetic field component at the stellar
surface of radius R. The vacuum electromagnetic field is expanded
on to vector spherical harmonics ��,m and ��,m of order � and m, see
Pétri (2013) for definitions in a curved space–time. The magnetic
part B is represented by the constant coefficients aB

�,m, whereas
the electric part D is represented by the constant coefficients aD

�,m.
An arbitrary solution of Maxwell equations in vacuum is therefore
advantageously written in spherical polar coordinates (r, ϑ, ϕ) in the
form of outgoing waves as

D(r, ϑ, ϕ, t) =
∞∑

�=1

∇ ×
[
aD

�,0

��,0

r�+1

]

+
∞∑

�=1

m �=0∑
|m|≤−�

(
∇ ×

[
aD

�,m h
(1)
� (km r) ��,m

]

+ i ε0 m�aB
�,m h

(1)
� (km r) ��,m

)
e−i m� t , and (1a)

B(r, ϑ, ϕ, t) =
∞∑

�=1

∇ ×
[
aB

�,0

��,0

r�+1

]

+
∞∑

�=1

m �=0∑
|m|≤−�

(
∇ ×

[
aB

�,m h
(1)
� (km r) ��,m

]

− i μ0 m � aD
�,m h

(1)
� (km r) ��,m

)
e−i m� t . (1b)

The wavenumber is km = mk = m/rL. The constants {aD
�,m, aB

�,m}
depend on the boundary conditions imposed on the stellar surface.
The divergencelessness is satisfied by construction because of the
properties of the vector spherical harmonics ��,m and ��,m. h

(1)
� are

the spherical Hankel functions imposing outgoing wave conditions
(Arfken & Weber 2005). The constants of integration are given for
an asymmetric mode m > 0 by

aB
�,m = f B

�,m(R)

h
(1)
� (km R)

(2a)

and for an axisymmetric case m = 0 by

aB
�,0 = R�+1 f B

�,0(R), (2b)

where the static magnetic field is expanded into

Bstat(r, ϑ, ϕ, t) =
∞∑

�=1

�∑
m=−�

(∇ × [
f B

�,m(r) ��,m

]
e−i m� t

)
. (2c)

Specializing to a single multipole, the two non-vanishing electric
field coefficients aD

�,m are for an asymmetric mode m > 0:

aD
�+1,m ∂r

(
r h

(1)
�+1(km r)

)∣∣∣
r=R

= ε0 R �
√

� (� + 2) J�+1,m f B
�,m(R), and (2d)

aD
�−1,m ∂r

(
r h

(1)
�−1(km r)

)∣∣∣
r=R

= −ε0 R �
√

(� − 1) (� + 1) J�,m f B
�,m(R), (2e)

where we introduced the numbers J�,m =
√

�2−m2

4 �2−1
. Note that for

� = 1 only one solution exists. For the axisymmetric case m = 0,
we find

(� + 1) aD
�+1,0 = −ε0 R�+3 �

√
� (� + 2) J�+1,0 f B

�,0(R), and (2f)

(� − 1) aD
�−1,0 = ε0 R�+1 �

√
(� − 1) (� + 1) J�,0 f B

�,0(R). (2g)

These relations are found by imposing the right jump conditions at
the surface, namely continuity of the radial magnetic field component
and continuity of the tangential electric field component. From the
set of single multipoles, we deduce all the relevant quantities such
as the spin-down luminosity and the electromagnetic force exerted
on the star assuming a perfect conductor inside as usually done, for
instance, for neutron stars.

2.2 Spin-down and force

Pétri (2016) has shown that the spin-down luminosity L reduces to
a simple sum of the asymmetric m > 0 modes with constants of
integration {aD

�,m, aB
�,m} in such a way that

L = c

2 μ0

m �=0∑
�≥1

(∣∣aB
�,m

∣∣2 + μ2
0 c2

∣∣aD
�,m

∣∣2
)

. (3)

For a single multipole of order �, most textbooks on radiation
only take into account the magnetic part proportional to |aB

�,m|2
giving the simple scaling L ∝ �2� + 4. This, however, neglects the
contribution from the electric part given by μ2

0 c2 |aD
�,m|2, which

is significant for fast rotators close to the break-up limit where
centrifugal forces would blow up the star. For neutron stars with
small period at birth, around one millisecond, these corrections
are rather substantial, of the order 10 per cent, we keep therefore
the exact expression equation (3) in our application to neutron star
kicks in Section 4. More importantly, the magnetic quadrupole will
contribute to the same order of magnitude as the electric dipole, this
explains why we retain such corrections to remain self-consistent.
L is a simple sum of decoupled single multipoles meaning that
there is no interaction between multipoles of different order � and
�

′ �= � whatever m and m
′
. In addition, fast rotation also implies

a deformation of the stellar surface from a perfect sphere to an
oblate spheroid. Such perturbations of the neutron star shape also
contributes to variations in the spin-down luminosity. Unfortunately,
there exists no analytical solution for such a geometry. Nevertheless,
a homogeneous, uniformly rotating Newtonian Maclaurin spheroid
with eccentricity e (Chandrasekhar 1970) defined by the difference
in polar radius Rp and equatorial radius Re

e ≈ Re − Rp

(Re + rp)/2
(4)

could serve as a simple approximation to guess the corrections to
the Poynting flux. According to AlGendy & Morsink (2014), the dif-
ference in equatorial and polar gravity amounts to about 20 per cent,
reflecting in an eccentricity very similar to the one found by Morsink
et al. (2007). Eccentricities are about e ≈ 0.5 for millisecond pulsars
(Belvedere et al. 2014). Using the spin-down luminosity derived, for
instance, by Finn & Shapiro (1990) assuming magnetic flux freezing
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within the oblate star, the correcting factor is

π2

4

(1 − e2)2/3

E(e)2
≈ 1 + 1

2
e − 37

96
e2 + o(e2), (5)

where E(e) is the complete elliptic integral of the second kind (Arfken
& Weber 2005). Using estimates from AlGendy & Morsink (2014),
a good guess for the eccentricity is

e ≈ Re − Rp

Re
≈ 0.8 a2 Re c2

G M
. (6)

Therefore, the spin-down corrections due to oblateness is of the order
e/2 which is comparable to the electric quadrupole term, depending
also on a2, albeit a modulation due to the compactness. Consequently,
regarding the Poynting flux, the deviation from a perfect sphere can
be formally absorbed in the electric quadrupole radiation part, not
impacting much the results of the paper.

The associated electromagnetic force is derived by another sum
now involving interferences between multipoles of different order �

and �
′ �= � but with the same azimuthal number m = m

′
. After some

algebra, the kick reduces to

F = 1

2 μ0

m �=0∑
�,�′≥1

i�′−�
((

aB
�,m aB∗

�′,m + μ2
0 c2 aD

�,m aD∗
�′,m

)
I1

+ μ0 c
(
aB

�,m aD∗
�′,m − aB∗

�′,m aD
�,m

)
I3

)
, (7)

where the integrals I1 and I3 have been computed in Pétri (2016), see
also Roberts (1979). They are given by

I1 =
√

� (� + 2)

� + 1
J�+1,m δ�+1,�′ +

√
(� − 1) (� + 1)

�
J�,m δ�−1,�′ (8a)

I3 = i m

� (� + 1)
δ�,�′ , (8b)

where δik is the Kronecker symbol. It can be checked that the force
F is a real number involving only the imaginary part of products
like (aB

�,m aB∗
�′,m), (aD

�,m aD∗
�′,m), and (aB

�,m aD∗
�′,m) as already emphasized

by Roberts (1979). The terms involving the same multipoles � = �
′

cancel as it should for single multipoles of order (�, m). Due to the
symmetry of these single multipoles, no force can be produced by
such fields.

Consequently, we are led to the two key results of equations (3) and
(7) that are the most general expressions valid for any combination
of multipoles in vacuum. From now on, we specialize to the dipole
and quadrupole fields shortened as a quadridipole.

2.3 Quadridipole field

Taking the single multipole solutions from Pétri (2015), the dipole
electromagnetic field is fully determined by the typical magnetic
field strength Bdip and by the following constants:

aB
1,0 = −

√
8π

3
Bdip R3 cos χ, (9a)

aB
1,1 =

√
16π

3

Bdip R

h
(1)
1 (k R)

sin χ, (9b)

aD
2,0 =

√
8π

15
ε0 �Bdip R5 cos χ, and (9c)

aD
2,1 =

√
16π

5
ε0

�Bdip R2

∂r

(
r h

(1)
2 (k r)

)∣∣∣
r=R

sin χ. (9d)

χ ∈ [0,π] is the magnetic dipole inclination angle with respect to
the rotation axis, taken to be along the z-axis. The quadrupole field
is determined by the typical magnetic field strength Bquad and by

aB
2,0 = q2,0 Bquad R4, (10a)

aB
2,1 = q2,1

Bquad R

h
(1)
2 (k1 R)

, (10b)

aB
2,2 = q2,2

Bquad R

h
(1)
2 (k2 R)

, (10c)

aD
1,0 = 2√

5
ε0 � Bquad R4 q2,0, (10d)

aD
1,1 = −

√
3

5
ε0

�Bquad R2 q2,1

∂r

(
r h

(1)
1 (k1 r)

)∣∣∣
r=R

, (10e)

aD
3,0 = −2

√
2

35
ε0 �Bquad R6 q2,0, (10f)

aD
3,1 = 8√

35
ε0

�Bquad R2 q2,1

∂r

(
r h

(1)
3 (k1 r)

)∣∣∣
r=R

, and (10g)

aD
3,2 = 2

√
2

7
ε0

�Bquad R2 q2,2

∂r

(
r h

(1)
3 (k2 r)

)∣∣∣
r=R

. (10h)

The contribution of each quadrupolar component is weighted by the
two angles χ1, χ2 defined by

q2,0 =
√

4π

3
cos χ1, (11a)

q2,1 =
√

8π

3
sin χ1 cos χ2 ei λ1 , and (11b)

q2,2 =
√

8π

3
sin χ1 sin χ2 e2 i λ2 , (11c)

where χ1 ∈ [0,π] and χ2 ∈ [0, 2π]. The angles λ1, λ2 fix the
orientation of the m = 1 and m = 2 quadrupole with respect to a
fiducial plane defined by the rotation axis and the magnetic dipole
moment (assumed to be located in the ϕ = 0 plane).

To summarize, all the field components are exactly known, the
whole field topology being imposed by the seven parameters (Bdip,
Bquad, χ , χ1, χ2, λ1, λ2). Bdip sets the physical magnetic field strength
not impacting the geometrical configuration therefore reducing the
number of parameters for the geometry to six, five angles, and the
relative quadrupole strength Bquad/Bdip. We now apply these results
to the secular evolution of a star rotating in vacuum.

3 STA R SE C U L A R E VO L U T I O N

Some quantities are particularly relevant for the study of the stellar
rotational evolution and electromagnetic kick. Although the exact
analytical expression for the luminosity and force are readily found
by straightforward application of the above formulas, we find it more
pertinent to pick out meaningful limits depending on the geometry
and rotation rate in order to emphasize the formal dependence on the
six parameters.

3.1 Spin-down luminosity

Let us start with the spin-down rate, introducing the ratio between
quadrupolar and dipolar field strength by X = Bquad/Bdip, the lumi-
nosity, to the lowest order in spin parameter a = R/rL � 1, can be
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4448 J. Pétri

compared to the perpendicular point dipole Poynting flux

L⊥ = 8π

3 μ0 c3
�4 B2

dip R6 (12)

such that

L

L⊥
= (1 − a2) sin2 χ + 8

45
a2 X2 sin2 χ1 (11 − 9 cos 2χ2)

+ o(a2). (13)

Note that we use little-o notations with a small o(x) not a big-O
notation with O(x), meaning that the expression is correct up to the
order a2, written as o(a2) and not dominated by corrections starting
at order a2 which would be written O(a2) (from Edmund Landau
notations, a German mathematician).

The luminosity is independent of λ1, λ2 because it is unrelated
to possible interaction between different multipoles and therefore
insensitive to the relative orientation of each component. Single mul-
tipoles contribute separately to the total luminosity. The quadrupole
contribution scales as a2 X2 compared to a point dipole but for a
finite size star, we need to retain also the (1 − a2) correction of the
dipole to be fully consistent. This term was neglected by Kojima
& Kato (2011). If the star is oblate due to rapid rotation close to
break-up, the deformation can be accounted for in the luminosity by
adding another correcting factor scaling like a2, proportional to the
compactness.

Note that the quadrupole luminosity dominates the electromag-
netic braking only if the quadrupole strength in the wave zone dom-
inates the magneto-dipole radiation in the regime where a2 X2 � 1
and not when the quadrupole strength dominates at the surface
X2 � 1. The factor a2 arises because the quadrupole field decrease
much faster with radius than the dipole and the relevant field strength
for radiation is located at the light cylinder, not at the surface.
This remark has profound implications for the stellar magnetic field
estimates from the measured P and Ṗ as discussed in-depth by Pétri
(2019).

3.2 Electromagnetic kick

To get an electromagnetic force requires some coupling between
several multipoles of different orders � �= �

′
in order to produce a

kick. Again, to the lowest order in the spin parameter a, it is expressed
as

c F

L⊥
= 1

45

√
2

15
a X sin χ sin χ1 cos χ2

× (
75 a3 cos λ1 + (90 − 7 a2) sin λ1 + o(a3)

)
. (14)

As expected, it depends on the relative orientation between the
quadrupole (�, m) = (2, 1) and the dipole (�, m) = (1, 1) through the
angle λ1. Note, however, that a kick exists even for λ1 = 0, but its
formal dependence on a is of higher order, O(a3) compared to O(1)
or O(�3) instead of O(1) (here we use big-O notations). However,
it is independent of the (�, m) = (2, 2) orientation because no term
involving λ2 appears. Comparing to the force experienced by an off-
centred dipole (Pétri 2016), the off-centring ε ≤ 1 has been replaced
by X which is unconstrained and possibly X � 1. Consequently,
an electromagnetic kick produced by a quadridipole becomes an
interesting alternative to the supernova scenario to produce high
spatial neutron star velocities for X � 1, a regime excluded for an off-
centred dipole. Moreover this mechanism offers a natural explanation
for the spin-velocity alignment observed in several systems (Johnston
et al. 2007; Rankin 2007).

In the last section, we show that such quadridipole configuration
is indeed very effective in producing high kick velocities in neutron
stars for millisecond periods at birth.

4 N E U T RO N S TA R K I C K

4.1 A simple kick model

The force and luminosity possess an intricate dependence on the
unknown geometry of the system and on the initial rotation period
and relative multipolar field strength symbolized by X. In order to get
a better insight, avoiding complications due to these uncertainties,
we explore the impact of the spin parameter a and of the relative field
strength X only, adjusting the geometry to the most favourable case.
We therefore get an upper limit of the kick velocity. Let us take the
particular geometry with χ = χ1 = λ1 = π/2 and χ2 = 0. In this
special case of an exact perpendicular magnetic dipole rotator, the
torque exerted on the star does not align the magnetic axis towards
the rotation axis because the time-scale for this alignment becomes
infinite (Michel & Goldwire 1970). Therefore, we neglect this effect
in the discussion. Let us however give an estimate of the alignment
impact on the final kick velocity in the following lines.

For a general oblique dominant dipole configuration the rotation
rate and inclination angle evolve according to

I �
d�

dt
= −L⊥ sin2 χ, and (15a)

I �2 dχ

dt
= −L⊥ cos χ sin χ, (15b)

where I is the stellar moment of inertia. The joint evolution satisfies
the constraint

� cos χ = �0 cos χ0, (16)

where �0 and χ0 are the initial rotation speed and inclination.
Introducing the time-scale

τ = I �4

L⊥ �2
0 cos χ2

0

(17)

diverging for a perpendicular rotator (χ0 = 90◦), the solution for the
angle and the rotation reads

sin χ = e−t/τ sin χ0, and (18a)

� = �0
cos χ0√

1 − e−2 t/τ sin2 χ0

. (18b)

Thus, if the magnetic alignment is taking into account for an arbitrary
oblique rotator in vacuum, the time-scale for a significant change in
the inclination angle is comparable to the spin-down time-scale.
Therefore, because the electromagnetic kick effect prevails in the
era before the magnetic braking occurs, the alignment process only
weakly decreases the kick velocity estimate. If the neutron star is
surrounded by a plasma, like in the force-free model, the same
qualitative conclusions apply.

Indeed, Fig. 1 shows the evolution of the magnetic dipole incli-
nation angle with time for the vacuum (the dashed lines) and force-
free (the solid lines) model. Significant decrease towards alignment
start at the spin-down time-scale in both models but with a much
slower decrease for the force-free case which goes as χ (t) ∝ t−1/2

contrary to an exponential vanishing as χ (t) ∝ e−t/τ for the vacuum
case, equation (18). Fig. 2 shows the evolution of the rotation rate
with time. The star rotation does not stop in the vacuum model if
χ < 90◦. Only the force-free model brakes the star until it tends
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Quadri-dipolar stars in vacuum 4449

Figure 1. Evolution of the magnetic dipole inclination angle χ (t) with time
for vacuum radiation, in dashed curves, and force-free radiation, in the solid
lines. The initial angle is χ0 = {30◦, 60◦, 90◦}, respectively, in red, green,
and blue.

Figure 2. Evolution of the rotation rate �(t) with time for vacuum radiation,
in dashed curves, and force-free radiation, in the solid lines. The initial angle
is χ0 = {30◦, 60◦, 90◦}, respectively, in red, green and blue.

to rest with �(t)∝t−1/2 because an aligned rotator surrounded by a
plasma also radiates. However, in all cases the typical time-scale
for magnetic braking to set in is again the spin-down time-scale τ .
A quantitative analysis is proposed below after investigation of the
general orthogonal case.

For an arbitrary rotation rate and field strengths with χ = χ1 =
λ1 = π/2 and χ2 = 0, the luminosity becomes

L =
(

1 − a2 + 16

45
X2 a2

)
L⊥, (19)

and the electromagnetic kick to lowest order neglecting small
corrections in powers of a reads

F = 2

√
2

15
a X

L⊥
c

. (20)

The time evolution of the kick velocity becomes

v(t) =
∫ t

0

F (t)

M
dt . (21)

Changing the integration variable to � by noting that d� = �̇ dt , we
have

v(t)

c
= 2

√
2

15

X

M c2

∫ �

�0

a L⊥(�)
d�

�̇
. (22)

Figure 3. Isocontours of the final kick velocity expressed in logarithmic
scale log vf and in units of km s−1, depending on the initial period P0 and
relative quadrupole magnitude X.

Assuming a homogeneous neutron star with moment of inertia I =
2
5 M R2, noting that L = I � �̇, a primitive is

β(a, X) = 12
√

6 X

5
(
16 X2 − 45

)3/2

×
[
a
√

80 X2 − 225 − 15 arctan

(
1

3
a

√
16 X2

5
− 9

)]

(23)

and the time evolution for the kick

v(t)

c
= β(a(t), X) − β(a0, X), (24)

where a0 being the initial spin parameter at birth. The final kick
velocity vf is reached whenever a(t) = 0 therefore it becomes

βf = −β(a0, X). (25)

Equation (23) seems undefined whenever X2 ≤ 45/16 due to the
square root in the arctan function and due to the vanishing denom-
inator for X2 = 45/16. However, for X2 < 45/16, the square root
in the numerator and denominator of the last term containing the
arctan function becomes imaginary such that

√
X2 − 45/16 = i x

with x ∈ R. Due to the relation between the inverse trigonometric and
the inverse hyperbolic functions given by argth(x) = i arctan(−i x),
equation (23) is well defined for X2 < 45/16. Finally, in the special
case where X2 = 45/16, the function (23) tends to

1

5

√
2

3
a3

0 (26)

which is also well defined for any a0. It can be checked that the
function in equation (23) is continuous for all a > 0 and all x > 0. It
is shown in Fig. 3 as a contour plot depending on the initial period P0

and the quadrupole strength X on a logarithmic scale. For a 1 ms
period at birth, the maximum allowed velocity is about 2000 km s−1.
In the limit of weak quadrupoles X � 1, the kick velocity simplifies
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into

βf = 4

5

√
2

15
X (argth a0 − a0) (27)

and for low initial rotational rate a � 1 it further simplifies to

βf = 4

15

√
2

15
a3

0 X. (28)

In the extreme limit of dominant quadrupoles X � 1, it reaches
asymptotically

3

2

√
3

10

a0

X
. (29)

Too much a strong quadrupole is counter-productive because the
quadrupole radiation for X � 1 dominates and considerably shortens
the acceleration time (of the order the spin-down time), which
becomes vanishingly small.

In order to evaluate more quantitatively the impact of the alignment
on the electromagnetic kick efficiency, let us compute the final speed
in case of a small quadrupole component X � 1 and a slow rotation
rate a � 1, extending the result of equation (28) to a varying dipolar
inclination angle. The electromagnetic kick is given approximately
by

F = 2

√
2

15
a X

L⊥
c

sin χ. (30)

Integrating equation (21) by a change of integration variable as

v(t) =
∫ t

0

F (t)

M

dt

dχ
dχ (31)

according to the inclination angle evolution equation (15), we can
perform the integration with respect to the initial obliquity χ0 down
to alignment χ = 0 finding

βf = −4

5

√
2

15
a3

0 X cos3 χ0

∫ 0

χ0

dχ

cos4 χ
(32a)

= 2

15

√
2

15
a3

0 X (3 sin χ0 + sin 3 χ0). (32b)

This expression is exactly equation (28) when χ0 = 90◦. For
neutron stars with initial inclinations far from an aligned rotator,
the corrections are close to one. Therefore, the time evolution of the
inclination angle remains negligible when computing the final kick
velocity. In all cases, the initial spin a0 and the quadrupole strength X
fully determine the final kick velocity.

Can we set some upper limits for the initial period? For fast-
rotating neutron stars at birth, close to the break-up limit we have
according to general relativistic corrections explained by Friedman,
Ipser & Parker (1989) and by Haensel, Salgado & Bonazzola (1995):

�max ≈ 0.67 �K (33)

corresponding to a fraction of the Keplerian frequency in Newtonian

gravity �K =
√

GM

R3 and a spin parameter for a typical neutron star

amax ≈ 0.28

(
M

1.4 M�

)1/2 (
R

12 km

)−1/2

. (34)

The maximum period before mass shedding is therefore around 1 ms.
Corrections to the point dipole luminosity must be taken into account
because a � 1 and already for the dipole, corrections involve factors
like (1 − a2).

The maximum kick efficiency depends on X for a given a.
Inspecting Fig. 3, a too large quadrupole will decrease the maximum

kick as well as too a low quadrupole. We can expect fast kicks above
1000 km s−1 if the quadrupole is comparable in magnitude to the
dipole X ∼ 1 for a millisecond initial period. Whatever the strength
of the quadrupole, high velocities larger than 1000 km s−1 require
fast spinning neutron stars at birth with periods shorter than 2 ms.

Solutions to the electromagnetic kick problem are not unique.
There exist a continuum of couple (a0, X) satisfying the constrain. Of
these, we highlight two special configurations: one with the smallest
quadrupole component X and one with the largest initial period a0.
We call the former solution the minimal choice and the latter solution
the optimal choice because it follows the crest of the plot in Fig. 3
but then requires relatively large quadrupole magnitudes X � 10
although such values are not unrealistic.

4.2 Indeterminacy of initial periods

Are millisecond periods at birth realistic? The scenario depicted by
Heger, Langer & Woosley (2000) estimates the initial neutron star
period from pre-supernova collapse models to be around those values
of 1 ms. However, if angular moment is transported by magnetic
field, Heger, Woosley & Spruit (2005) found an increase by one
order of magnitude of this period. Ott et al. (2006) also found initial
spin periods about 1 ms but in contradiction to what is expected
from observations of young pulsars inferring P0 � 10 ms. Young
pulsars with smaller periods, like PSR J0537-6910, are, however,
not excluded to start their life with initial period less than 10 ms
depending on their magnetic braking index (Marshall et al. 1998).
For millisecond pulsars, the situation is more clear as Ferrario &
Wickramasinghe (2007) showed that they are usually born with
periods close to the currently observed values.

According to Atoyan (1999), if the magnetic field is decreasing
with time, it is possible that the initial period of the Crab pulsar
was around 3–5 ms, thus 10 times smaller than its current value,
and not 19 ms if a constant braking index of n = 2.5 is assumed
(Manchester & Taylor 1977). We must admit that guessing the
initial period of young pulsars is a difficult and risky task because
of our poor knowledge about the mechanisms responsible for the
stellar spin-down. Any inference must be taking with care, whatever
its conclusion. We believe that millisecond period at birth are not
excluded and take it as a serious hypothesis for this work.

To properly fix the idea, let us quantitatively show the indetermi-
nacy of initial periods of young pulsars even if the true age is known,
for instance, by the associated supernova remanent age. In the simple
spin-down picture with a braking index of n, the true or current age
t∗ is related to the characteristic age

τ∗ = − �∗
(n − 1) �̇∗

(35)

by

t∗ = τ∗

[
1 −

(
�0

�∗

)n−1
]

. (36)

Knowing t∗ and τ ∗ from current observations, we can determine
the initial rotation rate �0 if a magnetic breaking model is assumed
with a constant in time braking index n. This method leads to birth
periods well above 10 ms for pulsar/supernova associations. For the
Crab with a braking index of n = 2.5, we find P0 = 19 ms. However,
if the braking features are not constant in time, due to magnetic field
decay, spin alignment or change in the moment of inertia among
others, the guessed birth period can be much smaller. This was the
idea of Atoyan (1999).
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Figure 4. Evolution of the neutron star period �(t) compared to its current
value �∗ at time t∗ = τ ∗/4 for several values of the parameter A as in the
legend and with a characteristic time T = τ ∗/2.

Let us exemplify the general trend with a model taking into account
the magnetic axis alignment for a force-free magnetosphere with χ

decreasing like t−1/2 according to the time-dependent braking

�̇ = −K

(
1 + A

1 + t/T

)
�3 (37)

mimicking a decrease in the obliquity for a force-free magnetosphere
with characteristic time-scale T. Introducing the current typical time-
scale

τ∗ = 1

K �2∗
= − �∗(

1 + A
1+t∗/T

)
�̇∗

(38)

and the variable η(t) = �(t)/�∗, an exact solution with η(t∗) = 1 is
given by

η(t) = 1√
1 + 2 (t − t∗)/τ∗ + 2 AT /τ∗ log

(
t+T
t∗+T

) . (39)

The neutron star rotation rate at birth is therefore

�0 = �∗√
1 − 2 t∗/τ∗ + 2 AT /τ∗ log

(
T

t∗+T

) . (40)

For some combination of the free parameters (A, T), both being
positive, this ratio becomes very large �0 � �∗. For instance, for
a time-scale T associated to the spin-down time-scale τ ∗ because of
magnetic alignment, we set T = τ ∗/2 and a true age of t∗ = τ ∗/4,
values of A around 1.23 lead to initial periods 30 times less than the
current period, see Fig. 4. Actually the birth period becomes very
sensitive to this parameter around A ≈ 1.23315 where it tends to
zero and the rotation rate diverges, �0 → +∞, whereas the constant
coefficient case with A = 0 leads only to an increase by a factor
�0/�∗ = √

2.

4.3 Confrontation to several pulsar populations

We confront our expectations against several populations of neutron
stars. In a first subset, we consider neutron stars for which the 3D
space velocity can be inferred as demonstrated by Cordes & Chernoff
(1998). In a second and third subset, we consider respectively young
and millisecond pulsars extracted from the Australia Telescope
National Facility (ATNF) catalogue with known P, Ṗ , and proper
motion without knowledge about the speed along the line of sight.

Figure 5. Expected distribution of initial neutron star spin periods P0 for the
sample of 48 pulsars.

4.3.1 Pulsars with inferred 3D velocity

We have selected the young pulsars studied in Cordes & Chernoff
(1998) because of the 3D velocity inference they gave. We found
that 48 of these pulsars have known P and Ṗ reported in the
ATNF catalogue (Manchester et al. 2005). They all possess a dipole
magnetic field strength at the equator around 108–109 T according
to the magneto-dipole losses formula

B(in T) ≈ 3.2 × 1015
√

P (in s) Ṗ , (41)

where the period is measured in seconds and the field strength in T.
Their characteristic age, assuming a single dipole model and values
(P , Ṗ ) measured at present time, and defined by

τage = P

2 Ṗ
(42)

is also shown in Fig. 9. Most of them are older that millions of years
expect for several of them being only aged about several thousands
of years.

The histogram in Fig. 5 show the expected distribution of largest
possible initial periods P0 ranging from 1 to 3.5 ms for the sample
of 48 pulsars assuming that their space velocity is known from the
work of Cordes & Chernoff (1998). These values must be taken with
caution because the radial component is basically unknown and the
proper motion still rather uncertain. At least, we get a window for the
initial period. The counterpart of these largest period is to produce
the largest quadrupole contributions as shown in blue bars in the
histogram of Fig. 6 where X ranges from 10 to 35 times the dipole.

However, the solutions are degenerate because there is an infinite
set of couples (P0, X) satisfying the imposed kick velocity. This
is clearly seen in Fig. 7 where the relation between period and
quadrupole relative magnitude is plotted for each pulsar in a different
colour. What we called optimal choice corresponds to the solution
found by the maximum on each curve. Nevertheless, the magnitude
of the quadrupole can be decreased at the expense of increasing
the spin of the neutron star. For instance, assuming that all neutron
stars are born with a period P0 = 1 ms, the quadrupole distribution
resembles the red bars in the histogram of Fig. 6. For most of them,
the quadrupole is weaker then the dipole, in all cases it never exceeds
six times the dipole. As a conclusion, even a modest quadrupole can
efficiently kick up a neutron star during its early phase of spin-down.

We finish by a discussion on the time-scale necessary to achieve
the final velocity. The characteristic time-scale of the spin-down
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4452 J. Pétri

Figure 6. Optimal and minimum quadrupole strength X distribution of the
48 pulsars to explain the kick velocity for a period at birth, respectively,
shown in Fig. 5 and for P0 = 1 ms.

Figure 7. Initial spin period P0 depending on the quadrupole strength for the
sample of 48 pulsars. Each curve with different colour depicts another pulsar.

depends on the spin-down ratio at birth, according to equation (19)

ξ0 = Lquad

Ldip
≈ 16

45
a2

0 X2 (43)

therefore not to be confused with X which is only relating field
strengths and not luminosities. Introducing the dipole and quadrupole
characteristic time-scales τ dip and τ quad = τ dip/ξ 0, the total time-scale
becomes
1

τc
= 1

τdip
+ 1

τquad
. (44)

For non vanishing dipoles, we get

τc = −�0

�̇0
= τdip

1 + ξ0
. (45)

The characteristic time-scale is therefore diminishing for increasing
quadrupole contribution. This scale can be compared to the tradi-
tional pulsar characteristic age given by τ age. We choose to evaluate
the ages from slow down rate at birth. If the quadrupole Poynting flux
dominates ξ 0 � 1 the braking occurs on a much shorter time-scale
τ c � τ dip, and the electromagnetic kick becomes ineffective because
of the too short duration of significant thrust phase.

The relation between the rotation rate and time, normalized to the
characteristic age τ c becomes after defining μ = �2

�2
0

with μ(t = 0)

= 1

t

τc
= 1 + ξ0

2

[
1

μ
− 1 + ξ0 log

(
μ

1 + ξ0

1 + μξ0

)]
. (46)

Figure 8. Time evolution of the kick velocity depending on relative
quadrupole strength X for an initial period at birth of P0 = 1 ms.

Figure 9. Acceleration time τmin
acc and τ

opt
acc to the asymptotic kick velocity

compared to the characteristic age.

The solution is controlled by the initial spin-down ratio ξ 0. Fig. 8
shows the time evolution of the kick depending on the quadrupole
strength depicted by ξ 0. The asymptotic velocity is almost reached at
the characteristic time τ c. Most efficient kicks are produced near X ≈
10. The curve shapes are relatively insensitive to the magnitude of X
and ξ 0, but remember that the characteristic time also scales also with
ξ 0. While the final kick velocity does not depend on the magnetic
field strength because the force acting on the star is proportional
to L and the duration of the kick proportional to 1/L, the charac-
teristic time depends on the field strength through the expression

τacc = 1
2

I �2
0

L0

τacc ≈ 17.4 yr

(
M

1.4 M�

) (
P0

1 ms

)2 (
B

108 T

)−2 (
R

12 km

)−4

.

(47)

This efficient acceleration time-scale τ acc is shown in Fig. 9 and
compared to the characteristic age for an initial period at birth of P0 =
1 ms. This duration on which the electromagnetic kick acts is several
orders of magnitude shorter than the characteristic pulsar age τ age,
thus the neutron star had plenty of time to reach the asymptotic
value for vanishing angular velocity a → 0 or at least when
a � a0.

If we choose the optimal choice, the acceleration time-scale τ optimal
acc

is slightly increased as shown in Fig. 9. However, this second scenario
can also easily explain the fast proper motion with an electromagnetic
kick.
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Figure 10. Expected distribution of initial neutron star spin periods P0 for
the sample of young pulsars.

Figure 11. Optimal and minimum quadrupole strength X distribution of the
young pulsars to explain the kick velocity for a period at birth, respectively
shown in Fig. 10 and for P0 = 1 ms.

4.3.2 Young pulsars

A larger sample of young pulsars is known but only with their
transverse proper motion. Neglecting the radial component along
the line of sight, we can still obtain good guesses for the real 3D
kick velocity by assuming it to be the same order of magnitude
as the proper motion. We are aware that the proper motion is
also rather uncertain, however, it is the best we can compute so
far.

Following the same procedure as in the previous paragraph, our
guess for the initial period of these young pulsars remains in the
millisecond range, from 1 to 7 ms, as represented in the histogram of
Fig. 10. The associated quadripolar component strength is shown in
blue bars in Fig. 11. It is ten to hundred times larger than the dipole
at the surface. If we assume that all pulsars are born with a 1 ms
period, we obtain the graph in red bars of Fig. 11. The quadrupole
is now on average two decades weaker than in the previous case.
Finally, the typical acceleration time-scales are also shown in red
and blue in Fig. 12 and compared to the characteristic age in green.
Young pulsars possess plenty of time to move to their current spatial
velocities whatever the scenario.

4.3.3 Millisecond pulsars

The same analysis was performed for millisecond pulsars. Results
for the most efficient period at beginning of the thrust phase are

Figure 12. Acceleration time τmin
acc and τ

opt
acc to the asymptotic kick velocity

for young pulsars compared to the characteristic age.

Figure 13. Expected distribution of initial neutron star spin periods P0 for
the sample of millisecond pulsars.

Figure 14. Minimum quadrupole strength X distribution of the young pulsars
to explain the kick velocity for a period at birth shown in Fig. 13.

shown in Fig. 13. They correspond to values very close to the
current period of these millisecond pulsars. We do not consider
initial periods of 1 ms as these pulsars are mostly recycled and
spun up during the accretion phase. The quadrupole strength is
plotted in Fig. 14 and the typical acceleration time compared to the
characteristic age in Fig. 15. We conclude that here too the current
kick velocity was attained at approximately one tenth of their current
age.
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Figure 15. Acceleration time τmin
acc to the asymptotic kick velocity for

millisecond pulsars compared to the characteristic age τ age.

5 C O N C L U S I O N S

There are more and more compelling evidences that multipolar
magnetic fields are anchored in the crust of compact objects like
neutron stars because of new observations revealing features not
expected from a single and/or centred dipole. We computed the
exact analytical solutions of a rotating dipole+quadrupole in vacuum
with arbitrary relative strengths. Spin-down luminosities and elec-
tromagnetic forces have been deduced, showing that neutron stars
could get significant kick velocities around and above 1000 km s−1

during their early life if the initial period is less than 10 ms and the
quadrupole magnetic field strength comparable to the dipole field or
at most one order of magnitude stronger at the surface. This scenario
also naturally explains the spin–kick alignment observed in many
pulsars. Although an off-centred dipole can be ruled out to produce
large kicks, a quadridipole generalizing it with an unconstrained
quadrupole offers an attractive alternative. We showed that the birth
period of neutron stars sensitively depend on the magnetic braking
law. Time-dependent parameters in the spin-down luminosity can
falsify the traditional estimate found from the neutron star/supernova
association.

Neutron stars are, however, usually surrounded by a relativistic
plasma screening a significant part of the electric field, influencing the
spin-down and electromagnetic torque. We plan to extend the current
vacuum model to force-free quadridipole fields that seem important
to model thermal X-ray emission from the surface as measured by
NICER (Bilous et al. 2019).
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