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The original Askey-Wilson algebra introduced by Zhedanov encodes the bispectrality properties of the eponym polynomials. The name Askey-Wilson algebra is currently used to refer to a variety of related structures that appear in a large number of contexts. We review these versions, sort them out and establish the relations between them. We focus on two specific avatars. The first is a quotient of the original Zhedanov algebra; it is shown to be invariant under the Weyl group of type D 4 and to have a reflection algebra presentation. The second is a universal analogue of the first one; it is isomorphic to the Kauffman bracket skein algebra (KBSA) of the four-punctured sphere and to a subalgebra of the universal double affine Hecke algebra (C ∨ 1 , C 1 ). This second algebra emerges from the Racah problem of U q (sl 2 ) and is related via an injective homomorphism to the centralizer of U q (sl 2 ) in its threefold tensor product. How the Artin braid group acts on the incarnations of this second avatar through conjugation by R-matrices (in the Racah problem) or half Dehn twists (in the diagrammatic KBSA picture) is also highlighted. Attempts at defining higher rank Askey-Wilson algebras are briefly discussed and summarized in a diagrammatic fashion.

Introduction

In order to provide an algebraic underpinning for the Askey-Wilson polynomials [START_REF] Askey | Some Basic Hypergeometric Orthogonal Polynomials That Generalize Jacobi Polynomials[END_REF], Zhedanov introduced what he called the Askey-Wilson algebra [START_REF] Zhedanov | Hidden symmetry" of Askey-Wilson polynomials, Theoretical and Mathematical Physics 89[END_REF]. We shall refer to it rather as the Zhedanov algebra. The Askey-Wilson polynomials sit at the top of the Askey classification scheme of the hypergeometric orthogonal polynomials [START_REF] Koekoek | Hypergeometric Orthogonal Polynomials and Their q-Analogues[END_REF] and are, consequently, of fundamental interest; their algebraic interpretation by Zhedanov hence bears commensurate importance. These q-polynomials are bispectral: in addition to verifying a three-term recurrence prescribed by Favard's theorem for any family of orthogonal polynomials [START_REF] Chihara | An introduction to orthogonal polynomials[END_REF], they are also eigenfunctions of a q-difference operator. The Zhedanov algebra was constructed by taking these two bispectral operators as generators and identifying the relations they obey. As sometimes happens with natural constructs, related structures have emerged in a variety of contexts and have typically all been called Askey-Wilson algebras. This propensity keeps rising and it is hence timely to review the topic. This paper will provide a taxonomy and a description of the algebras that loosely go under the name of Askey-Wilson algebras and will characterize in some depth two avatars of particular relevance. It will also set the stage for the exploration of generalizations.

The focus of this survey will be on algebraic aspects. Before we discuss the contents in more details, let us briefly go over some of the manifestations of these Askey-Wilson algebras and the advances they have generated. Grosso modo, they have had direct applications in physical models and have also been at the heart of mathematical developments establishing useful interconnections between fields. One occurrence is in the recoupling of three irreducible representations of U q (sl 2 ) which is called its Racah problem. It is known that the 6j-symbols of this algebra are expressed in terms of q-Racah polynomials which are a finite truncation of the Askey-Wilson ones. As a rule, whenever the Askey-Wilson polynomials (or their truncated version) appear, the associated algebra will be present. In the case of the Racah problem, it is found that the intermediate Casimir elements verify Askey-Wilson relations [START_REF] Granovskii | Hidden Symmetry of the Racah and Clebsch-Gordan Problems for the Quantum Algebra sl q (2)[END_REF][START_REF] Huang | An embedding of the universal Askey-Wilson algebra into U q (sl 2 )⊗U q (sl 2 )⊗ U q (sl 2 )[END_REF]. These polynomials and algebras appear in the study of the ASEP model with open boundaries [START_REF] Uchiyama | Asymmetric simple exclusion process with open boundaries and Askey-Wilson polynomials[END_REF], as martingale polynomials and quadratic harnesses in probabilistic models [START_REF] Bryc | Quadratic Harnesses, q-commutations, and orthogonal martingale polynomials[END_REF] and are connected to (a degeneration of) the Sklyanin algebra [START_REF] Gorsky | Degenerations of Sklyanin algebra and Askey-Wilson polynomials[END_REF][START_REF] Wiegmann | Algebraization of difference eigenvalue equations related to U q (sl(2))[END_REF][START_REF] Gaboriaud | Degenerate Sklyanin algebras, Askey-Wilson polynomials and Heun operators[END_REF]. Quite generally, the Askey-Wilson algebras are present in the context of integrable models, through the Yang-Baxter and reflection equations [START_REF] Baseilhac | Deformed Dolan-Grady relations in quantum integrable models[END_REF][START_REF] Baseilhac | An integrable structure related with tridiagonal algebras[END_REF][START_REF] Baseilhac | A new (in)finite dimensional algebra for quantum integrable models[END_REF][START_REF] Aneva | Tridiagonal Symmetries of Models of Nonequilibrium Physics, Symmetry[END_REF][START_REF] Aneva | From quantum affine symmetry to the boundary Askey-Wilson algebra and the reflection equation[END_REF][START_REF] Vinet | Quasi-Linear Algebras and Integrability (the Heisenberg Picture)[END_REF], and can be viewed as truncations of the q-Onsager algebra [START_REF] Baseilhac | Deformed Dolan-Grady relations in quantum integrable models[END_REF]. Elements of representation theory have been investigated in [START_REF] Zhedanov | Hidden symmetry" of Askey-Wilson polynomials, Theoretical and Mathematical Physics 89[END_REF][START_REF] Huang | An embedding of the universal Askey-Wilson algebra into U q (sl 2 )⊗U q (sl 2 )⊗ U q (sl 2 )[END_REF][START_REF] Noumi | Askey-Wilson polynomials: an affine Hecke algebraic approach[END_REF][START_REF] Huang | Finite-Dimensional Irreducible Modules of the Universal Askey-Wilson Algebra[END_REF][START_REF] Huang | Finite-dimensional modules of the universal Askey-Wilson algebra and DAHA of type[END_REF] and another of its manifestations is as a coideal subalgebra of U q (sl 2 ) [START_REF] Granovskii | Linear covariance algebra for SL q (2)[END_REF][START_REF] Terwilliger | The Universal Askey-Wilson Algebra and the Equitable Presentation of U q (sl 2 )[END_REF][START_REF] Crampé | New realizations of algebras of the Askey-Wilson type in terms of Lie and quantum algebras[END_REF]. The Askey-Wilson algebras have also been cast in the framework of Howe duality using the pair (U q (sl 2 ), o q 1/2 (2n)) [START_REF] Frappat | The dual pair (U q (su(1, 1)), o q 1/2 (2n)), q-oscillators, and Askey-Wilson algebras[END_REF][START_REF] Gaboriaud | Howe duality and algebras of the Askey-Wilson type: an overview[END_REF][START_REF] Frappat | The q-Higgs and Askey-Wilson algebras[END_REF][START_REF] Noumi | Dual pairs, spherical harmonics and a Capelli identity in quantum group theory[END_REF]; they are special cases of the recently introduced Painlevé algebras [START_REF] Mazzocco | Confluences of the Painlevé equations, Cherednik algebras and q-Askey scheme[END_REF] and belong to the Calabi-Yau class [START_REF] Etingof | Noncommutative del Pezzo surfaces and Calabi-Yau algebras[END_REF]. There is a significant connection to the field of algebraic combinatorics, as Askey-Wilson algebras are central in the classification of P -and Q-polynomial association schemes and the study of Leonard pairs and triples [START_REF] Bannai | Algebraic Combinatorics I: Association Schemes[END_REF][START_REF] Terwilliger | Two linear transformations each tridiagonal with respect to an eigenbasis of the other[END_REF][START_REF] Terwilliger | Leonard pairs and the Askey-Wilson relations[END_REF][START_REF] Terwilliger | The Universal Askey-Wilson Algebra[END_REF][START_REF] Huang | The classification of Leonard triples of QRacah type[END_REF][START_REF] Terwilliger | The q-Onsager Algebra and the Universal Askey-Wilson Algebra, Symmetry[END_REF]. The Askey-Wilson algebras have also been shown to offer a promising platform to extend the quantum Schur-Weyl duality to arbitrary representations and have been seen in that respect to admit the Temperley-Lieb and Birman-Murakami-Wenzl algebras [START_REF] Crampé | Birman-Murakami-Wenzl and Askey-Wilson algebras and other centralizers of U q (sl 2 )[END_REF] as quotients. Askey-Wilson algebras have moreover found their way in the general framework of knot theory through their identification with the Kauffman bracket skein algebras of the four-punctured sphere Sk iq 1/2 (Σ 0,4 ) and other elementary surfaces [START_REF] Bullock | Multiplicative structure of Kauffman bracket skein module quantizations[END_REF][START_REF] Cooke | Kauffman skein algebras and Quantum Teichmüller Spaces via Factorisation Homology[END_REF][START_REF] Cooke | Higher Rank Askey-Wilson Algebras as Skein Algebras[END_REF]. This is also closely connected to double affine Hecke algebras (DAHA) as the Askey-Wilson algebra is related to the spherical subalgebra of the DAHA of type (C ∨ 1 , C 1 ) [START_REF] Huang | Finite-dimensional modules of the universal Askey-Wilson algebra and DAHA of type[END_REF][START_REF] Mazzocco | Confluences of the Painlevé equations, Cherednik algebras and q-Askey scheme[END_REF][START_REF] Oblomkov | Double Affine Hecke Algebras of Rank 1 and Affine Cubic Surfaces[END_REF][START_REF] Koornwinder | The Relationship between Zhedanov's Algebra AW (3) and the Double Affine Hecke Algebra in the Rank One Case[END_REF][START_REF] Koornwinder | Zhedanov's Algebra AW (3) and the Double Affine Hecke Algebra in the Rank One Case. II. The Spherical Subalgebra[END_REF][START_REF] Ito | Double Affine Hecke Algebras of Rank 1 and the Z 3 -Symmetric Askey-Wilson Relations[END_REF][START_REF] Terwilliger | The Universal Askey-Wilson Algebra and DAHA of Type (C ∨ 1 , C 1 )[END_REF][START_REF] Koornwinder | Dualities in the q-Askey Scheme and Degenerate DAHA[END_REF][START_REF] Tsujimoto | Double Affine Hecke Algebra of Rank 1 and Orthogonal Polynomials on the Unit Circle[END_REF]. This overview of the relevance of Askey-Wilson algebras in different domains motivates the present topical report. Let us make at this point a few additional remarks on the introduction of the algebra Sk iq 1/2 (Σ 0,4 ) in the Askey-Wilson picture to stress that this paper also features novel results relating the Askey-Wilson algebra, the Kauffman bracket skein algebra and the braid group.

Kauffman bracket skein algebras (KBSA) have been defined independently by Turaev [START_REF] Turaev | Skein quantization of Poisson algebras of loops on surfaces[END_REF] and Bullock and Przytycki [START_REF] Bullock | Multiplicative structure of Kauffman bracket skein module quantizations[END_REF] in the study of knot invariants and can be seen to encompass the celebrated Jones polynomial [START_REF] Jones | A polynomial invariant for knots via von Neumann algebras[END_REF][START_REF] Kauffman | State models and the Jones polynomial[END_REF]. Computations in the KBSA are done through diagrammatic manipulations given by a set of rules (the skein relations). It is appreciated that this Sk iq 1/2 (Σ 0,4 ) algebra is closely related to the centralizer of U q (sl 2 ) in its threefold tensor product. This ties in with the Temperley-Lieb algebra which admits a diagrammatic presentation [START_REF] Kauffman | State models and the Jones polynomial[END_REF][START_REF] Kauffman | An invariant of regular isotopy[END_REF][START_REF] Kauffman | Temperley-Lieb recoupling theory and invariants of 3manifolds[END_REF] for generic q, is precisely the centralizer of U q (sl 2 ) in the threefold tensor product of the fundamental representations of U q (sl 2 ) [START_REF] Jimbo | A q-difference analogue of U (g) and the Yang-Baxter equation[END_REF] and, as already indicated, was found to be a quotient of the Askey-Wilson algebra [START_REF] Crampé | Birman-Murakami-Wenzl and Askey-Wilson algebras and other centralizers of U q (sl 2 )[END_REF].

A natural question that has arisen asks about higher rank extensions of Askey-Wilson algebras. In view of the ubiquity of the 3-generated Askey-Wilson algebras it is to be expected that such generalizations will prove quite fruitful. This question is non-trivial however since many avenues that are likely to yield different outcomes can be followed. Among those possibilities, one is to consider the algebra realized by the intermediate Casimir elements in multifold tensor products of U q (sl 2 ) [START_REF] Post | A higher rank extension of the Askey-Wilson Algebra[END_REF][START_REF] De Bie | The Higher Rank q-Deformed Bannai-Ito and Askey-Wilson Algebra[END_REF][START_REF] De Bie | The q-Bannai-Ito algebra and multivariate (-q)-Racah and Bannai-Ito polynomials[END_REF][START_REF] Clercq | Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra[END_REF], and another is to increase the rank of the algebra U q (sl 2 ) to, say, U q (sl 3 ) when studying the Racah problem. Augmenting the number of punctures of the sphere in the KBSA approach could also be envisaged. Making much sense is the idea to start from the multivariate Askey-Wilson polynomials [START_REF] Gasper | Some Systems of Multivariable Orthogonal Askey-Wilson Polynomials[END_REF], to work out the algebra formed by its bispectral operators [START_REF] De Bie | The q-Bannai-Ito algebra and multivariate (-q)-Racah and Bannai-Ito polynomials[END_REF][START_REF] Iliev | Bispectral commuting difference operators for multivariable Askey-Wilson polynomials[END_REF][START_REF] Baseilhac | A bispectral q-hypergeometric basis for a class of quantum integrable models[END_REF] and to take things from there. This is after all how the story began. Steps have been taken in these directions but final conclusions have not been reached. Some authors have considered higher order truncations of the reflection algebra [START_REF] Baseilhac | A deformed analogue of Onsager's symmetry in the XXZ open spin chain[END_REF] understood as a quotient of the q-Onsager algebra (see also [START_REF] Baseilhac | FRT presentation of classical Askey-Wilson algebras[END_REF] for the classical limit of this result). The upshot is that there is currently no clear consensus on what the higher rank Askey-Wilson algebra is * . This is not too surprising since there are still a few loose ends in the rank one cases.

As a prelude to a solid understanding of the higher rank Askey-Wilson algebra, it is appropriate to clarify the picture for the ordinary Askey-Wilson algebras. Indeed, as these algebras have appeared in multiple instances in the literature, names, conventions and notations are quite diverse. We are here proposing a standardization and offering a number of new results. The paper will unfold as follows. The various Askey-Wilson avatars will be introduced in Section 2. They will be given names and defined in a comparative way. Emphasis will be put on two particular versions. The first is a quotient of the Zhedanov algebra which we will call the Special Zhedanov algebra. In Section 3, we will show that the Zhedanov algebra is obtained as the reflection algebra defined from particular R-and reflection matrices. In this formalism, the Special Zhedanov algebra corresponds to fixing the Sklyanin determinant to a certain value; the name Special is chosen in analogy with the nomenclature of Lie groups. A Weyl group W (D 4 ) symmetry of the Special Zhedanov algebra will then be presented in Section 4, thus generalizing an analoguous result for the Racah algebra. The second avatar that will be closely looked at will be called the Special Askey-Wilson algebra. It can be seen as the equivalent of the Special Zhedanov algebra where the parameters are promoted to central elements in the algebra. That this algebra is isomorphic to the Kauffman bracket skein algebra of the four-punctured sphere Sk iq 1/2 (Σ 0,4 ) is the object of Section 5. In Section 6, the Special Askey-Wilson algebra will further be related to the algebra A 3 associated to the Racah problem of U q (sl 2 ) and to the centralizer C 3 of U q (sl 2 ) in its threefold tensor product. An injective homomorphism of algebras between the latter two structures will be stated and its proof will be found in Appendix A. The relation between the Special Askey-Wilson algebra and the universal double affine Hecke algebra (DAHA) of type (C ∨ 1 , C 1 ) will be discussed in Section 7. How the Artin braid group B 3 acts on both the A 3 and Sk iq 1/2 (Σ 0,4 ) algebras, respectively through conjugation by braided R-matrices and through half Dehn twists will be highlighted in Section 8. The question of the possible higher-rank generalizations of the Askey-Wilson algebra will be addressed in Section 9. A crossing index will be introduced and used to summarize efficiently the main results of [START_REF] Post | A higher rank extension of the Askey-Wilson Algebra[END_REF] and [START_REF] Clercq | Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra[END_REF] and new relations for the higher rank analogues will be provided. Elements of interest for further study of the higher rank generalizations of the Special Askey-Wilson algebra will be offered in addition. Concluding remarks will end the paper.

Askey-Wilson algebras 2.1 A jungle of Askey-Wilson algebras

As mentioned in the above, the name Askey-Wilson algebra has appeared and been connected to diverse objects in a multitude of contexts. Therefore, the notations and appellations in the literature are sometimes confusing. For the sake of clarity, we start by presenting these different algebraic structures and give to them unambiguous names to distinguish them.

The Askey-Wilson algebra aw(3) is the unital associative algebra depending on the parameter q with generators C 12 , C 23 , C 13 and central elements C 1 , C 2 , C 3 , C 123 obeying the Z 3 -symmetric relations

C 12 + [C 23 , C 13 ] q q 2 -q -2 = C 1 C 2 + C 3 C 123 q + q -1 , (2.1a) 
C 23 + [C 13 , C 12 ] q q 2 -q -2 = C 2 C 3 + C 1 C 123 q + q -1 , (2.1b) 
C 13 + [C 12 , C 23 ] q q 2 -q -2 = C 3 C 1 + C 2 C 123 q + q -1 , (2.1c) 
where the q-commutator is defined by [A, B] q = qAB -q -1 BA. Throughout the paper, we suppose that q ∈ C is not a root of unity. The Casimir element of this algebra is

Ω := qC 12 C 23 C 13 + q 2 C 12 2 + q -2 C 23 2 + q 2 C 13 2 -qC 12 (C 1 C 2 + C 3 C 123 ) -q -1 C 23 (C 2 C 3 + C 1 C 123 ) -qC 13 (C 3 C 1 + C 2 C 123 ). (2.1d)
Let us emphasize that this algebra aw(3) is not the algebra called Askey-Wilson algebra by A. Zhedanov, and denoted AW (3) in [START_REF] Zhedanov | Hidden symmetry" of Askey-Wilson polynomials, Theoretical and Mathematical Physics 89[END_REF]. In the present paper, we call the latter the Zhedanov algebra (see below).

From the aw(3) algebra, we define multiple quotients or subalgebras which appear in different contexts; these justify the importance of this algebra.

The Special Askey-Wilson algebra saw(3) is the quotient of aw(3) by the supplementary relation

Ω = (q + q -1 ) 2 -C 123 2 -C 1 2 -C 2 2 -C 3 2 -C 123 C 1 C 2 C 3 . (2.2)
A justification of the adjective special is given in Section 3. This algebra is isomorphic to the Kauffman bracket skein module of the four-punctured sphere (see Section 5) and is directly associated to the centralizer of the diagonal action of U q (sl 2 ) in its threefold tensor product (see Section 6).

The universal Askey-Wilson algebra ∆ q defined in [START_REF] Terwilliger | The Universal Askey-Wilson Algebra[END_REF] is the subalgebra of aw(3) generated by C 12 , C 23 , C 13 as well as the central elements α

= C 1 C 2 + C 3 C 123 , β = C 2 C 3 + C 1 C 123 and γ = C 3 C 1 + C 2 C 123 . The Casimir element of ∆ q becomes Ω = qC 12 C 23 C 13 + q 2 C 2 12 + q -2 C 2 23 + q 2 C 2 13 -qC 12 α -q -1 C 23 β -qC 13 γ. (2.3)
An injective homomorphism of ∆ q into U q (sl 2 ) ⊗ U q (sl 2 ) ⊗ U q (sl 2 ) has been studied in [START_REF] Huang | An embedding of the universal Askey-Wilson algebra into U q (sl 2 )⊗U q (sl 2 )⊗ U q (sl 2 )[END_REF] and its finite irreducible representations have been classified in [START_REF] Huang | Finite-Dimensional Irreducible Modules of the Universal Askey-Wilson Algebra[END_REF]. The universal Askey-Wilson algebra also intersects the theory of free Lie algebras, see e.g. [START_REF] Cantuba | A Lie algebra related to the universal Askey-Wilson algebra[END_REF] and [START_REF] Cantuba | Lie Polynomial Characterization Problems[END_REF].

The evaluated Askey-Wilson algebra Z q (m 1 , m 2 , m 3 ) is the quotient of aw(3) by the supplementary relations

C i = q m i + q -m i , i = 1, 2, 3. (2.4) 
It plays a central role in the study of the centralizer of the diagonal embedding of U q (sl 2 ) in the threefold tensor product of representations of U q (sl 2 ) [START_REF] Crampé | Birman-Murakami-Wenzl and Askey-Wilson algebras and other centralizers of U q (sl 2 )[END_REF].

The Zhedanov algebra Zh q (m 1 , m 2 , m 3 , m 4 ) is the quotient of aw(3) by

C i = q m i + q -m i , C 123 = q m 4 + q -m 4 , i = 1, 2, 3, (2.5) 
and was first introduced by Zhedanov as the algebra encoding the bispectrality of the Askey-Wilson polynomials [START_REF] Zhedanov | Hidden symmetry" of Askey-Wilson polynomials, Theoretical and Mathematical Physics 89[END_REF]. To be precise, in [START_REF] Zhedanov | Hidden symmetry" of Askey-Wilson polynomials, Theoretical and Mathematical Physics 89[END_REF], an alternative equivalent presentation recalled in (4.10a)-(4.10c), (4.10e)-(4.10g) has been given. The above Z 3 -symmetric presentation of Zh q (m 1 , m 2 , m 3 , m 4 ) is introduced in [START_REF] Wiegmann | Algebraization of difference eigenvalue equations related to U q (sl(2))[END_REF]. This algebra appears to be also the proper algebraic setting to characterize the Leonard pairs [START_REF] Terwilliger | Leonard pairs and the Askey-Wilson relations[END_REF].

The Special Zhedanov algebra sZh q (m 1 , m 2 , m 3 , m 4 ) is obtained as the quotient of saw(3) by relations (2.5) (see (4.10a)-(4.10h) for an alternative presentation). It appears naturally as the commutation relations of the intermediate Casimir elements acting on the multiplicity space of the decomposition of the threefold tensor product of representations of U q (sl 2 ) (see Section 6.3).

Miscellaneous properties

PBW basis

The Askey-Wilson algebra aw(3) has a Poincaré-Birkhoff-Witt (PBW) basis given explicitly by the following elements

C i 12 C j 23 C k 13 C m 1 C n 2 C p 3 C q 123 , i, j, k, m, n, p, q ∈ N. (2.6)
The proof is a slight generalization of the proof of the PBW basis for the universal Askey-Wilson algebra ∆ q given in [START_REF] Terwilliger | The Universal Askey-Wilson Algebra[END_REF]. We can also obtain a PBW basis for the Special Askey-Wilson algebra saw(3) from the one of aw(3) by restricting the range of the exponent j to {0, 1} instead of N.

Calabi-Yau algebra

The Zhedanov algebra Zh q (m 1 , m 2 , m 3 , m 4 ) can be derived from a Calabi-Yau potential in the following sense [START_REF] Ginzburg | Calabi-Yau algebras[END_REF]. Let F = C[x 1 , x 2 , x 3 ] be a free associative algebra and view F as a graded algebra such that deg(x

1 ) = d 1 , deg(x 2 ) = d 2 and deg(x 3 ) = d 3 (with 0 < d 1 ≤ d 2 ≤ d 3 ). We define F cycl = F/[F, F
] and the map ∂ ∂x j : F cycl → F on cyclic words as follows

∂[x i 1 x i 2 . . . x ir ] ∂x j = {s|is=j} x is+1 x is+2 . . . x ir x i 1 x i 2 . . . x is-1 (2.7)
and we extend it to F cycl by linearity. Let Φ(x 1 , x 2 , x 3 ) ∈ F cycl be a potential which can be decomposed as follows

Φ(x 1 , x 2 , x 3 ) = Φ (d) (x 1 , x 2 , x 3 ) + Φ <d (x 1 , x 2 , x 3 ), (2.8) 
where Φ (d) (x 1 , x 2 , x 3 ) is homogeneous of degree d = d 1 +d 2 +d 3 and Φ <d (x 1 , x 2 , x 3 ) is composed of terms of degree strictly inferior to d. Then the algebra whose defining relations are given by

∂Φ ∂x j = 0, j = 1, 2, 3, (2.9) 
is a Calabi-Yau algebra [START_REF] Etingof | Noncommutative del Pezzo surfaces and Calabi-Yau algebras[END_REF]. Now, let x 1 = K 12 , x 2 = K 23 , x 3 = K 13 and deg(x 1 ) = deg(x 2 ) = 2, deg(x 3 ) = 3. Consider the potential Φ (7) 

(x 1 , x 2 , x 3 ) = q[x 1 x 2 x 3 ] -q -1 [x 1 x 3 x 2 ], Φ <7 (x 1 , x 2 , x 3 ) = (q + q -1 )([x 1 x 2 2 ] + [x 2 1 x 2 ]) -ξ 4 [x 1 ] -ξ 4 [x 2 ] -1 2 [x 2 3 ] -ξ 2 [x 1 x 2 ].
(2.10)

It is easy to see that the defining relations of Zh q (m 1 , m 2 , m 3 , m 4 ) presented in (4.10a)-(4.10c) are equivalent to imposing (2.9) for the potential (2.10). In other words, Zh q (m 1 , m 2 , m 3 , m 4 ) derives from the Calabi-Yau potential Φ (2.10).

The Zhedanov algebra as a truncated reflection algebra

In this section, we recall [START_REF] Baseilhac | Deformed Dolan-Grady relations in quantum integrable models[END_REF] that the defining relations of the algebra Zh q (m 1 , m 2 , m 3 , m 4 ) can be equivalently encoded in a reflection equation [START_REF] Sklyanin | Boundary conditions for integrable quantum systems[END_REF]. This realization of an algebra is usually called the FRT presentation, in honor of the authors of [START_REF] Faddeev | Quantization of Lie Groups and Lie Algebras[END_REF]. This presentation allows one to connect the Zhedanov algebra to the reflection algebra which is intensively studied in the context of quantum integrable systems. In addition, we show that the algebra sZh q (m 1 , m 2 , m 3 , m 4 ) can be also obtained naturally by setting the Sklyanin determinant to a certain value; this justifies the appellation special for the quotiented algebra since it is obtained by fixing the value of a determinant, as in the definition of the Special Linear group SL n .

The cornerstone of the FRT presentation is the R-matrix. For the case of the algebra Zh q (m 1 , m 2 , m 3 , m 4 ), we start with the following R-matrix

R(u) =        uq -1 uq 0 0 0 0 u -1 u q -1 q 0 0 q -1 q u -1 u 0 0 0 0 uq -1 uq        . ( 3.1) 
This R-matrix is associated to the quantum affine algebra U q ( sl 2 ) and is a solution of the Yang-Baxter equation

R 12 (u 1 /u 2 )R 13 (u 1 /u 3 )R 23 (u 2 /u 3 ) = R 23 (u 2 /u 3 )R 13 (u 1 /u 3 )R 12 (u 1 /u 2 ), (3.2) 
where

R 12 = a R a ⊗ R a ⊗ 1, R 23 = a 1 ⊗ R a ⊗ R a , R 13 = a R a ⊗ 1 ⊗ R a if one writes R = a R a ⊗ R a
and 1 as the 2 × 2 identity matrix. We define also the following truncated reflection matrix (see remark 3.2 below) given by

B(u) =     uqC 12 - C 23 uq + p 4 /u + p 4 u u 2 -1/u 2 qu 2 + 1 qu 2 - [C 23 , C 12 ] q q 2 -1/q 2 + p 4 q + 1/q -qu 2 - 1 qu 2 + [C 12 , C 23 ] q q 2 -1/q 2 - p 4 q + 1/q uqC 23 - C 12 uq + p 4 u + p 4 /u u 2 -1/u 2     , (3.3) 
where we refer to (4.7a)-(4.7c) for the definition of p 4 , p 4 and p 4 .

Proposition 3.1. [START_REF] Baseilhac | Deformed Dolan-Grady relations in quantum integrable models[END_REF] The set of relations obtained from the reflection equation

R(u/v)B 1 (u)R(uv)B 2 (v) = B 2 (v)R(uv)B 1 (u)R(u/v), (3.4) 
where

B 1 (u) = B(u) ⊗ 1 and B 2 (u) = 1 ⊗ B(u)
, is equivalent to the defining relations of Zh q (m 1 , m 2 , m 3 , m 4 ).

Proof. We look at each matrix element of the reflection equation (3.4) and derive 16 relations.

For each or them, we extract the different coefficients w.r.t. the parameter u; this provides relations between C 12 and C 23 . By direct investigation, we verify that all the obtained relations are equivalent to the defining relations of Zh q (m 1 , m 2 , m 3 , m 4 ).

Rephrasing this proposition, the Zhedanov algebra Zh q (m 1 , m 2 , m 3 , m 4 ) is isomorphic to the truncated reflection algebra defined by the R-matrix (3.1) and the truncated reflection matrix (3.3).

Remark 3.2.

There exists a more general form for the reflection matrix, containing an infinite number of generators encompassed in formal series of u and 1 u . The elements of the reflection matrix (3.3) can be obtained as a truncation of these formal series. The algebra defined by the general reflection matrix obeying the reflection equation (3.4) is isomorphic to the q-Onsager algebra [START_REF] Baseilhac | A new (in)finite dimensional algebra for quantum integrable models[END_REF]. Therefore, the Zhedanov algebra can also be seen as a quotient of the q-Onsager algebra.

In the context of the reflection algebra it is well-known how to obtain central elements [START_REF] Sklyanin | Boundary conditions for integrable quantum systems[END_REF]. Indeed, let us define the Sklyanin determinant sdetB(u) as follows sdetB(u) := -

1 2 tr 12 R(1/q)B 1 (u/q)R(u 2 /q)B 2 (u) . (3.5) 
We can show that the coefficients of sdetB(u) commute with C 12 and C 23 . We recover in this way that the operator Ω given by (2.1d) commutes with C 12 and C 23 . The Sklyanin determinant gives solely Ω as a central element. Fixing the Sklyanin determinant to an appropriate value allows us to give a FRT presentation of sZh q (m 1 , m 2 , m 3 , m 4 ):

Proposition 3.3. The truncated reflection algebra defined by the R-matrix (3.1), the truncated reflection matrix (3.3) and quotiented by the relation

sdetB(u) = q 2 (1 -q 4 ) 2 (u 2 + q -m 2 -m 4 )(u 2 + q m 2 +m 4 )(u 2 + q m 4 -m 2 )(u 2 + q m 2 -m 4 ) × (u 2 + q -m 1 -m 3 )(u 2 + q m 1 +m 3 )(u 2 + q m 3 -m 1 )(u 2 + q m 1 -m 3 ), ( 3.6 
)

is isomorphic to sZh q (m 1 , m 2 , m 3 , m 4 ).
Proof. By direct computations, we show that (3.6) is equivalent to imposing (2.2).

The fact that sZh q (m 1 , m 2 , m 3 , m 4 ) can be defined as a truncated reflection algebra was expected, but it is a surprise that the r.h.s. of (3.6) factorizes into such a simple form.

A W(D ) symmetry

The algebra sZh q (m 1 , m 2 , m 3 , m 4 ) has a remarkable symmetry based on the Weyl group W (D 4 ) associated to the Lie algebra D 4 . To describe it, let us introduce a root system of type D 4 and fix a set of simple roots α 1 , α 2 , α 3 , α 4 with labeling according to the following Dynkin diagram:

1 3 4 2
The Weyl group W (D 4 ) is generated by the reflections s i associated to the simple roots α i which satisfy, for 1 ≤ i, j ≤ 4, 

s 2 i =1 s i s j =s j s i s i s j s i =s j s i s j if i
m 1 = α 1 , m 2 = α 2 , m 3 = α 4 , m 4 = Θ, (4.2)
where Θ is the longest positive root. The explicit expression of Θ is:

α 3 = 1 2 (m 4 -m 1 -m 2 -m 3 ). (4.3)
It is elementary to calculate the actions s i expressed in terms of the parameters:

s 1 : m 1 → -m 1 , s 2 : m 2 → -m 2 , s 4 : m 3 → -m 3 , s 3 :        m 1 → m 1 + α 3 , m 2 → m 2 + α 3 , m 3 → m 3 + α 3 , m 4 → m 4 -α 3 , (4.4) 
where the omitted actions are trivial and the explicit expression of α 3 is given above. The action of the Weyl group is extended to any function as follows:

(σf )(m 1 , m 2 , m 3 , m 4 ) = f (σ(m 1 ), σ(m 2 ), σ(m 3 ), σ(m 4 )) (4.5)
for σ ∈ W (D 4 ).

Proposition 4.1. The Weyl group W (D 4 ) is a symmetry of sZh q (m 1 , m 2 , m 3 , m 4 ) i.e.

sZh q (m 1 , m 2 , m 3 , m 4 ) = sZh q (σ(m 1 ), σ(m 2 ), σ(m 3 ), σ(m 4 )), (4.6) 
for any σ ∈ W (D 4 ).

Proof. In sZh q (m 1 , m 2 , m 3 , m 4 ), we remark that the only functions of m i which appear are

p 4 = χ m 1 χ m 2 + χ m 3 χ m 4 , (4.7a 
)

p 4 = χ m 2 χ m 3 + χ m 1 χ m 4 , (4.7b 
)

p 4 = χ m 1 χ m 3 + χ m 2 χ m 4 , (4.7c 
)

p 6 = χ 2 m 1 + χ 2 m 2 + χ 2 m 3 + χ 2 m 4 + χ m 1 χ m 2 χ m 3 χ m 4 , (4.7d) 
where χ m = q m + q -m . By direct computations, we can show that these functions are invariant by the transformations s 1 , s 2 , s 3 and s 4 given by (4.4), which concludes the proof since they generate W (D 4 ).

In the study of the finite representations of the universal algebra ∆ q a W (D 4 ) symmetry has been also investigated [START_REF] Terwilliger | Two linear transformations each tridiagonal with respect to an eigenbasis of the other; an algebraic approach to the Askey scheme of orthogonal polynomials[END_REF][START_REF] Nomura | Transition maps between the 24 bases for a Leonard pair[END_REF].

Connection with the W (D 4 ) symmetry in the Racah algebra

Let us perform the transformation

K I = C I -(q + q -1 ) (q -q -1 ) 2 , (4.8) 
with I ∈ {1, 2, 3, 123, 12, 23}. Note that 13 does not belong to this set. In the algebra sZh q (m 1 , m 2 , m 3 , m 4 ), one gets, for i = 1, 2, 3, 4,

K i = χ m i -(q + q -1 ) (q -q -1 ) 2 = m i 2 2 q - 1 2 2 q , (4.9) 
where the q-number is defined by [m] q = q m -q -m q-q -1 . The commutation relations of the algebra

sZh q (m 1 , m 2 , m 3 , m 4 ) become [K 12 , K 23 ] q = K 13 , (4.10a) [K 23 , K 13 ] q = (q + q -1 ) -{K 12 , K 23 } -K 2 23 + ξ 2 K 23 + ξ 4 , (4.10b) [K 13 , K 12 ] q = (q + q -1 ) -{K 12 , K 23 } -K 2 12 + ξ 2 K 12 + ξ 4 , (4.10c) 
and the supplementary relation becomes

-q q -q -1 q + q -1 K 12 K 23 K 13 -qK 12 K 23 K 12 -q -1 K 23 K 12 K 23 + q 2 (q + q -1 ) 2 K 2 13 + ξ 2 q + q -1 -1 {K 12 , K 23 } + qξ 4 K 12 + q -1 ξ 4 K 23 = ξ 6 -ξ 4 -ξ 4 - ξ 2 2 4 , (4.10d) 
with

ξ 2 = 1 q + q -1 2(M 2 1 + M 2 2 + M 2 3 + M 2 4 -1) + (q -q -1 ) 2 (M 2 1 M 2 3 + M 2 2 M 2 4 ) , (4.10e 
)

ξ 4 = (M 2 1 -M 2 4 )(M 2 3 -M 2 2 ), (4.10f) ξ 4 = (M 2 1 -M 2 2 )(M 2 3 -M 2 4 ), (4.10g 
)

ξ 6 = (M 2 1 M 2 3 -M 2 2 M 2 4 )(M 2 1 -M 2 2 + M 2 3 -M 2 4 ) + 1 4 (q -q -1 ) 2 (M 2 1 M 2 3 -M 2 2 M 2 4 ) 2 , (4.10h)
where we use the notation M i = m i 2 q . As expected, we can check that the functions ξ 2 , ξ 4 , ξ 4 and ξ 6 are invariant under the action of the Weyl group W (D 4 ).

The advantage of this presentation of sZh q (m 1 , m 2 , m 3 , m 4 ) is that the classical limit q → 1 (see Appendix A) is well-defined and provides straightforwardly the commutation relations of the Racah algebra. Thus, the description of the Weyl group W (D 4 ) action also holds for the Racah algebra and we recover the results of [START_REF] Granovskii | Nature of the symmetry group of the 6j-symbol[END_REF].

Remark 4.2. In the classical limit q → 1, the functions ξ 2 , ξ 4 , ξ 4 and ξ 6 form a basis for polynomials invariant under the action of W (D 4 ), as expected. In the generic case (q ∈ C, not a root of unity), one gets two different sets of invariant functions: S ξ = {ξ 2 , ξ 4 , ξ 4 , ξ 6 } on the one hand and S p = {p 4 , p 4 , p 4 , p 6 } on the other hand. We have checked that there exists an invertible polynomial mapping between these two sets. However, only S ξ admits a non-trivial classical limit.

Kauffman bracket skein modules and algebras

Kauffman bracket skein module quantizations have been introduced in [START_REF] Bullock | Multiplicative structure of Kauffman bracket skein module quantizations[END_REF][START_REF] Turaev | Skein quantization of Poisson algebras of loops on surfaces[END_REF] and further studied along our lines of interest for this paper in [START_REF] Cooke | Higher Rank Askey-Wilson Algebras as Skein Algebras[END_REF][START_REF] Berest | Affine cubic surfaces and character varieties of knots[END_REF][START_REF] Hikami | DAHA and skein algebra of surfaces: double-torus knots[END_REF]. We will now recall some key definitions and results from these investigations. We shall work with an oriented 3-manifold M which is a thickened surface, that is M = Σ 0,n ×I, where I = [0, 1] and Σ 0,n is the n-punctured sphere.

Definition 5.1. The quantized skein module Sk θ (M) is the C[θ ±1 ]-module spanned by framed and unoriented links in M modulo the Kauffman bracket skein relations that allow to "simplify the crossings":

= θ + θ -1 , (5.1a) = -(θ 2 + θ -2 ), (5.1b) 
where θ ∈ C is not a root of unity and in the framing relation (5.1b) the link should not enclose a puncture. This defines an algebra, which we will denote Sk θ (Σ 0,n ), for which multiplication is given by stacking the links on top of each other in the I direction.

We shall use diagrams that correspond to the projection of the links on the surface (all the while keeping the information about the relative "height" of the links in the I direction). Let us now establish the conventions for these drawings (framed links diagrams).

The n-punctured sphere Σ 0,n is equivalent to the plane with n -1 punctures (denoted by the (n -1) drawn ×'s):

× × × . . . × (5.2)
The dashed contour corresponds to the n th puncture of the sphere. We will omit the contour in the subsequent diagrams but it is always understood to be there.

Framed links that enclose punctures are represented by loops drawn around the ×'s. We shall use the term "loops" to refer unambiguously to the framed links in the remainder of the paper. These loops can be homotopically deformed without crossing the holes (punctures). Remark that loops enclosing a single puncture are central elements in Sk θ (Σ 0,n ). This is also true for the n th puncture, which amounts to saying that the loop enclosing the (n-1) punctures × is also central.

Let us now consider the surface Σ 0,4 and give names to a few loops:

× × × = A 12 × × × = A 23 × × × = A 13 × × × = A 1 × × × = A 2 × × × = A 3 × × × = A 123 (5.3) 
Following the definition, multiplication of two loops X • Y means putting Y on top of X, for example:

× × × A 12 • A 23 = (5.4)
One would then proceed to use relations (5.1) to simplify the expressions:

A 12 • A 23 = θ × × × -θ -1 × × × = θ 2   × × ×   + × × × + × × × + θ -2   × × ×   . = θ 2 A 13 + A 2 • A 123 + A 1 • A 3 + θ -2   × × ×   .
(5.5)

Similarly, exchanging the order of multiplication, one obtains the same diagrams but with inverse coefficients:

A 23 • A 12 = θ -2 A 13 + A 2 • A 123 + A 1 • A 3 + θ 2   × × ×   . (5.6) 
We see immediately that one gets

θ 2 A 12 • A 23 -θ -2 A 23 • A 12 = (θ 4 -θ -4 )A 13 + (θ 2 -θ -2 )(A 2 • A 123 + A 1 • A 3 ).
(5.7)

The skein algebra Sk θ (Σ 0,4 ) is directly linked to the Askey-Wilson algebra as stated in the following proposition:

Proposition 5.2. The Special Askey-Wilson algebra saw(3) is isomorphic to the Kauffman bracket skein algebra Sk iq 1/2 (Σ 0,4 ). The isomorphism is given by the following invertible map:

C I → A I , (5.8) 
for I ∈ {1, 2, 3, 123, 12, 23, 13}.

Proof. The isomorphism is directly verified by comparing the relations of saw(3) and the ones of the Kauffman bracket skein algebra obtained in [START_REF] Bullock | Multiplicative structure of Kauffman bracket skein module quantizations[END_REF] (see also Proposition 3.1 of [START_REF] Hikami | DAHA and skein algebra of surfaces: double-torus knots[END_REF] and [START_REF] Cooke | Kauffman skein algebras and Quantum Teichmüller Spaces via Factorisation Homology[END_REF] for additional details).

This proposition gives a diagrammatic approach to study the algebra saw(3).

Let us emphasize that the previous isomorphism involves the Special Askey-Wilson algebra saw(3). If we replace saw(3) by aw(3) in the map of the proposition, the homomorphism would be not injective and if we instead replace saw(3) by ∆ q (as in [START_REF] Huang | An embedding of the universal Askey-Wilson algebra into U q (sl 2 )⊗U q (sl 2 )⊗ U q (sl 2 )[END_REF][START_REF] Terwilliger | Topological aspects of the Z 3 -symmetric Askey-Wilson relations (Seminar)[END_REF]), it would be not surjective.

One notes that the Z 3 -symmetry of the saw(3) relations is made manifest in terms of the framed links picture, as the punctures do not have fixed positions and can be switched around.

From now on we will unambiguously refer to the drawn loops identified as the generators of Sk iq 1/2 (Σ 0,4 ) directly as their C I counterpart following (5.8). This correspondence (5.8) leads to a natural labeling of the punctures. Indeed, consider the generators given in (5.3): the punctures enclosed in a given loop correspond precisely to the set of indices I of the corresponding generator C I if one labels the punctures consecutively as:

× × × 1 2 3
(5.9)

Remark 5.3. We recall that one arrives to the Special Zhedanov algebra sZh q (m 1 , m 2 , m 3 , m 4 ) from the Special Askey-Wilson algebra saw(3) by attributing a value to the central elements C i , i = 1, 2, 3, 123, see (2.5). In the same way, starting from the Kauffman bracket skein algebra Sk iq 1/2 (Σ 0,4 ), one can define an evaluated Kauffman bracket skein algebra, denoted

Sk iq 1/2 (Σ 0,4 ; m 1 , m 2 , m 3 , m 4
) by attributing a value to the puncture-framing relations:

× i = q m i + q -m i , i = 1, 2, 3, × × × = q m 4 + q -m 4 .
(5.10)

Note that the last drawing corresponds in fact to a contour enclosing the fourth puncture on the sphere, see (5.2). As a corollary of Proposition 5.2, the algebra Sk iq 1/2 (Σ 0,4 ; m 1 , m 2 , m 3 , m 4 ) is isomorphic to the Special Zhedanov algebra sZh q (m 1 , m 2 , m 3 , m 4 ). Relations (5.10) with m i = 1 already appear in the definition of the skein algebra of arcs and link introduced in [START_REF] Roger | The skein algebra of arcs and links and the decorated Teichmüller space[END_REF], from where we borrowed the terminology 'puncture-framing'.

6 U q (sl 2 ) and its centralizer in U q (sl 2 ) ⊗3

The goal of this section is to discuss the notion of centralizer of U q (sl 2 ) in U q (sl 2 ) ⊗3 , which we denote by C 3 , and connect it with the Special Askey-Wilson algebra saw(3).

6.1 U q (sl 2 ) and its universal R-matrix Let us fix the notation and conventions that will be used to perform the explicit calculations in U q (sl 2 ) (note that the results obtained will be independent of these conventions at the end). We shall first define the quasi-triangular Hopf algebra U q (sl 2 ), present its braided universal R-matrix and list some additional properties of interest.

U q (sl 2 ) is an associative algebra generated by E, F , q H and q -H obeying the defining relations

q H q -H = q -H q H = 1, q H E = qEq H , q H F = q -1 F q H and [E, F ] = [2H] q . (6.1)
The center of this algebra is generated by the following Casimir element (denoted Λ in [START_REF] De Bie | The Higher Rank q-Deformed Bannai-Ito and Askey-Wilson Algebra[END_REF][START_REF] Clercq | Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra[END_REF])

Q = (q -q -1 ) 2 F E + qq 2H + q -1 q -2H (q -q -1 ) 2 . (6.2)
The algebra U q (sl 2 ) can be endowed with a Hopf structure. In particular, its comultiplication (or coproduct) homomorphism ∆ : U q (sl 2 ) → U q (sl 2 ) ⊗ U q (sl 2 ) is given by

∆(E) = E ⊗ q -H + q H ⊗ E, ∆(q H ) = q H ⊗ q H , (6.3a) 
∆(F ) = F ⊗ q -H + q H ⊗ F, ∆(q -H ) = q -H ⊗ q -H , (6.3b) 
and is coassociative (∆ ⊗ id)∆ = (id ⊗∆)∆. (6.4)

The quantum algebra U q (sl 2 ) is called quasi-triangular because in a completion of U q (sl 2 ) ⊗ U q (sl 2 ), there exists a universal R-matrix R which is invertible and satisfies ∆(x)R = R∆ op (x) for x ∈ U q (sl 2 ), (

(id ⊗∆)R = R 12 R 13 , 6.5) 
(∆ ⊗ id)R = R 23 R 13 , (6.6) 
where in the Sweedler notation we write the opposite comultiplication

∆ op (x) = x (2) ⊗ x (1) if ∆(x) = x (1) ⊗ x (2)
. In the previous relation, we have used the notations

R 12 = R α ⊗ R α ⊗ 1, R 23 = 1 ⊗ R α ⊗ R α and R 13 = R α ⊗ 1 ⊗ R α where R = R α ⊗ R α (the sum over repeated indices α is understood). The universal R-matrix is given explicitly by [76] R = q 2(H⊗H) ∞ n=0 (q -q -1 ) n [n] q ! q n(n-1)/2 Eq H ⊗ q -H F n , (6.8) 
where [n] q ! = [n] q [n -1] q . . . [START_REF] Zhedanov | Hidden symmetry" of Askey-Wilson polynomials, Theoretical and Mathematical Physics 89[END_REF] q [START_REF] Askey | Some Basic Hypergeometric Orthogonal Polynomials That Generalize Jacobi Polynomials[END_REF] q and, by convention, [0] q ! = 1. One can also define the so-called braided universal R-matrix Ř by

Ři = R i,i+1 σ i,i+1 (6.9) 
where σ i,i+1 acts on the i th and (i + 1) th factors of the tensor product as

σ i,i+1 (• • • ⊗ x i ⊗ x i+1 ⊗ . . . ) = (• • • ⊗ x i+1 ⊗ x i ⊗ . . . )σ i,i+1 . (6.10) 
This braided universal R-matrix satisfies the braided Yang-Baxter equation Ři Ři+1 Ři = Ři+1 Ři Ři+1 . (6.11)

An algebra generated by the intermediate Casimir elements

Let us define the following intermediate Casimir elements

Q 1 = Q ⊗ 1 ⊗ 1, Q 2 = 1 ⊗ Q ⊗ 1, Q 3 = 1 ⊗ 1 ⊗ Q, Q 12 = ∆(Q) ⊗ 1 = Q (1) ⊗ Q (2) ⊗ 1, Q 23 = 1 ⊗ ∆(Q) = 1 ⊗ Q (1) ⊗ Q (2) , Q 123 = (∆ ⊗ id)∆(Q).
(6.12)

The labeling of these intermediate Casimir elements is chosen so as to refer to the non-trivial factors in the tensor product U q (sl 2 ) ⊗3 .

Definition 6.1. The algebra A 3 is the subalgebra of U q (sl 2 ) ⊗3 generated by the intermediate Casimir elements

Q 1 , Q 2 , Q 3 , Q 12 , Q 23 and Q 123 .
Let us define an additional intermediate Casimir element

Q 13 = Ř-1 2 Q 12 Ř2 = Ř1 Q 23 Ř-1 1 . (6.13) 
It has been proven in [START_REF] Crampé | Revisiting the Askey-Wilson algebra with the universal R-matrix of U q (sl 2 )[END_REF] that this element is in U q (sl 2 ) ⊗3 (and not in its completion), that the second equality is compatible with the first one and that the following proposition holds:

Proposition 6.2. The intermediate Casimir elements Q 1 , Q 2 , Q 3 , Q 123 , Q 12 , Q 23 and Q 13
belong to the centralizer C 3 of the diagonal action of U q (sl 2 ) in U q (sl 2 ) ⊗3 defined by

C 3 = {X ∈ U q (sl 2 ) ⊗3 [(∆ ⊗ id)∆(x), X] = 0 , ∀x ∈ U q (sl 2 )}. (6.14)
The precise links between the Askey-Wilson algebra, the centralizer and the algebra A 3 generated by the intermediate Casimir elements are given in the following proposition. Proposition 6.3. The algebra saw(3) has an homomorphic injective image in C 3 . The mapping is done as follows: The algebra saw(3) is isomorphic to A 3 .

C I → Q I , for I ∈ {1, 2,
Proof. All the relations of saw(3) given by (2.1) and (2.2) are easily checked in U q (sl 2 ) ⊗3 upon rewriting the Q I 's in terms of the U q (sl 2 ) ⊗3 generators. The proof of the injectivity is postponed to Appendix A. The method used in [START_REF] Huang | An embedding of the universal Askey-Wilson algebra into U q (sl 2 )⊗U q (sl 2 )⊗ U q (sl 2 )[END_REF] to prove the injectivity of ∆ q into U q (sl 2 ) ⊗3 seems difficult to generalize to the case treated here and we propose an alternative method based on classical invariant theory. Since the algebra A 3 is the image of the map (6.15), it follows that saw(3) is isomorphic to A 3 .

This realization of the Askey-Wilson algebra in U q (sl 2 ) ⊗3 was the motivation for adding the relation (2.2) to the "intuitive" set of relations of aw(3). Indeed, since relation (2.2) is obeyed by the intermediate Casimir elements, it should also be included in the algebra encoding the properties of these Casimir elements. Corollary 6.4. The algebra A 3 is isomorphic to the Kauffman bracket skein algebra of the four-punctured sphere Sk iq 1/2 (Σ 0,4 ). The isomorphism is given by the following map:

φ : Q I → A I ,
for I ∈ {1, 2, 3, 123, 12, 23, 13}. (6.16)

Proof. A direct consequence of the Propositions 5.2 and 6.3.

Fundamental theorems of invariant theory

In the previous section, we introduced the centralizer C 3 of the diagonal action of U q (sl 2 ) in the threefold tensor product and showed its connection with the Askey-Wilson algebra saw(3).

We now focus on similar objects in the case where we represent each factor U q (sl 2 ) in U q (sl 2 ) ⊗3 by a finite-dimensional irreducible representation.

The quantum algebra U q (sl 2 ) has finite irreducible representations of dimension m = 2j + 1 that we will denote by M (m), with m ∈ Z >0 . The name "spin-j representation" is usually used to refer to M (m = 2j + 1). The representation map will be denoted by π m : U q (sl 2 ) → End(M (m)). The representation of the Casimir element (6.2) in the space M (m) is

π m (Q) = χ m 1 m , (6.17) 
where χ m = q m + q -m and 1 m is the m × m identity matrix.

From now on, we fix three integers m 1 , m 2 and m 3 . The threefold tensor product of irreducible representations of U q (sl 2 ) decomposes into the following direct sum of irreducible representations

M (m 1 ) ⊗ M (m 2 ) ⊗ M (m 3 ) = m 4 M (m 4 ) ⊗ V m 4 m 1 ,m 2 ,m 3 , (6.18) 
where V m 4 m 1 ,m 2 ,m 3 is called the multiplicity space. We recall that we look at cases where q is not a root of unity otherwise the previous statement would be wrong.

We now fix four integers m 1 , m 2 , m 3 , m 4 and denote by

Q I the image of Q I in V m 4 m 1 ,m 2 ,m 3
(for I ∈ {1, 2, 3, 123, 12, 23, 13}). We get

Q 1 = χ m 1 , Q 2 = χ m 2 , Q 3 = χ m 3 and Q 123 = χ m 4 .
Proposition 6.5. There exists a surjective algebra homomorphism from sZh q (m 1 , m 2 , m 3 , m 4 ) to End(V m 4 m 1 ,m 2 ,m 3 ) given by C I → Q I , for I ∈ {12, 23, 13}. (6.19) This proposition which provides the generators for the centralizer of the diagonal action is sometimes called in invariant theory the "first fundamental theorem". The map in the previous proposition is not injective. The description of the kernel of this map is the subject of [START_REF] Crampé | Birman-Murakami-Wenzl and Askey-Wilson algebras and other centralizers of U q (sl 2 )[END_REF] (see also [START_REF] Flores | Higher-spin quantum and classical Schur-Weyl duality for sl[END_REF]) and is called the "second fundamental theorem".

We recall that the algebra sZh q (m 1 , m 2 , m 3 , m 4 ) possesses a W (D 4 )-symmetry. Let us remark that a similar Weyl group symmetry of type E 6 has been discovered recently [START_REF] Crampé | A Calabi-Yau algebra with E 6 symmetry and the Clebsch-Gordan series of sl(3)[END_REF] in the case of the centralizer of the diagonal embedding of U (sl 3 ) in two copies of U (sl 3 ).

The Double Affine Hecke Algebra

(C ∨ 1 , C 1 )
Double affine Hecke algebras (DAHA) of type (C ∨ 1 , C 1 ) were introduced in [START_REF] Sahi | Nonsymmetric Koornwinder polynomials and duality[END_REF] and their connections with Askey-Wilson polynomials were first explored in [START_REF] Noumi | Askey-Wilson polynomials: an affine Hecke algebraic approach[END_REF] and [START_REF] Oblomkov | Double Affine Hecke Algebras of Rank 1 and Affine Cubic Surfaces[END_REF]. Universal analogues of these DAHA were later introduced and studied in [START_REF] Huang | Finite-dimensional modules of the universal Askey-Wilson algebra and DAHA of type[END_REF][START_REF] Ito | Double Affine Hecke Algebras of Rank 1 and the Z 3 -Symmetric Askey-Wilson Relations[END_REF][START_REF] Terwilliger | The Universal Askey-Wilson Algebra and DAHA of Type (C ∨ 1 , C 1 )[END_REF].

In this section, we present another connection between the Special Askey-Wilson algebra saw(3) and a certain subalgebra of a universal DAHA of type (C ∨ 1 , C 1 ).

Definition 7.1. We introduce the following algebras

• The universal Double Affine Hecke Algebra of type (C ∨ 1 , C 1 ) [START_REF] Ito | Double Affine Hecke Algebras of Rank 1 and the Z 3 -Symmetric Askey-Wilson Relations[END_REF] is defined as the associative algebra H q with generators {t ±1 i , i = 0, . . . , 3} and relations:

t i t -1 i = t -1 i t i = 1, (7.1a 
)

t i + t -1 i is central, (7.1b) t 0 t 1 t 2 t 3 = q -1 . (7.1c)
The "usual" DAHA, denoted H q (k 0 , k 1 , k 2 , k 3 ), is recovered when the central elements

t i + t -1 i have complex values k i + k -1 i , with k i = 0.
• The algebra Γ q [START_REF] Terwilliger | The Universal Askey-Wilson Algebra and DAHA of Type (C ∨ 1 , C 1 )[END_REF] is the subalgebra of H q commuting with the distinguished generator t 0 (Γ q is the centralizer of t 0 in H q ):

Γ q = {h ∈ H q | [h, t 0 ] = 0}. (7.2)
• Let e be the following idempotent of

H q (k 0 , k 1 , k 2 , k 3 ) [73] e = t 0 -k 0 k -1 0 -k 0 . (7.
3)

The spherical DAHA, denoted SH q (k 0 , k 1 , k 2 , k 3 ) [START_REF] Koornwinder | The Relationship between Zhedanov's Algebra AW (3) and the Double Affine Hecke Algebra in the Rank One Case[END_REF][START_REF] Koornwinder | Zhedanov's Algebra AW (3) and the Double Affine Hecke Algebra in the Rank One Case. II. The Spherical Subalgebra[END_REF], is defined as

SH q (k 0 , k 1 , k 2 , k 3 ) = e H q (k 0 , k 1 , k 2 , k 3 ) e. (7.4) 
The following theorems relate DAHA to the previously introduced algebraic structures.

Theorem 7.2. [START_REF] Terwilliger | The Universal Askey-Wilson Algebra and DAHA of Type (C ∨ 1 , C 1 )[END_REF] The map Θ : saw(3) → Γ q defined by

C 12 → t 1 t 0 + (t 1 t 0 ) -1 , C 23 → t 3 t 0 + (t 3 t 0 ) -1 , C 13 → t 2 t 0 + (t 2 t 0 ) -1 , C 1 → t 1 + t -1 1 , C 2 → t 2 + t -1 2 , C 3 → t 3 + t -1 3 , C 123 → q -1 t 0 + qt -1 0 . (7.5)
is an injective algebra homomorphism.

Theorem 7.3. (Theorem 3.2 in [START_REF] Koornwinder | Zhedanov's Algebra AW (3) and the Double Affine Hecke Algebra in the Rank One Case. II. The Spherical Subalgebra[END_REF]) The Special Zhedanov algebra sZh q (m 1 , m 2 , m 3 , m 4 ) is isomorphic to the spherical DAHA SH q (k 0 , k 1 , k 2 , k 3 ).

Remark 7.4. Spherical DAHAs have also been connected to skein algebras of higher genus. The Kauffman bracket skein algebra of the once-punctured torus Sk θ (Σ 1,1 ) is related to a (spherical) DAHA of type A 1 [START_REF] Bullock | Multiplicative structure of Kauffman bracket skein module quantizations[END_REF][START_REF] Samuelson | Iterated Torus Knots and Double Affine Hecke Algebras[END_REF] and the genus two skein algebra is related to a genus two spherical double affine Hecke algebra in [START_REF] Cooke | On the genus two skein algebra[END_REF].

Actions of the braid group

In this section, we provide two actions of the braid group: the first one on the algebra A 3 and the second one on the skein algebra Sk iq 1/2 (Σ 0,4 ). Then, we show how these two actions are compatible and give a diagrammatic presentation of the intermediate Casimir elements of U q (sl 2 ) ⊗3 . We recall that the braid group on n strands B n is generated by the elements s 1 , . . . , s n-1 as well as their inverses s -1 1 , . . . , s -1 n-1 satisfying

s i s i+1 s i = s i+1 s i s i+1 , s i s j = s j s i if |i -j| ≥ 2, s -1 i s i = s i s -1 i = 1. (8.1)
8.1 The braided universal R-matrix and a braid group action on A 3

Let us recall that we define the generators Q 13 as follows

Q 13 = Q 13d = Ř-1 2 Q 12 Ř2 = Ř1 Q 23 Ř-1 1 . (8.2)
From the result of Proposition 6.3, we know that Q 13 satisfies

Q 13 = Q 1 Q 3 + Q 2 Q 123 q + q -1 - [Q 12 , Q 23 ] q q 2 -q -2 , (8.3) 
and is in the algebra A 3 which is generated by

Q 1 , Q 2 , Q 3 , Q 12 , Q 23 and Q 123 . Now from (8.2)
it is natural to consider the following element which is analogous to Q 13d :

Q 13u = Ř2 Q 12 Ř-1 2 = Ř-1 1 Q 23 Ř1 . (8.4) 
It has been shown in [START_REF] Crampé | Revisiting the Askey-Wilson algebra with the universal R-matrix of U q (sl 2 )[END_REF] that this element is also in A 3 since it can be obtained as

Q 13u = Q 1 Q 3 + Q 2 Q 123 q + q -1 - [Q 23 , Q 12 ] q q 2 -q -2 . (8.5) 
The labels u and d added on the Casimir elements Q 13d and Q 13u stand for up and down. These names come from the form of their image in Sk iq 1/2 (Σ 0,4 ) given in Corollary 6.4:

× × × = φ(Q 13u ), (8.6a) 
× × × = φ(Q 13d ). (8.6b) 
This procedure of obtaining additional elements of A 3 by conjugations of braided R-matrices can be described by an automorphism action. Let us define the following automorphisms of

A 3 denoted Ψ s i and Ψ s -1 i by Ψ s i (X) = Ři X Ř-1 i and Ψ s -1 i (X) = Ř-1 i X Ři = Ψ -1 s i (X), (8.7) 
for i = 1, 2 and X ∈ A 3 , The previous maps are well-defined since the images of the generators of A 3 are precisely in A 3 (and not in its completion). Indeed, by direct computations making use of the explicit form (6.8) of the universal R-matrix and the commutation relations of U q (sl 2 ), one gets

Ψ s 1 (Q 1 ) = Q 2 , Ψ s 1 (Q 2 ) = Q 1 , Ψ s 1 (Q 3 ) = Q 3 , Ψ s 1 (Q 123 ) = Q 123 , Ψ s 1 (Q 12 ) = Q 12 , Ψ s 1 (Q 23 ) = Q 13d . (8.8) 
and

Ψ s 2 (Q 1 ) = Q 1 , Ψ s 2 (Q 2 ) = Q 3 , Ψ s 2 (Q 3 ) = Q 2 , Ψ s 2 (Q 123 ) = Q 123 , Ψ s 2 (Q 12 ) = Q 13u , Ψ s 2 (Q 23 ) = Q 23 . (8.9) 
We obtain similarly the actions of Ψ s -1 i on the generators of A 3 . Since the braided R-matrix satisfies the braided Yang-Baxter equation (6.11), we can show that the defining relations (8.1) of the braid group B 3 are reproduced

Ψ s 1 • Ψ s 2 • Ψ s 1 = Ψ s 2 • Ψ s 1 • Ψ s 2 , (8.10a) 
Ψ s i • Ψ s -1 i = Ψ s -1 i • Ψ s i = id. (8.10b) 
We extend the automorphisms Ψ S to any S ∈ B 3 by

Ψ S (X) = (Ψ g 1 • Ψ g 2 • • • • • Ψ g )(X), (8.11) 
where S is decomposed as S = g 1 g 2 . . . g and g i ∈ {s 1 , s 2 , s -1 1 , s -1 2 }. Note that the map (8.11) does not depend on the choice of the decomposition of S due to (8.10).

Remark 8.1. The realization of the braid group given by Ψ S is not faithful. For example, one can verify that Ψ (s 1 s 2 ) 3 = id. This is checked to be true on the intermediate Casimir elements by making repeated use of (8.8)-(8.9). It follows that it is also true for any polynomial in those elements. Moreover, some elements of A 3 have additional stabilizers, e.g.

Ψ s 1 s 1 (Q 1 ) = Ř-1 1 Ř-1 1 Q 1 Ř1 Ř1 = Ř-1 1 Q 2 Ř1 = Q 1 , (8.12a) 
Ψ s 2 (Q 23 ) = Q 23 . (8.12b) 
Identifying stabilizers of the braid group action on elements of A 3 is easy to do but giving an exhaustive list is harder.

Remark 8.2. It was shown in [START_REF] Crampé | Bannai-Ito algebras and the universal R-matrix of osp(1|2)[END_REF] how such a braid group action translates to the q → -1 limit. This limit of the Askey-Wilson algebra is referred to as the Bannai-Ito algebra. In that case, the B 3 braid group action simplifies to an action of the S 3 symmetric group. It is possible to study more generally the action of the S n symmetric group on the higher rank Bannai-Ito algebra B(n).

8.2 Half Dehn twists and the braid group action on Sk iq 1/2 (Σ 0,4 )

We now present a B 3 group action on the Kauffman bracket skein algebra Sk iq 1/2 (Σ 0,4 ), denoted ψ S : Sk iq 1/2 (Σ 0,4 ) → Sk iq 1/2 (Σ 0,4 ), with S ∈ B 3 . The braid group action rotates the placement of the punctures with respect to each other.

Here is how it goes. First, the actions ψ s i and ψ s -1 i on Sk iq 1/2 (Σ 0,4 ) are defined by the so-called half Dehn twists [START_REF] Hikami | DAHA and skein algebra of surfaces: double-torus knots[END_REF][START_REF] Farb | A Primer on Mapping Class Groups[END_REF]. The four generators of B 3 act as

× × × ψ s 1 = , × × × ψ s -1 1 = , × × × ψ s 2 = , × × × ψ s -1 2 = , (8.13) 
where any framed link gets deformed continuously without crossing the punctures as the rotations happen. For example, one gets

ψ s -1 2 (A 12 ) = ψ s -1 2 × × × = × × × =   × × ×   = A 13 , (8.14) 
and

ψ s 2 (A 23 ) = ψ s 2 × × × = × × × = × × × = A 23 . (8.15) 
Proposition 8.3. The actions ψ g for g ∈ {s 1 , s 2 , s -1 1 , s -1 2 } are automorphisms of Sk iq 1/2 (Σ 0,4 ).

Proof. For any X, Y ∈ Sk iq 1/2 (Σ 0,4 ) and g ∈ {s 1 , s 2 , s -1 1 , s -1 2 }, one understands that

ψ g (X • Y ) = ψ g (X) • ψ g (Y ). (8.16) 
Indeed, from the way they were defined, the rotations do not add or change crossings. Thus, the Kauffman bracket relations (5.1) that one makes use of to "simplify the crossings" of a given product are unchanged under these rotations. Since the rotations are also defined in order to avoid links crossing punctures, the topological properties (such as which punctures are circled by which links) are preserved. Hence the action ψ g is a homomorphism. Moreover ψ g is an endomorphism because links in Sk iq 1/2 (Σ 0,4 ) are mapped to other links in Sk iq 1/2 (Σ 0,4 ), and it is invertible, as rotations can be inverted, thus ψ g is an automorphism.

Let S = g 1 g 2 . . . g ∈ B 3 be a decomposition of an element of the braid group on three strands with g i ∈ {s 1 , s 2 , s -1 1 , s -1 2 }. We define the automorphism ψ S as follows:

ψ S (X) = (ψ g 1 • ψ g 2 • • • • • ψ g )(X). (8.17)
We use also the definition ψ 1 = id. The previous map (8.17) does not depend on the choice of the decomposition of S. Indeed, it is straightforward to check that the defining relations of the braid group (8.1) are verified on the generators. By the homomorphism property (8.16), it follows that these braid relations are verified for any element of the Kauffman bracket skein module Sk iq 1/2 (Σ 0,4 ).

Remark 8.4. More visually complicated loops can always be created by further "twisting" the loops. For example,

ψ (s -1 1 ) 4 (A 23 ) = × × × (8.18)
is a more complicated analog of A 23 . The shadow filling the inside of the loop is there to guide the eyes of the reader. These have also been studied in [START_REF] Bakshi | On multiplying curves in the Kauffman bracket skein algebra of the thickened four-holed sphere[END_REF].

Remark 8.5. Let us remark that in [START_REF] Hikami | DAHA and skein algebra of surfaces: double-torus knots[END_REF], the author considers a similar braid group action by half Dehn twists on the Kauffman bracket skein algebra of the four-punctured sphere. In that paper, it is shown that the group SL(2; Z) acts on the DAHA of type (C ∨ 1 C 1 ) through conjugations. Furthermore, the Artin braid group B 3 action on the Kauffman bracket skein algebra can be seen as a translation of this SL(2; Z) action. We also note that Terwilliger had presented a B 3 action on both the universal Askey-Wilson algebra and the universal DAHA of type (C ∨ 1 , C 1 ) [START_REF] Terwilliger | The Universal Askey-Wilson Algebra and DAHA of Type (C ∨ 1 , C 1 )[END_REF].

Connection between both braid actions

The following proposition establishes the connections between both braid group actions presented above.

Proposition 8.6. The following diagram of isomorphisms

A 3 A 3 Sk Sk Ψ S ψ S φ φ
is commutative for any S ∈ B 3 . Here we used the shortened notation Sk ≡ Sk iq 1/2 (Σ 0,4 ). The isomorphisms φ, Ψ S and ψ S are given in (6.16), (8.11) and (8.17), respectively.

Proof. We can show that this diagram is commutative for all the generators of A and for any S = s i or S = s -1 i . For example:

φ • Ψ s 1 (Q 1 ) = φ(Q 2 ) = A 2 = ψ s 1 (A 1 ) = ψ s 1 • φ(Q 1 ). ( 8 

.19)

A more complicated example is

φ • Ψ s 2 (Q 12 ) = φ(Q 13u ) = × × × = ψ s 2 (A 12 ) = ψ s 2 • φ(Q 12 ). (8.20)
Since all the maps of the diagram are homomorphisms, the commutativity of the diagram on the generators of A is enough to prove the proposition for any S ∈ B 3 .

The commutativity of this diagram allows us to identify the conjugation by the braided R-matrix for A 3 as half Dehn twists around the punctures of Sk iq 1/2 (Σ 0,4 ). In addition, we can identify easily the elements of the algebra A 3 obtained as an image by Ψ S with a link of Sk iq 1/2 (Σ 0,4 ). 9 Towards a higher rank saw(n) algebra Some natural generalizations of the different algebras have previously been introduced and studied:

• the generalized Askey-Wilson algebra aw(n) is the algebra generated by {C I | I ⊂ {1, 2, . . . , n}} subject to the relations introduced in Theorems 3.1 and 3.2 of [START_REF] Clercq | Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra[END_REF];

• the algebra A n is the subalgebra of U q (sl 2 ) ⊗n generated by all the intermediate Casimir elements {Q I | I ⊂ {1, 2, . . . , n}} obtained by the repeated action of the coproduct of U q (sl 2 );

• the centralizer C n is defined by

C n = {X ∈ U q (sl 2 ) ⊗n [∆ (n-1) (x), X] = 0 , ∀x ∈ U q (sl 2 )} (9.1)
where ∆ (n) = (∆ (n-1) ⊗ id)∆ and ∆ (1) = ∆;

• the algebra Sk θ (Σ 0,n+1 ) is the Kauffman bracket skein algebra associated to the (n + 1)punctured sphere Σ 0,n+1 [START_REF] Cooke | Higher Rank Askey-Wilson Algebras as Skein Algebras[END_REF]. Let us now associate to each set I ⊆ [1; n] ≡ {1, 2, . . . , n} a 'simple' loop A I of Sk θ (Σ 0,n+1 ). We write a set I as

I = I 1 ∪ I 2 ∪ • • • ∪ I
, where I i are sets of consecutive integers and then we define the 'simple' loop A I as:

A I = . . . × I 1 ... × I 2 . . . × I . . . (9.2) 
These simple loops do not bend around, unlike (8.18). They are only extending in the lower half of the plane. In particular, for I = {i, i+1, . . . , j}, a set of consecutive integers, one gets

A I = × 1 . . . × i . . . × j . . . × n = . . . × I . . . (9.3) 
What is lacking in the previous list is the generalization saw(n) of the algebra saw(3). Such a generalization would provide a description of the algebra A n in terms of generators and relation. We know that saw(n) will be a quotient of the algebra aw(n) by relation(s) of the type (2.2), with some Casimir elements to be determined. We conjecture that the map φ n from saw(n) to Sk θ (Σ 0,n+1 ) which sends Q I to A I is an isomorphism † .

Let us mention that there also exist generalizations in the non-deformed case (q = 1 and q = -1) of the Askey-Wilson algebra: these are respectively called the "higher rank Racah algebra" introduced in [START_REF] De Bie | A higher rank Racah algebra and the Z n 2 Laplace-Dunkl operator[END_REF] as well as the "higher rank Bannai-Ito algebra" introduced in [START_REF] De Bie | The Z n 2 Dirac-Dunkl operator and a higher rank Bannai-Ito algebra[END_REF].

In the remainder, we give different indications regarding ways to define saw(n).

Punctures on a sphere and a coassociative homomorphism of Kauffman bracket skein modules

Recall we had highlighted that the punctures of the sphere were related to the tensor product factors. Additionally, a loop encircling a puncture is associated to some intermediate Casimir element with non-trivial factors in the tensor product factor corresponding to the puncture. Further recall that the coproduct ∆ acts as an algebra morphism from U q (sl 2 ) to U q (sl 2 ) ⊗2 . One can define an action of the coproduct on any i th factor of a tensor product: for any X ∈ U q (sl 2 ) ⊗n , we define ∆ i : U q (sl 2 ) ⊗n → U q (sl 2 ) ⊗(n+1) as:

∆ i (x) = 1 ⊗(i-1) ⊗ ∆ ⊗ 1 ⊗(n-i) (X). (9.4)
Now in U q (sl 2 ) ⊗3 some intermediate Casimir elements are related to each other by the coproduct, such as Q 1 and Q 12 : .5) This relation between Q 1 and Q 12 appears in the framed links picture as well. More precisely, ∆ i has an analog, the δ i morphism, which acts on a single puncture i by creating another puncture next to it. If the puncture i is enclosed in a loop, the created puncture is also enclosed in the same loop. The example (9.5) is illustrated as follows:

∆ 1 (Q 1 ) = (∆ ⊗ 1 ⊗ 1)Q 1 = Q 12 ⊗ 1. ( 9 
δ 1 A 1 = δ 1 × × × = δ 1 × × × = × × × × = A 12 ∈ Sk θ (Σ 0,5 ) (9.6) 
This δ i is a Kauffman bracket skein module coassociative algebra homomorphism. It provides embeddings of Sk θ (Σ 0,n ) → Sk θ (Σ 0,n+1 ). This can be seen as the commutativity of the following diagram:

A n A n+1 Sk θ (Σ 0,n+1 ) Sk θ (Σ 0,n+2 ) ∆ i δ i φ n φ n+1

A crossing index

The defining algebra relations of Sk iq 1/2 (Σ 0,4 ) (2.1)-(2.2) (see Proposition 5.2) can be classified in three types. The relations always involve two generators, whose product, commutator or qcommutator is reexpressed in terms of other generators. Now imagine we draw both generators simultaneously in a framed links diagram (as if we were to multiply them). Some crossings will appear if the two generators don't commute.

Definition 9.1. The crossing index is defined as the minimal number of crossings that appear in a framed link diagram no matter how the generators are drawn.

The relations (2.1)-(2.2) can be classified in terms of the crossing index as follows:

• If the generators can be drawn simultaneously in such a way that the loops have no crossings (crossing index of 0), they will commute (for example, this is the case for any central element Q 1 , Q 2 , Q 3 , Q 123 multiplied with any other generator).

• If the generators can be drawn in such a way that their minimum number of crossings is two (crossing index of 2), linear q-commutation relations of aw(3)-type will be obtained, such as relations (2.1).

• If the generators have a crossing index of 4, such as

φ(Q 13u Q 13d ) = × × × , (9.7) 
higher order relations of the type (2.2) will be obtained.

This crossing index proves useful for the analysis of the higher rank generalizations of saw(3).

9.3

The algebras aw(n) and Sk θ (Σ 0,n+1 )

As mentioned previously, the algebra aw(n) is generated by C I with I ⊆ [1; n] and subject to the relations of Proposition 3.1 of [START_REF] Clercq | Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra[END_REF]. We can show by using the action of the morphism δ i that we have an homomorphism from aw(n) to Sk θ (Σ 0,n+1 ). Moreover, we can show that all the relations of Proposition 3.1 of [START_REF] Clercq | Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra[END_REF] correspond to the product of two simple loops with crossing index 2. We believe that the relations in [START_REF] Clercq | Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra[END_REF] exhaust all possibilities of relations involving the product of simple loops with crossing index 2. We conjecture also that the above mentioned homomorphism is surjective (but it is certainly not injective, even for the case n = 3). The description of the kernel would involve products of links with a crossing index strictly greater than 2. The complete description of this kernel would lead to the definition of saw(n) and give an algebraic description of A n and Sk θ (Σ 0,n+1 ).

The study of saw(n) should be guided by the intuition gained from the framed links picture. To illustrate the type of insight we can gain, let us efficiently summarize some of the results of [START_REF] Post | A higher rank extension of the Askey-Wilson Algebra[END_REF]. In this paper, the authors study the intermediate Casimir elements in U q (sl 2 ) ⊗4 and introduce an involution I of the algebra as well as "involuted" generators IQ 13 and IQ 24 satisfying [Q 13 , IQ 24 ] = 0, and [IQ 13 , Q 24 ] = 0. (9.8)

That these generators commute becomes evident when we rewrite (following our definitions) IQ 24 = Q 24u , IQ 13 = Q 13u , and then draw the corresponding links. Indeed, the products

φ(Q 13d Q 24u ) = × × × × = φ(Q 24u Q 13d ), (9.9a) φ(Q 13u Q 24d ) = × × × × = φ(Q 24d Q 13u ), (9.9b) have 0 crossing hence [Q 13d , Q 24u ] = 0 and [Q 13u , Q 24d ] = 0.
What about the product of terms like Q 13d and Q 24d ? This calculation has never appeared in the papers mentioned above because it has a crossing number of 4:

φ(Q 13d Q 24d ) = × × × × (9.10)
Remarkably, this calculation can be effected in Sk iq 1/2 (Σ 0,5 ) using the conjectured morphism. One writes the Q I in terms of A I , computes using the skein relations of Sk iq 1/2 (Σ 0,5 ), then reexpresses all A I in terms of Q I . This yields the following results

Q 13d Q 24d = q 2 Q 14d Q 23 + q -2 Q 12 Q 34 -q(Q 14d Q 2 Q 3 + Q 23 Q 1 Q 4 ) -q -1 (Q 12 Q 3 Q 4 + Q 34 Q 1 Q 2 ) -(q + q -1 )Q 1234 + Q 1 Q 2 Q 3 Q 4 + Q 1 Q 234 + Q 2 Q 134d + Q 3 Q 124d + Q 4 Q 123 (9.11)
and

Q 24d Q 13d = q -2 Q 14d Q 23 + q 2 Q 12 Q 34 -q -1 (Q 14d Q 2 Q 3 + Q 23 Q 1 Q 4 ) -q(Q 12 Q 3 Q 4 + Q 34 Q 1 Q 2 ) -(q + q -1 )Q 1234 + Q 1 Q 2 Q 3 Q 4 + Q 1 Q 234 + Q 2 Q 134d + Q 3 Q 124d + Q 4 Q 123 .
(9.12)

These have been checked to hold in U q (sl 2 ) ⊗4 . Let us also mention that the action of the braid group B 3 can be generalized to the action of B n on Sk θ (Σ 0,n+1 ) and A n . This might turn out useful for proving results in the future.

Conclusion

Three objectives were principally pursued in this paper. The first aimed to review the different avatars of the Askey-Wilson algebra and to clarify the relations between them. Among those algebras, we focused on two and presented novel results related to these cases; this was the second main goal. The Special Zhedanov algebra sZh q (m 1 , m 2 , m 3 , m 4 ) was obtained from (a quotient of) the reflection algebra by setting the Sklyanin determinant to an appropriate value; its W (D 4 ) symmetry was exhibited in addition. The Special Askey-Wilson algebra saw(3), a universal analogue of sZh q (m 1 , m 2 , m 3 , m 4 ), was shown to be isomorphic to the algebra A 3 that emerges from the Racah problem of U q (sl 2 ) and also to the Kauffman bracket skein algebra of the four-punctured sphere Sk iq 1/2 (Σ 0,4 ). An injective homomorphism between A 3 and the centralizer C 3 of U q (sl 2 ) in its threefold tensor product was stated and proved. Actions of the braid group on both Sk iq 1/2 (Σ 0,4 ) (through half Dehn twists) and A 3 (through conjugation by braided R-matrices) were illustrated and shown to be compatible. The third main objective was to discuss the generalization of saw(3) to saw(n). To that end, we emphasized the diagrammatic approach, defined a crossing index, and revisited the results of [START_REF] Post | A higher rank extension of the Askey-Wilson Algebra[END_REF][START_REF] Clercq | Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra[END_REF] in a unified fashion.

Let us conclude with more remarks regarding generalizations of Askey-Wilson algebras. It would certainly be desirable to return to Zhedanov's original quest and to determine directly from the multivariate Askey-Wilson polynomials (of Tratnik type) [START_REF] Gasper | Some Systems of Multivariable Orthogonal Askey-Wilson Polynomials[END_REF] the algebra that encapsulates their bispectral properties. Steps have been carried out [START_REF] De Bie | The q-Bannai-Ito algebra and multivariate (-q)-Racah and Bannai-Ito polynomials[END_REF][START_REF] Iliev | Bispectral commuting difference operators for multivariable Askey-Wilson polynomials[END_REF][START_REF] Baseilhac | A bispectral q-hypergeometric basis for a class of quantum integrable models[END_REF]] but this should be completed. A definite higher rank generalization of the Zhedanov algebra will emerge, whose quotients and central extensions could then be examined and should connect to various fields in mathematics and physics. Considering higher rank Lie algebras g instead of sl 2 is another avenue that should be explored. The centralizer of the diagonal action of U q (g) in the n-fold tensor product U q (g) ⊗n , or the algebra generated by all the intermediate Casimir elements of g in the associated Racah problem should be studied. Connections with a generalization of Sk θ (Σ 0,n ) to punctured manifolds of higher genera would be worth investigating (see also [START_REF] Cooke | On the genus two skein algebra[END_REF]). We may also wonder whether the braided universal R-matrix of U q (g) plays a role in this context. Furthermore, the truncated reflection algebra presented in Section 3 provides a natural framework to obtain generalizations of Zhedanov algebras. Different possibilities are here conceivable. One could consider more general truncations of the reflection algebra. This type of generalization has been already studied in [START_REF] Baseilhac | A deformed analogue of Onsager's symmetry in the XXZ open spin chain[END_REF] and has been associated to quotients of q-Onsager algebras ‡ . Connections with centralizers and/or skein algebras remain to be examined. Another possibility with respect to truncated reflection algebras is the following. Instead of using the R-matrix associated to quantum affine algebras, one could consider the R-matrix corresponding to Yangians. In this case, a particular truncation of the reflection algebra leads to the Hahn algebra, which is a specialization of the Zhedanov algebra, see [START_REF] Crampé | Truncation of the reflection algebra and the Hahn algebra[END_REF]. Other truncations should provide interesting generalizations of this algebra. Finally, the FRT presentation of the reflection algebra associated to higher rank Lie algebras and superalgebras is well-known. For instance, the twisted Yangians Y tw (o n ) and Y tw (sp n ) [START_REF] Molev | Yangians and classical Lie algebras[END_REF] and the reflection algebra B(n, ) [START_REF] Molev | Representations of reflection algebras[END_REF] correspond to subalgebras of the Yangian of sl n . Some q-deformations of these structures have been also studied previously [START_REF] Molev | Coideal subalgebras in quantum affine algebras[END_REF] and are related to the quantum affine algebra of sl n . Their truncations have yet to be scrutinized and should possess interesting features § . These ideas that we plan on pursuing in the near future are indications that there is much lying ahead with respect to algebras of the Askey-Wilson type and what they will reveal and lead to.

The relations (A.12) allow to rewrite any product in terms of ordered monomials in the generators and (A.13) allows to rewrite Z 2 . So we deduce easily that the set (A.10) is a spanning set for the centralizer. Finally, the comparison with the Hilbert-Poincaré series in (A.11) shows that this set must be linearly independent.

This concludes the proof of the injectivity of the map from saw(3) to C 3 ⊂ U α (sl 2 ) ⊗3 .

Remark A.1. Specializing the central elements k i to

  and j are not connected in the Dynkin diagram, if i and j are connected in the Dynkin diagram.

(4. 1 )

 1 Its order is 192. Let us now associate the parameters m 1 , m 2 , m 3 , m 4 with some of the roots as follows:

† During the preparation of this paper, the authors have been informed by J. Cooke that a similar idea was pursued in an upcoming publication[START_REF] Cooke | Higher Rank Askey-Wilson Algebras as Skein Algebras[END_REF].

‡ The classical limit q → 1 leads to subalgebras of the loop algebra of sl2 and to quotients of the Onsager algebra by Davis relations[START_REF] Baseilhac | FRT presentation of classical Askey-Wilson algebras[END_REF].§ Such an approach has been pursued in the classical limit q → 1[START_REF] Baseilhac | Higher rank classical analogs of the Askey-Wilson algebra from the sl N Onsager algebra[END_REF] to obtain generalizations of the so-called classical Askey-Wilson algebra and are seen as subalgebras of the sln Onsager algebra[START_REF] Uglov | sl(N ) Onsager's algebra and integrability[END_REF].
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A Classical limit and injectivity

We provide an explicit description of the classical limit of the realization of saw(3) in U q (sl 2 ) ⊗3 in terms of polarized traces, and use it to prove the injectivity of the map from saw(3) to the centralizer C 3 . In this appendix, we will work with the formal series version of U q (sl 2 ) and reduce the proof of the injectivity statement to one in the universal enveloping algebra U (sl 2 ), where we can use known results of classical invariant theory involving polarized traces.

A.1 Polarised traces in U (sl 2 ) ⊗3

The algebra U (sl 2 ) is generated by elements e ij , i, j ∈ {1, 2}, with the defining relations [e ij , e kl ] = δ jk e il -δ li e kj and e 11 + e 22 = 0. To join up with the notations used in the paper for U q (sl 2 ), we set E = e 12 , F = e 21 and H = 1 2 (e 11 + e 22 ) = e 11 = -e 22 , and the relations become:

[

In a tensor product U (sl 2 ) ⊗N , we denote the generators by e

ij , where a ∈ {1, . . . , N } indicates the corresponding factor in the tensor product. The polarized traces are the following elements:

where the summation over repeated indices is understood. The specific combinations of polarized traces that will appear are:

By direct computation, we can show that the expression of Z in terms of polarized traces is Z = -8T (1,2,3) .

A.2 The algebra U α (sl 2 )

In this appendix, we will work with the formal series version of the quantum group U q (sl 2 ). We consider a formal parameter α. The algebra U α (sl 2 ) is, as a vector space, the space U (sl 2 )[[α]] of all formal power series in α with coefficients in U (sl 2 ), and the multiplication is determined by the defining relations of U q (sl 2 ), see section 6.1, where q is replaced by e α and q H is replaced by e αH . This results in the following relations deforming (A.1):

Similarly, the algebra U α (sl 2 ) ⊗N is the vector space U (sl 2 ) ⊗N [[α]] of formal series with coefficients in U (sl 2 ) ⊗N and multiplication induced by the above relations in each factor. The comultiplication of U α (sl 2 ) is naturally obtained from the comultiplication given for U q (sl 2 ). Note that the limit α → 0 from U α (sl 2 ) yields the algebra U (sl 2 ) and the comultiplication becomes the diagonal embedding.

A.3 Reduction to U (sl 2 )

We want to prove that the following elements

are linearly independent in U α (sl 2 ) ⊗3 . First it is more convenient (and equivalent) to replace the generators Q I by modified versions analoguous to what was done in Section 4:

The index 13 does not belong to this set, and for this one, we set:

Calculating explicitly the first terms in the expansions in α, we find that the new elements K I are well-defined in U α (sl 2 ) ⊗3 , and moreover that their degree 0 coefficients are expressed in terms of polarized traces, using the notations in (A.1), as follows

Now, to prove that the elements of the set (A.5), with Q I replaced by K I , are linearly independent in U α (sl 2 ) ⊗3 , it is enough to prove that their "classical limits" (the degree 0 coefficients) are linearly independent in U (sl 2 ) ⊗3 . In view of the above calculations, it remains to show that the following set:

A.4 Racah algebra and diagonal centraliser in U (sl 2 ) ⊗3

To prove that the set (A.10) is linearly independent, we use the same line of arguments as the one used in the study of the recoupling of two copies of sl(3). Thus we only give here a sketch and refer for more details to [START_REF] Crampé | A Calabi-Yau algebra with E 6 symmetry and the Clebsch-Gordan series of sl(3)[END_REF].

It is known from classical invariant theory [START_REF] Berele | Denominators for the Poincaré series of invariants of small matrices[END_REF][START_REF] Drensky | Computing with matrix invariants[END_REF] that the centralizer of the diagonal embedding of U (sl 2 ) in U (sl 2 ) ⊗3 is generated by the polarised traces T (i,i) , T (k,l) , T (1,2,3) , with i = 1, 2, 3 and 1 ≤ k < l ≤ 3, and moreover that the Hilbert-Poincaré series of the centralizer is: .11) This series records the dimension for each degree of the centralizer, where the degree in U (sl 2 ) ⊗3 is defined by deg(e