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The thermal Sunyaev-Zel’dovich (tSZ) effect is a powerful probe of cosmology. The statistical errors in the
tSZ power spectrummeasurements are dominated by the presence ofmassive clusters in a survey volume that
are easy to identify on an individual cluster basis. First, we study the impact of super sample covariance (SSC)
on the tSZ power spectrum measurements, and find that the sample variance is dominated by the connected
non-Gaussian (cNG) covariance arising mainly from Poisson number fluctuations of massive clusters in the
survey volume. Second, we find that removing such individually detected, massive clusters from the analysis
significantly reduces the cNG contribution, thereby causing the SSC to be a leading source of the sample
variance. We then show, based on a Fisher analysis, that the power spectrum measured from the remaining
diffuse tSZ effects can be used to obtain tight constraints on cosmological parameters as well as the
hydrostatic mass bias parameter. Our method allows the use of both individual tSZ cluster counts and the
power spectrum measurements of diffuse tSZ signals for cosmology and intracluster gas physics.
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I. INTRODUCTION

The anisotropy of the cosmic microwave background
(CMB) is one of the most important probes of physical
states in the Universe. Among different components of the
CMB anisotropy, the Sunyaev-Zel’dovich (SZ) effect [1–3]
provides us with rich information of cosmic structures of
the late-time Universe (for reviews, see Refs. [4,5]). The SZ
effect is divided into two classes according to the physical
processes giving rise to the anisotropy. One is the thermal
SZ effect (tSZ), where energy is transferred from hot
electrons to CMB photons through inverse Compton
scattering. The other one is the kinetic SZ effect (kSZ),
which is caused by the Doppler effect due to the bulk
motion of electrons with respect to the rest frame of CMB
photons. The tSZ effect arises mainly from thermal
electrons, most of which reside in galaxy clusters, and
enable one to detect distant galaxy clusters up to high
redshifts because the cosmological surface brightness
dimming is compensated by the increase of the CMB
photon number density at higher redshifts. Since the
abundance and spatial distribution of galaxy clusters reflect
the degree of structure formation of the Universe, we can
take advantage of SZ effects to constrain cosmological
parameters [6–10]. Since the amplitude of the tSZ effect is
larger than that of the kSZ effect, and the tSZ effect is easier

to distinguish from other anisotropies due to specific
frequency dependence, the tSZ effect has now been
intensively studied.
The tSZeffect has already beenmeasuredby several survey

programs. The Planck satellite has conducted measurements
for all-sky coverage [11,12], and ground-based telescopes
aim to measure the tSZ effect with high angular resolution
(∼1 arcmin), which includes the Atacama Cosmology
Telescope (ACT) [13,14], South Pole Telescope [15,16],
Simons Observatory [17], and CMB-S4 [18].
As a summary statistics of the tSZ effect, power

spectrum is commonly employed because the theoretical
approach is readily available [19]. Among them, the
halo model prescription [20–23] can reproduce the results
of hydrodynamical simulations [24,25] and is widely
employed in practical analyses [11,26]. In addition, by
cross correlating the tSZ map with other observables of
large-scale structure, e.g., cosmic shear or nearby galaxies,
the significance of the measurements can be enhanced
[27–34]. Since the tSZ effect is sourced by hot free electrons
and most of them are found in galaxy clusters, i.e., massive
halos, the halo model picture is justified. Similarly, we can
also estimate the covariance matrix based on the halo model
prescription. However, the covariance matrix suffers from
large-scale mass fluctuations with wavelengths comparable
to or greater than the size of the survey volume,which is not a
direct observable. This additional contribution to the covari-
ance is referred to as the super sample covariance (SSC)*ken.osato@iap.fr
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[35]. If the SSC contribution is not taken into account, the
covariance matrix is underestimated and the statistical
significance is overestimated. In order to carry out the
analysis with the power spectrum in an unbiased way, we
need to incorporate such additional contributions.
In Refs. [26,36] it was shown that the connected non-

Gaussian term is a dominant contribution to the covariance
of the power spectrum. Furthermore, this term is sourced
mainly by massive clusters at low redshifts. Therefore,
removing such clusters from the measurement by masking
the regions leads to a suppression of the covariance matrix
and enhancement of the significance, though some fraction
of signals can be missed [37]. In this paper, we estimate the
SSC contribution for the tSZ effect based on the halo model
prescription and quantify the effects on cosmological
parameter estimation with the tSZ power spectrum.
Furthermore, we also investigate the effect when massive
clusters are masked.
This paper is organized as follows. First, we review the

halo model prescription to compute the tSZ power spec-
trum in Sec. II and the covariance matrix in Sec. III. In
Sec. IV, we give specific details on experimental condi-
tions. In Sec. V, we present results of statistical significance
and forecasts of constraints on parameters. We make
concluding remarks in Sec. VI.
Throughout this paper, we assume the flat Λ cold dark

matter (CDM) Universe. Unless otherwise stated, we adopt
the best-fit cosmological parameters inferred with observa-
tions of temperature and polarization anisotropies and gravi-
tational lensing of CMB (TT, TE, EEþ lowEþ lensing)
measured by Planck [38,39]: the physical CDM density
Ωch2 ¼ 0.12011, the physical baryon density Ωbh2 ¼
0.022383, the acoustic angular scale 100θ� ¼ 1.041085,
the amplitude and slope of the scalar perturbation
lnð1010AsÞ ¼ 3.0448, ns ¼ 0.96605 at the pivot scale kpiv ¼
0.05 Mpc−1, and the optical depth τreio ¼ 0.0543. The
neutrino component is composed of two massless neutrinos
and one massive neutrino with mass mν ¼ 0.06 eV,
and the massive neutrino density parameter is Ωνh2 ¼
mν=ð93.14 eVÞ ¼ 0.000644. Thus, the matter component
is composed of CDM, baryons, and massive neutrinos, and
the matter density parameter is Ωm ¼ Ωc þΩb þΩν ¼
0.31816. Then, the energy density of the cosmological
constant is given as ΩΛ ¼ 1 −Ωm ¼ 0.68184. The ampli-
tude of matter fluctuations at the scale 8 h−1 Mpc is
σ8 ¼ 0.811. For notation, the symbol “log” denotes the
common logarithm “log10” and the symbol “ln” denotes
the natural logarithm “loge.”

II. THE tSZ POWER SPECTRUM

A. Halo model of the tSZ power spectrum

Here we briefly review the halo model calculations of the
tSZ power spectrum. The temperature variation ΔT due to
the tSZ effect [1–3] is given by

ΔT
TCMB

¼ gνðxÞy ¼ gνðxÞ
σT

mec2

Z
Pe dl; ð1Þ

where y is the Compton y parameter, TCMB ¼ 2.7255 K is
the CMB temperature, σT is the Thomson scattering cross
section,me is the electron mass, c is the speed of light, Pe is
the free electron pressure, and in the last term the line-of-
sight integration is carried out with respect to the physical
length l. The frequency-dependent part gνðxÞ is given by

gνðxÞ ¼ x
ex − 1

ex þ 1
− 4; x≡ hν

kBTCMB
; ð2Þ

where ν is the frequency, h is the Planck constant, and kB is
the Boltzmann constant.
First, we give formulations for the halo model calcu-

lation of the tSZ power spectrum [20,21]:

CðlÞ ¼ C1hðlÞ þ C2hðlÞ; ð3Þ

C1hðlÞ ¼
Z

zreio

0

dχ
d2V
dχdΩ

×
Z

Mmax

Mmin

dM
dnh
dM

ðM; zÞjỹðl;M; χÞj2; ð4Þ

C2hðlÞ ¼
Z

zreio

0

dχ
d2V
dχdΩ

PL

�
k ¼ lþ 1=2

χ
; χ

�

×

�Z
Mmax

Mmin

dM
dnh
dM

ðM; zÞbhðM; zÞỹðl;M; χÞ
�
2

;

ð5Þ

where χ is the comoving distance [40], d2V=dχdΩ ¼ χ2 is
the comoving volume per unit comoving distance and unit
solid angle, dnh=dMðM; zÞ is the halo mass function,
PLðk; χÞ is the linear matter power spectrum at redshift z
corresponding to the comoving radial distance χðzÞ, and
bhðM; zÞ is the halo bias. The quantity ỹðl;M; χÞ is the
Fourier transform of the electron pressure profile. The
modeling of the pressure profile of halos will be discussed
later in this section. The one-halo term (4) corresponds to
the correlation between the same halo and the two-halo
term (5) denotes the correlation between different halos. We
assume that reionization occurs instantaneously at
zreio ¼ 7, and at this redshift all hydrogen and helium is
fully ionized. We use the linear Boltzmann code CLASS
[41] to compute the linear matter power spectrum PLðk; zÞ.
In the mass integration, we adopt the virial massMvir as the
halo mass definition and employ Mmin ¼ 1011 h−1 M⊙,
Mmax ¼ 1016 h−1M⊙ for the lower and upper limits of
the halo mass integral, respectively. The virial radius Rvir
for a halo with virial mass Mvir is obtained from the
expression
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Mvir ¼
4π

3
ΔvirðzÞρcrðzÞR3

vir; ð6Þ

where ρcrðzÞ is the critical density. The virial overdensity
Δvir is given as [42]

Δvir ¼ 18π2 þ 82ðΩmðzÞ − 1Þ − 39ðΩmðzÞ − 1Þ2; ð7Þ

where

ΩmðzÞ ¼ Ωmð1þ zÞ3E−2ðzÞ; ð8Þ

and the expansion factor is defined as

EðzÞ ¼ HðzÞ
H0

¼ ½Ωmð1þ zÞ3 þΩΛ�12: ð9Þ

Since fitting formulas of the halo mass function, halo bias,
and electron pressure profile adopt halo mass definitions
that are different from the virial mass, we also use the
alternative halo mass definitions M500 and M200b:

M500 ¼
4π

3
500ρcrðzÞR3

500; ð10Þ

M200b ¼
4π

3
200ρmðzÞR3

200b; ð11Þ

where ρmðzÞ ¼ ρcrðzÞΩmðzÞ. These halo masses can be
converted from the virial mass if we assume that the density
profile of halos follows the Navarro-Frenk-White profile
[43,44]:

ρðrÞ ¼ ρs
ðr=rsÞð1þ r=rsÞ2

: ð12Þ

The scale density ρs is determined by the relation

Mvir ¼
Z

Rvir

0

dr 4πr2ρðrÞ; ð13Þ

and the scale radius rs is determined from the mass-
concentration relation

cvirðMvir; zÞ ¼
Rvir

rs
; ð14Þ

where we adopt the fitting formula calibrated by N-body
simulations in Ref. [45]. In addition, for the halo mass
function and halo bias, we adopt the fitting formulas
calibrated by N-body simulations: the fitted halo mass
function with respect to M200b in Ref. [46] and the fitted
halo bias in Ref. [47].
Next, we derive the expression for the Fourier transform

of the Compton y from a single halo ỹðl;M; zÞ:

ỹðl;M; χÞ ¼ 4πRs

l2
s

σT
mec2

×
Z

dxx2PeðxÞ
sinððlþ 1=2Þx=lsÞ
ðlþ 1=2Þx=ls

; ð15Þ

where x ¼ r=Rs, ls ¼ DAðχÞ=Rs, Rs is the arbitrary scale
radius, and DAðχÞ is the angular diameter distance. For the
pressure profile of free electrons, we make use of the
universal pressure profile [48] calibrated by Planck obser-
vations [49]:

PeðrÞ
P500

¼ pðxÞ
�

MHSE
500

3 × 1014 h−170 M⊙

�
0.12

; ð16Þ

pðxÞ≡ P0

ðc500xÞγ½1þ ðc500xÞα�ðβ−γÞ=α
; ð17Þ

P500 ¼ 1.65 × 10−3EðzÞ83

×

�
MHSE

500

3 × 1014 h−170 M⊙

�2
3

h270 keV cm−3; ð18Þ

where ðP0; c500; γ; α; βÞ ¼ ð6.41; 1.81; 0.31; 1.33; 4.13Þ,
x ¼ r=RHSE

500 , and h70 ≡ h=0.7. In the calibration of the
pressure profile, the mass is determined assuming hydro-
static equilibrium, where only thermal pressure is balanced
with the self-gravity of the halo. However, in addition to
thermal pressure, nonthermal processes, e.g., turbulence or
magnetic fields, could also contribute to the total pressure
supporting the mass of galaxy clusters [50–53]. Thus, the
hydrostatic mass MHSE

500 is generally lower than the true
mass M500. In order to take this effect into account, we
parametrize the mass and radius with the hydrostatic mass
bias parameter bHSE:

MHSE
500 ¼ ð1 − bHSEÞM500; ð19Þ

RHSE
500 ¼ ð1 − bHSEÞ13R500: ð20Þ

We adopt the fiducial value bHSE ¼ 0.2, which is suggested
by mass calibration measurements [54,55] and hydrody-
namical simulations [56]. The amplitude of the tSZ power
spectrum is sensitive to the hydrostatic bias parameter, and
thus the parameter can be constrained through the power
spectrum in a way complementary to the mass-calibration
measurements.

B. Selection function of massive clusters

Here we introduce an observable in the cluster survey
that is relevant for the tSZ effect. For each cluster, the
integrated flux of the tSZ effect corresponds to the thermal
energy stored in the galaxy cluster. We define the three-
dimensional integrated Compton y parameter, which is
denoted as Y500:
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Y500ðM; zÞ ¼ σT
mec2

Z
R500

0

dr 4πr2Peðr;M; zÞ: ð21Þ

This quantity is proportional to the thermal energy of gas in
the galaxy cluster and can be measured in the tSZ survey if
the redshift of the cluster is known [57]. Furthermore, this
quantity exhibits a tight scaling relation with the halo mass
[58]. As we will show later, since the dominant source of
the tSZ covariance is caused by massive clusters, we study
how the masking of such massive clusters, based on the
integrated Compton y parameter, helps to reduce the
sample covariance. We introduce the selection function
SðM; zÞ based on the integrated Compton y parameter:

SðM; zÞ ¼
�
1 ðY500ðM; zÞ ≤ Y thresÞ;
0 ðY500ðM; zÞ > Y thresÞ;

ð22Þ

where Y thres is the threshold value. When cluster masking is
applied, this selection function is inserted into the mass and
redshift integrations in the halo model expressions (see
Sec. III C). In Fig. 1 we show how the integrated Compton
y parameter varies with the virial mass and redshift, and the
different lines denote three representative values of
logðY500=Mpc2Þ ¼ −6;−5;−4. In Fig. 2 we show the
tSZ power spectrum along with the CMB primary spectrum
and noise power spectrum, which will be discussed in
Sec. IV. The tSZ power spectra with and without cluster
masking are shown. When cluster masking is applied, the
amplitude is suppressed by less than half but the covariance
matrix is also reduced, as shown in Sec. III. Both the one-
halo (dashed lines) and two-halo (dot-dashed lines) terms
are reduced by cluster masking, but the one-halo term is
more suppressed because the main source of the term is

nearby massive clusters. As a result, the signal-to-noise
ratio is enhanced by masking clusters. We will discuss the
statistical significance in Sec. VA.

III. COVARIANCE OF THE tSZ POWER
SPECTRUM

A. Compton y with the survey mask

Here we derive formulas for the covariance matrix of the
Compton y power spectrum, taking into account the survey
mask. First, we define the survey window function WðθÞ
and the observed Compton y field as

yWðθÞ ¼ WðθÞyðθÞ; ð23Þ
where WðθÞ ¼ 1 for observed regions and WðθÞ ¼ 0 for
masked regions. Then, the Fourier transform of the field
under the flat-sky approximation is given by

ỹWðlÞ ¼
Z

d2l0

ð2πÞ2 W̃ðl − l0Þỹðl0Þ; ð24Þ

where the tilde symbol denotes the Fourier transform of the
quantity. The estimator of the power spectrum for the ith
multipole bin is given as

ĈðliÞ≡ 1

ΩW

Z
l∈li

d2l
Ωli

ỹWðlÞỹWð−lÞ; ð25Þ

where ΩW is the effective survey area ΩW ¼ R
d2θWðθÞ

andΩli is the number of modesΩli ¼
R
l∈li d

2l. When the

FIG. 1. Integrated Compton y parameter for clusters of given
redshift z and virial massMvir. The dashed, solid, and dot-dashed
lines correspond to logðY500=Mpc2Þ ¼ −6;−5;−4, respectively.
For each threshold, clusters located in the upper regions divided
by the lines are masked.

FIG. 2. Power spectra of temperature anisotropy due to the tSZ
effect with and without cluster masking. For comparison, the
primary CMB anisotropy power spectrum and instrumental noise
power spectrum (see Sec. IV) are also shown. For halo model
calculations, the dashed (dot-dashed) lines correspond to the one-
halo (two-halo) term contribution. Instead of the raw power
spectrum CðlÞ, we show DðlÞ ¼ lðlþ 1Þ=ð2πÞCðlÞg2νT2

CMB at
the frequency ν ¼ 149 GHz. For cluster masking, we adopt the
threshold logðY thres=Mpc2Þ ¼ −5.
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bin width is sufficiently smaller than the multipole, the
number of modes can be approximated as

Ωli ≈ 2πl2
iΔ lnl; ð26Þ

where we consider the logarithmically evenly spaced bins
for multipoles and Δ lnl is the bin width in logarithmic
space. Then, the ensemble average of the estimator
becomes the sum of the power spectrum CðlÞ and noise
power spectrum NðlÞ:

hĈðliÞi ¼ CðliÞ þ NðliÞ: ð27Þ
Hereafter, the parentheses denote the ensemble average.

B. Covariance matrix of the tSZ power spectrum

Next, we derive the expression for the covariance matrix
C as

Cij≡hĈðliÞĈðljÞi−hĈðliÞihĈðljÞi

¼ 1

ΩW

�ð2πÞ2
Ωli

2½CðliÞþNðliÞ�2δijþ T̄Wðli;ljÞ
�
; ð28Þ

where δij is the Kronecker delta. The first term is referred to
as the Gaussian term (labeled as G):

CGij ¼
1

ΩW

ð2πÞ2
Ωli

2½CðliÞ þ NðliÞ�2δij: ð29Þ

The remaining term is the non-Gaussian term, which does
not depend on the binning of the multipoles, in contrast to
the Gaussian term. The trispectrum convoluted with the
window function T̄W is given as

T̄Wðli;ljÞ ¼
1

ΩW

Z
l∈li

d2l
Ωli

Z
l∈lj

d2l0

Ωlj

Z �Y4
a¼1

d2qa
ð2πÞ2 W̃ðqaÞ

�

× ð2πÞ2δDðq1234ÞTðlþ q1;

− lþ q2;l0 þ q3;−l0 þ q4Þ; ð30Þ
where δD is the Dirac delta function and q1234 ≡ q1 þ q2þ
q3 þ q4.
Then, we derive the expressions for the covariance

matrix based on the halo model [59]. First, we introduce
the following notation:

Iβμðl1;…;lμ; χÞ≡
Z

dM
dnh
dM

bβỹðl1Þ � � � ỹðlμÞ; ð31Þ

where b0 ¼ 1 and b1 ¼ bhðM; zÞ. The halo model expres-
sion for the tSZ power spectrum becomes

CðlÞ ¼
Z

dχ
d2V
dχdΩ

�
I02ðl;l; χÞ þ ½I11ðl; χÞ�2

× PL

�
k ¼ lþ 1=2

χ
; χ

��
: ð32Þ

For projected fields such as Compton y, we can compute
the non-Gaussian terms for the covariance as follows
[8,60,61]:

CNGij ¼ CcNGij þ CSSCij ; ð33Þ

CcNGij ¼ 1

ΩW

Z
l∈li

d2l
Ωli

Z
l∈lj

d2l0

Ωlj

Tðl;−l;l0;−l0Þ; ð34Þ

CSSCij ¼ CHSVij þ CHSV-BCij þ CBCij ; ð35Þ

CHSVij ¼
Z

dχ
d2V
dχdΩ

I12ðli;li; χÞI12ðlj;lj; χÞ

×
1

Ω2
W

Z
d2l
ð2πÞ2 jW̃ðlÞj2PLðk; χÞ

¼
Z

dχ
d2V
dχdΩ

I12ðli;li; χÞI12ðlj;lj; χÞ½σLWðχÞ�2; ð36Þ

CBCij ¼
Z

dχ
d2V
dχdΩ

�
68

21

�
2

½I11ðli; χÞI11ðlj; χÞ�2

× PLðki; χÞPLðkj; χÞ½σLWðχÞ�2; ð37Þ

CHSV-BCij ¼
Z

dχ
d2V
dχdΩ

68

21
f½I11ðli; χÞ�2I12ðlj;lj; χÞPLðki; χÞ

þ ½I11ðlj; χÞ�2I12ðli;li; χÞPLðkj; χÞg½σLWðχÞ�2;
ð38Þ

where we define the variance of mass density fluctuations
of super-survey modes as

½σLWðχÞ�2 ≡ 1

Ω2
W

Z
d2l
ð2πÞ2 jW̃ðlÞj2PLðk; χÞ; ð39Þ

and k≡ ðlþ 1=2Þ=χ. The term that is sourced from the
trispectrum with a parallelogram configuration is referred
to as the connected non-Gaussian term (labeled as cNG).
The latter three terms are referred to as the halo sample
variance (HSV) [61] the beat coupling (BC) [60,62], and
their cross correlation (HSV-BC) terms, respectively. The
sum of the three terms is referred to as super sample
variance (SSC) [35]. Since the trispectrum is dominated by
the one-halo term at all scales [59], we ignore the two-,
three-, and four-halo terms of the trispectrum for simplicity:

Tðl;−l;l0;−l0Þ
≈ T1hðl;l0Þ

¼
Z

dχ
d2V
dχdΩ

Z
dM

dnh
dM

× jỹðl;M; χÞj2jỹðl0;M; χÞj2: ð40Þ
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FIG. 3. Differential contributions of clusters in infinitesimal intervals of redshift and halo mass around a given redshift (x axis) and
mass (y axis) to the power spectrum and the diagonal term of the trispectrum for l ¼ 100 (upper panels), 1000 (medium panels), and
5000 (lower panels), respectively. The dashed, solid, and dot-dashed lines correspond to logðY500=Mpc2Þ ¼ −6;−5, and −4,
respectively.
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C. Implementation of cluster masking in the halo model

Here we describe how to incorporate the cluster masking
in the halo model expressions of the tSZ power spectrum
and covariance matrix. The selection function SðM; χÞ
[Eq. (22)] is inserted into the mass integration in Iβμ and T1h:

Iβμðl1;…;lμ; χÞ → Îβμðl1;…;lμ; χÞ

≡
Z

dM
dnh
dM

SðM; χÞbβỹðl1Þ � � � ỹðlμÞ; ð41Þ

and

T1hðl;l0Þ → T̂1hðl;l0Þ

≡
Z

dχ
d2V
dχdΩ

Z
dM

dnh
dM

SðM; χÞ

× jỹðl;M; χÞj2jỹðl0;M; χÞj2: ð42Þ

Then, in order to apply cluster masking, Iβμ and T1h in the
halo model expressions (32), (33), (36), (37), and (37) are
replaced with Îβμ and T̂1h, respectively.

D. Weight function

In order to investigate which halos contribute the signal
and covariance, we compute the weight function with
respect to mass and redshift. For the power spectrum,
the weight function is given as

d2

dzdM
CðlÞ ¼ d2V

dzdΩ

�
dnh
dM

jỹðlÞj2 þ 2
dnh
dM

bhỹðlÞ

×PL

�
k ¼ lþ 1=2

χ
; z

�Z
dM

dnh
dM

bhỹðlÞ
�
:

ð43Þ

Similarly, the weight function of the trispectrum is given as

d2

dzdM
Tðl;−l;l0;−l0Þ ≈ d2

dzdM
T1hðl;l0Þ

¼ d2V
dzdΩ

dnh
dM

jỹðlÞj2jỹðl0Þj2: ð44Þ

Note that these expressions are weight functions with
respect to the redshift z, instead of the comoving distance
χ, and the comoving volume with respect to redshift
is d2V=dzdΩ ¼ χ2ðzÞHðzÞ=c.
Figure 3 shows the weight functions for diagonal com-

ponents, i.e., l ¼ l0 of the power spectrum and trispectrum
for three representative multipoles, l ¼ 100, 1000, 5000.
Obviously, the trispectrum is more sensitive to massive
clusters than the power spectrum at all scales. The integrand
of the mass integration of the trispectrum contains ỹ4 in
contrast to ỹ2 at highest for power spectrum, and thus the

contribution frommassive clusters becomes prominent in the
trispectrum. Similarly, we can expect that the super sample
covariance involves the mass integration of ỹ2 at highest and
is less sensitive tomassive clusters compared to the cNG term.
We also show the three critical lines of logðY500=Mpc2Þ ¼
−6 (dashed), −5 (solid), and −4 (dot-dashed). In order
to enhance the significance of the detection, we need to
keep the power spectrum but remove the trispectrum
contribution as much as possible, which is the dominant
source of the covariance. We adopt the fiducial threshold
logðY thres=Mpc2Þ ¼ −5 when masking massive clusters.
Apparently, the threshold logðY thres=Mpc2Þ ¼ −4 keeps
the large fraction of the signal but our fiducial threshold
gives a higher significance. Since the contribution of the cNG
term is quite larger than the other terms, rather than main-
taining the signal, completely excluding the trispectrum is a
more effective strategy.

IV. EXPERIMENTAL CONDITIONS

In this section we define the experimental conditions for
statistical analysis. We consider a practical case which
is similar to the Advanced ACT measurement [63]. We
assume that the sky coverage is ΩW ¼ 2100 deg2 and the
survey window is circularly symmetric for simplicity. The
power spectrum of the mask is given as

jW̃ðlÞj2 ¼ Ω2
W

�
2
J1ðlΘWÞ
lΘW

�
2

; ð45Þ

where J1ðxÞ is the first-order Bessel function and we
employ ΘW ≡ ffiffiffiffiffiffiffiffiffiffiffiffi

ΩW=π
p

. In general, the survey window
function has an irregular shape or the survey regions are
divided into multiple separate patches. The relative strength
of SSC depends on the geometry of the survey region or the

FIG. 4. Total covariance matrix of the tSZ power spectrum. The
upper left (lower right) part corresponds to the covariance matrix
with (without) cluster masking.
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degree of discontinuity of survey regions [64]. A compact
survey geometry such as the circular geometry considered
here has the largest SSC contribution. Hence, the following
estimate can be considered as the worst-case scenario for
the impact of the SSC contribution. The binning is
logarithmically evenly spaced with the minimum lmin ¼
100, maximum lmax ¼ 5000, and number of bins nl ¼ 30.
For the noise power spectrum, we assume that the instru-
mental noise is Gaussian and its variance is σinst ¼
7 μKarcmin with a single band at ν0 ¼ 149 GHz. Then,
the noise power spectrum is given as

NðlÞ ¼
�

σinst
gðν0ÞTCMB

�
2

el
2θ2FWHM=ð8 ln 2Þ; ð46Þ

where θFWHM ¼ 1.4 arcmin is the full width at half
maximum of the beam size [63]. In addition to the
instrumental noise, radio and infrared point sources, cosmic
infrared background, and primary CMB leak to Compton y
estimates due to incomplete separation and can be a source
of noise. However, the instrumental noise dominates at
small scales [19,26], and we ignore the contributions from
other sources in the subsequent analyses for simplicity.

FIG. 5. Diagonal terms of the covariance matrix of the tSZ power spectrum (left panels) and each term divided by the Gaussian term
(right panels) without (upper panels) and with (lower panels) cluster masking. The HSV, BC, and HSV-BC terms correspond to the SSC.
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The total covariance matrix is shown in Fig. 4. The
diagonal terms of the covariance matrix for each compo-
nent are shown in Fig. 5. In the case of no cluster masking,
the cNG term dominates at all scales. On the other hand,
cluster masking removes clusters that contribute to the cNG
term, and Gaussian and SSC terms become important when
clusters are masked.

V. RESULTS

A. Statistical significance

In this section we discuss the statistical significance of
the detection of the tSZ power spectrum and the effects of
cluster masking and SSC on it. The signal-to-noise ratio
(SNR) S=N is computed as

S
N

¼
�X

lmin≤li;lj≤lmax
CðliÞC−1ij CðljÞ

�1
2

: ð47Þ

Figure 6 shows the SNR as a function of the maximum
multipole lmax. The SSC contributes only 5% of the SNR
without cluster masking because the cNG term dominates.
However, by masking massive clusters, the overall SNR is
enhanced due to the suppression of the cNG term but the
relative contribution from SSC also increases to 30%
because the SSC is less sensitive to the cluster masking.
Next, we discuss how SSC affects the chi-squared

statistic that an observer could obtain for a given realization
of data. The chi-squared statistic is defined as

χ2 ≡ ðd − d̄ÞTC−1ðd − d̄Þ; ð48Þ

where d is the data vector defined as

d ¼ ðCðl1Þ;…; CðlnlÞÞ; ð49Þ

and d̄≡ hdi. The expectation value of the χ2 value is
estimated as

hχ2i ¼ hðd − d̄ÞTC−1ðd − d̄Þi
¼ Trðhðd − d̄Þðd − d̄ÞTiC−1Þ
¼ TrðCC−1Þ ¼ nl: ð50Þ

However, if the wrong covariance is employed in the
analysis, the expected chi-squared deviates from the num-
ber of bins. Let us consider the case where the true
covariance is composed of Gaussian, connected non-
Gaussian, and super sample covariance, and the wrong
covariance is that without the super sample covariance:

Ctrue ≡ CG þ CcNG þ CSSC; ð51Þ

Cwrong ≡ CG þ CcNG: ð52Þ

Then, the expectation value of chi-squared with the wrong
covariance is given as

FIG. 6. SNR as a function of maximum multipole lmax with the
total covariance including SSC or the covariance including only
the Gaussian and trispectrum (cNG) contributions (i.e., without
SSC), as denoted in the legend. The lowest multipole is fixed as
lmin ¼ 100 and the highest multipole is varied in the range
200 ≤ lmax ≤ 5000. The bin width is also fixed. The lower panel
shows the ratio of S=N values with and without the SSC
contribution, for the two cases where we remove massive clusters
with Y500 > 10−5 Mpc−2 or not (with and without “cluster
masking”).

FIG. 7. PDFs of chi-squared with true and wrong covariances
and with and without cluster masking. The black solid line shows
the chi-squared distribution with degrees of freedom n ¼ 30, and
for the other lines the argument is scaled to match the expectation
values. The blue dashed line shows the PDF with the wrong
covariance, i.e., without the SSC term, and furthermore the
orange dot-dashed line shows the one when massive clusters are
masked. The red vertical line corresponds to χ2 ¼ 43.8 where the
p-value is 0.05 with the true covariance.
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hχ2wrongi ¼ hðd − d̄ÞTðCwrongÞ−1ðd − d̄Þi
¼ TrðCtrueðCwrongÞ−1Þ > nl: ð53Þ

The chi-squared with the wrong covariance no longer
follows the chi-squared distribution, but if the wrong
covariance is close to the true covariance we can approxi-
mate the probability distribution function (PDF) of χ2wrong as
the chi-squared distribution with scaling to match the
expectation value:

Pðχ2wrongÞdχ2wrong ≈ Pχ2

�
nl
α
χ2wrong; nl

�
nl
α
dχ2wrong; ð54Þ

where Pχ2ðχ2; nÞ is the PDF of the chi-squared distribution
with degrees of freedom n, and α≡ TrðCtrueðCwrongÞ−1Þ.
Figure 7 shows the PDFs with the true covariance and the

wrong ones, i.e., without SSC, for the cases with and
without cluster masking. The PDFs with wrong covariances
are skewed rightward compared to the true one because the
wrong covariance underestimates the true covariance or,
more exactly, the amplitude of statistical scatters, and it
apparently gives a higher significance. In order to see how
the significance is overestimated with the wrong covari-
ance, we address how the p-value changes. First, we
compute χ2p¼0.05, which gives the p-value as 0.05 with
the true covariance. When the true covariance is adopted,
the resultant chi-squared follows the chi-squared distribu-
tion, and from the cumulative distribution function,
χ2p¼0.05 ¼ 43.8 is calculated. Then, we compute the p-
values with wrong covariances, i.e.,

TABLE I. p-values with wrong covariances with and without
cluster masking. The lower limit of chi-squared is determined as
the p-value with the true covariance is 0.05.

Covariance hχ2i p-value

True covariance 30 0.05
Wrong covariance
without cluster masking

30.80 0.061

Wrong covariance
with cluster masking

33.91 0.120

FIG. 8. Expected 1σ constraints on parameters including marginalization over other parameters, obtained based on the Fisher matrix
(see text for details). The cluster masking is not applied. The blue solid, orange dashed, and green dot-dashed lines correspond to the
results with total, Gaussian and connected non-Gaussian, Gaussian only covariances, respectively.
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p ¼
Z

∞

χ2p¼0.05

Pðχ2wrongÞdχ2wrong: ð55Þ

In Table I we show the p-values for the two cases with and
without cluster masking. When cluster masking is not
applied, the effect of the super sample covariance is
subdominant and the p-value increases only by 1.1%.
However, when massive clusters are masked, the SSC
becomes relatively important and the p-value is 12.0%.
This result implies that it is 7.0% more likely to derive
optimistic significance of the detection. For the case of
parameter inference, however, even a true model gives an
apparent bad fit to the data because there might be a higher
chance to have a relatively large chi-squared value for the
best-fit model due to the underestimation in the covariance
amplitude.

B. Fisher analysis

In this section we quantify the effects of SSC on the
parameter constraints with the tSZ power spectrum based

on a Fisher forecast [65,66]. The tSZ power spectrum is
sensitive to the matter fluctuation and has the potential to
place tight constraints on the amplitude As. Furthermore,
the hydrostatic mass bias parameter can also be con-
strained, which information is not accessible solely from
CMB temperature and polarization analysis.
When the likelihood is assumed to be a multivariate

Gaussian, the Fisher matrix is given as

FtSZ
ij ¼ ∂dT

∂θi C
−1 ∂d

∂θj þ
1

2
Tr

�
C−1

∂C
∂θi C

−1 ∂C
∂θj

�
: ð56Þ

We consider the parameter space θ ¼ ðΩbh2;Ωch2;
100θ�; lnð1010AsÞ; ns; τreio; BÞ, where B ¼ ð1 − bHSEÞ−1.
In particular, the hydrostatic bias parameter B characterizes
the nonthermal pressure support of galaxy clusters and
groups, and it is not well constrained compared to cosmo-
logical parameters. Since severe degeneracy between
parameters only occurs with the tSZ power spectrum,
we add information from the Planck 2018 TT, TE,

FIG. 9. Similar to the previous figure, but for the expected constraints when the cluster masking is applied. The blue solid, orange
dashed, and green dot-dashed lines correspond to the results with total, Gaussian and connected non-Gaussian, Gaussian only
covariances, respectively.
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EEþ lowEþ lensing result [39]. Thus, the resultant Fisher
matrix F is given by

F ¼ FtSZ þ FCMB; ð57Þ

where the Fisher matrix for CMB anisotropies is computed
from chains obtained in the Planck analysis. In Figs. 8 and
9 we show forecasts of the constraints from the tSZ power
spectrum and CMB anisotropies with and without cluster
masking. Table II shows the forecast of 1σ errors. When
adding the information about the tSZ power spectrum we
can obtain tighter constraints on parameters, especially
the amplitude of primordial curvature perturbations:
lnð1010AsÞ. Note that the hydrostatic bias parameter B
can also be tightly constrained. When clusters are not
masked, the effect of SSC is subdominant since the cNG
term is much larger. On the other hand, with cluster
masking the SSC comes into effect because the SSC is
not sensitive to cluster masking compared to the cNG term.
As the SNR improves from cluster masking, the constraints
become tighter.

VI. CONCLUSIONS

The tSZ effect is one of the most important probes in
cosmology. With the power spectrum, we can constrain the
cosmological parameters and investigate the astrophysical
effects, e.g., hydrostatic mass bias. Since any survey is
done for a finite volume, even for a full-sky survey, it is
important to realize the impact of the super survey modes
on the statistical power of the tSZ power spectrum. We
quantified the contribution based on the halo model
approach and addressed biases in parameter estimation.
However, it was found that the super survey covariance
is subdominant compared with the cNG term, which
is sourced from the trispectrum with a parallelogram
configuration.
In order to enhance the statistical significance, we

proposed that massive nearby galaxy clusters, which are
the dominant source of the trispectrum, should be masked
to suppress the contribution of the cNG term [37].

We proposed the cluster masking based on the integrated
Compton y parameter, which corresponds to the thermal
energy content in galaxy clusters, and the method enables
one to significantly reduce the cNG term. On the other
hand, even after masking clusters, the SSC remains because
it originates from relatively less massive clusters, similarly
to the power spectrum signal. Though the overall statistical
significance was improved, the SSC has an appreciable
effect and weakens the constraints on the parameters.
We have carried out Fisher forecasts on cosmological

parameters and the hydrostatic mass bias parameter through
the tSZ power spectrum measurement combined with the
results of Planck CMB anisotropy measurements. In
particular, the hydrostatic mass bias parameter, which
cannot be constrained with only primary CMB anisotro-
pies, can be tightly constrained through the tSZ power
spectrum. By masking clusters, the constraints on the
parameters related to the primordial power spectrum,
i.e., As and ns, and the hydrostatic mass bias parameter
improve. On the other hand, the SSC becomes important
because it persists after masking. For example, the con-
straint on the hydrostatic mass bias with covariance
including SSC is 10% larger than that with covariance
excluding SSC. Since the effect of SSC remains at all
scales, it is critical to incorporate the SSC for accurate
estimates on parameters for both ongoing and upcoming
observational surveys of the tSZ effect. Moreover, the
cluster masking loses the information from massive galaxy
clusters. In order to compensate for the loss, a joint analysis
with cluster counts is thought to be a practical solution
[9,67,68]. The method we developed in this paper increases
the potential of tSZ cosmology. Massive clusters with
significant tSZ signals on an individual cluster basis can
be used for cosmology, e.g., via the number counts of the
clusters. On the other hand, when those clusters are masked
from the power spectrum measurement, the tSZ power
spectrum can be used to estimate the cosmological param-
eters. Thus, we showed that massive clusters and other tSZ
clusters can play complementary roles in cosmology. This
direction is worth exploring further in more detail.

TABLE II. Expected 1σ error on each parameter with CMB anisotropies and the tSZ power spectrum. We show the values with three
different covariances: G, Gþ cNG, and Gþ cNGþ SSC.

Ωbh2 Ωch2 100θ� lnð1010AsÞ ns τreio B

CMB 0.000146 0.00118 0.000307 0.0141 0.00415 0.00730 —

Without cluster masking
CMBþ tSZ (G) 0.000132 0.00090 0.000278 0.0105 0.00264 0.00520 0.0416
CMBþ tSZ (Gþ cNG) 0.000145 0.00117 0.000305 0.0139 0.00404 0.00716 0.0455
CMBþ tSZ (Gþ cNGþ SSC) 0.000145 0.00117 0.000305 0.0139 0.00405 0.00717 0.0456

With cluster masking
CMBþ tSZ (G) 0.000142 0.00102 0.000304 0.0094 0.00401 0.00577 0.0230
CMBþ tSZ (Gþ cNG) 0.000144 0.00111 0.000305 0.0121 0.00409 0.00661 0.0347
CMBþ tSZ (Gþ cNGþ SSC) 0.000144 0.00113 0.000306 0.0130 0.00411 0.00691 0.0376
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