
HAL Id: hal-02973144
https://hal.science/hal-02973144v1

Submitted on 20 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Are you on Mobile or Desktop? On the Impact of
End-User Device on Web QoE Inference from Encrypted

Traffic
Sarah Wassermann, Pedro Casas, Zied Ben Houidi, Alexis Huet, Michael

Seufert, Nikolas Wehner, Joshua Schüler, Shengming Cai, Hao Shi, Jinchun
Xu, et al.

To cite this version:
Sarah Wassermann, Pedro Casas, Zied Ben Houidi, Alexis Huet, Michael Seufert, et al.. Are you
on Mobile or Desktop? On the Impact of End-User Device on Web QoE Inference from Encrypted
Traffic. 16th International Conference on Network and Service Management (CNSM), Nov 2020, Izmir
(virtual), Turkey. �hal-02973144�

https://hal.science/hal-02973144v1
https://hal.archives-ouvertes.fr


Are you on Mobile or Desktop? On the Impact of End-User
Device on Web QoE Inference from Encrypted Traffic

Sarah Wassermann∗, Pedro Casas∗, Zied Ben Houidi†, Alexis Huet†, Michael Seufert‡
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Abstract—Web browsing is one of the key applications of the
Internet, if not the most important one. We address the problem
of Web Quality-of-Experience (QoE) monitoring from the ISP
perspective, relying on in-network, passive measurements. As
a proxy to Web QoE, we focus on the analysis of the well-
known SpeedIndex (SI) metric. Given the lack of application-
level-data visibility introduced by the wide adoption of end-to-
end encryption, we resort to machine-learning models to infer
the SI and the QoE level of individual web-page loading sessions,
using as input only packet- and flow-level data. In this paper,
we study the impact of different end-user device types (e.g.,
smartphone, desktop, tablet) on the performance of such models.
Empirical evaluations on a large, multi-device, heterogeneous
corpus of Web-QoE measurements for the most popular websites
demonstrate that the proposed solution can infer the SI as well
as estimate QoE ranges with high accuracy, using either packet-
level or flow-level measurements. In addition, we show that the
device type adds a strong bias to the feasibility of these Web-
QoE models, putting into question the applicability of previously
conceived approaches on single-device measurements. To improve
the state of the art, we conceive cross-device generalizable models
operating at both packet and flow levels, offering a feasible
solution for Web-QoE monitoring in operational, multi-device
networks. To the best of our knowledge, this is the first study
tackling the analysis of Web QoE from encrypted network traffic
in multi-device scenarios.

Index Terms—Web QoE; Smartphone vs. Desktop; Network
Monitoring; Machine Learning; SpeedIndex; Encrypted Traffic.

I. INTRODUCTION

The Web is one of the most relevant components of the
Internet. The performance of the Web is highly relevant to
the success of every online service, as it severely impacts
the engagement and churn of users. The assessment of a web
service as perceived by the end user can be realized through
the corresponding Web Quality of Experience (QoE), which
is very challenging to measure. Different from other services,
such as video streaming or gaming, web browsing is a com-
posite of numerous multimedia components and embedded
services; loading a web page today requires tens of flows
to get the various page resources located in diverse servers
from different content providers. In this complex process, the
network plays a key role impacting users’ Web QoE, forcing
Internet Service Providers (ISPs) to deploy effective means to
monitor Web QoE as perceived by their customers.

The literature on web performance analysis presents a wide
range of objective metrics capturing the performance of web
pages, including metrics such as Page Load Time (PLT),

SpeedIndex (SI), and Above the Fold Time (AFT). However,
all these metrics require access to the application layer, which
is hidden from the eyes of the ISP by the wide deployment of
end-to-end network traffic encryption.

The analysis of Web QoE from purely in-network, encrypted
traffic measurements is yet an under-explored problem; in fact,
we have been the first recently addressing it, for the specific
case of desktop web browsing [1], [2], using packet-level
features as input. By using controlled page-load experiments,
where network data is simultaneously collected with ground-
truth Web-QoE metrics such as SI and AFT, we have shown
the potential of using supervised Machine Learning (ML) to
infer these metrics from features computed on the encrypted
stream of packets. In this paper, we follow a similar approach
to [1], [2], extending the analysis in multiple new directions:

1 – Multi-device models: we consider Web QoE not only
for desktop devices, but include smartphone and tablet Web
QoE, conceiving cross-device generalizable models. The lion’s
share of Internet-access devices today is smartphones, with
nearly three quarters of the world population using exclusively
their smartphones to access the Internet by 2025 [3]. As we
find in our results, a model trained only on desktop browsing
data provides poor Web-QoE estimation performance when
applied to smartphone and tablet measurements.

2 – Web-QoE Estimation: besides training regression
models to estimate Web-QoE objective metrics – in particular
SI –, we rely on real end-user data from previous studies [4]
to build Web-QoE classification models for subjective metrics
– e.g., Mean Opinion (MOS) Scores.

3 – ML Benchmark: we present an extensive benchmark
comparing the performance of different ML models for both
estimation tasks – regression for SI inference, and classifica-
tion for QoE estimation.

4 – Packet and Flow-level Models: we conceive models
working either at the packet-level or at the flow-level; we show
that the proposed flow-level models achieve highly similar
performance to the packet-level ones, but using an order of
magnitude less input features, thus showing strong potential
for a practical monitoring solution.

The remainder of the paper is organized as follows. Sec-
tion II overviews the related work on Web-QoE monitoring
and analysis. Section III presents the overall modeling and
data-generation approach, including a characterization of the
produced datasets for this study. In Section IV, we introduce
and evaluate the proposed packet-level ML models for two



different tasks, including Web-QoE inference (SI) and classi-
fication of QoE ranges (excellent, good, poor); here we also
show how models trained on single-device measurements –
e.g., desktop –, result in strong performance degradation when
applied to other device types such as smartphones and tablets.
In Section V we present a (per-task) unified, multi-device
model, which achieves high inference/prediction performance
with a strong generalization potential across desktop, smart-
phone, and tablet devices. In this section we also extend the
multi-device models to operate at the flow-level, showing that
the same performance can be achieved using much less, and
easier to compute, input features. Finally, Section VI concludes
this paper. As a conclusion, the proposed multi-device, flow-
level models lay the basis for a generalizable, multi-device,
Web-QoE passive monitoring system.

II. RELATED WORK

Initial Web-QoE models were based on Page Load Times
(PLT) [5], [6], and are still broadly used in the practice to
infer user satisfaction in web browsing, e.g, under ITU-T [7].
However, research has demonstrated that PLT is a poor proxy
to user perception of web-page loading times. Indeed, the
actual web content visible to the user is usually displayed
much earlier, as most web pages often stretch beyond the
browser’s viewport. Additional in-browser metrics have been
accordingly devised to better suit the page display on the
screen. An approach is the so-called Above the Fold Time
(AFT), i.e., the time until the visible portion of a web page has
been fully loaded, which has been also tested within traditional
Web-QoE models [8]. Newer Web-QoE metrics have been
proposed recently, such as the SI, which considers the whole
visual progress of the page loading, by processing a video
capture of the screen. Besides single metric modeling, ML-
based approaches have been explored [4], [9] to model Web
QoE from a combination of metrics.

Another direction in the literature proposes to understand
how external components influence Web QoE. Prior work [10],
[11] has studied the impact of network-quality fluctuations
and outages on user Web QoE. But besides network quality,
other components influence Web QoE. They are linked to the
specific web-page content – usability [12], aesthetics [13], etc.
– as well as device type: desktop, smartphone, tablets [14].
Important to our study, these papers show that smartphones
and tablets have their own characteristics, not only regarding
screen sizes, but also in terms of content rendering and web
designs. Most of these papers focus on Web QoE in controlled,
small-scale lab environments.

Others directly rely on in-browser metrics as a proxy to infer
Web QoE, conducting large-scale active measurement cam-
paigns. For example, the impact of multiple features such as
transport protocols and network performance on PLT and AFT
is studied in [15], based on a set of 244 million measurements
collected during 6 months for the top-10000 Alexa websites.
Other papers also measured the impact of similar features on
PLT and SI or AFT in different countries and different types
of networks [16], including mobile ones [17].
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Fig. 1: Diagram and workflow of the proposed solution.

Most of prior work has stayed at the application level,
which is problematic for ISPs, who have no direct access
to in-browser metrics. In recent years, TLS encryption has
even narrowed the information that ISPs can collect from
the network side, and previous approaches [18] based on
deep packet inspection (DPI) and HTTP-traffic analysis are
no longer applicable. Other papers [19], [20] developed cor-
related approximations to the SI metric, such as Byte/Object-
Index [19] and Pain-Index [20], which can be computed
from statistics of packet- and flow-level measurements, thus
seamlessly operating with encrypted traffic. In recent work [1],
[2], we took a step further to directly infer the SI metric,
using ML techniques mapping network (encrypted) packet-
level traffic features to SI, in desktop devices.

When it comes to the specific case of Web-QoE monitoring
in mobile devices, there have been multiple papers using ma-
chine learning [21]–[24] or simple modeling approaches [25]
to map application-layer metrics [23], [24] or network-QoS
metrics [21], [22], [25] into QoE-related metrics. From these,
two papers [21], [22] are the closest to our work, but both
propose analysis approaches which are no longer applicable
due to HTTP-traffic encryption [22], or do not address the
specific problem of web browsing [21].

In this paper, we deal with an unexplored and so far
neglected issue: understanding the impact of the end-user
device type on the analysis of Web QoE from in-network
traffic measurements. To the best of our knowledge, this is
the first paper addressing this challenge.

III. WEB-QOE DATASETS & MODELING APPROACH

The proposed solution to the Web-QoE monitoring problem
consists of training supervised ML models to map network-
traffic features, extracted from the encrypted network-web-
page traffic, into relevant Web-QoE metrics. The approach
is data-driven, and thus needs datasets containing both the
collected traffic traces – the input – and the targeted Web-QoE
metric – the ground truth. The diagram presented in Figure 1
presents the workflow and the different stages of the solution.

To fully control the generation of such datasets, we built
a measurement testbed based on multiple private instances of
WebPageTest (WPT) – https://www.webpagetest.org/, the de-
fault, open-source web-performance-analysis tool used both in
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Fig. 2: Distribution of (a) TTFP, RUMSI, and PLT values, (b) QoE classes per device type, based on (c) real-user MOS scores.
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Fig. 3: Data characterization, per device type, including page size, number of resources, number of root domains, and SI/PLT
ratio. The latter reflects the complexity of the web page in terms of visible content (SI) and full content downloading (PLT).

industry and academia. Figure 1, rows (1) and (2) describe this
testbed and its usage. Different from previous studies [1], [2],
[15]–[17], [19], which have studied Web QoE exclusively for
desktop browsers and desktop devices (or in some exceptional
cases, emulating mobile devices), our measurement testbed
consists of three different, non-emulated types of devices,
including a smartphone device (Google Pixel 2 XL), a tablet
(Google Pixel Slate), and a desktop computer (laptop), using
WPT agents for Android and Linux. Chrome (last stable
version) is used as browser. Instead of leveraging in-device
WPT traffic-shaping capabilities, devices are connected to the
open Internet through independent network emulators (emu),
which allows for more realistic network-access-performance
configurations in terms of bandwidth, latency, packet-loss
rate, etc. This allows for heterogeneity in the generated mea-
surements. Configurations used in the study include access-
downlink bandwidth up to 10 Mbps, packet-loss rates up to
10%, and RTTs up to 100 ms. Using WPT measurements,
the platform extracts about 90 different KPIs and Web-QoE
metrics, indicated as L7 Web-QoE logs in Figure 1, row
(2), such as PLT, SI, AFT, Byte Index [19], and Time to
Interactive (TTI), as well as content characteristics of the
visited pages. Network traffic is captured at an intermediate
passive monitoring device (netmon) and stored as .pcap traces,
from where model input features are extracted, indicated as
L3 network-traffic features in Figure 1, row (2). For this
study, we generated a per-device-type balanced dataset of more
than 50.000 web page loading sessions (i.e., the loading of
a single page), targeting the top 500 websites according to
the Alexa top-sites list (https://www.alexa.com/topsites). The
same pages are visited multiple times for each device type,
using the same access-network setups. We do not consider the

effect of caching, i.e., tests correspond to a first-view loading
session. As we have recently shown in [1], while caching has
an impact on the performance of inference models, this impact
is limited, and models generalize well across different protocol
and caching settings [1]. We focus on the inference of one
particular Web-QoE metric, the SI, which is today one of the
most accepted metrics reflecting Web QoE. Nevertheless, the
methodology applies to any other similar Web-QoE metric.
As shown in [19], measuring the SI is cumbersome in terms
of computational resources and might introduce bias in the
data capturing/processing, mainly due to the video capturing
and analysis. This is particularly critical on smartphones and
tablets, which are generally resource-constrained; therefore,
instead of focusing on the SI metric, we collect the so-called
RUM SpeedIndex (RUMSI) metric [26], which is a passive
approximation to the SI, computed from the analysis of web-
page resource timings.

To conclude, note that we assume that the measurement
system takes as input network traffic from single web sessions.
In an operational deployment in the wild – see row (3) in
Figure 1 –, the traffic mix of concurrent web sessions must
first be disentangled (step A) to then extract features from the
traffic belonging to each web session (step B) and apply the
trained model(s) (step C). This paper exclusively addresses
steps B and C. Nevertheless, in case of concurrent web
sessions, a classification methodology from the literature [20]
could be applied to disentangle them. While the Web-traffic
identification/disentangling (step A) is out of the scope of this
paper, we have conceived multiple techniques addressing this
problem.
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Fig. 4: Examples of CBD features or loading curves, using
∆T = 100 ms, and different Access-RTT (RTTA) setups.

A. Data Characterization

The list of top 500 Alexa pages is assorted in terms of
contents, and as we show next, the type of device being used
has a visible impact on web-page characteristics and timing
performance. Figure 2(a) depicts the distribution of three
relevant Web-QoE metrics, including the Time to First Paint
(TTFP), which accounts for the time at which the first object
is painted on the browser, the RUMSI, and the PLT. Note how
the values are significantly higher for both smartphone and
tablet devices as compared to desktop devices, pointing to a
more complex rendering process in mobile devices. This is
most probably linked to the specific hardware limitations of
smartphones and tablets, as well as the particular character-
istics of the OS and browser combination – native Chrome
in Android. In addition, the way pages are optimized (most
times dynamically) and rendered in mobile devices impacts
loading times. Worse loading performance in mobile devices is
a commonly known issue in practice; see page-speed statistics
at https://backlinko.com/page-speed-stats. Interestingly, when
comparing Android devices, TTFP values are almost identical
for smartphone and tablet, RUMSI is slightly higher for tablet,
while PLT is significantly higher for tablet. As we see next,
this is most probably explained by the fact that web pages
have more content to load in tablets. It is also interesting to
note how PLT significantly overestimates the perceived loading
time of web pages, represented by the (RUM)SI metric.

Figure 3 characterizes the 500 web pages per device type, in
terms of (a) page size, (b) number of resources, (c) number of
root domains, and (d) RUMSI to PLT ratio. The latter reflects
the complexity of the web page in terms of visible content (SI)
and full content downloading (PLT). As expected, web pages
browsed in desktop devices are bigger than those browsed on
smartphones or tablets, which are optimized for smaller screen
sizes. The average page size is 2.7MB in desktop, 2.4MB in
tablet, and 2.1MB in smartphone. Figures 3(b) and 3(c) further
illustrate the richness and complexity of the web pages in
terms of number of embedded contents and their location at
different root domains, with more than 30% to 35% of the
web pages consisting of more than 100 resources, and about
40% of the web pages fetching resources from more than
10 different root domains. The screen size probably plays a
key role in terms of page characteristics, as the number of
resources is higher for desktop, followed by tablet, and finally
by smartphone. The RUMSI/PLT ratio shows not only how
large the overestimation introduced by PLT is in terms of
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perceived page load times, but also how different this is for
the different web pages. Indeed, about 10% of the pages have
a ratio below 0.3 (the visible content loads way faster than the
full content) and less than 5% of the pages have a ratio above
0.9 (the visible content basically corresponds to the full web
page content).

Conclusion: while most of the analyzed pages are very
similar for every device type in terms of size and retrieved
contents from external servers, differences can be significant
for a small share of the pages. In terms of performance,
loading times in Android devices (smartphone and tablet) are
significantly higher than in desktop, a common trend observed
in practice of web page speed analysis.

B. Subjective QoE Analysis

While the SI is a good objective metric reasonably capturing
the Web QoE of real users [8], we resort to previous subjective
Web-QoE studies to better understand the expected QoE for
the generated dataset. In particular, prior work [4] conducted
a subjective study where about 240 participants rated their
browsing experience – loading of individual pages using a
desktop browser –, according to a 5-level Absolute Category
Rating (ACR) MOS score (bad QoE being 1 to excellent being
5). We rely on their publicly available dataset to identify QoE-
related timing thresholds which could translate the RUMSI in
our dataset to broad QoE classes. In Figure 2(c) we depict
the relationship between SI and MOS scores obtained in
that study. While the SI metric was not directly measured,
additional metrics such as the Byte Index where computed,



model MAE-mAE (ms) MRE-mRE (%) PLCC

DT 766 – 288 37 – 18 0.817

ET10 598 – 260 31 – 16 0.879
RF10 602 – 262 31 – 16 0.860

RF100 564 – 249 30 – 15 0.885
Bagging 600 – 266 31 – 16 0.857

Boosting 767 – 426 48 – 26 0.861

Bayes 976 – 491 64 – 29 0.727

kNN 940 – 496 54 – 29 0.752

XGB 774 – 429 48 – 26 0.849

TABLE I: Benchmarking of different ML models for RUMSI
inference, for desktop.

which can be used as a good proxy to the real SI [19]. Based
on these subjective QoE results, we define 3 Web QoE classes:
(e)xcellent – MOS ≥ 4 –, (g)ood – 3 ≤ MOS < 4 –, and
(p)oor – MOS < 3 –, resulting in SI thresholds of 2 and
4 seconds. Interestingly, the SI thresholds recommended in
the industry as target for excellent Web performance vary
between 1 second (desktop) and 3 seconds (mobile), which
are in line with the proposed higher QoE class threshold of 2
seconds. It is important to note that our thresholds are derived
for the case of browsing on desktop devices, and one would
expect higher thresholds for Web QoE in mobile devices.
Nevertheless, for this study, we assume the same thresholds
apply to the three device types. Figure 2(b) shows that about
60%/40% of the loading sessions correspond to excellent
QoE in desktop/mobile (smartphone and tablet) respectively,
25%/30% to good QoE, and the remaining 15%/30% result in
poor QoE.

C. Targets and Input Features

We realize the Web-QoE monitoring solution through two
different prediction tasks: (i) inference of the RUMSI metric,
which corresponds to a regression task, and (ii) prediction of
the Web-QoE class {e,g,p}, which corresponds to a 3-class
classification task. We use the same input features in both
tasks, derived from the stream of encrypted packets. To define
input features, we follow the rationale behind the computation
of the SI metric itself, which considers the whole progress of
the page loading. We define the Cumulative Bytes Downloaded
features CBD(i)∆T , as the (normalized) cumulative number
of bytes downloaded from the first collected byte at time t0
up to time t = t0 + i × ∆T , with i = 1, . . . ,m. The CBD
features track the download progress of the page bytes, using
a time resolution ∆T . Figure 4 depicts examples of CBD
features for different network configurations, both for desktop
and smartphone devices, using m = 100 and ∆T = 100 ms.
Pages loading faster have a CBD loading curve rising sharper
and arriving to full loading earlier.

For this study, we take m = 100 samples, and three different
resolutions for the computation of features, using ∆T = 50 ms,
100 ms, and 500 ms, for a total of 300 CBD features. Using
different resolutions helps capture different phenomena in the
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Fig. 7: RUMSI inference performance. Models are trained
using exclusively desktop measurements.

downloading progress, which potentially impact the SI, as well
as allowing to track different page-load durations, in this case
up to 5, 10, and 50 seconds, respectively. We consider n = 11
additional input session features, related to the complete page-
loading session; these include: full session duration (first to last
packet), downlink/uplink session duration (first to last packet
in downlink/uplink direction), total number of packets down-
link/uplink/full, total number of bytes downlink/uplink/full,
and session mean throughput downlink/uplink. While these are
mostly packet-level features, we extend in Section V-A the
study to the implementation of flow-level features, realizing
highly similar results.

Figure 5 depicts the linear correlation between these input
features and the RUMSI metric, for different device types.
Correlation values are rather high for all devices, with stronger
correlations observed for CBD features between 5 seconds
and 10 seconds, as well as for session-duration features.
Figure 6 shows correlation values for the QoE classification
problem, for all devices together; as expected, based on the
considered time-thresholds, higher correlations are observed
between 2 and 5 seconds.

IV. DESKTOP MODELS’ LACK OF GENERALIZATION

We now focus on the Web-QoE estimation tasks. As a
reference for performance evaluation, we begin by training
and evaluating different ML models for the specific case
of desktop measurements. Recall that desktop measurements
represent the most common data source so far used in the
Web-QoE literature [1], [2], [15]–[17], [19]. We then apply
the trained models to both smartphone and tablet data, to
highlight the cross-device lack of generalization and poor
performance realized by single-device models in such multi-
device scenarios. As a general note on the evaluations in
this paper, all performance results correspond to 5-fold cross
validation.

A. RUMSI Inference on Desktop

Table I reports the RUMSI inference performance achieved
by nine different ML models, most of them based on decision
trees. The tested models include single decision tree (DT),
multiple types of ensembles using different numbers of trees,
such as extremely randomized trees (ET), random forest (RF),



model
desktop

ACC R{e} R{g} R{p} P{e} P{g} P{p}

DT 80.3 88.8 66.1 72.8 88.4 66.2 73.8

ET10 84.4 93.1 70.5 75.6 89.6 73.7 81.7

RF10 84.6 93.1 71.6 74.6 90.1 73.1 82.1

RF100 86.9 93.3 77.4 79.1 92.3 76.2 84.7

Bagging 85.7 93.2 74.3 76.8 90.8 74.6 84.8

Boosting 82.9 91.1 70.3 73.7 90.1 69.1 79.3

Bayes 60.1 93.0 11.6 19.5 63.2 38.3 46.7

kNN 74.9 87.3 55.1 62.1 81.8 59.1 72.0

XGB 82.2 90.9 69.0 72.1 89.8 67.9 77.6

TABLE II: Benchmarking of different ML models for Web-
QoE prediction, on desktop. The three levels of QoE corre-
spond to excellent{e}, good{g}, and poor{p} QoE.

device MAE-mAE (ms) MRE-mRE (%) PLCC

desktop 598 – 260 31 – 16 0.879

smartphone 1245 – 721 41 – 28 0.728

tablet 1434 – 724 44 – 28 0.618

smartphone
867 – 592 43 – 29 0.455

RUMSI < 5s

smartphone
2812 – 2000 32 – 27 0.667

RUMSI > 5s

TABLE III: Inference performance per device type. The ET10
model is trained using desktop data.

bagging trees, and boosting including XGBoost [27]. The list
is completed by a plain Bayesian approach, and by the k near-
est neighbors algorithm (kNN). We assess performance using
3 performance metrics for regression problems, including the
absolute error (AE), the relative error (RE), and the linear
correlation (PLCC). We take both mean (M) and median (m)
values for the error metrics, to filter out significantly large
errors. Figure 7(a) additionally depicts the distribution of the
prediction errors.

RF100 attains the best inference performance, with a median
absolute error of 249 ms, and a median relative error of
15%. Absolute prediction errors are below 500 ms for more
than 70% of the sessions. More than 85% of the RUMSI
values are inferred with an error below one second. Similar
performance is realized by smaller ensembles, e.g., RF10,
ET10, and bagging, using 10 instead of 100 trees. Given the
training-speed improvements obtained with the ET10 model,
we take it as the underlying prediction model in subsequent
evaluations.

B. QoE Classification on Desktop

Table II reports the classification benchmark results obtained
for desktop. Again, RF100 provides the best results, with an
overall accuracy (ACC) close to 87%. Recall (R) and precision
(P) are above 90% for the excellent QoE class prediction, but
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0.778

1434 ms (44%)
724 ms (28%)
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Fig. 8: Cross-device inference performance, using per-device
ET10 as underlying model.
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Fig. 9: Cross-device QoE classification performance. Models
are trained on desktop measurements.

good and poor performance classes tend to be confused by the
predictor. Nevertheless, recall and precision are close to 80%
for these QoE classes.

C. Lack of Generalization for Mobile Devices

Now that we have built the models for desktop, a natural
question is: how good would these models perform in data
collected from other device types? This is critical in practice,
as a significant, and ever growing, share of web-browsing
activity comes from mobile devices. Figure 7(b) depicts the
distribution of inference errors per device type, using the
ET10 model, trained exclusively on desktop data. Table III
summarizes the corresponding performance metrics. There is
a strong inference-performance degradation when applying the
desktop model to both smartphone and tablet data. Median
absolute errors almost triple as compared to desktop per-
formance. The distribution of errors shows that the desktop
model tends to underestimate the RUMSI metric when applied
to other devices, not present at training time. One could
argue that RUMSI on smartphone and tablet is significantly
higher than on desktop (cf. Figure 2), thus the performance
degradation could be linked exclusively to this mismatch.
However, performance degradation is also significant when
only considering smaller RUMSI values, with median errors
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(a) RUMSI Inference.
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(b) QoE Classification.

Fig. 10: (a) RUMSI inference and (b) QoE classification
performance, ET10 model training on all-device data.

more than doubling for the example case of smartphone – from
260 ms to 592 ms –, testing only for RUMSI below 5 seconds.

Figure 8 shows how the aforementioned cross-device train-
ing and validation issues also hold when considering different
device types, using the RUMSI inference as example. The
figure reports the usual AE, RE and PLCC metrics arranged as
a training/testing matrix, where rows correspond to the device-
type data used for training, and columns to the device-type
data used for testing. While specialization improves inference
performance – the matrix diagonal –, training a model on
measurements from a particular device type and applying
the resulting model on measurements from a different device
type results in poor inference performance, for all device-
type combinations. Note also how the cross-device lack of
generalization applies to mobile devices, which are closer in
terms of characteristics (cf. Figure 2 and Figure 3); while the
performance degradation is lower when considering cross-data
from smartphone/tablet devices, it is still non-negligible.

Performance degradation is also significant for the QoE
classification problem. Figure 9 reports the classification
performance per device type, again using the ET10 model,
trained on desktop data. Overall classification accuracy drops
from 84% on desktop to 67% on smartphone and tablet.
Recall for excellent QoE degrades only slightly, but strongly
for the other classes, and most importantly, precision for
excellent QoE also drops strongly, meaning that the model
cannot correctly track the classification problem.

device MAE-mAE (ms) MRE-mRE (%) PLCC

desktop 649 – 300 37 – 18 0.874

smartphone 804 – 363 27 – 14 0.855

tablet 798 – 318 25 – 11 0.868

all 750 – 327 30 – 14 0.869

TABLE IV: Multi-device RUMSI inference performance.

Conclusion: RUMSI inference and QoE prediction can be
properly realized using CBD and session-based features, ex-
tracted directly from the stream of encrypted bytes. However,
models so far proposed in the literature for single device
types [1], [2], [15]–[17], [19] might not perform properly in
the wild, where other devices than desktop machines are used
for web browsing.

V. MULTI-DEVICE (FLOW) WEB QOE MODELS

Having shown the lack of generalization and the cross-
device issues introduced by per-device models, we take the
most natural step to conceive multi-device Web-QoE models.
Possible approaches include the usage of stacking/ensembles
of specialized models [28], or the inclusion of a pre-processing
device-type classification task, preceding the main infer-
ence/prediction task. However, the simplest approach, expos-
ing models to all devices data at training time, already provides
high accuracy and generalizes well across devices, which has
high practical appeal as it simplifies deployment.

Considering multi-device RUMSI inference first, Table IV
and Figure 10(a) summarize the performance attained by a
single ET10 model, trained on all-device data. Compared to
per-device specialized models (cf. the matrix diagonal in Fig-
ure 8), there is a marginal degradation for the corresponding
multi-device model, and mainly observed for desktop, with an
error increase close to 10%. Still, performance is consistent
across the three device types, with an overall median absolute
error of 327 ms, and a relative error of 14%. Overall, the
generalization capabilities of the multi-device model outweigh
the accuracy of the specialized models, making it a preferred
choice for Web-QoE monitoring in operational deployments.

Considering multi-device QoE classification next, Fig-
ure 10(b) reports the performance obtained with a single ET10
model, trained on all-device data: again, a slight performance
degradation compared to the specialized desktop model (cf.
Table II), but yields significant gain in terms of generalization
to mobile devices (cf. Figure 9). The overall model accuracy
is 82.2%, with recall and precision values for excellent{e},
good{g}, and poor{p} QoE of about {89%, 73%, 80%} and
{86%, 74%, 82%}, respectively.

Conclusion: multi-device models significantly improve gen-
eralization of the Web-QoE inference across different devices,
with only slight under-performance as compared to specialized
models. As such, multi-device models provide simple, more
accurate, and more reliable monitoring capabilities in realistic
web-browsing scenarios.



A. Multi-device, Flow-level Models
In the last part of the study we focus on improving the

practical application of the proposed Web-QoE inference
models. In particular, we explore the definition of new input
features at the flow level, which could be easier to compute
than the proposed packet-level features so far considered. We
define a set of 21 flow-level features, using similar notions
to the ones which guided the packet-level features. These
include: (i) the total number of flows (all, downlink, uplink),
(ii) the min/mean/median/max flow duration in downlink,
(iii) the min/mean/median/max flow size in downlink, (iv)
the min/mean/median/max flow byte-index in downlink, (v)
the mean/median in-flow, average intra-packets time (MDT)
in downlink, (vi) the mean/median/max flow throughput in
downlink, and (vii) the Flow-Index (FI).
▪ Flow-Index (FI): integral-based metric, same rationale as BI

▪ Two variants (start with 0 bytes or first-flow bytes)

Flow-level Models – Flow-Index

time

Cumulative
Flow
Bytes
(normalized)

100
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Fig. 11: Flow-level features – flow index.

▪ Linear correlation to RUMSI

▪ Most correlated features

▪ mean/median/max flow duration

▪ mean/median/max flow BI

▪ mean MDT & FI

▪ session duration

Flow-level & Session-level Features’ Correlation

Fig. 12: Flow-level features, ranked by PLCC.

The flow byte-index uses the standard definition of Byte
Index (BI) [19], but considering only the packets belonging to
a specific flow. The FI feature represents an extension to the
BI, but using flow size and flow ending time instead of packet
size and time. Figure 11 depicts the basic notions behind
the calculation of the FI. Both the FI and BI are integral-
like metrics, similar to the definition of the SpeedIndex. We
refer the reader to [19] for a comprehensive definition of
the BI and the concepts of integral metrics. Flow features
are complemented by the 11 session-level features, previously
defined in Section III-C, adding to a total of 32 input features,
computable at the flow level. For the sake of completeness,
Figure 12 reports the linear correlation between these flow
and session input features and the RUMSI metric. Features
related to flow duration, flow BI, FI, and session duration are
the ones showing the highest correlation to the RUMSI.
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Fig. 13: Multi-device RUMSI inference performance – flow-
level features.

device MAE-mAE (ms) MRE-mRE (%)

desktop 628 – 309 35 – 18

smartphone 815 – 364 26 – 13

tablet 751 – 317 25 – 11

all 732 – 324 29 – 13

TABLE V: Multi-device, flow-level RUMSI inference.

Figure 13 and Table V report and summarize the RUMSI in-
ference performance achieved by a multi-device model, using
as input the new set of 32 features. Results are comparable,
and even slightly better for some device types, than those
achieved by using packet-level features (cf. Table IV), with
the paramount advantage of using an order of magnitude less
features, and at an easier-to-compute and more scalable level.

VI. CONCLUDING REMARKS

We have tackled the problem of Web-QoE monitoring
from the ISP perspective, relying on in-network, passive
measurements. Empirical evaluations on a large, multi-device,
heterogeneous corpus of Web-QoE measurements for the most
popular websites shows that the proposed solution can infer
the (RUM)SI as well as estimate Web-QoE ranges from in-
network traffic measurements with high accuracy. At the same
time, the device type introduces a strong bias in the capabilities
of Web-QoE inference models, causing models trained for
single device types to badly generalize to other devices. We
showed that this cross-device lack of generalization can be
solved by properly training on data coming from a multitude
of devices. Our findings raise awareness of the fact that models
for Web-QoE monitoring must be exposed to multi-device
measurements to achieve proper inference and prediction per-
formance in real network deployments, something generally
neglected in the literature. To the best of our knowledge, we
are the first to unveil the strong impact that the device type
has on such models. The definition of novel flow-level features
which also realize highly accurate predictions is also a key-
contribution of the study.
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[14] S. Baraković, et al., “Survey of research on Quality of Experience
modelling for web browsing,” Quality and User Experience, vol. 2, no. 1,
p. 6, 2017.

[15] A. Saverimoutou, et al., “A 6-month Analysis of Factors Impacting Web
Browsing Quality for QoE Prediction,” Computer Networks, vol. 164,
2019.

[16] A. S. Asrese, et al., “Measuring Web Latency and Rendering Perfor-
mance: Method, Tools, and Longitudinal Dataset,” IEEE TNSM, 2019.

[17] M. Rajiullah, et al., “Web Experience in Mobile Networks: Lessons from
Two Million Page Visits,” in WWW, 2019.

[18] S. Ihm, et al., “Towards Understanding Modern Web Traffic,” in ACM
IMC, 2011.

[19] E. Bocchi, et al., “Measuring the Quality of Experience of Web Users,”
ACM SIGCOMM CCR, vol. 46, no. 4, 2016.

[20] M. Trevisan, et al., “PAIN: A Passive Web performance indicator for
ISPs,” Computer Networks, vol. 149, 2019.

[21] V. Aggarwal, et al., “Prometheus: Toward Quality-of-Experience Esti-
mation for Mobile Apps from Passive Network Measurements,” in ACM
HotMobile, 2014.

[22] A. Balachandran, et al., “Modeling Web Quality of Experience on
Cellular Networks,” in ACM MobiCom, 2015.

[23] P. Casas, et al., “Next to You: Monitoring Quality of Experience in
Cellular Networks From the End-Devices,” IEEE TNSM, 2016.

[24] S. Wassermann, et al., “Machine Learning Models for YouTube QoE and
User Engagement Prediction in Smartphones,” SIGMETRICS Perform.
Eval. Rev., 2019.

[25] A. Nikravesh, et al., “QoE Inference and Improvement Without End-
Host Control,” in 2018 IEEE/ACM Symposium on Edge Computing
(SEC), 2018.

[26] P. Meenan, “Real User Monitoring SpeedIndex (RUMSI),” 2020. [On-
line]. Available: https://github.com/WPO-Foundation/RUM-SpeedIndex

[27] T. Chen, et al., “XGBoost: A Scalable Tree Boosting System,” in KDD,
2016.

[28] P. Casas, et al., “GML Learning, A Generic Machine Learning Model
for Network Measurements Analysis”, in CNSM, 2017.


