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ABSTRACT

A cross-validation algorithm is developed to perform probabilistic observing system simulation experi-

ments (OSSEs). The use of a probability distribution of ‘‘true’’ states is considered rather than a single ‘‘truth’’

using a cross-validation algorithm in which each member of an ensemble simulation is alternatively used as

the ‘‘truth’’ and to simulate synthetic observation data that reflect the observing system to be evaluated. The

other available members are used to produce an updated ensemble by assimilating the specific data, while a

probabilistic evaluation of the observation impacts is obtained using a comprehensive set of verification skill

scores. To showcase this new type of OSSE studies with tractable numerical costs, a simple biogeochemical

application under the Horizon 2020 AtlantOS project is presented for a single assimilation time step, in order

to investigate the value of adding biogeochemical (BGC)-Argo floats to the existing satellite ocean color

observations. Further experimentsmust be performed in time aswell for a rigorous and effective evaluation of

the BGC-Argo network design, though some evidence from this preliminary work suggests that assimilating

chlorophyll data from a BGC-Argo array of 1000 floats can provide additional error reduction at the surface,

where the use of spatial ocean color data is limited (due to cloudy conditions), as well at depths ranging from

50 to 150m.

1. Introduction

The global ocean observing system is based on various

in situ and satellite components that are mostly inter-

mittent and loosely connected as they often result from

monodisciplinary initiatives led by national and/or in-

ternational agencies. This lack of integration between

the observing components was outlined during the

OceanObs’09 (see www.oceanobs09.net) conference,

along with the societal needs for a sustained ocean

observing system. Accordingly, a task team was formed

to develop a framework that can guide the future im-

plementation of a better-coordinated and sustained

global observing system related to both climate and

marine ecosystems.

Following the path traced by OceanObs’09, a 5-yr

international collaboration was created in 2014, the

Horizon 2020 AtlantOS project (Visbeck et al. 2015;

see the appendix for expansions of some acronyms used

in the text). This collaboration aims to enhance and

redesign the existing observing system in the Atlantic

Ocean, and to producemultidisciplinary and sustainable

datasets that will be collectively shared and will satisfy

the needs of various end-users. As part of AtlantOS,

dedicated efforts have been conducted to investigate

integrated observing systems that involve satellite, in situ

observations from new technologies (or networks) and

data-assimilating models, as previously tested in in-

ternational programs such as GODAE OceanView

(see Bell et al. 2015).

In meteorology and more recently in oceanography,

the most common method used to evaluate the impact

of observations, is to perform data-denial experiments

using a data-assimilative simulation run. These experi-

ments, known as observing system experiments (OSEs),

aim to assess what happens when specific observation

data are removed from or added to the data-assimilative
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run. To evaluate the impact of these removed/added

data, comparisons are made with a reference run in

which the tested data are not assimilated (e.g., Fujii

et al. 2015a,b; Oke et al. 2015; Xue et al. 2017).

When OSEs are applied to new types of data or

nonexisting observing systems, they are referred to as

observing system simulation experiments (OSSEs).

The observation data to be assimilated are synthetic

with this approach; they are simulated from a non-

assimilative run that is assumed to represent the ‘‘true’’

state of the system, known as the ‘‘nature run.’’ The

impact of the synthetic data is then assessed against

this ‘‘true state’’ for each conducted experiment.

OSSEs are typically used to examine the performance

of future observing systems (e.g., Alvarez and Mourre

2014; Atlas et al. 2015), help for deciding between dif-

ferent competing instrument configurations (e.g., Hoffman

and Atlas 2016), and have proved to be a cost-

effective approach to compare different deployment

strategies (e.g., Halliwell et al. 2015). Another moti-

vation for OSSEs is to test the impact of assimilating

new observation types on weather (or oceanic) fore-

casts, and provide opportunities for improving oper-

ational data assimilation systems used in numerical

weather prediction (NWP) centers (e.g., Halliwell

et al. 2017).

Within AtlantOS, objective recommendations to

enhance the Atlantic observing system and imple-

ment new components for ocean physics and marine

biogeochemistry are given using the OSSE approach.

This activity relies on various modeling and assimi-

lation systems developed by the European research

community (Gasparin et al. 2019). The optimal observ-

ing strategy for the different components is examined

using coordinated scenarios among the various AtlantOS

groups who have been conducting the OSSEs. For the

physical variables, these model-based studies involve

a single simulated ‘‘true’’ ocean, which is assumed to

realistically represent the ocean physics variability (in

both space and time). The various tested observing

system designs are based on observations simulated

from the nature run. Different data types are generated

using Argo float profiles and drifting buoy trajectories,

moorings at fixed locations, and satellite data coverage

of sea surface height and sea surface temperature.

For biogeochemical variables, the in situ observing

system is still underdeveloped compared to ocean

physics, delivering only scattered and uneven data cov-

erage based on sparse ship cruises, glider experiments,

and fixed moorings. So far, sufficient data coverage

has only been realized by ocean color satellite mis-

sions, which have helped to better understand and mon-

itor observed phenomena such as primary production

variability and bloom formation. The only widespread

source of valuable observations for assimilating bio-

geochemical data is thus limited to the sea surface

chlorophyll concentrations, as ocean color sensors

do not measure other biogeochemical variables (e.g.,

nutrients or trophic species).

In close synergy with ocean color satellites, a global

array of biogeochemical sensors analogous to the existing

core Argo network would revolutionize our knowl-

edge of the changing state of primary productivity,

ocean carbon cycling, acidification and the patterns of

marine ecosystems variability from seasonal to inter-

annual time scales. To implement this biogeochemical

Argo array, several pilot experiments [see Johnson

and Claustre (2016b) for more detail] were performed

to test prototype profiling float arrays equipped with

various biogeochemical sensors (e.g., chlorophyll, ni-

trate, pH, oxygen). Those experiments have shown

the observational richness of having a biogeochemical-

Argo (BGC-Argo) network at regional scales, though

the deployment strategy of such an array at global scale

remains under investigation, including its interaction

with other components of the observing system.

The future BGC-Argo data (with sufficient coverage)

together with ocean color observations will be assimi-

lated into coupled physical–biogeochemical models,

allowing a new generation of biogeochemical fore-

casting systems in tight connection with the EU Co-

pernicus Marine Environment Monitoring Service

(CMEMS), as well as major developments in data-

assimilation and modeling experiments (as achieved

with Argo’s physical observations under the GODAE

OceanView initiative). Since the last decade, coupled

physical–biogeochemical models associated with ocean

color data assimilation schemes have progressed to-

ward the objective of providing faithful monitoring

and prediction of the near-surface biogeochemistry

state of the ocean (e.g., Ford and Barciela 2017; Ciavatta

et al. 2018; Skákala et al. 2018). As BGC-Argo floats

will extend biogeochemical observations to the sub-

surface ocean, further improvements are expected

to be made in the next 10 years.

Nevertheless, the lack of clear ‘‘principles’’ governing

the evolution of marine ecosystems and inevitable

computational limitations require many simplifications

in the biogeochemical models equations. These sim-

plifications lead to poor (or even omitted) represen-

tations of processes, and therefore to significant model

uncertainties that limit the predictability and moni-

toring of the system. One element of progress is the

transition to ensemble simulations to simulate model

uncertainties that can be, for example, associated with

unresolved biological diversity (e.g., Brankart et al. 2015)
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or key biogeochemical parameters (e.g., Garnier

et al. 2016).

In the ensemble OSSE framework introduced here,

the input of the problem becomes a probability dis-

tribution of possible ‘‘true’’ states (describing the prior

uncertainty), and so the original ‘‘truth’’ is no longer

directly available or relevant. Each ensemble member

could thus be alternatively used as possible ‘‘true’’ state

to simulate observations from candidate observing ar-

rays. These observations can then be assimilated into

the other available members (leaving out the member

used as the ‘‘truth’’), and produce updated ensemble

members that can finally be used along with a suite

of probabilistic skill scores (e.g., Toth et al. 2003; Candille

et al. 2007, 2015) to assess the impact of the assimilated

data using each ‘‘truth’’ as verification.

Here, this integrated ensemble-based probability

score approach is applied to a single assimilation time

step to demonstrate the benefits of implementing

such an approach, and give some preliminary insights

about possible deployment strategies of the future

BGC-Argo network in the North Atlantic. We use a

probabilistic version of a coupled physical–biogeochemical

model (inherited fromGarnier et al. 2016) to evaluate

two distributions of BGC-Argo arrays, and their com-

bined value with satellite ocean color data.

The following section aims to provide a short sum-

mary of the classical OSSE procedures, while section 3

explains conceptually how these procedures may be

extended to ensemble OSSEs, along with the proba-

bilistic verification tools used to rigorously validate

the conducted experiments. This novel type of OSSE

is applied to a biogeochemical probabilistic system in

the following methodology section (section 4), including

detailed information about the multivariate assimilation

update scheme and the simulated pseudo-observations.

Section 5 first presents the set of OSSEs defined within

the AtlantOS community, while the following subsections

describe the impact of each experiment, and finally give

some insights for some future design studies of the

BGC-Argo array. A last section will give more gen-

eral concluding remarks along with some caveats and

limitations.

2. Background

a. Classical OSSE methodology

The design and the evaluation of oceanOSSE systems

follows the long and well-established procedures used

in atmospheric OSSEs since the early 1980s (e.g., Atlas

et al. 2015). Typically, four main steps are required

to perform an OSSE: 1) use a free-running circula-

tion model to produce a nature run (NR), assumed to

represent the ‘‘true’’ state of the system; 2) simulate

synthetic observations (including realistic errors) from

this NR according to defined observing scenarios; 3)

incorporate these newly generated observations into

a data-assimilative run, known as the control run, which

is usually different from the NR (e.g., different model,

initial/forcing conditions, parameterizations and reso-

lution) to produce an updated run that reflects the ob-

servations; and 4) assess the performance (score) of each

tested scenario, which relies on comparisons of the

magnitude and distribution of root-mean-square (RMS)

errors between the NR, the control run, and the updated

run. Specific and rigorous guidelines were adopted in

the meteorological community to avoid possible bias in

error growth between the NR and the data-assimilative

model simulation (e.g., Atlas et al. 1985a,b; Arnold and

Dey 1986; Hoffman et al. 1990), including situations

referred to as the ‘‘identical twin’’ or the ‘‘fraternal

twin’’ problems. Running realistic OSSEs also requires

a prior validation of the NR to ensure that key phe-

nomena measured by the observing systems are repro-

duced with sufficient accuracy. Moreover, the various

types of errors present in real observations (e.g., in-

strumental errors, calibration errors) need to be prop-

erly incorporated, as well as representativeness errors

(i.e., differences coming from unresolved or poorly re-

solved phenomena in the NR model). Failure to cor-

rectly add the different errors will lead to overestimates

or underestimates of the observing system impacts.

A rigorous assessment of an OSSE system also in-

cludes a first comparison with a reference OSE (e.g.,

Atlas 1997) to evaluate the impact of present-day ob-

serving systems. The OSSE system is validated if con-

sistent observation impacts are found between the

OSSE and the reference OSE. However, it is only re-

cently that similar validation strategies were developed

in ocean OSSE studies, including comparisons with

reference OSEs (e.g., Halliwell et al. 2014).

In most cases, OSSE systems involve single NR and

control run, using either standalone (e.g., ocean cir-

culation models) models or coupled modeling sys-

tems (i.e., simulating simultaneously the evolution of

two related components, such as the ocean circulation

and marine ecosystems). However, recent recommen-

dations describing future improvements in OSSE sys-

tems (Schiller et al. 2015; Hoffman and Atlas 2016)

underline the growing interest of ensemble simula-

tions to better quantify model uncertainties and to

ensure realistic OSSE results.

b. Status of ensemble OSSE systems

Since the last two decades in NWP centers, ensemble-

based Monte Carlo techniques are widely used to predict
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future probability distributions of the state of the at-

mosphere. Stochastic parameterizations [see Leutbecher

et al. (2017) for a review] were implemented to explic-

itly simulate various types of uncertainty (e.g., in the

initial conditions and in the model’s physical equations)

and, therefore, to better reflect the chaotic nature of

the atmosphere. To keep pace with operational sys-

tems, ensemble Kalman filter (EnKF) techniques

(e.g., Evensen 2003) were adopted to performOSSEs.

For example, EnKF-based OSSEs were carried out to

examine various Doppler radar networks in the lower

atmosphere (Snyder and Zhang 2003; Tong and Xue

2005; Xue et al. 2006), or to test future altimeter

configurations (Mourre et al. 2006; Le Hénaff et al.
2008, 2009).

In these OSSE studies, there is typically no com-

parison to any NR or control run after updating the

ensemble simulation with synthetic observation data,

the evaluation of the assimilation scheme is only based

on temporal and spatial variations of the ensemble

spread. The model uncertainty is characterized by the

ensemble dispersion, and the impact of observations is

generally based on RMS misfits (errors) between the

ensemble without assimilation and the one with as-

similation of synthetic data from each tested scenario.

3. Ensemble OSSE system design

OSSEs based on ensemble or hybrid data assimi-

lation systems are thus generally evaluated using the

similar metrics adopted for deterministic systems

(i.e., using a single data-assimilative run), even though

using ensembles give the opportunity to compare proba-

bility density functions (PDFs), generated by the prior

ensemble members (before assimilation) and the updated

ensemble members (after assimilation). This section

presents a new framework to perform this upcoming

probabilistic type of OSSEs, including appropriate

verification tools for evaluating both existing and

future observation systems.

a. Synopsis of the methodology: A cross-validation
approach

Assuming we have an m-member ensemble that cor-

rectly describes the prior uncertainty (ensemble spread),

each member can alternately be used as the NR using

a cross-validation algorithm (Fig. 1). Two advantages

are offered by this method: 1) the use of multinature

states rather than a single one, and 2) no subset of the

prior ensemble has to be used as possible nature runs.

The algorithm consists of looping on the m-member

ensemble (i5 1, . . . ,m) to perform the following steps:

simulate synthetic observations from each member i

used as the NR, solve the assimilation problem using

the ensemble (leaving out member i), and then assess

the quality of the updated ensemble using member i as

verification, and the prior ensemble as the control run.

The problem must thus be solved m times and can be

computationally expensive depending on the ensem-

ble size, which could be a limiting factor. Nonetheless,

this approach can be applied in four dimensions (e.g.,

forecast context) despite demanding computational

resources.

After accumulating enough realizations, an objective

validation of the updated ensemble can be performed

using probabilistic skill scores, typically decomposed

into two properties: the reliability and the resolution

[see Candille et al. (2015) for more detail]. The reli-

ability checks the statistical consistency of the updated

ensemble against the verifying member i. This is a nec-

essary condition; however, reliability itself does not

ensure a skillful probabilistic system, the resolution

property is also required. In the context of OSSEs,

the resolution can be seen as the system’s ability to

provide additional information (i.e., to reduce the un-

certainty) after assimilating the synthetic observations

from different candidate observing networks, or put

in other words, the actual performance of the tested

observing scenario. Practical ways to determine the re-

liability and the resolution are given below.

FIG. 1. Schematic of the cross-validation algorithm computed over an m-member ensemble. The data assimilation steps are shaded

in gray.
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b. Probabilistic validation: An overview

The reliability can be graphically checked using rank

histograms (see review by Hamill 2001). For scalar

variables (e.g., sea level pressure or sea surface tem-

perature), this skill score provides a graphic examina-

tion of the updated ensemble values with respect to the

verifying data (in the present case from member i used

as the NR and verification). The underlying principle

is to rank the verification in the m-ensemble member

values at each grid point. This process is repeated over

all available realizations, considered independents

to build a histogram over the possible ranks. The up-

dated ensemble is considered to be reliable when it

shows a flat rank histogram (i.e., a uniform distribution).

An underdispersive updated ensemble will exhibit a

U shape, meaning that a lack of variability in the

ensemble underpopulates the middle ranks. In con-

trast, when the ensemble member values are from a

distribution with an excess of variability, a bell shape

results and the updated ensemble is called overdispersive.

Additionally, a positive (or negative) bias in the update

ensemble excessively populates the left (or the right)

side of the rank histogram. However, the rank histo-

grams do not allow evaluating the resolution, other

tools are required to have a further assessment of any

probabilistic system.

The continuous rank probability score (CRPS; Stanski

et al. 1989; Hersbach 2000) is often used to provide a

global skill assessment as it evaluates both the re-

liability and the resolution (e.g., Candille et al. 2007,

2015). For a given scalar variable, the CRPS is based

on the square difference between the cumulative dis-

tribution function (CDF) of the updated ensemble

and the CDF of the verifying member. The CRPS

is similar to the mean absolute error typically used

in deterministic OSSEs, and it has the dimension of

the considered variables. In practice, the CRPS is

integrated over an area and is typically averaged over

the ensemble size, and therefore, it does not show the

local impact of observations per se obtained by issu-

ing ensemble OSSEs. This issue with the CRPS can

make it difficult to discriminate different tested

observing scenarios, leading the community to con-

sider other types of verification tools for the resolution

property.

Some studies (e.g., Roulston and Smith 2002; Bröcker
and Smith 2007; Benedetti 2010; Peirolo 2011) suggest

using information theory, and its concept of entropy

to avoid condensing all the information gained by

assimilating observations into a single numerical value.

To this end, a probabilistic score based on entropy is

introduced below.

c. Information theory: An alternative framework for a
skill score

Let us first consider two PDFs, defined by two vec-

tors p and q, assuming that p is the ‘‘true’’ distribution

of a defined variable (e.g., sea level pressure or sea

surface temperature) and q is the forecast PDF of this

variable generated by an ensemble. One may use in-

formation theory to assess the quality of this fore-

cast PDF. Nonetheless, prior to the definition of any

information-based probabilistic score, three quanti-

ties need to be introduced, the entropy, the relative

entropy and the cross entropy. The main concern here is

only to present basic definitions of information theory,

further detail can be found in Cover and Thomas (2012).

The concept of information entropy has been intro-

duced by Shannon (1948) to quantify how much in-

formation (uncertainty) is produced by a stochastic

process and is given by

H(p)52�
n

i51

p
i
log

2
p
i
, (1)

where H(p) is the information entropy, that is, the

minimum possible number of bits required to encode

the ith occurring event (where i5 1, . . . , n) from p. The

relative entropy D(pjq) is a typical measure of the dis-

tance between p and q, given by

D(pjq)5�
n

i51

(p
i
log

2
p
i
2 p

i
log

2
q
i
) . (2)

As stated by Cover and Thomas (2012), the relative

entropy (also known as the Kullback–Leibler diver-

gence) is not a true distance between p and q; it can

rather be interpreted as the number of extra bits required

to encode on the average any events drawn from the dis-

tribution q rather than p (considering that p is the ‘‘true’’

distribution). The average number of total bits assigned

to the events distributed by q rather than p is defined as

H(p, q)5H(p)1D(pjq) , (3)

where H(p, q) is known as the cross entropy. Since en-

tropy corresponds to the minimum of encoded bits, note

that H(p, q) . H(p) [except if q 5 p, then H(p, q) 5
H(p)]. Combining (1) and (2), cross entropy can be

written as

H(p,q)52�
n

i51

p
i
log

2
q
i
. (4)

Roulston and Smith (2002) defined H(p, q) as the

expected value of ignorance (IGN), also referred to

as information deficit, a skill score used in their study
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for the evaluation of probabilistic forecasts that were

compared against a nature run. Roulston and Smith

(2002) pointed out that a single minimum of IGN

could be found if and only if the forecast PDF q co-

incides with the true PDF drawn by the nature run p (i.e.,

when q 5 p and D(pjq) is null). Based on this condition,

Roulston and Smith (2002) suggested that on average

over a large set of forecasts, the expected ignorance can

be interpreted as the entropy of the forecast H(q) itself.

To assess the effective impact of assimilating ob-

servations within the OSSE framework, one may nor-

malize the expected ignorance score (e.g., on a common

scale from 0 to 1) to facilitate comparisons between the

different tested observing scenarios, as IGN values may

vary depending on the shape and/or the sample size of

the considered PDF. For instance, if the probabilistic

distribution q considered to represent the true dis-

tribution p is uniform (i.e., the outcome of any event

is equally probable), the entropy of a random variable

x taking i 5 1, . . . , n values is maximized by qi 5 1/n,

and a maximum value of entropy Hmax is given by

log2n (Shannon 1948). However, if a nonuniform

probability distribution q is considered to represent

p, qi 6¼ 1/n, and thus, Hmax , log2n.

Assuming that, over a large set of independent reali-

zations, the average entropy is a good estimate of

ignorance, a normalized IGN skill score (hereinafter

IGNn) defined over the [0, 1] interval can be com-

puted as the ratio between entropy H(p) and cross-

entropy H(p, q), since H(p, q) $ H(p):

IGN
n
5

H(p)

H(p, q)
. (5)

In what follows, a simple example is presented to

connect the theory in this subsection to the results

later. Consider a PDF of chlorophyll produced by an

ensemble simulation for each grid point over the

North Atlantic, and the binary event of whether the

chlorophyll will be below or above the observed sea-

sonal mean. In that simple case, the initial PDF p is

the chlorophyll PDF for each geographical location,

while the distribution q is just a threshold value corre-

sponding to the seasonal mean at each location. A map

of the event’s outcomes can be constructed by counting

the number of ensemblemembers that are below or above

the mean value. Ignorance can then be used to measure

how well the ensemble agrees with the seasonal mean.

d. Summary: A verification package to evaluate
ensemble OSSEs

How to produce probabilistic OSSEs, and how to eval-

uate them is our focus in this paper. A cross-validation

algorithm was proposed to take into account multi-

nature runs instead of one, and use a suite of verifi-

cation tools that enable a comprehensive evaluation of

the information brought by the observations based

on two properties of any probabilistic system, the re-

liability and the resolution. The reliability can first be

assessed using the rank histograms, while a global

evaluation of each OSSE performance can then be

achieved using the CRPS, as it provides a condensed

evaluation of the system’s reliability and resolution.

To examine the spatial distribution of the observation

impact, one can further investigate the resolution

property by using the normalized ignorance skill score

presented above.

4. Experiment design: A biogeochemical
application

For marine biogeochemistry, several recent studies

(Dowd 2011; Doron et al. 2011, 2013; Fontana et al.

2013; Garnier et al. 2016) have made use of using a

stochastic-like formulation to correct model uncertainties,

which can play a key role in estimating the dynamical

behavior of marine ecosystems. The effect of these un-

certainties are mostly the result of nonlinearities in the

model equations and various biogeochemical model im-

perfections (e.g., simplified biology, unresolved biological

diversity, unresolved scales).

The recent ensemble simulation from Garnier

et al. (2016) used stochastic processes to explic-

itly simulate the joint effects of uncertain biological

parameters and unresolved scales into a coupled

physical–biogeochemical model in a 1/48 North At-

lantic configuration. The ensemble was able to simu-

late consistent surface chlorophyll distributions with

satellite ocean color data (SeaWiFS) over the North

Atlantic basin. Only relevant features of this ensem-

ble simulation (hereinafter the prior ensemble) are

presented below, while a thorough description along

with the model configuration can be found in Garnier

et al. (2016).

As part of AtlantOS and building on the experi-

ence inherited from this study, a set of biogeochemical

ensemble OSSEs (see next section) has been per-

formed to investigate the impact on the prior ensemble

of assimilating synthetic observations from two possible

BGC-Argo array distributions, including their combi-

nation with satellite ocean color data. Nevertheless,

as we are using a large (60 member) ensemble simu-

lation, it was decided to restrict this application to a

single assimilation time step (i.e., no feed forward

impacts), in order to reduce the numerical cost of the

biogeochemical OSSEs.
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Our approach here can thus be seen as a showcase

rather than as a thorough assessment of the tested

observing scenarios, and so one needs to keep in mind

that any guidelines resulting from these OSSEs can

only be considered as preliminary insights for future

assimilation experiments.

a. The probabilistic coupled
physical–biogeochemical model

The physical component of the model is based on the

NEMO/OPA code (Madec 2008) implemented in the

North Atlantic Ocean at 1/48 horizontal resolution, in-
cluding 46 vertical levels (a DRAKKAR configuration

called NATL025; Barnier et al. 2006). The model is

forced by the ERA-Interim ECMWF atmospheric

fields (Uppala et al. 2005). NATL025 was initialized

with the Levitus climatology (Levitus et al. 1998)

to generate a 13-yr physical model spinup. The bio-

geochemical component of the coupled ensemble sim-

ulation is the PISCES-v2 (Aumont et al. 2015) model at

1/48 horizontal resolution, covering the NATL025

domain from 208S to 808N and from 988W to 238E.
PISCES-v2 contains 24 prognostic biogeochemical

variables that are advected and diffused in three-

dimensional space and at each time step by the physical

model. The regional 1/48 PISCES-v2 model was ini-

tialized in January 2002 from a global 1/48 PISCES-v2
simulation to generate a biogeochemical spinup of

3 years between January 2002 and December 2004.

Note that all members have same atmospheric forc-

ing, and the physical ocean components (i.e., u, y,

temperature, and salinity) do not vary with ensemble

member. Only key biogeochemical variables with a

direct impact on primary production vary.

The prior ensemble described in Garnier et al. (2016),

includes 60 members over a 1-yr period based on direct

stochastic parameterizations (following Brankart et al.

2015) of two classes of biogeochemical uncertainties,

resulting from approximated biogeochemical param-

eters and unresolved scales. The stochastic parame-

terizations are uniformly implemented over the water

column, though necessarily the simplest, this approach

is a realistic hypothesis as each ensemble member is

able to simulate coherent vertical distributions with

various behaviors at a given grid point between the

different members. Despite a slight underdispersion,

the surface chlorophyll patterns simulated by the prior

ensemble were found to be consistent with SeaWiFS

observations for three dates during 2005 that exhibit

different biological activity features. Below the surface,

the vertical structure of chlorophyll was correctly repre-

sented over the euphotic layer (0–200m) and appeared

to be strongly correlated with the surface distribution.

As explained above, the cross-validation algorithm is

only applied to a three-dimensional (3D) assimilation

problem, that is, for 15 April 2005, which is roughly a

month before the spring bloom period identified dur-

ingMay–June 2005. Overall, a good agreement is found

between SeaWiFS data (not shown) and the relatively

low surface chlorophyll concentrations described by

the ensemble members (see statistics in Fig. 2). Both

the ensemble and the observations show higher con-

centrations at latitudes between 308 and 508N (espe-

cially along the coasts), as well as an elongated structure

of lower chlorophyll centered on 208N. Among the en-

semble members, most of the chlorophyll dispersion is

observed along the Gulf Stream pathway and coastal

areas (see Fig. 2d), in addition to significant differ-

ences observed within the subtropical gyre. Inversely,

the chlorophyll dispersion is small in the Mediterra-

nean Sea and at high latitudes above 508N (e.g., south

of Greenland and in the Labrador Sea). Similar dis-

persion is shown at the subsurface down to 50m deep,

while below, lower ensemble dispersion in chlorophyll

is generally observed.

Within our application’s framework, the ensemble

simulation for 15 April 2005 describes the multinature

biogeochemical states that will be used to perform our

probabilistic OSSEs, for a single time step assimilation,

and so the evaluation of these experiments is limited to

the impact on spatial patterns.

b. The data assimilation method

The assimilation update scheme is based on a lo-

calized version of a square root algorithm in ensemble

Kalman filters (e.g., Bishop et al. 2001; Evensen 2003).

A eigenbasis algorithm [see Brankart et al. (2010) for

more detail] is used to efficiently generate the observa-

tional update, based on the singular evolutive extended

Kalman (SEEK) proposed by Pham et al. (1998). The ith

prior ensemblemember (where i5 1, . . . ,m andm5 60)

is individually updated and decomposed as

x
pr
i 5 xpr 1 dx

pr
i , (6)

where xpr is the prior ensemble mean and dx
pr
i the cor-

responding anomalies, which are written in square root

form to compute the observational update using the

eigenbasis algorithm, as described in Brankart et al.

(2010). For this purpose, the following eigenbasis de-

composition of the matrix G is computed:

G5 (HSpr)
T
R21(HSpr)5UL21U , (7)

where (HSpr) is the square root covariance of the prior

ensemble matrix in the observation space, and R is the
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observation error covariance matrix. The eigenvalues

and the eigenvectors of G are provided by L (diagonal

matrix), and U (the unitary matrix). Note that R is a

diagonal matrix in which entries inside the main di-

agonal are the observation error standard deviation

associated with each synthetic observation. This value

takes into account both instrumental and representa-

tivity errors, and is set to 30% of the chlorophyll

concentration (see next section) to be consistent with

previous studies that only assimilated ocean color data

(e.g., Ciavatta et al. 2011; Fontana et al. 2013; Ford and

Barciela 2017).

The updated ensemble mean xup is then defined using

the matrix G as

xup 5 xpr 1SprU(I1L)21UT(HSpr)
T
R21(y

0
2Hxpr) ,

(8)

while each ith updated ensemble anomaly is defined

as

dx
up
i 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 1

p
[SprU(I1L)21/2L21/2UT]

i
. (9)

Now, each updated member dx
up
i can be rewritten as

the sum of the updated ensemble mean and the updated

anomalies:

x
up
i 5 xup 1 dx

up
i . (10)

Furthermore, considering the nonlinear relation-

ships between the different biogeochemical state

PISCES-v2 variables and associated parameters, the

useful Gaussian assumption (i.e., which allows linear

transformations to solve the observational update

problem) is not expected to hold. Therefore, anamor-

phosis transformations (e.g., Bertino et al. 2003; Béal
et al. 2010) are applied to each separate variable of the

state vector prior to the ensemble update to ensure that

the marginal PDF of each variable becomes close to

Gaussian, as it has been previously done in related

studies (e.g., Doron et al. 2011, 2013; Fontana et al.

2013). With anamorphosis, the specification of the

observation errors needs to take into account the

nonlinear transformation applied to state variables,

and so the error associated with each observation is

set following Brankart et al. (2012), that is, by mul-

tiplying the observation error standard deviation by

the local slope of the anamorphosis transformation.

The inverse local anamorphosis transformations are

performed after assimilation to return to the original

model space. The anamorphosis presents two advan-

tages: 1) a better description of the relationship be-

tween observed and nonobserved variables and 2) a

FIG. 2. Statistics of the surface chlorophyll distribution simulated by prior ensemble simulation for 15 Apr 2005.

Surface chlorophyll ensemble (a) minimum and (c) maximum. (b) The surface chlorophyll ensemble mean and

(d) the standard deviation (std). The color bar is in log10 scale in (a)–(c).
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parameterization of the error statistics that avoids

obtaining negative values for the concentration vari-

ables of the state vector after the assimilation step.

For the sake of clarity, Fig. 3 presents the main steps

of how anamorphosis is applied within the assimila-

tion system. While, the anamorphosis approach has

been shown to provide an effective way of describing

uncertainties in coupled physical–biogeochemical

models (e.g., Doron et al. 2011; Brankart et al. 2012;

Fontana et al. 2013), a possible alternative to the ana-

morphosis algorithm applied in this paper would be to

use the gamma, inverse-gamma, and Gaussian EnKF

(GIGG-EnKF) developed by Bishop (2016). Even

though the GIGG-EnKF is more suited for variables

whose uncertainty is well represented by gamma and/or

inverse-gamma distributions, it may also be appro-

priate to deal with biogeochemical variables (e.g., chlo-

rophyll concentrations), and thus be applicable to ocean

biogeochemical assimilation systems.

A localization algorithm (Brankart et al. 2011) is

also used to avoid unrealistic effects of large spatial

correlations. The assimilation of the synthetic observa-

tions is performed locally, limited by a radius of influ-

ence set to one grid point and the cutoff radius (i.e., the

distance at which the weight of the observations is

negligible) to three grid points. These two values are

based on various assimilation experiments that aimed

to determine a noticeable spread reduction of the

updated ensemble without degrading the probabilis-

tic reliability property.

The System of Sequential Assimilation Modules

(SESAM) software [see Brankart et al. (2012) for

further detail] was used to compute all matrix oper-

ations required by the assimilation scheme, such as

the innovation vector y0 2Hxpr, the assimilation update

and associated covariance errors. The state vector in-

cluded all prognostic biogeochemical state variables

of PISCES-v2 (no dynamics as mentioned above),

meaning that the assimilation update was multivariate.

c. Synthetic chlorophyll observations

The assimilated datasets include chlorophyll concen-

trations simulated at the locations of real satellite ocean

color data observed for 1 January 2009 and daily Argo

float trajectories generated as part of AtlantOS. Ocean

color observations were simulated based on the actual

data coverage provided by CMEMS, that is, the global

level three daily merged product gridded at a spatial

resolution of 4 km on an sinusoidal grid (detailed in-

formation is given in the product user manual, available

online at http://marine.copernicus.eu/documents/PUM/

CMEMS-OC-PUM-009-ALL.pdf). The derived chlo-

rophyll product that is used in this study has been gen-

erated by ACRI-ST (http://hermes.acri.fr) using the

Copernicus-GlobColour processor (see Maritorena

et al. 2010), and based on the three sensors available

in 2009 [MODIS Aqua, SeaWiFS, and Medium Res-

olution Imaging Spectrometer (MERIS)]. The daily

ocean color data coverage is similar between 2009

and present day, though the current dataset is origi-

nating from the three merged sensors MODIS Aqua,

Ocean and Land Colour Instrument (OLCI), and VIIRS.

It is noteworthy that selecting the ocean color data cov-

erage from 1 January 2009 was not an arbitrary choice;

it allows us to compare contrasted regions (whether

ocean color is available or not) in ‘‘test mode’’ before

conducting future OSSEs over the year 2009, and so to

keep pace with the companion study led by the Met Of-

fice that performed deterministic OSSEs in ‘‘operational

mode’’ from 1 January to 31 December 2009.

The BGC-Argo trajectories are based on a quasi-

homogeneous global distribution (see Gasparin et al.

2019) with around one profile per 38 3 38 box per

10 days over the 2009–11 period. To avoid under-

sampling in the tropics and in the South Atlantic re-

gion, some artificial float trajectories were added to

the dataset of 2009 from the float profiles deployed in

2010 prior to performing the AtlantOS physical OSSEs.

Here, a first BGC-Argo distribution was considered

by aggregating those float positions over a full cycle of

10 days (i.e., from 1 to 10 January 2009). In practice, it

corresponds to having biogeochemical profiles at the

same spatial and temporal resolution as T/S profiles

recorded by the actual Argo array (;4000 floats). A

second BGC-Argo distribution was also considered

by aggregating this time the float trajectories over

3 days (1–3 January 2009), representing about a quarter

of the existing Argo floats (;1000 floats).

As we mentioned above, the observation error as-

sociated with the chlorophyll concentration was set

to 30%, for the satellite ocean color and the two

BGC-Argo arrays, a value used in other studies (e.g.,

Fontana et al. 2013; Ciavatta et al. 2018). The data cov-

erage of the two BGC-Argo distributions and the daily

FIG. 3. Schematic describing how local anamorphosis transformations (gray shading) are applied to each model variable over the

60-member PISCES probabilistic simulation.
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ocean color observations for 1 January 2009 are pre-

sented in Fig. 4.

5. Experiments

We present in this section a series of four basic

experiments assessing the impact of chlorophyll ob-

servations on the prior ensemble simulation, including

some preliminary recommendations for the assimilation

of BGC-Argo data in the North Atlantic, and further

perspectives of development.

a. Scenarios under consideration

Within the AtlantOS initiative, dedicated OSSEs

are performed to assess the value of the future extension

of Argo to biogeochemical variables (see Johnson and

Claustre 2016a) in close synergy with existing satellite

ocean color data (which are only effective near the sea

surface and in cloud-free conditions). It is expected that

such a system would enable an unprecedented com-

prehensive view of the interactions between climate and

marine ecosystems (e.g., variability in biological pro-

ductivity, ocean uptake of CO2, or ocean acidification).

The focus here is set on assessing the two distributions

of BGC-Argo floats described above (see experiments

A and B in Table 1). The first distribution was chosen

because it represents the target number of BGC-Argo

floats (Johnson and Claustre 2016b), while the second

distribution was selected to be the closest of the existing

Argo array to assess the value of having biogeochemical

sensors on all floats. The floats are considered to have

chlorophyll, nitrate, and oxygen sensors, though our

main concern here is to only assess the impact of as-

similating synthetic chlorophyll observations. Two

additional experiments that combine the two BGC-Argo

arrays and the daily CMEMS ocean color data cov-

erage (experiments C and D in Table 1) were also

performed to assess the benefits of adding BGC-Argo

arrays to the satellite ocean color system.

b. Impact of the observing scenarios

The four experiments presented above are evaluated

using a classical deterministic score that relies on RMS

errors, followed by probabilistic diagnostics using the

rank histogram technique and the ignorance skill score

(i.e., an information theoretic measure based on en-

tropy) to evaluate the reliability and the resolution,

respectively. The scoring results associated with the

CRPS are however not shown, as it only provides a

single number summary for both skill score proper-

ties that do not reflect the local impact of the syn-

thetic chlorophyll observations after the assimilation

step, and making it difficult to discriminate the four

conducted experiments. In addition, we found that

heterogeneous chlorophyll patterns with concentra-

tions of different order of magnitude were mixed within

each area used to compute the CRPS, which could give a

misleading skill score for each experiment.

1) RMS ERROR METRIC

The impact of chlorophyll observations for each

tested scenario can be assessed using a RMSE-based

FIG. 4. Assimilated observation networks to assess the defined scenarios at dates as indicated in legends (see upper-right corner of each

panel). (a) Blue dots indicate a quasi-homogeneous Argo distribution, around one profile per 38 3 38 box per 10 days; (b) green dots

indicate a 1/4 subsample of this Argo array, and (c) daily ocean color tracks extracted from the Copernicus Marine Environment

Monitoring Service (CMEMS) database.

TABLE 1. List of experiments performed to evaluate basic

BGC-Argo future deployments.

Experiments Data assimilated and configuration

A BGC-Argo on 1/4 of the nominal Argo array

(;1000 floats)

B BGC-Argo on the full nominal Argo array

(;4000 floats)

C Daily satellite ocean color data and BGC-Argo

on 1/4 of the nominal array

D Daily satellite ocean color data and BGC-Argo

on the nominal array
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score (Fig. 5), as it is classically done with deterministic

OSSEs, though as stated before there is no interpreta-

tion in terms of probability. For this purpose, the mean

surface chlorophyll RMS errors between the ensemble

(before and after assimilation) and each left outmember

used as the verification were first computed. The RMS

error ratio (i.e., between the updated ensemble and the

prior ensemble) was then calculated to give some in-

sights about the observation system ability to reduce the

prior uncertainty, and defined as

RMSE
r
5

�
m

i51

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
m21

j 6¼ i

(x
up
j 2 x

i
)
2

m2 1

vuuut

�
m

i51

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
m21

j 6¼ i

(x
pr
j 2 x

i
)
2

m2 1

vuuut
, (11)

where x
up
j and x

pr
j are, respectively, each ensemble

member for the updated and the prior ensembles

(with j 5 1, . . . , m 2 1 and m 5 60). The same ver-

ifying member is used before and after assimilat-

ing the synthetic observations, and is noted xi (with

i 5 1, . . . , m).

The prior ensemble uncertainty related with surface

chlorophyll is only reduced locally for the experiments

A and B (Figs. 5a,b), where the synthetic observa-

tions of BGC-Argo floats are assimilated. In contrast,

the two experiments combining both ocean color and

BGC-Argo data (Figs. 5c,d) produce a widespread

reduction (about 40%–50%) of the mean surface chlo-

rophyll RMS error ratio (RMSEr) over a zonal band

across the Atlantic basin at around 308N, as well as into

the Gulf ofMexico and in the Caribbean Sea. Significant

error reduction of about the same magnitude is also

observed around 358N, 108W (near the Gibraltar Strait)

and south of 108S, where RMSEr patterns are more

patchy. As we could expect, the prior uncertainty asso-

ciated with the surface chlorophyll is mostly reduced

over the best satellite coverage, that is, where most of

the synthetic ocean color data have been assimilated;

however, significant changes are surprisingly not ob-

served between experiments C and D.

Below the surface, RMSEr values (not shown) for

experiments A and B show only minor changes over

the upper 200m, while those for experiments C and D

reveal complex vertical structures due to the assimila-

tion of surface chlorophyll. This can be explained by

the strong correlation between the surface chlorophyll

FIG. 5. Ratio of mean surface chlorophyll RMS errors between the updated ensemble and the prior ensemble for

the defined scenarios. (a) BGC-Argo sensors on a quarter of the nominal Argo array, (b) BGC-Argo sensors on the

full nominalArgo array, (c) daily satellite ocean color data andBGC-Argo on 1/4 of the nominal array, and (d) daily

satellite ocean color data and BGC-Argo on the nominal array.
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distribution and the vertical chlorophyll patterns, as

pointed out in section 4a. However, these RMSEr ver-

tical structures bring only little information regarding

the reduction or not of the prior uncertainty along the

vertical axis, and so we are not able to thoroughly assess

the impact of assimilating BGC-Argo floats below the

surface using this RMS error metric.

2) RANK SPATIAL DISTRIBUTIONS AND

ASSOCIATED HISTOGRAMS

To take into account the various marine ecosystem’s

behaviors encountered across the globe, Longhurst (1995)

proposed a comprehensive partition of the ocean into

biogeochemical provinces (also known as regions)

defined by both ocean dynamics and sea surface chlo-

rophyll features. In Fig. 6, the local ranks are only ac-

cumulated at the surface over two biogeochemical regions

across the Atlantic basin to avoid aggregating too hetero-

geneous chlorophyll patterns, such as those found near the

coasts or over the Gulf Stream area. These two prov-

inces have been defined in Longhurst (1995) as the North

Atlantic subtropical west (NASW) and the North Atlantic

subtropical east (NASE) provinces.

The resulting rank histograms are fairly flat for

experiments A and B (Figs. 7a,b), suggesting that the

chlorophyll distribution of the updated ensemble is

reliable (i.e., statistically consistent vis-à-vis the veri-

fication). However, a slight underdispersion (U-shape

rank histograms) is identified for both experiments C

and D (Figs. 7c,d), meaning that some verifications

(about 20%) fall outside the ensemble after assimila-

tion. Most of these outliers are found near 308N be-

tween 608 and 208W (Figs. 6c,d), where some extreme

rank values (i.e., 0 or 1) can be observed. This might be

due to a lack of variability (too small spread) within

the prior ensemble or a slight bias in the assimilation

process, where unrealistic surface chlorophyll corre-

lation patterns could have been taken into account.

Nevertheless, the rank histograms related to the en-

semble members from experiments C andD are not far

from being uniform, and so the reliability of surface

chlorophyll distribution is considered to be verified.

Note that adding ranks at greater depths does not sig-

nificantly affect the rank histogram construction, while

some changes in rank histogram shapes (although they

remain nearly flat) can be found between the different

Longhurst-defined provinces located in the North

Atlantic Ocean (not shown).

3) ENTROPY-BASED SKILL SCORE

The main concern here is to present the impact of the

chlorophyll observations using our modified ignorance

FIG. 6. Local rank distributions (see color bar) of surface chlorophyll over two Longhurst-defined ecological prov-

inces located at themidlatitudes across theNorthAtlantic for the defined scenarios. (a) BGC-Argo sensors on a quarter

of the nominalArgo array, (b)BGC-Argo sensors on the full nominalArgo array, (c) daily satellite ocean color data and

BGC-Argo on 1/4 of the nominal array, and (d) daily satellite ocean color data and BGC-Argo on the nominal array.
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skill score IGNn. Following the example presented in

the section 3c, we first need to identify a set of prob-

abilistic events that are relevant to compare the dif-

ferent scenarios. IGNn can then give a simple measure

of the average information deficit with respect to the

chosen occurring event. As a first attempt and for the

sake of simplicity, let us consider the following binary

event: ‘‘being below/above the median at the surface

of the prior ensemble PDF.’’ In other words, this

simple event aims to examine the spread of the chlo-

rophyll distribution described by the ensemble after

assimilation, compared to the values of surface chlo-

rophyll concentration of the prior ensemble median.

In that binary case, the probability distribution p is

uniform and when p 5 0.5, entropy H(p) is at a maxi-

mum of 1 bit. In addition, cross-entropyH(p, q) equals

H(p)max, as q 5 1 2 p 5 0.5, and so entropy itself

represents how much information deficit (uncertainty)

is reduced after assimilation.

The surface entropy maps with respect to chloro-

phyll (Fig. 8) show, as expected, a reduction of prior

uncertainty (i.e., entropy , 1 bit) where chlorophyll

observations were assimilated. For experimentsA andB

(Figs. 8a,b), the uncertainty is reduced locally at the

positions of the synthetic BGC-Argo floats (entropy

ranging from about 0.4 to 0.8 bit), which conforms

with the RMSEr results. For experiments C and D

(Figs. 8c,d), the uncertainty reduction mostly occurs

over the best satellite data coverage, that is, at around

308N across the basin, where RMSEr values suggested

a spread contraction of the updated ensemble. Close

inspection of the IGNn values suggests a significant

information gain in experiment D compared to ex-

periment C, especially where more floats were added

(e.g., in the equatorial region between 108S and 108N),

whereas the corresponding RMSEr values showed little

changes. Nevertheless, going toward lower IGNn clearly

suggests that information is added regarding the pre-

vious statement: ‘‘being below/above the median at the

surface of the prior ensemble PDF,’’ while the RMSEr

values have no particular meaning.

Near 50-m depth (near the maximum chlorophyll

depth), knowledge with respect to the similar state-

ment is mostly added by the two scenarios with the

BGC-Argo arrays only (Figs. 9a,b), though significant

gain is obtained over the 308N latitudinal band and

FIG. 7. Rank histograms of surface chlorophyll concentrations over the two Longhurst-defined ecological

provinces located in the North Atlantic subtropical region for the defined scenarios. (a) BGC-Argo sensors on a

quarter of the nominal Argo array, (b) BGC-Argo sensors on the full nominal Argo array, (c) daily satellite ocean

color data andBGC-Argo on 1/4 of the nominal array, and (d) daily satellite ocean color data andBGC-Argo on the

nominal array. For each grid point and all sorted members, the rank histogram indicates the frequency of occur-

rence (in percent) of the verifying value of chlorophyll. The red line indicates the ranks for a flat histogram.

DECEMBER 2019 GERM INEAUD ET AL . 2319



south of 108S in experiments C and D (Figs. 9c,d).

Note that the event ‘‘being below/above the median at

the surface of the prior ensemble PDF’’ is not certain

to occur in the updated ensemble at 50-m depth (un-

like at the surface), and therefore, some areas in the

maps where IGNn 5 0 are observed.

To further compare the different deployment sce-

narios, we examine a longitudinal section as a func-

tion of depth at 308N. For the two first experiments

(Figs. 10a,b), most of the impact is observed between

50- and 150-m depth, associated with evident vertical

correlation structures. Nevertheless, a surprising result

is that entropy exhibits quite similar patterns between

the two BGC-Argo array distributions, suggesting that

having an observing system with chlorophyll sensors on

all existing Argo floats does not provide much more

information (about the considered event) than having

those sensors on about a quarter of the floats. Note that

similar results are found for other longitudinal sections,

for example at 58N (see Fig. 11). However, further

experiments that last longer than a day (e.g., a monthly

period) will likely suggest some differences between

the two BGC-Argo arrays.

As for experiments C and D (Figs. 10c,d), the prior

uncertainty is further reduced at the surface down to

50–70-m depth, highlighting the impact of the satellite

ocean color observations along the vertical axis. Al-

though one may keep in mind that the strong corre-

lation between the surface chlorophyll and its vertical

distribution within the prior ensemble might lead to

overestimated impact assessment of ocean color data

over the uppermost euphotic layer.

Two other probabilistic events were also investigated

to compare the four deployment scenarios. The state-

ment ‘‘being inside/outside the quantile range 0.4–0.6

at the surface of the prior ensemble PDF’’ was con-

sidered to compute our ignorance skill score, and screen

the updated ensemble PDF in relation to the surface

chlorophyll concentrations distributed around the prior

ensemblemean. To examine the updated ensemble PDF

compared to the prior ensemble tails, we finally com-

puted the IGNn of ‘‘being inside/outside the quantile

range 0.2–0.8 at the surface of the prior ensemble PDF.’’

Both cases exhibit similar spatial distributions of en-

tropy compared to those obtained with the first prob-

abilistic event, and so bring few additional information,

FIG. 8. IGNnmap of ‘‘being below/above the median of chlorophyll at the surface of the prior ensemble PDF’’

for its occurrence at the surface in the updated ensemble, and for the defined scenarios. (a) BGC-Argo sensors

on a quarter of the nominal Argo array, (b) BGC-Argo sensors on the full nominal Argo array, (c) daily satellite

ocean color data and BGC-Argo on 1/4 of the nominal array, and (d) daily satellite ocean color data and

BGC-Argo on the nominal array. Red indicates the highest values of ignorance regarding the considered proba-

bilistic event.
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though some differences in IGNn values (i.e., the amount

of bits) were noticed.

c. Assimilation of BGC-Argo data: Preliminary
results and perspectives

The experiments presented above suggest that as-

similating BGC-Argo floats significantly reduces the

uncertainty associated with chlorophyll within the

prior ensemble. A comparison of four basic deploy-

ment scenarios was first carried out using a classical

metric relying on ratio of RMS misfits between the

updated ensemble and the prior ensemble. The value

of adding BGC-Argo to the actual satellite ocean color

constellation was mostly observed where the satellite

coverage is limited (i.e., at the northernmost latitudes

and over the equatorial region between 108S and 108N).

At the subsurface down to 150–200m, the RMS error–

like metric indicated strong vertical correlation struc-

tures, though it was not possible to make meaningful

comparisons between the different scenarios. How-

ever, based on these first RMS error diagnostics, a

straightforward recommendation, even if not new, is

to deploy BGC-Argo floats with the highest sampling

frequencies in regions that are statistically more cloudy.

Further experiments may thus investigate the float den-

sity required in those regions to complement in an opti-

mal way the chlorophyll observations obtained by spatial

ocean color sensors.

Regarding the probabilistic validation, we success-

fully assessed the statistical reliability of each con-

ducted experiment using the rank histogram technique,

as is done at NWP centers with ensemble forecasts.

To investigate the actual impact of assimilating syn-

thetic chlorophyll observations, we used a metric based

on information entropy as previously done in few studies

for probabilistic forecast schemes (e.g., Roulston and

Smith 2002; Benedetti 2010; Peirolo 2011). For sim-

plicity, we chose to look only at binary events such

as ‘‘being below/above the median at the surface of

the prior ensemble PDF,’’ although this entropy-based

score can easily be extended beyond Bernoulli trials

(i.e., experiments with more than two possible out-

comes). At the surface, most of the information rel-

ative to the event selected above was gained, as expected,

where the synthetic observations were assimilated. Be-

low, the impact of satellite ocean color data is suggested

FIG. 9. IGNnmap of ‘‘being below/above themedian of chlorophyll at the surface of the prior ensemble PDF’’ for

its occurrence at 52-m depth in the updated ensemble, and for the defined scenarios. (a) BGC-Argo sensors on a

quarter of the nominal Argo array, (b) BGC-Argo sensors on the full nominal Argo array, (c) daily satellite ocean

color data andBGC-Argo on 1/4 of the nominal array, and (d) daily satellite ocean color data andBGC-Argo on the

nominal array. Red and blue indicate, respectively, high and low ignorance, with respect to the considered

probabilistic event.
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to be confined over the top 50m, while the chlorophyll

observations from the two BGC-Argo arrays add infor-

mation mostly over the 50–150-m depth range.

The preliminary conclusions that can be drawn

from these ensemble-based OSSEs are 1) chlorophyll

observations from the two BGC-Argo arrays provide

valuable inputs in good synergy with ocean color

data, especially where satellite information is limited

such as over the equatorial region (consistent with the

RMS error diagnostics), 2) assimilating BGC-Argo data

lead to significant improvements at the subsurface, and

3) an array size of 1000 floats is a rational choice for

the BGC-Argo network, as it significantly reduces

the prior ensemble uncertainty. However, a realistic

and effective evaluation of assimilating chlorophyll

concentrations from both BGC-Argo array distribu-

tions must be performed in time as well (including

periods encompassing spring algal blooms), but this

is beyond the scope of this biogeochemical application,

which merely aims to illustrate the generic ensemble-

based OSSE approach presented in section 3. Note also

that assimilating biogeochemical data is still challeng-

ing and immature; further developments of the current

data-assimilation schemes may thus yield different re-

sults. Other sources of uncertainty should also be taken

into account to effectively assimilate chlorophyll ob-

servations. For example, uncertainties related to the

physical ocean components (e.g., temperature and

salinity) or uncertainties on other biogeochemical

variables (e.g., the dissolved oxygen concentration,

nitrates, or pH) may be introduced in the data-

assimilation scheme.

6. Conclusions

In this paper, a generic cross-validation approach

has been described to perform novel OSSE studies

when an ensemble of data-assimilative simulation run

is being used. Each ensemble member can be alter-

natively used as the ‘‘truth’’ to simulate synthetic ob-

servation data types (existing or not), while the other

available members can be used to produce an updated

ensemble that reflects the assimilated data. Two im-

portant advantages of this approach are 1) to provide

an explicit description of model uncertainty to ensemble

data assimilation systems, and 2) to allow objective

statistical comparison between the prior ensemble

system and the one updated by assimilation using a

set of probabilistic verification skill scores similar to

those routinely used in forecasting centers. Our approach

FIG. 10. Longitudinal section at 308N of the chlorophyll IGNn for the defined scenarios (color coded as in Fig. 9).

(a) BGC-Argo sensors on a quarter of the nominal Argo array, (b) BGC-Argo sensors on the full nominal Argo

array, (c) daily satellite ocean color data and BGC-Argo on 1/4 of the nominal array, and (d) daily satellite ocean

color data and BGC-Argo on the nominal array.
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also provides a useful framework to discriminate differ-

ent observing scenarios based on information-theoretic

measures such as entropy.

Nevertheless, conducting such observation impact

studies will strongly depends on the characteristics of the

data assimilation system (as with any related studies

based on OSE/OSSE systems), and requires an ensem-

ble of model simulations that is realistic. With our

method, the reliability of the OSSEs depends on the

capacity of the stochastic perturbations in the model

to provide a realistic description of model errors. This

may mean making substantial efforts to optimally

specify the various sources of uncertainty used to

produce the ensemble (i.e., in the initial conditions

and in the model’s equations). One must therefore

keep in mind that OSSE results need to be evaluated

in light of possible biases due to errors associated with

the ensemble used to perform the assimilation process.

The results depend also on the period defined for the

evaluation of the proposed observing scenarios, as well

as the type of synthetic data to be assimilated.

As part of the Horizon 2020 AtlantOS project, this

new ensemble-based OSSE methodology was applied

to a stochastic marine ecosystem model, in which un-

certainties related to uncertain biological parameters in

the model equations have been explicitly simulated

using stochastic processes. The application evaluated

herein is based on a single assimilation time step of

synthetic chlorophyll observations to showcase the

potential of our approach in assessing the quality of

future deployment scenarios of BGC-Argo arrays.

An important limitation of this cross validation method

is that it is rather expensive, and probably too expen-

sive if the model is embedded in the system, as for

instance if the objective is to evaluate the impact of

the observation scenario on the performance of an

ensemble forecast (performed after the ensemble ob-

servational update). The method would also be much

more difficult to apply in a cycling experiment because

of the need to control the spread of the ensemble in an

assimilation context. As a first attempt to keep trac-

table numerical costs, one may limit the assimilation

step to a subset of the ensemble size or perform multi-

3D analyses to build discrete time series. As a more

rigorous approach, a cost-effectiveness analysis could

be considered prior to conducting the OSSEs. This

analysis would allow to make trade-offs between the

model computer cost due to the assimilation process

(e.g., the number of select ensemble members, pa-

rameterization of the localization algorithm) and

FIG. 11. Longitudinal section at 58N of the chlorophyll IGNn for the defined scenarios (color coded as in Fig. 9).

(a) BGC-Argo sensors on a quarter of the nominal Argo array, (b) BGC-Argo sensors on the full nominal Argo

array, (c) daily satellite ocean color data and BGC-Argo on 1/4 of the nominal array, and (d) daily satellite ocean

color data and BGC-Argo on the nominal array.
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the gain of information brought by the assimilated

observations.
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APPENDIX

Acronyms

Some acronyms used in the text are listed here. Proper

names (e.g., names of specific institutions, projects and

systems such as ECMWF, AtlantOS, and NEMO/OPA,

respectively) are not expanded in the text when first

used. Note that DRAKKAR and NATL025 are not

acronyms just names.

AtlantOS All-Atlantic Ocean Observing System

ECMWF European Centre for Medium-Range

Weather Forecasts

GODAE Global Ocean Data Assimilation Experiment

NEMO/

OPA

Nucleus for European Modelling of the

Ocean/Océan Parallélisé
PISCES-

v2

Pelagic Interactions Scheme for Carbon

and Ecosystem Studies, volume 2

SeaWiFS Sea-Viewing Wide Field-of-View Sensor
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