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Abstract-This paper deals with the implementation of a Model 
Predictive Control (MPC) system for a classroom in a container 
building ventilation system and the associated indoor climate 
through controlling the airflow rate to the zone. A dynamic 
thermal model for the building system is formulated using the 
three resistors and two capacitors (3R2C) lumped capacitance 
method, and linearized using the Taylor's series expansion. This 
model is used for the proposed MPC implementation for ther
mal comfort management with energy optimization. Simulation 
results demonstrate the significance of the MPC controller in 
handling the constraints, multi-objective control, and producing 
optimal control strategy. The energy optimization results of 
the MPC have shown 31 % of energy consumption reduction 
compared to a conventional controller. 

Index Terms-Building energy, building energy management 
system, Model Predictive Control (MPC), simplified model, ther
mal modeling 

I, INTRODUCTION 

Energy consumption by the buildings has increased rapidly 
during last two decades, This presently constitutes more than 
one-third of the primary consumption in Europe, A major 
portion of this energy is directly used to keep thermal comfort 
of buildings habitants, On the other side, there are other 
parameters which also influence the indoor comfort such as: 
indoor air quality and visual comfort Careful maintenance 
of these comfort parameters is crucial to keep occupants 
healthy and productive, and are achievable by space Heating, 
Ventilation and Air-conditioning (HVAC) and lighting systems 
[l], 

It is also important to mention that although, all the new 
buildings are constructed as nearly zero-energy buildings, the 
goal to achieve considerable reduction of primary energy 
consumption by buildings will take much longer time because 
of enormous amount of inefficient existing buildings, Thus, it 
is important to develop of nearly zero-energy buildings and 
simultaneously working on retrofit of the existing ones [2], 
Therefore, an efficient/intelligent building control can provide 
a considerable reduction of the energy demand and C02 
emissions, 

In practice, three types of controllers have been in use for 
building energy management control [l], [3], 

• White box models: models based on fundamental laws of
thermodynamics, physics, heat transfer, and engineering

methods for thermal dynamic modeling, analysis and 
control, 

• Black box models: data driven thermal dynamic models,
which are developed on data basis,

• Grey box models: combination of physics-based models
(white box models) and data driven methods (black box
models),

Most of the existing buildings are equipped with simple 
set-point temperature control building management systems, 
without giving importance to reducing the energy consump
tion, leading to waste huge amounts of energy for maintaining 
thermal comfort White box models similar to the set-point 
temperature models, which are mostly single-objective, thus 
are least suitable for optimal energy control, Black box models 
are proving to be highly efficient, but collecting data for 
training these models is a difficult task, A promising solution 
for building energy management and comfort control is Model 
Predictive Control (MPC) [4]-[6], which is the combination of 
white box and black box modeL MPC has the capabilities to 
handle multi-objective control, with consideration of weather 
parameters, occupancy schedule, dynamic pricing for thermal 
comfort control, It also optimizes the energy consumption 
while maintaining the required temperature, and able to handle 
the constraints on input, output, and states of the system, These 
features of MPC make it ideal for building energy management 
systems, 

A large amount of research studies has been demonstrated in 
simulation-based dynamic optimal control that is implemented 
for efficient building management MPC controllers significant 
advantage is taking into consideration measurable disturbances 
(weather, occupancy, uncontrollable heating systems, etc,), 
and then producing the optimal control strategy, while better 
handling constraints impacting operating conditions [7], MPC 
can be applied to specific parameter of building systems 
such as: building cooling systems [6], indoor air quality [8], 
heating systems [9], ventilation [10], and energy management 
[l l], The application of MPC controllers performs better than 
conventional controllers, reducing the significant amount of 
energy consumption while maintaining specified comfort [12], 
[13], 

The objective of this paper is to design a model predictive 
controller as an alternative to the conventional controller, in 
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order to minimize energy consumption while satisfying the 
heating demand of the building and operational constraints. 
The aforementioned literature studies have explicitly discussed 
the implementation of MPC controllers on conventional build
ings. However, in our case study, the container building is 
chosen. The container building of CESI, Nanterre, France is 
used as a living lab for building research studies. 

This paper is organised as follows. Section 2 presents the 
container building details. Development of a lumped capaci
tance model for this building is detailed in section 3. Section 
4 explains the implementation of MPC controller, and results 
are compared over conventional controller in section 5. Finally, 
conclusions are drawn in section 6. 

II. DYNAMIC THERMAL MODELING

The CESI smart container building is used as an institutional 
building and research laboratory, located in the CESI Campus 
of Nanterre, France. This novel building is developed under the 
program PIA-French Programmes d'Investissement d' Avenir. 
It is built using eight recycled containers, has a net floor 
area of 250m2, and the meets the French energy standard
BBC (Batiment a Basse Consommation) [14]. Its state-of
the-art building systems, complex heating, ventilation and 
air conditioning system, and multi-purpose application makes 
it an ideal building to study different control and energy 
optimization related researches for container buildings. 

Fig. 1: CESI smart building, Nanterre, France 

Figure 1 shows main building of the CESI LINEACT 
research center, it consists 2 floors, 2 rooms per floor. The 
building is equipped with heating (heat pump), and ventilation 
system as the suppliers of heating/cooling energy. The case 
study room (Fig. 2) is used for multi-purpose: laboratory 
and classroom. The objective is to develop detailed lumped 
capacitance model, design MPC based on the model, and 
implementation. All other rooms in the building are similar 
to the case study room, thus the developed model can be 
implemented to the other rooms as well. 

The heterogeneous behaviour of building parameters makes 
the zone as a complex thermal system, a detailed formulation 
of heat and mass transfer mechanisms is impractical due to 
the highly nonlinear behaviour of the zone parameters. A 
simplified lumped capacitance approach is applied using the 
3R2C network for developing dynamic thermal model, where 

Case Study Room 

Fig. 2: Layout of 1st floor of CESI smart building. 

the zone air is assumed to be well mixed and walls are 
considered to have uniform temperatures across its volume. 
This simplified model approach helps to develop computa
tionally efficient and simple (low-order) model for control 
and prediction purposes. In this thermal network model, three 
R's and two C's are the composite wall resistances and 
capacitances, respectively. The values of R and C values 
are determined as detailed in [ 15], using high order Crank
Nicolson finite difference heat transfer model as a reference 
model, then determining R and C values by minimizing the 
errors between reference and 3R2C network model using 
particle swarm optimization. The simplified model considers 
the following parameters: 

• conduction heat transfer through walls and windows,
• convection heat transfer at the surface of external and

internal walls, and floors
• solar heat radiation through windows, and absorption and

emission of radiation in external walls.
• radiative heat transfer between walls,
• heating/cooling energy supplied by ventilation and heat

pump.

Since the building walls are constructed using different 
materials for different sides; north, south, east, and west, the 
3R2C thermal network model is developed separately for each 
wall, floor, and roof. A schematic of the thermal network 
model is shown in Fig. 3. The same thermal network was 
adapted to the remaining walls. 

From the aforementioned assumptions, heat and mass trans
fer balance formulations are given in (1),(2), and (3). The 
subscript j denotes the wall.

C dTz = � Tij - Tz (Tamb - Tz) Q 
.. z dt L.J R1J 

+ 
Rwin 

+ in

+ CJs,wi + Qheat (1) 

C dT1J _ T2J - TiJ Tin-11 - Ti1lj-- - + (2) 
dt R1J2 R113

dT2j Tau-lj - T2j Tij - T2j . 
C2j-dt = 

R 
+ 

R 
+ Qs,wj (3)

lj 1 lj2 
CJs,w = aw Aw q�ad (4) 

where, Cz is zone air capacitance, C1J is wall heat storage ca
pacitance inside, C2J is wall heat storage capacitance outside,
Qin is internal heat gains, Q s wi is solar radiation heat gain. ' 
through windows, Qs,wJ is solar radiation heat gain from the 
walls, Qheat is heating/cooling energy supplied by Qheat,pump 
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Fig. 3: Thermal dynamics of buildings (a) and equivalent 3R2C 
model (b) [15]. 

a?d CJvent, Qheat,pump is supplied energy from heat pump,
Qvent is supplied energy from ventilation system, Tamb is 
outdoor ambient temperature, 

The model has total 13 nodes: zone node and two nodes 
for each wall, floor and roof. Since the heat pump works 
autonomously, there is no control over its heat energy input 
to the zone and only controllable input is ventilation heat 
energy. This is controlled by varying its airflow. Thus, the 
model has only one controllable input and remaining inputs 
are considered as measurable disturbances (listed below). 

• Ambient temperature,
• Heat energy supplied from the heat pump,
• Solar radiation gain from the walls and windows,
• Internal heat gains from the electric devices and presence

of occupancy, 

The above given formulations of the reduced model of the 
building, are represented in state-space by deriving set of first 
order differential equations. Moreover, the MPC controller also 
requires the dynamic thermal model of the system discrete 
time state-space representation (5) [16]-[18]. 

where: 

X(k + 1) = AX(k) + Bu(k) + B1d(k)

y(k) = CX(k) + Du(k) + D1d(k) (5) 

X - is the state vector: zone temperature and wall node 
temperatures, 

u - is the input vector (mass flow rate from the ventilation 
system), 

d - is the measurable disturbance vector: weather parameters, 
occupancy, and heat pump energy input, 

y - the output of the system: zone temperature Tz, 
A - state matrix, B and B1 - input matrices, C - output matrix, 
and D and D1 - feed-through matrices. 

Furthermore, in the most cases the radiative heat transfer be
tween walls is neglected or taken as constant after linearizing 
it to near equilibrium point [19]. The developed model induces 
nonlinearities due to the radiative heat transfer (6) between the 
walls. 

where, 

E = surface emissivity of the material, 

er = Stefan-Boltzmann constant, 

T = wall surface temperatures in Kelvin degrees.

(6) 

Since, the temperature difference between walls is low and 
the temperature relationship is in absolute temperature in (6), 
thus the temperature difference between walls are relatively 
small as compared to absolute temperature value. Hence, the 
radiative heat transfer coefficient is considered to be a constant 
value by linearizing it using the Taylor's series expansion. 

The dynamic model of the building is validated against the 
measured values of the CESI LINEACT building. The model 
is validated for 6 days in February as it is one of the coldest 
months in Nanterre. 

Figure 4 shows the temperature profile of the classroom 
where the system nonlinear model quite accurately follows the 
building thermal dynamics. On the other hand, the linearized 
model is also closely following the dynamics of the system, 
but slightly less accurately. In should be mentioned that 
the nonlinear model computational cost is higher that the 
linearized one, while the error between the two models is low. 
In this case, the linearized model is considered acceptable and 
therefore adopted. 

Ill. MODEL PREDICTIVE CONTROLLER 

Model Predictive Control (MPC) produces a sequence of 
controller variable input strategy by using a system model to 
optimize an objective function (minimizing energy consump
tion) of system model behaviour based on a quadratic perfor
mance objective, subject to equality or inequality constraints 
on states, inputs, and outputs over a future time horizon. 

The classical objective function for the MPC has the fol
lowing quadratic formulation: 
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Fig. 4: Validation of developed model against the measured 
room temperature. 

Np 
J(tk) = L 5(j)[Y(tk + j) - y8P(tk + j)]2

s .t. 

j=N1 
Ne

+ L >.(j)[u(tk + j) - u(tk + j - 1)]2 (7) 
j=l 

Xt+k+llt = AXt+klt + But+klt + Bldt+klt (8)

Mu::;! (9)

where, f) and y3P are the predicted output and set-point tem
peratures, respectively. u is the control variable. In this model 
the control variable is (inJa(tk)ca[Tsp(tk) - 1/2(Tz(tk) + 
To ( t k))]), the input air flow is controlled through MPC while
satisfying the constraints matrix M. However, the objective 
function tracks only the set-point (y3P) temperature, which
forces the building controllers to reach single set point tem
perature, and curtails the optimal control strategy, leading to 
a poor energy optimization. Hence, adding slack variables to 
the set-point variables gives extra freedom of controllability 
in the MPC. Slack variables are useful in making the output 

variable to keep within a certain range by penalizing for any 
violation in the range [20]. 

The new proposed formulation is given as follows: 

s.t. 
(10) 

Xt+J +llt = AXt+J lt + But+J lt + Bldt+J lt (11)

Mu::;/ (12)

Ttb - Szb,t+J lt ::; Tzone,t+J lt ::; Tub,t+J lt + Sub,t+J lt
(13) 

(14) 

where, /3 is penalty factor, s is slack variable, Tzb and Tub are
lower and upper values of temperature, respectively. Similarly, 
the inequality constraints are applied to the input and rate of 
change inputs. 

In order to solve the objective function (10), the state-space 
model needs to be represented in the predictive model form 
[17]: 

f) = Fx(k) + ¢1u + ¢2d (15) 

where, 

CA CB 
CA2 CAB 

F=
CA3 

¢1= 
CA2B 

CANP CANp-l B

d= [�(k + l) �(k + 2) 

0 
CB 

CAB 

CANP-2B 

0 
0 
0 

0 
0 
0 

CAB 

f)T(k + Np)f 

uT(k +NP - l)]T

The matrices F, ¢1, and ¢2 are constants of the system
model. Hence, these are computed only once, thus reducing the 
computational cost for every control time step. Therefore, the 
formulated objective function (10) with constraints are solved 
in the MPC framework. For MPC simulation, the Python 
programming language is used with CVXOPT [21] solvers 
for minimizing the cost function. 
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IV. SIMULATION RESULTS 

To demonstrate the optimal control strategy of the MPC for 
multi-objective control within given constraints, a comparison 
is performed between the MPC and conventional controller 
for building temperature control in the presence of measurable 
disturbances. 

The simulations are carried out for 6 days (01/02/2019 
to 07/02/2019) to calculate the energy consumption during 
heating season. The MPC implementations are performed with 
hourly time step for prediction horizon of one day. The lower 
and upper limits for zone temperature is set to 19°C and 23°C, 
respectively. 

The conventional controller does not predict the future 
control strategies as compare to MPC controller, it works 
based on the current state of the system. On the contrary, 
MPC controller predicts the future control strategies, while 
satisfying the given constraints. 

The results are shown in Fig. 5, it can be noticed that the 
temperature profile of MPC controller based model clearly 
satisfies the objective of meeting comfort criteria, while the 
conventional controller violates the standard indoor temper
ature range. The multi-objective control, and considerations 
of measurable disturbances of MPC has shown good control 
strategy, but the conventional controller without having con
sideration of disturbances, supplied heat energy even-though 
the zone temperature reached the upper limit, it shows poor 
performance of the conventional controller. The measurable 
inputs for the system are shown in Fig. 6. 

From Fig. 5, it can be noticed that the energy consumption 
required for maintaining thermal comfort is estimated for a 
6-day period. The cumulative energy for the conventional 
controller control is 42.23 kWh, while it is 29.55 kWh for 
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Fig. 5: Comparison of results of the MPC and conventional 
controller. 
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Fig. 6: Measurable disturbances of the system: solar radiation, 
adjacent rooms temperature, and ambient temperature. 

the MPC one, resulting in almost 31 % reduction in energy 
consumption. 

V. CONCLUSIONS 

In this study, the objective to improve the performances and 
energy optimization, the efficient control of model predictive 
control is implemented for indoor thermal comfort. The MPC 
has shown the ability to multi-objective control under given 
constraints, the average indoor temperature is always main
tained within the lower and upper limits. 

The energy consumption of the HVAC system for thermal 
comfort management during the 6 days was performed. The 
results indicate that the MPC system produces optimal control 
strategy, and offering reduced energy consumption in compar
ison, while the conventional controller is seen to be wasting 
energy and performing poorly. The presented MPC application 
has shown almost 31 % of energy saving compared to the 
conventional controller. 

Presented MPC is applied for single room, that will be ap
plied for other rooms with distributive controller configuration. 
In the future, along with the temperature control, few other 
indoor comfort parameters (relative humidity, air quality, and 
visual comfort) will be studied. 
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