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Introduction

Let 𝑇 > 0. We consider the linear one-dimensional wave equation in the interval Ω = (0, 1), with a pointwise control 𝑣 acting on a moving point 𝑥 = 𝛾(𝑡), 𝑡 ∈ [0, 𝑇 ]. The state equation reads

⎧ ⎪ ⎨ ⎪ ⎩
𝑦 𝑡𝑡 -𝑦𝑥𝑥 = 𝑣(𝑡)𝛿 𝛾(𝑡) (𝑥) in 𝑄 𝑇 = Ω × (0, 𝑇 ), 𝑦 = 0 on Σ 𝑇 = 𝜕Ω × (0, 𝑇 ), (𝑦, 𝑦 𝑡 )(•, 0) = (𝑦 0 , 𝑦 1 ) in Ω.

(

Here, 𝛿 𝛾(𝑡) is the Dirac measure at 𝑥 = 𝛾(𝑡) and 𝛾 represents the trajectory in time of the control point. The curve 𝛾 : [0, 𝑇 ] → Ω is assumed to be piecewise 𝐶 1 . We also denote by H ′ the dual space of H := 𝐻 1 (0, 𝑇 ). For 𝑣 ∈ H ′ , we refer to Section 2.1 for the well-posedness of [START_REF] Agresti | Observability for the wave equation with variable support in the Dirichlet and Neumann cases[END_REF]. The exact null controllability problem for (1) at time 𝑇 > 0 is the following. Given a trajectory 𝛾 : [0, 𝑇 ] → Ω, for any initial datum (𝑦 0 , 𝑦 1 ) ∈ V := 𝐿 2 (Ω) × 𝐻 -1 (Ω), find a control 𝑣 ∈ H ′ such that the corresponding solution 𝑦 of (1) satisfies (𝑦, 𝑦 𝑡 )(•, 𝑇 ) = (0, 0) in Ω.

As a consequence of the Hilbert uniqueness method (HUM) introduced by J.-L. Lions [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF], the controllability of ( 1) is equivalent to an observability inequality for the associated adjoint problem. Indeed, the state equation ( 1) is controllable if and only if there exists a constant 𝐶 obs (𝛾) > 0 such that

‖(𝜙 0 , 𝜙 1 )‖ 2 W ≤ 𝐶 obs (𝛾)‖𝜙(𝛾, •)‖ 2 H , ∀(𝜙 0 , 𝜙 1 ) ∈ W := 𝐻 1 0 (Ω) × 𝐿 2 (Ω), (2) 
where 𝜙 ∈ 𝐶([0, 𝑇 ]; 𝐻 1 0 (Ω)) ∩ 𝐶 1 ([0, 𝑇 ]; 𝐿 2 (Ω)) solves 𝐿𝜙 = 0 in 𝑄 𝑇 , 𝜙 = 0 on Σ 𝑇 , (𝜙, 𝜙 𝑡 )(•, 0) = (𝜙 0 , 𝜙 1 ) in Ω.

Here, the notation 𝜙(𝛾, •) stands for the function 𝜙(𝛾(𝑡), 𝑡) with 𝑡 ∈ (0, 𝑇 ), while 𝐿 denotes the wave operator 𝐿 = 𝜕 2 𝑡 -𝜕 2 𝑥 .

Under additional assumptions on 𝛾, a proof of (2) can be found in [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF]. We emphasize that the observability constant 𝐶 obs (𝛾) depends on the control trajectory 𝛾. In what follows, we say that 𝛾 is an admissible trajectory if the observability inequality (2) holds true.

In this work, we investigate the issue of the numerical approximation of the control ̂︀ 𝑣𝛾 of minimal H ′ -norm and the associated controlled state. We also tackle the problem of optimizing the support of control, which is done numerically by minimizing the norm ‖̂︀ 𝑣𝛾 ‖ H ′ with respect to the trajectory 𝛾.

Let us now mention some references related to pointwise control. This problem arises naturally in practical situations when the size of the control domain is very small compared to the size of the physical system. For a stationary control point 𝛾 ≡ 𝑥 0 ∈ Ω, the controllability of (1) depends strongly on the location of 𝑥 0 [START_REF] Lions | Some methods in the mathematical analysis of systems and their control[END_REF][START_REF] Lions | Pointwise control for distributed systems[END_REF][START_REF] Dáger | Wave propagation, observation and control in 1-𝑑 flexible multi-structures[END_REF]. Indeed, one can show that controllability holds if and only if the controllability time 𝑇 is large enough, i.e. 𝑇 ≥ 2|Ω|, and if there is no eigenfunction of the Dirichlet Laplacian vanishing at 𝑥 = 𝑥 0 . The constraint on 𝑇 is due to the finite speed of propagation of the solution of the wave equation [START_REF] Agresti | Observability for the wave equation with variable support in the Dirichlet and Neumann cases[END_REF]. A point 𝑥 0 satisfying the previous spectral property is referred to as a strategic point. Furthermore, 𝑥 0 is a strategic point if and only if it is irrational with respect to the length of Ω, making controllability very unstable. Consequently, controls acting on stationary points are usually difficult to implement in practice. It is often more convenient to control along curves for which the strategic point property holds a.e. in [0, 𝑇 ].

For a moving control point 𝑥 = 𝛾(𝑡), several sufficient conditions to ensure controllability have been studied [START_REF] Khapalov | Controllability of the wave equation with moving point control[END_REF][START_REF] Khapalov | Observability and stabilization of the vibrating string equipped with bouncing point sensors and actuators[END_REF][START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF][START_REF] Agresti | Observability for the wave equation with variable support in the Dirichlet and Neumann cases[END_REF]. In [START_REF] Khapalov | Observability and stabilization of the vibrating string equipped with bouncing point sensors and actuators[END_REF], the author proves the existence of controls in 𝐿 2 (0, 𝑇 ) acting on a point rapidly bouncing between two positions. In [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF]Proposition 4.1], the author shows, using the d'Alembert formula, that the observability inequality [START_REF] Bamberger | Punctual control of a vibrating string: numerical analysis[END_REF] holds under some geometric restrictions on the trajectory 𝛾. By duality, this implies the existence of controls in H ′ for initial data in V. The geometric requirements are related to the usual geometric control condition (GCC) introduced for controls acting over domains 𝜔 ⊂ Ω [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF][START_REF] Rousseau | Geometric control condition for the wave equation with a time-dependent observation domain[END_REF]. Among the constraints given to guarantee that 𝛾 is admissible, there must exist two constants 𝑐 1 , 𝑐 2 > 0 and a finite number of subintervals (𝐼 𝑗 ) 0≤𝑗≤𝐽 ⊂ [0, 𝑇 ] such that, for each subinterval 𝐼 𝑗 , 𝛾 ∈ 𝐶 1 (𝐼 𝑗 ), 1 -|𝛾 ′ | does not change sign in 𝐼 𝑗 and

𝑐 1 ≤ |𝛾 ′ | ≤ 𝑐 2 in 𝐼 𝑗 .
The constants appearing in the proof of the observability inequality (2) depend only on 𝑐 1 and 𝑐 2 (see [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF]Remark 4.2]). Thus, it is possible to write a uniform observability inequality for trajectories in a suitable class, i.e. there exists 𝐶 > 0 such that 𝐶 obs (𝛾) ≤ 𝐶 for every 𝛾 in that class.

In the context of feedback stabilization, we mention [START_REF] Bamberger | Punctual control of a vibrating string: numerical analysis[END_REF]. For parabolic equations, we also mention [START_REF] Lions | Pointwise control for distributed systems[END_REF][START_REF] Khapalov | Mobile point controls versus locally distributed ones for the controllability of the semilinear parabolic equation[END_REF]. Finally, for the computation of pointwise controls for the Burgers equation, we refer to [START_REF] Berggren | Controllability issues for flow-related models: a computational approach[END_REF][START_REF] Ramos | Pointwise control of the Burgers equation and related Nash equilibrium problems: computational approach[END_REF].

The main contributions of this paper are the following. First, we use the HUM method to characterize the control ̂︀ 𝑣 of minimal H ′ -norm, also known as the HUM control. We then turn our attention to the numerical approximation of this control and the associated controlled state. Usually (see [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems[END_REF][START_REF] Münch | A uniformly controllable and implicit scheme for the 1-D wave equation[END_REF]), such an approximation is computed by minimizing the so-called conjugate functional 𝒥 ⋆ 𝛾 : W → R defined by

𝒥 ⋆ 𝛾 (𝜙 0 , 𝜙 1 ) = 1 2 ‖𝜙(𝛾, •)‖ 2 H - ∫︁ Ω 𝑦 0 𝜙 1 + ⟨𝑦 1 , 𝜙 0 ⟩ -1,1 , (4) 
where 𝜙 is the solution of (3) associated with (𝜙 0 , 𝜙 1 ), and ⟨•, •⟩ -1,1 stands for the duality product in 𝐻 1 0 (Ω). Here, instead, we notice that the unconstrained minimization of 𝒥 ⋆ 𝛾 (𝜙 0 , 𝜙 1 ) is equivalent to the minimization of another functional

︀ 𝒥 ⋆ 𝛾 (𝜙) (cf. ( 17 
)
) over 𝜙 satisfying the constraint 𝐿𝜙 = 0. This constraint is taken into account using a Lagrange multiplier which leads to a mixed formulation where the space and time variables are embedded. We follow the steps of [START_REF] Cîndea | A mixed formulation for the direct approximation of the control of minimal 𝐿 2 -norm for linear type wave equations[END_REF][START_REF] Castro | Controllability of the linear onedimensional wave equation with inner moving forces[END_REF], where a similar formulation is used for controls distributed over non-cylindrical domains 𝑞 ⊂ 𝑄 𝑇 . It is worth mentioning that this space-time approach is well-adapted to our moving point situation, since we can achieve a good description of the trajectory 𝛾 embedded in a space-time mesh of 𝑄 𝑇 . From a numerical point of view, we build a Galerkin approximation of the mixed formulation using conformal space-time finite elements. This allows to compute the optimal adjoint state ̂︀ 𝜙, linked to the HUM control ̂︀ 𝑣 by the relation [START_REF] Castro | Controllability of the linear onedimensional wave equation with inner moving forces[END_REF]. This also gives an approximation of the Lagrange multiplier, which turns out to be the controlled state associated with ̂︀

𝑣.

Another aspect of this work is the numerical optimization of the support of control. For a given initial datum (𝑦 0 , 𝑦 1 ) ∈ V, we want to minimize the norm ‖̂︀ 𝑣𝛾 ‖ H ′ of the HUM control ̂︀ 𝑣𝛾 with respect to the trajectory 𝛾. To do so, we consider the functional

𝐽(𝛾) = 1 2 ‖̂︀ 𝑣𝛾 ‖ 2 H ′ (5) 
and we implement a gradient-type algorithm. In order to find a descent direction at each iteration, we establish a formula for the directional derivative of 𝐽. The values of 𝐽 are computed using the approximate control arising from the mixed formulation mentioned previously. We perform several numerical experiments and compare our results with those obtained in [START_REF] Bottois | Optimization of non-cylindrical domains for the exact null controllability of the 1D wave equation[END_REF] for controls distributed over noncylindrical domains 𝑞 ⊂ 𝑄 𝑇 . In the simulations, the admissible set of trajectories 𝛾 is discretized using splines functions of degree 5.

The rest of the paper is organized in three sections. First, in Section 2, we briefly give some theoretical results. Namely, we justify the existence of weak solutions for the state equation ( 1), and we characterize the control of minimal H ′ -norm using the HUM method. We also analyse the extremal problem min𝛾 𝐽(𝛾) (cf. ( 5)) and compute the directional derivative of 𝐽 with respect to 𝛾. In a second step, in Section 3, we present the space-time mixed formulation used to approximate the control and the controlled state. We also discuss some issues related to the discretization of that formulation. Finally, in Section 4, we give several numerical experiments. We illustrate the convergence of the approximated control as the discretization parameter goes to zero. For stationary control points 𝛾 ≡ 𝑥 0 ∈ Ω, we illustrate the lack of controllability at non-strategic points. We also describe the gradient-type algorithm designed to optimize the support of control and discuss some results.

2 Some theoretical results

Existence of weak solutions for the state equation

The weak solution of (1) is defined by transposition (see [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF]). For any 𝜓 ∈ 𝐿 1 (0, 𝑇 ; 𝐿 2 (Ω)), let 𝜙 ∈ 𝐶([0, 𝑇 ]; 𝐻 1 0 (Ω)) ∩ 𝐶 1 ([0, 𝑇 ]; 𝐿 2 (Ω)) be the solution of the backward adjoint equation

𝐿𝜙 = 𝜓 in 𝑄 𝑇 , 𝜙 = 0 on Σ 𝑇 , (𝜙, 𝜙 𝑡 )(•, 𝑇 ) = (0, 0) in Ω.
Multiplying (1) by 𝜙 and integrating by parts, we formally obtain

∫︁ ∫︁ 𝑄 𝑇 𝑦𝜓 = ⟨𝑣, 𝜙(𝛾, •)⟩ H ′ ,H - ∫︁ Ω 𝑦 0 𝜙 𝑡 (•, 0)+⟨𝑦 1 , 𝜙(•, 0)⟩ -1,1 , ∀𝜓 ∈ 𝐿 1 (0, 𝑇 ; 𝐿 2 (Ω)), (6) 
where ⟨•, •⟩ -1,1 and ⟨•, •⟩ H ′ ,H denote respectively the duality products in 𝐻 1 0 (Ω) and H. We adopt identity [START_REF] Bottois | Optimization of non-cylindrical domains for the exact null controllability of the 1D wave equation[END_REF] as the definition of the solution of (1) in the sense of transposition. One can then prove the following result (see [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF]Theorem 2.1]).

Lemma 1. Let 𝛾 : [0, 𝑇 ] → Ω be piecewise 𝐶 1 . If there exists a subdivision (𝑡 𝑖 ) 0≤𝑖≤𝑚 of [0, 𝑇 ] such that, on each subinterval [𝑡 𝑖-1 , 𝑡 𝑖 ], 𝛾 is 𝐶 1 and 1-|𝛾 ′ | does not change sign, there exists a unique solution 𝑦 to (1) in the sense of transposition. This solution has the regularity 𝑦 ∈ 𝐶([0, 𝑇 ]; 𝐿 2 (Ω)) and 𝑦 𝑡 ∈ 𝐿 2 ([0, 𝑇 ]; 𝐻 -1 (Ω)).

Characterization of the HUM control

In order to give a characterization of the controls for (1), for any (𝜙 0 , 𝜙 1 ) ∈ W, let 𝜙 be the solution of the adjoint equation [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]. Multiplying (1) by 𝜙 and integrating by parts, we get that 𝑣 ∈ H ′ is a control if and only if

⟨𝑣, 𝜙(𝛾, •)⟩ H ′ ,H = ∫︁ Ω 𝑦 0 𝜙 1 -⟨𝑦 1 , 𝜙 0 ⟩ -1,1 , ∀(𝜙 0 , 𝜙 1 ) ∈ W. (7) 
Then, by a straightforward application of the HUM method (see [8, Section 6]), we can readily characterize the control of minimal H ′ -norm for [START_REF] Agresti | Observability for the wave equation with variable support in the Dirichlet and Neumann cases[END_REF]. Let us consider the conjugate functional 𝒥 ⋆ 𝛾 defined in (4). If 𝛾 is an admissible trajectory, that is if the observability inequality (2) holds, we can see that 𝒥 ⋆ 𝛾 is continuous, strictly convex and coercive. Thus, 𝒥 ⋆ 𝛾 has a unique minimum point ( ̂︀ 𝜙 0 , ̂︀ 𝜙 1 ) ∈ W, which satisfies the optimality condition

⟨ ̂︀ 𝜙(𝛾, •), 𝜙(𝛾, •)⟩ H = ∫︁ Ω 𝑦 0 𝜙 1 -⟨𝑦 1 , 𝜙 0 ⟩ -1,1 , ∀(𝜙 0 , 𝜙 1 ) ∈ W, (8) 
where ̂︀ 𝜙 and 𝜙 are the solutions of (3) associated with ( ̂︀ 𝜙 0 , ̂︀ 𝜙 1 ) and (𝜙 0 , 𝜙 1 ) respectively. For sufficient conditions guaranteeing that a trajectory 𝛾 is admissible, we refer to [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF]Theorem 2.4]. Examples of such admissible trajectories can be found in Figure 3 and [8, Section 3]. In view of [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF] 

where ̂︀ 𝜙 is the solution of (3) associated with the minimum point ( ̂︀ 𝜙 0 , ̂︀ 𝜙 1 ) of 𝒥 ⋆ 𝛾 , and 𝛿 0 , 𝛿 𝑇 denote respectively the Dirac measures at 𝑡 = 0 and 𝑡 = 𝑇 . Moreover, the norm of ̂︀ 𝑣 can be computed by

‖̂︀ 𝑣‖ 2 H ′ = ‖ ̂︀ 𝜙(𝛾, •)‖ 2 H = 𝑇 ∫︁ 0 𝜙 2 (𝛾(𝑡), 𝑡) d𝑡 + 𝑇 ∫︁ 0 ⃒ ⃒ ⃒ ⃒ d d𝑡 𝜙(𝛾(𝑡), 𝑡) ⃒ ⃒ ⃒ ⃒ 2 d𝑡. ( 10 
)

Optimization of the support of control

We focus here on the optimization of the control trajectory. More precisely, for 

(𝑦 0 , 𝑦 1 ) ∈ V fixed, we want to minimize the norm ‖̂︀ 𝑣‖ H ′ (cf. ( 10 
𝑇 ∫︁ 0 𝜙 2 (𝛾(𝑡), 𝑡) d𝑡 + 1 2 𝑇 ∫︁ 0 ⃒ ⃒ ⃒ ⃒ d d𝑡 𝜙(𝛾(𝑡), 𝑡) ⃒ ⃒ ⃒ ⃒ 2 d𝑡, (11) 
and where 𝜙 is the solution of (3) associated with the minimum point (𝜙 0 , 𝜙 1 ) of

𝒥 ⋆ 𝛾 .
The admissible set 𝒢 is composed of smooth trajectories, typically of class 𝐶 2 ([0, 𝑇 ]). We also require that the observability inequality (2) holds uniformly on 𝒢, meaning that there exists 𝐶 > 0 such that 𝐶 obs (𝛾) ≤ 𝐶 for every 𝛾 ∈ 𝒢. This property can be achieved with the hypotheses of [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF]Theorem 2.4]. In Section 4, we discretize 𝒢 using the space 𝒮 5 of degree 5 splines, adapted to a fixed regular subdivision of [0, 𝑇 ].

As it stands, we do not know if the extremal problem ( 11) is well-posed. To establish the lower semi-continuity of 𝐽, it could be possible to exploit the works [START_REF] Henrot | Domain optimization problem for stationary heat equation[END_REF][START_REF] Henrot | A shape optimization problem for the heat equation[END_REF] where, in the context of the heat equation, the authors consider a shape optimization problem with respect to a curve. In the process, it might be necessary to have a more regular control, which would probably require more regular initial data (𝑦 0 , 𝑦 1 ) (see [START_REF] Ervedoza | A systematic method for building smooth controls for smooth data[END_REF]).

Moreover, a longer trajectory 𝛾 allows intuitively a smaller cost of control. Consequently, to give more sense to the problem, we penalize the length 𝐿(𝛾) of the curve 𝛾. Similarly, in order to avoid too fast variations of the trajectory, we also regularize the "curvature" 𝛾 ′′ . A similar strategy has been introduced and discussed in [START_REF] Bottois | Optimization of non-cylindrical domains for the exact null controllability of the 1D wave equation[END_REF]. Thus, for 𝜀 > 0 small enough, 𝜂 > 0 large enough and 𝐿 ≥ 𝑇 fixed, we consider the following regularized-penalized extremal problem

min 𝛾∈𝒢 𝐽𝜀,𝜂(𝛾), where 𝐽𝜀,𝜂(𝛾) = 𝐽(𝛾) + 𝜀 2 ‖𝛾 ′′ ‖ 2 𝐿 2 (0,𝑇 ) + 𝜂 2 (︁ (𝐿(𝛾) -𝐿) + )︁ 2 , (12) 
and where (•) + stands for the positive part.

We solve this problem numerically in Section 4, using a gradient-type algorithm. In order to evaluate a descent direction for 𝐽𝜀,𝜂 at each iteration of the algorithm, we compute the derivatives of 𝐽 and 𝐽𝜀,𝜂 with respect to 𝛾. 

(︁ 𝜙𝑥(𝛾(𝑡), 𝑡)𝛾(𝑡) )︁ d𝑡,
where 𝜙 is the solution of (3) associated with the minimum point (𝜙 0 , 𝜙 1 ) of 𝒥 ⋆ 𝛾 . Similarly, the directional derivative of 𝐽𝜀,𝜂 at 𝛾 in the direction 𝛾 is given by d𝐽𝜀,𝜂(𝛾; 𝛾) = d𝐽(𝛾; 𝛾) + 𝜀⟨𝛾 ′′ , 𝛾 ′′ ⟩ 𝐿 2 (0,𝑇 ) + 𝜂(𝐿(𝛾) -𝐿) + d𝐿(𝛾; 𝛾), where

𝐿(𝛾) = 𝑇 ∫︁ 0 √︀ 1 + 𝛾 ′ 2 and d𝐿(𝛾; 𝛾) = 𝑇 ∫︁ 0 𝛾 ′ √︀ 1 + 𝛾 ′ 2 𝛾 ′ .
Proof. We provide only a formal proof. Rigorous demonstrations of similar lemmas can be found in [START_REF] Periago | Optimal shape and position of the support for the internal exact control of a string[END_REF][START_REF] Bottois | Optimization of non-cylindrical domains for the exact null controllability of the 1D wave equation[END_REF], for controls distributed over domains 𝑞 ⊂ 𝑄 𝑇 . For any admissible trajectory 𝛾 ∈ 𝐶 2 ([0, 𝑇 ]) and any perturbation

𝛾 ∈ 𝐶 2 ([0, 𝑇 ]), we get d𝐽(𝛾; 𝛾) = 𝑇 ∫︁ 0 𝜙(𝛾(𝑡), 𝑡) (︁ 𝜙 ′ (𝛾(𝑡), 𝑡) + 𝜙𝑥(𝛾(𝑡), 𝑡)𝛾(𝑡) )︁ d𝑡 + 𝑇 ∫︁ 0 d d𝑡 𝜙(𝛾(𝑡), 𝑡) d d𝑡 (︁ 𝜙 ′ (𝛾(𝑡), 𝑡) + 𝜙𝑥(𝛾(𝑡), 𝑡)𝛾(𝑡) )︁ d𝑡. (13) 
Here, 𝜙 ′ denotes the derivative of 𝜙 with respect to 𝛾. To simplify (13), we differentiate the optimality condition [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF] 

)︁ d𝑡 = 0, ∀(𝜓 0 , 𝜓 1 ) ∈ W,
where 𝜓 is the solution of (3) associated with (𝜓 0 , 𝜓 1 ). Evaluating the previous expression for (𝜓 0 , 𝜓 1 ) = (𝜙 0 , 𝜙 1 ), we can eliminate the derivative 𝜙 ′ from ( 13) and obtain the announced result.

Mixed formulation

In this section, in order to approximate the HUM control for (1) and the associated controlled state, we present a space-time mixed formulation based on the optimality condition [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF]. We follow the steps of [9, Section 3.1], where a similar formulation is built for controls distributed over domains 𝑞 ⊂ 𝑄 𝑇 . From a numerical point of view, this space-time formulation is very appropriate for the moving point situation considered in this work. Indeed, after the discretization step, we solve the formulation using a space-time triangular mesh, which is constructed from boundary vertices placed on the border of 𝑄 𝑇 and on the curve 𝛾.

Mixed formulation

We start by a lemma extending the observability inequality [START_REF] Bamberger | Punctual control of a vibrating string: numerical analysis[END_REF]. For this, we first need to introduce the functional space

Φ := {︁ 𝜙 ∈ 𝐶([0, 𝑇 ]; 𝐻 1 0 (Ω)) ∩ 𝐶 1 ([0, 𝑇 ]; 𝐿 2 (Ω)); 𝐿𝜙 ∈ 𝐿 2 (0, 𝑇 ; 𝐿 2 (Ω)) }︁ . Lemma 4 (Generalized observability inequality). Let 𝛾 ∈ 𝐶 1 ([0, 𝑇 ]) piecewise. If
𝛾 is an admissible trajectory, there exists a constant ̃︀ 𝐶 obs (𝛾) > 0 such that

‖(𝜙, 𝜙 𝑡 )(•, 0)‖ 2 W ≤ ̃︀ 𝐶 obs (𝛾) (︁ ‖𝜙(𝛾, •)‖ 2 H + ‖𝐿𝜙‖ 2 𝐿 2 (0,𝑇 ;𝐿 2 (Ω)) )︁ , ∀𝜙 ∈ Φ. ( 14 
)
Proof. Let 𝜙 ∈ Φ. We can decompose 𝜙 = 𝜓 1 + 𝜓 2 , where 𝜓 1 , 𝜓 2 ∈ Φ solve

{︃ 𝐿𝜓 1 = 0 in 𝑄 𝑇 , 𝜓 1 = 0 on Σ 𝑇 , (𝜓 1 , 𝜓 1,𝑡 )(•, 0) = (𝜙, 𝜙 𝑡 )(•, 0) in Ω, 𝐿𝜓 2 = 𝐿𝜙 in 𝑄 𝑇 , 𝜓 2 = 0 on Σ 𝑇 , (𝜓 2 , 𝜓 2,𝑡 )(•, 0) = (0, 0) in Ω.
From Duhamel's principle and the conservation of energy, one can show (see [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF]Section 5]) the following so-called hidden regularity property for 𝜓 2 , there exists a constant 𝑐(𝛾) > 0 such that

‖𝜓 2 (𝛾, •)‖ 2 H ≤ 𝑐(𝛾)‖𝐿𝜙‖ 2 𝐿 2 (0,𝑇 ;𝐿 2 (Ω)) . (15) 
Combining ( 2) for 𝜓 1 and (15) for 𝜓 2 , we obtain

‖(𝜙, 𝜙 𝑡 )(•, 0)‖ 2 W = ‖(𝜓 1 , 𝜓 1,𝑡 )(•, 0)‖ 2 W ≤ 𝐶 obs (𝛾)‖𝜓 1 (𝛾, •)‖ 2 H ≤ 2𝐶 obs (𝛾) (︁ ‖𝜙(𝛾, •)‖ 2 H + ‖𝜓 2 (𝛾, •)‖ 2 H )︁ ≤ ̃︀ 𝐶 obs (𝛾) (︁ ‖𝜙(𝛾, •)‖ 2 H + ‖𝐿𝜙‖ 2 𝐿 2 (0,𝑇 ;𝐿 2 (Ω))
)︁

.

As for (2), it is possible to find a class of admissible trajectories 𝛾 such that the generalized observability inequality ( 14) holds uniformly (see [8, Theorem 2.4]), i.e.

there exists ̃︀ 𝐶 > 0 such that ̃︀ 𝐶 obs (𝛾) ≤ ̃︀ 𝐶 for every 𝛾 in that class. In addition, the inequality ( 14) implies the following property on the space Φ.

Lemma 5. Let 𝛾 ∈ 𝐶 1 ([0, 𝑇 ]) piecewise. If 𝛾 is an admissible trajectory, the space Φ is a Hilbert space with the inner product

⟨𝜙, 𝜙⟩ Φ = ⟨𝜙(𝛾, •), 𝜙(𝛾, •)⟩ H + 𝜏 ⟨𝐿𝜙, 𝐿𝜙⟩ 𝐿 2 (0,𝑇 ;𝐿 2 (Ω)) , ∀𝜙, 𝜙 ∈ Φ, (16) 
for 𝜏 > 0 fixed.

Proof. The semi-norm ‖ • ‖ Φ associated with the inner product is trivially a norm in view of the generalized observability inequality [START_REF] Dáger | Wave propagation, observation and control in 1-𝑑 flexible multi-structures[END_REF]. It remains to prove that Φ is complete with respect to this norm. Let (𝜙 𝑘 ) 𝑘≥1 ⊂ Φ be a Cauchy sequence for the norm ‖ • ‖ Φ . So, there exists 𝑓 ∈ 𝐿 2 (0, 𝑇 ; 𝐿 2 (Ω)) such that 𝐿𝜙 𝑘 → 𝑓 in 𝐿 2 (0, 𝑇 ; 𝐿 2 (Ω)). As a consequence of ( 14), there also exists (𝜙 0 , 𝜙 1 ) ∈ W such that (𝜙 𝑘 , 𝜙 𝑘,𝑡 )(•, 0) → (𝜙 0 , 𝜙 1 ) in W. Therefore, (𝜙 𝑘 ) 𝑘≥1 can be considered as a sequence of solutions of the wave equation with convergent initial data and convergent right-hand sides. By the continuous dependence of the solution of the wave equation on the data,

𝜙 𝑘 → 𝜙 in 𝐶([0, 𝑇 ]; 𝐻 1 0 (Ω)) ∩ 𝐶 1 ([0, 𝑇 ]; 𝐿 2 (Ω))
, where 𝜙 is the solution of the wave equation with initial datum (𝜙 0 , 𝜙 1 ) ∈ W and right-hand side 𝑓 ∈ 𝐿 2 (0, 𝑇 ; 𝐿 2 (Ω)). Thus, 𝜙 ∈ Φ.

We can now turn to the set-up of the mixed formulation. In order to avoid the minimization of the conjugate functional 𝒥 ⋆ 𝛾 (cf. ( 4)) with respect to (𝜙 0 , 𝜙 1 ), we remark that the solution 𝜙 of (3) is completely and uniquely determined by the initial datum (𝜙 0 , 𝜙 1 ). Then, the main idea of the reformulation is to keep 𝜙 as main variable and consider instead the minimization of

︀ 𝒥 ⋆ 𝛾 (𝜙) = 1 2 ‖𝜙(𝛾, •)‖ 2 H - ∫︁ Ω 𝑦 0 𝜙 𝑡 (•, 0) + ⟨𝑦 1 , 𝜙(•, 0)⟩ -1,1 (17) 
over

Φ 0 := {︁ 𝜙 ∈ Φ; 𝐿𝜙 = 0 ∈ 𝐿 2 (0, 𝑇 ; 𝐿 2 (Ω)) }︁ .
Indeed, we clearly have

min (𝜙0,𝜙1)∈W 𝒥 ⋆ 𝛾 (𝜙 0 , 𝜙 1 ) = 𝒥 ⋆ 𝛾 ( ̂︀ 𝜙 0 , ̂︀ 𝜙 1 ) = ̃︀ 𝒥 ⋆ 𝛾 ( ̂︀ 𝜙) = min 𝜙∈Φ0 ̃︀ 𝒥 ⋆ 𝛾 (𝜙),
where ̂︀ 𝜙 is the solution of (3) associated with the minimum point

( ̂︀ 𝜙 0 , ̂︀ 𝜙 1 ) of 𝒥 ⋆ 𝛾 .
Besides, the minimum point ̂︀ 𝜙 of ̃︀ 𝒥 ⋆ 𝛾 is unique. So, the new variable is the function 𝜙 with the constraint 𝐿𝜙 = 0 in 𝐿 2 (0, 𝑇 ; 𝐿 2 (Ω)). To deal with this constraint, we introduce a Lagrange multiplier 𝜆 ∈ Λ := 𝐿 2 (0, 𝑇 ; 𝐿 2 (Ω)). We thus consider the following problem: find

(𝜙, 𝜆) ∈ Φ × Λ solution of {︃ 𝑎(𝜙, 𝜙) -𝑏(𝜙, 𝜆) = ℓ(𝜙), ∀𝜙 ∈ Φ, 𝑏(𝜙, 𝜆) = 0, ∀𝜆 ∈ Λ, (18) 
where we have set

𝑎 : Φ × Φ → R, 𝑎(𝜙, 𝜙) = ⟨𝜙(𝛾, •), 𝜙(𝛾, •)⟩ H , 𝑏 : Φ × Λ → R, 𝑏(𝜙, 𝜆) = ⟨𝐿𝜙, 𝜆⟩ 𝐿 2 (0,𝑇 ;𝐿 2 (Ω)) , ℓ : Φ → R, ℓ(𝜙) = ∫︁ Ω 𝑦 0 𝜙 𝑡 (•, 0) -⟨𝑦 1 , 𝜙(•, 0)⟩ -1,1 .
The introduction of this problem is justified by the result below.

Theorem 1 (Mixed formulation). Let 𝛾 ∈ 𝐶 1 ([0, 𝑇 ]) piecewise. If 𝛾 is an admissible trajectory, we have the following properties;

• The mixed formulation (18) is well-posed.

• The unique solution (𝜙, 𝜆) ∈ Φ×Λ is the unique saddle point of the Lagrangian

ℒ : Φ × Λ → R defined by ℒ(𝜙, 𝜆) = 1 2 𝑎(𝜙, 𝜙) -𝑏(𝜙, 𝜆) -ℓ(𝜙).
• The optimal function 𝜙 is the minimum point of ̃︀ 𝒥 ⋆ 𝛾 over Φ 0 . Besides, the optimal function 𝜆 ∈ Λ is the solution of the controlled wave equation (1), with the control 𝑣 associated with 𝜙 (cf. (9)).

Proof. We easily check that the bilinear form 𝑎 is continuous over Φ×Φ, symmetric and positive. Similarly, we check that the bilinear form 𝑏 is continuous over Φ × Λ. Furthermore, the continuity of the linear form ℓ over Φ is a direct consequence of the generalized observability inequality [START_REF] Dáger | Wave propagation, observation and control in 1-𝑑 flexible multi-structures[END_REF],

|ℓ(𝜙)| ≤ ‖(𝑦 0 , 𝑦 1 )‖ V √︁ 2 ̃︀ 𝐶 obs (𝛾) max(1, 𝜏 -1 )‖𝜙‖ Φ , ∀𝜙 ∈ Φ.
Therefore, to prove the well-posedness of the mixed formulation [START_REF] Henrot | Domain optimization problem for stationary heat equation[END_REF], we only need to check the following two properties (see [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]).

• The form 𝑎 is coercive on the kernel 𝒩 (𝑏) :=

{︀ 𝜙 ∈ Φ; 𝑏(𝜙, 𝜆) = 0, ∀𝜆 ∈ Λ }︀ .
• The form 𝑏 satisfies the usual "inf-sup" condition over Φ × Λ, i.e. there exists a constant 𝛿 > 0 such that

inf 𝜆∈Λ sup 𝜙∈Φ 𝑏(𝜙, 𝜆) ‖𝜙‖ Φ ‖𝜆‖ Λ ≥ 𝛿. ( 19 
)
From the definition of 𝑎, the first point is clear. Indeed, for any 𝜙 ∈ 𝒩 (𝑏) = Φ 0 , 𝑎(𝜙, 𝜙) = ‖𝜙‖ 2 Φ . We now check the inf-sup condition [START_REF] Henrot | A shape optimization problem for the heat equation[END_REF]. For any 𝜆 0 ∈ Λ, we define the unique element 𝜙 0 ∈ Φ such that

𝐿𝜙 0 = 𝜆 0 in 𝑄 𝑇 , 𝜙 0 = 0 on Σ 𝑇 , (𝜙 0 , 𝜙 0,𝑡 )(•, 0) = (0, 0) in Ω. It implies 𝑏(𝜙 0 , 𝜆 0 ) = ‖𝜆 0 ‖ 2 Λ and sup 𝜙∈Φ 𝑏(𝜙, 𝜆 0 ) ‖𝜙‖ Φ ‖𝜆 0 ‖ Λ ≥ 𝑏(𝜙 0 , 𝜆 0 ) ‖𝜙 0 ‖ Φ ‖𝜆 0 ‖ Λ = ‖𝜆 0 ‖ Λ √︁ ‖𝜙 0 (𝛾, •)‖ 2 H + 𝜏 ‖𝜆 0 ‖ 2 Λ .
We then use the following estimate (see [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF]Section 5]), there exists a constant

𝑐(𝛾) > 0 such that ‖𝜙 0 (𝛾, •)‖ 2 H ≤ 𝑐(𝛾)‖𝜆 0 ‖ 2 Λ .
Combining the two previous inequalities, we obtain

sup 𝜙∈Φ 𝑏(𝜙, 𝜆 0 ) ‖𝜙‖ Φ ‖𝜆 0 ‖ Λ ≥ 1 √︀ 𝑐(𝛾) + 𝜏 , ∀𝜆 0 ∈ Λ.
Hence, the inequality [START_REF] Henrot | A shape optimization problem for the heat equation[END_REF] holds with 𝛿 = (𝑐(𝛾) + 𝜏 ) -1 2 . The second point of the theorem is due to the symmetry and positivity of the bilinear form 𝑎. Regarding the third point, the equality 𝑏(𝜙, 𝜆) = 0 for all 𝜆 ∈ Λ implies that 𝐿𝜙 = 0 in 𝐿 2 (0, 𝑇 ; 𝐿 2 (Ω)). Besides, for 𝜙 ∈ Φ 0 , the first equation of [START_REF] Henrot | Domain optimization problem for stationary heat equation[END_REF] gives 𝑎(𝜙, 𝜙) = ℓ(𝜙). So, if (𝜙, 𝜆) ∈ Φ × Λ solves the mixed formulation, then 𝜙 ∈ Φ 0 and ℒ(𝜙, 𝜆) = ̃︀ 𝒥 ⋆ 𝛾 (𝜙). Moreover, again due to the symmetry and positivity of 𝑎, the function 𝜙 is the minimum point of ̃︀ 𝒥 ⋆ 𝛾 over Φ 0 . Indeed, for any 𝜙 ∈ Φ 0 , we have

︀ 𝒥 ⋆ 𝛾 (𝜙) = - 1 2 𝑎(𝜙, 𝜙) ≤ 1 2 𝑎(𝜙, 𝜙) -𝑎(𝜙, 𝜙) = 1 2 𝑎(𝜙, 𝜙) -ℓ(𝜙) = ̃︀ 𝒥 ⋆ 𝛾 (𝜙).
Finally, the first equation of [START_REF] Henrot | Domain optimization problem for stationary heat equation[END_REF] reads

⟨𝜙(𝛾, •), 𝜙(𝛾, •)⟩ H -⟨𝐿𝜙, 𝜆⟩ Λ = ∫︁ Ω 𝑦 0 𝜙 𝑡 (•, 0) -⟨𝑦 1 , 𝜙(•, 0)⟩ -1,1 , ∀𝜙 ∈ Φ.
Since the control 𝑣 of minimal H ′ -norm is given by ( 9), we get

∫︁ ∫︁ 𝑄 𝑇 𝜆𝐿𝜙 = ⟨𝑣, 𝜙(𝛾, •)⟩ H ′ ,H - ∫︁ Ω 𝑦 0 𝜙 𝑡 (•, 0) + ⟨𝑦 1 , 𝜙(•, 0)⟩ -1,1 , ∀𝜙 ∈ Φ.
But this means that 𝜆 is solution in a weak sense of the wave equation ( 1) associated with the initial datum (𝑦 0 , 𝑦 1 ) ∈ V and the control 𝑣 ∈ H ′ .

Consequently, the search of the HUM control for ( 1) is reduced to the resolution of the mixed formulation [START_REF] Henrot | Domain optimization problem for stationary heat equation[END_REF], or equivalently to the search of the saddle point of ℒ. Moreover, for numerical purposes, it is convenient to "augment" the Lagrangian ℒ and to consider instead the Lagrangian ℒ𝑟 defined, for any 𝑟 > 0, by

⎧ ⎨ ⎩ ℒ𝑟(𝜙, 𝜆) = 1 2 𝑎𝑟(𝜙, 𝜙) -𝑏(𝜙, 𝜆) -ℓ(𝜙),
𝑎𝑟(𝜙, 𝜙) = 𝑎(𝜙, 𝜙) + 𝑟⟨𝐿𝜙, 𝐿𝜙⟩ 𝐿 2 (0,𝑇 ;𝐿 2 (Ω)) .

Since 𝑎(𝜙, 𝜙) = 𝑎𝑟(𝜙, 𝜙) for 𝜙 ∈ Φ 0 , the Lagrangians ℒ and ℒ𝑟 share the same saddle point.

Discretization

We now turn to the discretization of the mixed formulation [START_REF] Henrot | Domain optimization problem for stationary heat equation[END_REF]. Let (Φ ℎ ) ℎ>0 ⊂ Φ and (Λ ℎ ) ℎ>0 ⊂ Λ be two families of finite-dimensional spaces. For any ℎ > 0, we introduce the following approximated problem: find

(𝜙 ℎ , 𝜆 ℎ ) ∈ Φ ℎ × Λ ℎ solution of {︃ 𝑎𝑟(𝜙 ℎ , 𝜙 ℎ ) -𝑏(𝜙 ℎ , 𝜆 ℎ ) = ℓ(𝜙 ℎ ), ∀𝜙 ℎ ∈ Φ ℎ , 𝑏(𝜙 ℎ , 𝜆 ℎ ) = 0, ∀𝜆 ℎ ∈ Λ ℎ . (20) 
To prove the well-posedness of this mixed formulation, we again have to check the following two properties. First, the bilinear form 𝑎𝑟 is coercive on the kernel

𝒩 ℎ (𝑏) := {︀ 𝜙 ℎ ∈ Φ ℎ ; 𝑏(𝜙 ℎ , 𝜆 ℎ ) = 0, ∀𝜆 ℎ ∈ Λ ℎ

}︀

. Actually, from the relation

𝑎𝑟(𝜙, 𝜙) ≥ min(1, 𝑟/𝜏 )‖𝜙‖ 2 Φ , ∀𝜙 ∈ Φ,
the form 𝑎𝑟 is coercive on the full space Φ, and so a fortiori on 𝒩 ℎ (𝑏) ⊂ Φ ℎ ⊂ Φ.

The second property is a discrete inf-sup condition, there exists a constant 𝛿 ℎ > 0 such that inf

𝜆 ℎ ∈Λ ℎ sup 𝜙 ℎ ∈Φ ℎ 𝑏(𝜙 ℎ , 𝜆 ℎ ) ‖𝜙 ℎ ‖ Φ ℎ ‖𝜆 ℎ ‖ Λ ℎ ≥ 𝛿 ℎ . (21) 
The spaces Φ ℎ and Λ ℎ are finite-dimensional, so the infimum and the supremum in ( 21) are reached. Moreover, from the properties of 𝑎𝑟 and with the finite element spaces Φ ℎ , Λ ℎ chosen below, it is standard to prove that 𝛿 ℎ is strictly positive. Consequently, for any ℎ > 0, there exists a unique couple (𝜙 ℎ , 𝜆 ℎ ) ∈ Φ ℎ × Λ ℎ solution of the discrete mixed formulation [START_REF] Khapalov | Mobile point controls versus locally distributed ones for the controllability of the semilinear parabolic equation[END_REF].

On the other hand, if we could show that inf ℎ>0 𝛿 ℎ > 0, it would ensure the convergence of the solution (𝜙 ℎ , 𝜆 ℎ ) of the discrete formulation [START_REF] Khapalov | Controllability of the wave equation with moving point control[END_REF] towards the solution (𝜙, 𝜆) of the continuous formulation [START_REF] Henrot | Domain optimization problem for stationary heat equation[END_REF]. However, this property is usually difficult to prove and depends strongly on the choice made for the spaces Φ ℎ , Λ ℎ . We analyse numerically this property in Section 3.3.

Let us consider a triangulation 𝒯 ℎ of 𝑄 𝑇 , i.e. ∪ 𝐾∈𝒯 ℎ 𝐾 = 𝑄 𝑇 . We denote ℎ := max{diam(𝐾); 𝐾 ∈ 𝒯 ℎ }, where diam(𝐾) is the diameter of the triangle 𝐾.

In what follows, the space-time mesh 𝒯 ℎ is built from a discretization of the border of 𝑄 𝑇 and the curve 𝛾 (see Figure 5). Thus, the fineness of 𝒯 ℎ will be given either by ℎ or by the number 𝑁 𝒯 of vertices per unit of length. This also means that some vertices are supported on 𝛾, making the mesh well-adapted to the control trajectory. The mesh is generated using the software FreeFEM++ (see [START_REF] Hecht | New development in freefem++[END_REF]). The finite-dimensional space Φ ℎ must be chosen such that 𝐿𝜙 ℎ belongs to 𝐿 2 (0, 𝑇 ; 𝐿 2 (Ω)), for any 𝜙 ℎ ∈ Φ ℎ . Therefore, any space of functions continuously differentiable with respect to both 𝑥 and 𝑡 is a conformal approximation of Φ. We define the space Φ ℎ as follows

Φ ℎ := {︁ 𝜙 ℎ ∈ 𝐶 1 (𝑄 𝑇 ); 𝜙 ℎ| 𝐾 ∈ P(𝐾), ∀𝐾 ∈ 𝒯 ℎ , 𝜙 ℎ = 0 on Σ 𝑇 }︁ ⊂ Φ,
where P(𝐾) stands for the complete Hsieh-Clough-Tocher finite element (HCT for short) of class 𝐶 1 . It is a so-called composite finite element. It involves 12 degrees of freedom which are, for each triangle 𝐾, the values of 𝜙 ℎ , 𝜙 ℎ,𝑥 , 𝜙 ℎ,𝑡 on the three vertices, and the values of the normal derivative of 𝜙 in the middle of the three edges. We refer to [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] and [START_REF] Bernadou | Basis functions for general Hsieh-Clough-Tocher triangles, complete or reduced[END_REF][START_REF] Meyer | A simplified calculation of reduced HCT-basis functions in a finite element context[END_REF] for the precise definition and the implementation of such finite element. We also introduce the finite-dimensional space

Λ ℎ := {︁ 𝜆 ℎ ∈ 𝐶 0 (𝑄 𝑇 ); 𝜆 ℎ| 𝐾 ∈ Q(𝐾), ∀𝐾 ∈ 𝒯 ℎ , 𝜆 ℎ = 0 on Σ 𝑇 }︁ ⊂ Λ,
where Q(𝐾) is the space of affine functions in both 𝑥 and 𝑡 on the element 𝐾.

Let 𝑛 ℎ = dim(Φ ℎ ) and 𝑚 ℎ = dim(Λ ℎ ). We define the matrices

𝐴 𝑟,ℎ ∈ R 𝑛 ℎ ,𝑛 ℎ , 𝐵 ℎ ∈ R 𝑚 ℎ ,𝑛 ℎ , 𝑀 ℎ ∈ R 𝑚 ℎ ,𝑚 ℎ and the vector 𝐿 ℎ ∈ R 𝑛 ℎ by ⟨𝐴 𝑟,ℎ {𝜙 ℎ }, {𝜙 ℎ }⟩ = 𝑎𝑟(𝜙 ℎ , 𝜙 ℎ ), ∀𝜙 ℎ , 𝜙 ℎ ∈ Φ ℎ , ⟨𝐵 ℎ {𝜙 ℎ }, {𝜆 ℎ }⟩ = 𝑏(𝜙 ℎ , 𝜆 ℎ ), ∀𝜙 ℎ ∈ Φ ℎ , ∀𝜆 ℎ ∈ Λ ℎ , ⟨𝑀 ℎ {𝜆 ℎ }, {𝜆 ℎ }⟩ = ⟨𝜆 ℎ , 𝜆 ℎ ⟩ Λ , ∀𝜆 ℎ , 𝜆 ℎ ∈ Λ ℎ , ⟨𝐿 ℎ , {𝜙 ℎ }⟩ = ℓ(𝜙 ℎ ), ∀𝜙 ℎ ∈ Φ ℎ ,
where {𝜙 ℎ } ∈ R 𝑛 ℎ and {𝜆 ℎ } ∈ R 𝑚 ℎ denote the vectors associated with 𝜙 ℎ ∈ Φ ℎ and 𝜆 ℎ ∈ Λ ℎ respectively. With these notations, the discrete mixed formulation [START_REF] Khapalov | Controllability of the wave equation with moving point control[END_REF] reads as follows: find

{𝜙 ℎ } ∈ R 𝑛 ℎ and {𝜆 ℎ } ∈ R 𝑚 ℎ such that (︃ 𝐴 𝑟,ℎ -𝐵 𝑇 ℎ -𝐵 ℎ 0 )︃ (︃ {𝜙 ℎ } {𝜆 ℎ } )︃ = (︃ 𝐿 ℎ 0 )︃ . ( 22 
)
For any 𝑟 > 0, the matrix 𝐴 𝑟,ℎ is symmetric and positive definite. However, the matrix in ( 22) is symmetric but not positive definite. The system ( 22) is solved by the LU method with FreeFEM++ (see [START_REF] Hecht | New development in freefem++[END_REF]).

Discrete inf-sup test

Here, we test numerically the discrete inf-sup condition [START_REF] Khapalov | Mobile point controls versus locally distributed ones for the controllability of the semilinear parabolic equation[END_REF], and more precisely the property inf ℎ>0 𝛿 ℎ > 0. For simplicity, we take 𝜏 = 𝑟 > 0 in [START_REF] Glowinski | Exact and approximate controllability for distributed parameter systems[END_REF], so that 𝑎 𝑟,ℎ (𝜙, 𝜙) = ⟨𝜙, 𝜙⟩ Φ for all 𝜙, 𝜙 ∈ Φ. It is readily seen (see [START_REF] Chapelle | The inf-sup test[END_REF]) that the discrete inf-sup constant satisfies

𝛿 ℎ = inf {︁ √ 𝜇; 𝐵 ℎ 𝐴 -1 𝑟,ℎ 𝐵 𝑇 ℎ {𝜆 ℎ } = 𝜇 𝑀 ℎ {𝜆 ℎ }, ∀{𝜆 ℎ } ∈ R 𝑚 ℎ ∖ {0} }︁ . ( 23 
)
For any ℎ > 0, the matrix 𝐵 ℎ 𝐴 -1 𝑟,ℎ 𝐵 𝑇 ℎ is symmetric and positive definite, so the constant 𝛿 ℎ is strictly positive. The generalized eigenvalue problem ( 23) is solved by the inverse power method (see [START_REF] Chatelin | Eigenvalues of matrices[END_REF]). Given {𝑢 0

ℎ } ∈ R 𝑚 ℎ such that ‖{𝑢 0 ℎ }‖ 2 = 1, for any 𝑛 ∈ N, compute iteratively ({𝜙 𝑛 ℎ }, {𝜆 𝑛 ℎ }) ∈ R 𝑛 ℎ × R 𝑚 ℎ and {𝑢 𝑛+1 ℎ } ∈ R 𝑚 ℎ as follows ⎧ ⎨ ⎩ 𝐴 𝑟,ℎ {𝜙 𝑛 ℎ } -𝐵 𝑇 ℎ {𝜆 𝑛 ℎ } = 0, 𝐵 ℎ {𝜙 𝑛 ℎ } = 𝑀 ℎ {𝑢 𝑛 ℎ }, {𝑢 𝑛+1 ℎ } = {𝜆 𝑛 ℎ } ‖{𝜆 𝑛 ℎ }‖ 2 .
The discrete inf-sup constant 𝛿 ℎ is then given by 𝛿 ℎ = lim𝑛→∞

‖{𝜆 𝑛 ℎ }‖ -1 2 
2 . We now compute 𝛿 ℎ for decreasing values of the fineness ℎ, and for different values of the parameter 𝑟, namely 𝑟 = 10 -2 , 𝑟 = ℎ and 𝑟 = ℎ 2 . We use the control trajectory 𝛾 defined in (Ex1-𝛾). The values that we obtain are collected in Table 1. In view of the results for 𝑟 = 10 -2 , the constant 𝛿 ℎ does not seem to be uniformly bounded by below as ℎ → 0. Thus, we may conclude that the finite elements used here do not "pass" the discrete inf-sup test. As we shall see in the next section, this fact does not prevent the convergence of the sequences (𝜙 ℎ ) ℎ>0 and (𝜆 ℎ ) ℎ>0 , at least for the cases we have considered. Interestingly, we also observe that 𝛿 ℎ remains bounded by below with respect to ℎ when 𝑟 depends appropriately on ℎ, as for instance in the case 𝑟 = ℎ 2 . ℎ (×10 

Numerical simulations

In this section, we solve on various examples the discrete mixed formulation [START_REF] Khapalov | Controllability of the wave equation with moving point control[END_REF] to compute the HUM control for (1) and the associated controlled state. First, we determine the rate of convergence of the approximated control/controlled state, as the discretization parameter ℎ goes to zero. Second, for stationary control points 𝛾 ≡ 𝑥 0 , we illustrate the blow-up of the cost of control at non-strategic points. Finally, we introduce a gradient-type algorithm to solve the problem [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] of optimizing the support of control. The algorithm is then tested on two different initial data. From now on, we set 𝑇 = 2 and 𝑟 = 10 -2 .

Convergence of the approximated control

In order to measure the rate of convergence of the approximated control with respect to the mesh fineness ℎ, we use the initial datum

𝑦 0 (𝑥) = sin(𝜋𝑥), 𝑦 1 (𝑥) = 0, ∀𝑥 ∈ Ω, (Ex1-y 0 )
and the control trajectory

𝛾(𝑡) = 1 5 + 3 5 𝑡 𝑇 , ∀𝑡 ∈ [0, 𝑇 ]. (Ex1-𝛾)
This curve 𝛾 is an admissible trajectory (see [8, Example 3.2]), i.e. the system (1) is controllable. To compare with the approximated solution (𝜙 ℎ , 𝜆 ℎ ) of ( 20), using the optimality condition (8), we compute another approximation (𝜙, 𝜆) by Fourier expansion (see Appendix A), with 𝑁 𝐹 = 100 harmonics. We then evaluate the errors ‖𝜙(𝛾, •) -𝜙 ℎ (𝛾, •)‖ H and ‖𝜆 -𝜆 ℎ ‖ Λ for the six levels of fineness 𝑁 𝒯 = 25, 50, 75, 100, 125, 150. We gather the results in Table 2 and display them in Figure 1. By linear regression, we find a convergence rate in ℎ 0.44 for 𝜙 ℎ and in ℎ 0.48 for 𝜆 ℎ . In Figure 3, we represent the adjoint state 𝜙 ℎ and the controlled state 𝜆 ℎ , for 𝑁 𝒯 = 150. The HUM control 𝑣 ℎ computed from 𝜙 ℎ by ( 9) is shown in Figure 2, together with the "exact" control 𝑣 obtained by Fourier expansion. 

(𝜙 ℎ , 𝜆 ℎ ) of (20) vs. ℎ - ‖𝜙(𝛾, •) -𝜙 ℎ (𝛾, •)‖ H (•), ‖𝜆 -𝜆 ℎ ‖ Λ (■).

Blow-up at non-strategic points

In the case of a stationary control point 𝛾 ≡ 𝑥 0 ∈ Ω, it is well-known that one has to choose a so-called strategic point (see [START_REF] Lions | Pointwise control for distributed systems[END_REF]) to ensure the controllability of (1).

A point 𝑥 0 is strategic if and only if sin(𝑝𝜋𝑥 0 ) ̸ = 0 for every 𝑝 ≥ 1. Moreover, a given initial datum (𝑦 0 , 𝑦 1 ) ∈ V can be controlled if and only if sin(𝑝𝜋𝑥 0 ) ̸ = 0 for every 𝑝 ≥ 1 such that one of the Fourier coefficients 𝑐𝑝(𝑦 0 ), 𝑐𝑝(𝑦 1 ) are non-zero. Therefore, for (𝑦 0 , 𝑦 1 ) ∈ V fixed, we expect the cost of control to blow up as 𝑥 0 gets closer to a non-strategic location. To illustrate this property, we use the initial datum 𝑦 0 (𝑥) = sin(2𝜋𝑥), 𝑦 1 (𝑥) = 0, ∀𝑥 ∈ Ω, (Ex2-y 0 )

and we evaluate the functional 𝐽(𝑥 0 ) (cf. [START_REF] Chatelin | Eigenvalues of matrices[END_REF]) for several control locations 𝑥 0 spread in the interval ( 1 4 , 1 2 ). With the initial datum considered, 𝑥 ⋆ = 1 2 is the unique non-strategic point. In Figure 4, we display 𝐽(𝑥 0 ) w.r.t. the distance |𝑥 ⋆ -𝑥 0 |. As expected, we note that the cost of control blows up when 𝑥 0 → 𝑥 ⋆ . More precisely, we have 𝐽(𝑥 0 ) ∼ 𝑥 ⋆ 𝐶 0 |𝑥 ⋆ -𝑥 0 | -1.97 .

Optimization of the support using splines

We now focus on solving numerically the problem [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] with a gradient-type algorithm. To do so, the control trajectories 𝛾 considered are degree 5 splines adapted to a fixed subdivision of [0, 𝑇 ]. For any integer 𝑁 ≥ 1, we denote 𝑆 𝑁 = (𝑡 𝑖 ) 0≤𝑖≤𝑁 the regular subdivision of [0, 𝑇 ] in 𝑁 intervals. With 𝜅 = 𝑇 /𝑁 , the subdivision points are 𝑡 𝑖 = 𝑖 𝜅. In the simulations below, we use 𝑁 = 20. We then define the set 𝒮 5 of degree 5 splines adapted to the subdivision 𝑆 𝑁 . Such a spline 𝛾 ∈ 𝒮 5 is of class 𝐶 2 ([0, 𝑇 ]) and is uniquely determined by the 3(𝑁 + 1) conditions where x = (𝑥 𝑖 ) 0≤𝑖≤𝑁 , p = (𝑝 𝑖 ) 0≤𝑖≤𝑁 and c = (𝑐 𝑖 ) 0≤𝑖≤𝑁 represent the spline parameters. We also introduce the degree 5 polynomial basis (𝑃 𝑘,𝑙 ) 𝑘=0,1,2 𝑙=0,1

𝛾(𝑡 𝑖 ) = 𝑥 𝑖 , 𝛾 ′ (𝑡 𝑖 ) = 𝑝 𝑖 , 𝛾 ′′ (𝑡 𝑖 ) = 𝑐 𝑖 , 0 ≤ 𝑖 ≤ 𝑁,
on [0, 1] characterized by 𝑃 (𝑘 ′ ) 𝑘,𝑙 (𝑙 ′ ) = 𝛿 𝑘,𝑘 ′ 𝛿 𝑙,𝑙 ′ , for 𝑘, 𝑘 ′ ∈ {0, 1, 2}, 𝑙, 𝑙 ′ ∈ {0, 1}.
Here, 𝑃 (𝑘 ′ ) 𝑘,𝑙 stands for the 𝑘 ′ -th derivative of 𝑃 𝑘,𝑙 and 𝛿 𝑘,𝑘 ′ is the Kronecker delta, i.e. 𝛿 𝑘,𝑘 ′ = 1 if 𝑘 = 𝑘 ′ and 𝛿 𝑘,𝑘 ′ = 0 otherwise. For the sake of presentation, we briefly rename the parameters (x, p, c) = (s 0 , s 1 , s In order to get a descent direction for 𝐽𝜀,𝜂 at 𝛾 ∈ 𝒮 5 , we consider the following variational problem: find 𝑗𝛾 ∈ 𝒮 5 solution of ⟨𝑗 𝛾 , 𝛾⟩ H + 𝜀⟨𝑗 ′′ 𝛾 , 𝛾 ′′ ⟩ 𝐿 2 (0,𝑇 ) = d𝐽(𝛾; 𝛾) + 𝜀⟨𝛾 ′′ , 𝛾 ′′ ⟩ 𝐿 2 (0,𝑇 ) + 𝜂(𝐿(𝛾) -𝐿) + d𝐿(𝛾; 𝛾), ∀𝛾 ∈ 𝒮 5 .

Indeed, using Lemma 3, we can see that d𝐽𝜀,𝜂(𝛾; 𝑗𝛾 ) = ‖𝑗𝛾 ‖ 2 H + 𝜀‖𝑗 ′′ 𝛾 ‖ 2 𝐿 2 (0,𝑇 ) ≥ 0. The problem [START_REF] Lions | Some methods in the mathematical analysis of systems and their control[END_REF] is solved by the finite element method using FreeFEM++. We denote by 𝑃 Ω the projection in Ω. Then, the gradient algorithm for solving [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] is given by Algorithm 1. We point out that a re-meshing of 𝑄 𝑇 is performed at each iteration, in order to be conform with the current trajectory 𝛾𝑛. We illustrate the algorithm on two examples. We initialize the algorithm with the trajectory 𝛾 0 ∈ 𝒮 5 associated with the parameters

𝑥 𝑖 = 3 20 + 1 5 𝑡 𝑖 𝑇 , 𝑝 𝑖 = 1 5𝑇
, 𝑐 𝑖 = 0, 0 ≤ 𝑖 ≤ 𝑁. (Ex3-𝛾 0 )

We set 𝜀 = 10 -4 , 𝜂 = 10 3 , 𝐿 = 2.01 and 𝜌 = 10 -2 . The initial trajectory 𝛾 0 , the optimal trajectory 𝛾 ⋆ and the optimal controlled state 𝜆 ⋆ are displayed in Figure 5.

We observe that the optimal trajectory we get is close to a stationary control point located in 𝑥 0 = 1 2 , the maximum point of sin(𝜋𝑥). This is coherent with the case of controls distributed over domains 𝑞 ⊂ 𝑄 𝑇 (see [6, Example EX1]).

Example 2 -Travelling wave

To test again the similarities between the pointwise control case and the distributed control case, we now use the initial datum To see whether the control trajectory is likely to "follow" the wave associated with (Ex4-y 0 ) as it is the case in [6, Example EX2]), we define the trajectories 𝑔𝑥 0 (𝑡) = 𝑓𝑥 0 (𝑡) + 0.15 cos(5𝜋(𝑡 -𝑥 0 )), for any 𝑥 0 ∈ Ω.

𝑦 0 (𝑥) = (10𝑥 -3) 2 (10𝑥 -7) 2 1 [0.3,0.7] (𝑥), 𝑦 1 (𝑥) = 𝑦 ′ 0 (𝑥), ∀𝑥 ∈ Ω. (Ex4-y 0 )
Here, 𝑓𝑥 0 is the characteristic line "𝑥 + 𝑡 = 𝑥 0 " of the wave equation. The trajectory 𝑔 1 2 is displayed in Figure 8-left. Then, for several values of 𝑥 0 in Ω, we evaluate the functional 𝐽(𝑔𝑥 0 ) associated with the initial datum (Ex4-y 0 ). The results are displayed in Figure 6, and we can see that 𝐽 reaches its minimum for 𝑥 0 = 1 2 .

Fig. 6: (Ex4) -𝐽(𝑔𝑥 0 ) vs. 𝑥 0 .

We then employ Algorithm 1 for two different initial trajectories 𝛾 0 ∈ 𝒮 5 , respectively defined by

𝑥 𝑖 = 𝑔 1 2 (𝑡 𝑖 ), 𝑝 𝑖 = 𝑔 ′ 1 2 (𝑡 𝑖 ), 𝑐 𝑖 = 𝑔 ′′ 1 2 (𝑡 𝑖 ), 0 ≤ 𝑖 ≤ 𝑁, (Ex4.1-𝛾 0 ) 𝑥 𝑖 = 1 4 + 1 2 𝑡 𝑖 𝑇 , 𝑝 𝑖 = 1 2𝑇 , 𝑐 𝑖 = 0, 0 ≤ 𝑖 ≤ 𝑁. (Ex4.2-𝛾 0 )
We set 𝜀 = 10 -4 , 𝜂 = 10 3 , 𝐿 = 4 and 𝜌 = 10 -2 . For the two examples (Ex4.1) and (Ex4.2), we display the initial trajectory 𝛾 0 , the optimal trajectory 𝛾 ⋆ and the optimal controlled state 𝜆 ⋆ in Figures 89respectively. In the first setup, we observe that the optimal trajectory remains close to the wave support, which is coherent with the distributed control case. In the second setup, the optimal trajectory also seems to get closer to the wave support, but the convergence is very slow. This can be seen in Figure 7, where the evolution of the functional 𝐽(𝛾𝑛) and the curve length 𝐿(𝛾𝑛) are shown. The optimal costs are respectively 𝐽(𝛾 ⋆ ) = 3.92 for (Ex4.1) and 𝐽(𝛾 ⋆ ) = 3.69 for (Ex4.2). The difference is negligible compared to the initial cost 𝐽(𝛾 0 ) = 37.45 for the example (Ex4.2). 

Conclusion

On the basis of [START_REF] Castro | Controllability of the linear onedimensional wave equation with inner moving forces[END_REF] that deals with controls distributed over non-cylindrical domains, we have built a mixed formulation characterizing the HUM control acting on a moving point. The formulation involves the adjoint state and a Lagrange multiplier which turns out to coincide with the controlled state. This approach leads to a variational formulation over a Hilbert space without distinction between the space and time variables, making it very appropriate to our moving point situation.

We have shown the well-posedness of the formulation using the observability inequality proved in [START_REF] Castro | Exact controllability of the 1-D wave equation from a moving interior point[END_REF]. At a practical level, the mixed formulation is discretized and solved in the finite element framework. The resolution amounts to solve a sparse symmetric system. From a numerical point of view, we have provided evidence of the convergence of the approximated control for regular initial data.

Still from a numerical perspective, for a fixed initial datum, we have considered the natural problem of optimizing the support of control. We have solved this problem with a simple gradient algorithm. For simplicity, the optimization is made over very regular trajectories. The results we get are similar with those obtained in [START_REF] Bottois | Optimization of non-cylindrical domains for the exact null controllability of the 1D wave equation[END_REF], where the same problem is studied for controls distributed over non-cylindrical domains. Although, the convergence towards the optimal trajectory seems to be generally much slower.

This work may be extended to several directions. First, as it is done in [START_REF] Periago | Optimal shape and position of the support for the internal exact control of a string[END_REF] for distributed controls, one could try to justify rigorously the well-posedness of the support optimization problem. In that context, it could be interesting to find the minimal regularity necessary for the control trajectories. Besides, one could try to implement other types of algorithm for solving the problem, as for instance an algorithm based on the level-set method. Another challenge is the extension of the observability inequality to the multidimensional case, where we cannot make use of the d'Alembert formula. )︃⟩

, ∀(𝑎 𝑞 , 𝑏𝑞) 𝑞≥1 , (30) where the positive definite matrix ℳ𝛾 and the vector ℱy 0 are obtained from [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF][START_REF] Meyer | A simplified calculation of reduced HCT-basis functions in a finite element context[END_REF] and ( 29) respectively. The resolution of the infinite-dimensional system (30) (reduced to a finite-dimensional one by truncation) provides an approximation of the adjoint state 𝜙 linked to the HUM control 𝑣 by [START_REF] Castro | Controllability of the linear onedimensional wave equation with inner moving forces[END_REF].

Injecting [START_REF] Lions | Pointwise control for distributed systems[END_REF] in the wave equation ( 1), we find that 𝑐𝑝(𝑡) satisfies 

  )) of the HUM control with respect to the curve 𝛾, i.e. solve min 𝛾∈𝒢 𝐽(𝛾), where 𝐽(𝛾) = 1 2

Lemma 3 .

 3 Let 𝛾 ∈ 𝐶 2 ([0, 𝑇 ]) be an admissible trajectory and let 𝛾 ∈ 𝐶 2 ([0, 𝑇 ]) be a perturbation. The directional derivative of 𝐽 at 𝛾 in the direction 𝛾, defined by d𝐽(𝛾; 𝛾) := lim 𝜈→0 𝐽(𝛾 + 𝜈𝛾) -𝐽(𝛾) 𝜈 , reads as follows d𝐽(𝛾; 𝛾) = -𝑇 ∫︁ 0 𝜙(𝛾(𝑡), 𝑡)𝜙𝑥(𝛾(𝑡), 𝑡)𝛾(𝑡) d𝑡 -

Fig. 1 :

 1 Fig. 1: (Ex1) -Error on the approximated solution (𝜙 ℎ , 𝜆 ℎ ) of (20) vs. ℎ -‖𝜙(𝛾, •) -𝜙 ℎ (𝛾, •)‖ H (•), ‖𝜆 -𝜆 ℎ ‖ Λ (■).

Fig. 2 :

 2 Fig. 2: (Ex1) -Controls 𝑣 ℎ (-) and 𝑣 (-), for 𝑁 𝒯 = 150.

Fig. 3 :

 3 Fig. 3: (Ex1) -Iso-values of the adjoint state 𝜙 ℎ (left) and controlled state 𝜆 ℎ (right), for 𝑁 𝒯 = 150.

Fig. 4 :

 4 Fig. 4: (Ex2) -𝐽(𝑥 0 ) vs. |𝑥 ⋆ -𝑥 0 |, for stationary control points 𝑥 0 .
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 1 ). It allows to decompose 𝛾 into𝛾(𝑡) = 𝑡𝑖-1,𝑡𝑖] (𝑡), ∀𝑡 ∈ [0, 𝑇 ],where we have set 𝑃 𝑖 𝑘,𝑙 (𝑡) = 𝜅 𝑘 𝑃 𝑘,𝑙 With this decomposition, the optimization problem (12) is reduced to a finite-dimensional problem in the space of parameters, i.e. min 𝛾∈𝒮5 𝐽𝜀,𝜂(𝛾) = min s ̃︀ 𝐽𝜀,𝜂(s), where s = (x, p, c) ∈ R 3(𝑁 +1) .

Algo. 1 :

 1 Gradient descentInitialization Choose a trajectory 𝛾 0 ∈ 𝒮 5 such that 0 < 𝛾 0 < 1. For each 𝑛 ≥ 0 do ◁ Compute the solution 𝜙 ℎ of (20) associated with 𝛾𝑛. ◁ Evaluate the costs 𝐽(𝛾𝑛) and 𝐽𝜀,𝜂(𝛾𝑛). ◁ Compute the solution 𝑗𝛾 𝑛 of (24). ◁ Update the trajectory 𝛾𝑛 by setting 𝛾 𝑛+1 = 𝑃 Ω (𝛾𝑛 -𝜌 𝑗𝛾 𝑛 ), with 𝜌 > 0 fixed. End Example 1 -Sine function To test Algorithm 1, we first use the initial datum 𝑦 0 (𝑥) = 10 sin(𝜋𝑥), 𝑦 1 (𝑥) = 0, ∀𝑥 ∈ Ω. (Ex3-y 0 )

Fig. 5 :

 5 Fig. 5: (Ex3) -Initial trajectory 𝛾 0 , optimal trajectory 𝛾 ⋆ and optimal controlled state 𝜆 ⋆ (from left to right). The left figure also illustrates the type of mesh used to solve (20).

Fig. 7 :

 7 Fig. 7: (Ex4.2) -Functional 𝐽(𝛾𝑛) (left) and curve length 𝐿(𝛾𝑛) (right).

Fig. 8 :

 8 Fig. 8: (Ex4.1) -Initial trajectory 𝛾 0 , optimal trajectory 𝛾 ⋆ and optimal controlled state 𝜆 ⋆ (from left to right).

Fig. 9 :∀𝑝 ≥ 1 .

 91 Fig. 9: (Ex4.2) -Initial trajectory 𝛾 0 , optimal trajectory 𝛾 ⋆ and optimal controlled state 𝜆 ⋆ (from left to right).

  {︃𝑐 ′′𝑝 (𝑡) + (𝑝𝜋) 2 𝑐𝑝(𝑡) = 2𝑣(𝑡) sin(𝑝𝜋𝛾(𝑡)), ∀𝑡 > 0, 𝑐𝑝(0) = 𝑐𝑝(𝑦 0 ), 𝑐 ′ 𝑝 (0) = 𝑐𝑝(𝑦 1 ).We then have𝑐𝑝(𝑡) = 𝑐𝑝(𝑦 0 ) cos(𝑝𝜋𝑡) + 𝑐𝑝(𝑦 1 ) 𝑝𝜋 sin(𝑝𝜋𝑡) + 2 𝑝𝜋 𝑡 ∫︁ 0 𝑣(𝑠) sin(𝑝𝜋𝛾(𝑠)) sin(𝑝𝜋(𝑡 -𝑠)) d𝑠.

Finally, by

  integration by parts, we deduce 𝑐𝑝(𝑡) = 𝑐𝑝(𝑦 0 ) cos(𝑝𝜋𝑡) + 𝑐𝑝(𝑦 1 ) (𝑠), 𝑠) sin(𝑝𝜋𝛾(𝑠)) sin(𝑝𝜋(𝑡 -𝑠)) d𝑠 (𝑠), 𝑠) sin(𝑝𝜋𝛾(𝑠)) cos(𝑝𝜋(𝑡 -𝑠)) d𝑠 + 2 𝑡 ∫︁ 0 d d𝑠 𝜙(𝛾(𝑠), 𝑠) cos(𝑝𝜋𝛾(𝑠))𝛾 ′ (𝑠) sin(𝑝𝜋(𝑡 -𝑠)) d𝑠.

  , one can then see that the control ̂︀ Lemma 2 (HUM control). Let 𝛾 ∈ 𝐶 1 ([0, 𝑇 ]) piecewise. If 𝛾 is an admissible trajectory, the control ̂︀ 𝑣 of minimal H ′ -norm for (1) is given by

	︀ 𝑣(𝑡) = -	d 2 d𝑡 2 ̂︀ 𝜙(𝛾(𝑡), 𝑡) + ̂︀ 𝜙(𝛾(𝑡), 𝑡)
		+	d d𝑡	̂︀ 𝜙(𝛾(𝑡), 𝑡)𝛿 𝑇 (𝑡) -	d d𝑡	̂︀ 𝜙(𝛾(𝑡), 𝑡)𝛿 0 (𝑡), ∀𝑡 ∈ (0, 𝑇 ),
						𝑣
	of minimal H ′ -norm for (1) has the following form.

  with respect to 𝛾. It gives

	𝑇							𝑇
	∫︁	(︁	𝜙 ′ (𝛾(𝑡), 𝑡) + 𝜙𝑥(𝛾(𝑡), 𝑡)𝛾(𝑡)	)︁ 𝜓(𝛾(𝑡), 𝑡) d𝑡 +	∫︁	𝜙(𝛾(𝑡), 𝑡)𝜓𝑥(𝛾(𝑡), 𝑡)𝛾(𝑡) d𝑡
	0							0
				𝑇			
		+	∫︁	d d𝑡	(︁	𝜙 ′ (𝛾(𝑡), 𝑡) + 𝜙𝑥(𝛾(𝑡), 𝑡)𝛾(𝑡)	)︁ d d𝑡	𝜓(𝛾(𝑡), 𝑡) d𝑡
				0			
					𝑇		
				+	∫︁	d d𝑡	𝜙(𝛾(𝑡), 𝑡)	d d𝑡	(︁	𝜓𝑥(𝛾(𝑡), 𝑡)𝛾(𝑡)
					0		

  Discrete inf-sup constant 𝛿 ℎ w.r.t. ℎ and 𝑟, for 𝛾 defined in (Ex1-𝛾).

	-2 )	6.46	3.51	2.66	2.17	1.37	1.21
	𝑟 = 10 -2	1.8230 1.7947 1.7845 1.6749 1.6060 1.5008
	𝑟 = ℎ	1.4575 1.3806 1.3269 1.2402 1.4188 1.3851
	𝑟 = ℎ 2	1.8873 1.8885 1.8783 1.8697 1.8982 1.8920
	Tab. 1:						

  𝜙 ℎ (𝛾, •)‖ H (×10 -1 ) 2.15 1.59 1.31 1.20 1.09 1.01 ‖𝜆 -𝜆 ℎ ‖ Λ (×10 -2 ) 11.0 8.06 6.69 6.05 5.38 4.81 Tab. 2: (Ex1) -Error on the approximated solution (𝜙 ℎ , 𝜆 ℎ ) of (20) w.r.t. ℎ.

	𝑁 𝒯	25	50	75	100	125	150
	ℎ (×10 -2 )	6.46 3.51 2.66 1.72 1.40 1.28
	‖𝜙(𝛾, •) -