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Abstract—With an increasing amount of connected cars and
devices having more and more sensors, the development of smart
architectures and algorithms to efficiently transport data is a
major concern. The selection of relays to allow users to connect
to Internet is an important aspect in networks with high mobility,
particularly in low-population areas having poor network cover-
age. Furthermore, cellular connectivity can be expensive for users.
The solution proposed in this paper uses a machine learning based
classification algorithm to select the best relays amongst any user
based on their mobility profile. Not only this solution can be used
on its own to enhance network performance without requiring a
dedicated architecture, but it can be coupled with other algorithms
as well to increase performance even more. Simulation results will
show the proposition is able to scale up to several hundreds of
users simultaneously, it improves the delivery rate of packets by
up to a factor 2, it increases connectivity, generates less signaling
and yields a more stable topology compared to a random selection
or the use of static relays.

Index Terms—Mobile Relays, Machine Learning, Mobility Clas-
sification, Mobile Networks, Internet of Mobile Things

I. INTRODUCTION

Wireless mobile devices are more and more present in
everyday life. All kinds of vehicles are equipped with sensors
(cars, trucks, buses, bicycles, scooters, etc.) and are connected
to Internet. Many people also carry a smartphone. All these
devices generate traffic and the expected traffic from mobile
users will reach 20% of the total IP traffic in the near future
[1]. Also, most of the mobile traffic will be from cellular
connections [1]. Networks must be designed accordingly in
order to absorb such a huge quantity of data and to ensure
Quality of Service (QoS). Although several users can directly
connect to Internet using a 4/5G connection, it is not neces-
sarily possible for everybody. High costs, lack of connectivity
due to environmental factors or poorly serviced areas are a
few examples where connecting a user can be an issue. One
solution is to use relays to forward data from and to those users
to allow them to have network access. Selecting which relays
to use will have a major impact on performance and in specific
contexts it is not always possible to have dedicated static relays
(e.g. in a low populated area), as the cost to deploy them is too
high compared to the amount of (potential) users. Furthermore,
in a context where all users move, like the Internet of Mobile
Things (IoMT), the constantly changing topology poses an even
greater challenge to the selection process of relays. Indeed,
some users can move far enough to leave the coverage area or
a traffic jam can cause a section of a road to suddenly have a
peak of network traffic due to a sudden increase in the number

of users. In such situations, it can be hard to decide where to
place static relays and relaying on Mobile Relays (MR) instead
can greatly help in adapting the topology to this very dynamic
context, without incurring a higher cost.

The selection of relays is a problem that was extensively
studied [2]. Most solutions focus on the selection of relay users
connect to (detailed in section II). Relays - mobile or not - are
usually dedicated devices as well. Several researchers propose
solutions using Artificial Intelligence (AI), more specifically
Machine Learning (ML) : such techniques allow to efficiently
solve complex problems thanks to their capacity to adapt to
dynamic contexts like in the case of mobility in wireless
networks [3]. ML is used in networking to address different
problems, like routing [4]. We have decided to focus on the
process of selection of relays.

In this paper, we propose a novel solution that uses ML
to classify users according to their mobility profile. Then,
the best profiles amongst users are selected to act as mobile
relays. Contrary to the state of the art, our solution does not
require a dedicated infrastructure; it is thus able to adapt to a
vast amount of different situations. A cellular antenna is still
needed, though, as a mean to connect to Internet. Once MRs
are selected, any routing protocol can be used to transport data.
It is also possible to narrow down the set of selected MRs to
improve performance even more by considering connectivity,
lowest delay, energy consumption or any other metric seen as
relevant. This makes the proposed solution suitable to couple
with an existing routing protocol to greatly increase QoS.
Furthermore, in this paper we study different mobility profiles
together (car and bicycle), interacting with one another at the
same time. To the best of our knowledge, other solutions
consider motorized vehicles only which makes our approach
original.

The remaining of this paper is organized as follows : state
of the art is presented in section II, section III introduces
the studied architecture and the proposed solution, simulation
results are shown and discussed in section IV and the paper is
concluded in section V.

II. RELATED WORK

As we will see in this section, most algorithms focus on the
selection of dedicated relays or some information is supposed
to be known a priori to aid the selection process. The first part
(section II-A) is about classical algorithms whereas the second
part (II-B) will cover algorithms using machine learning.



A. Classical algorithms

Classical algorithms are solutions that do not use ML to
solve the problem at hand. Some examples include the use of
matching theory [5], Markov chains [6] [7] or formulating the
question as a maximization problem [8].

Authors in [5] use Matching Game to anticipate future radio
conditions of flying drones. The position and trajectory of
drones are used to dynamically adjust the transmission mode
of each one and to select which drones will forward data.
However, in the context of vehicular it is not always possible
to know the future trajectory of users.

In [6], the authors propose a relay selection scheme where
Mobile Users (MU) select relays according to a cost. The
model is composed of a base station, several relays and MUs.
The mobility of users is represented by a transition matrix and
the problem is modeled using a constrained Markov decision
process. Though the mobility of users is accounted for in this
proposition, the use of dedicated relays constrains the problem.

The solution proposed in [8] aims to maximize the sys-
tem throughput by satisfying QoS requirements of users by
considering a power constraint. The model is composed of
one antenna, several fixed relays and users. The maximization
problem allows to find the best relay for each user. However,
given relays are dedicated units and no mobility is considered,
the solution is not adapted in a highly mobile environment with
potential relays moving in and out of the studied area.

In [7], the authors propose to add MRs to help manage
high traffic periods of fixed relays in order to reduce signaling
overhead and improve user mobility experience. High traffic
periods are modeled using Markov chains. Though mobility
is considered, MRs are supposed to be mounted on vehicles,
such as buses and move at constant speed. This might not be
adapted in areas with a low-population density.

Authors in [9] propose a mechanism of relay selection to
assist nodes showing high interference. The model is made of
a macro cell antenna, a few pico cell antennae and several
users. This solution is interesting as any node can potentially
relay data to help another node. However, it uses static nodes
and is not intended to use in a context with high mobility.

B. Machine learning based algorithms

ML algorithms use artificial intelligence to solve problems.
In the case of supervised ML, the algorithm is first trained on
a set of data where the output is known in advance. After this
step, the algorithm is able to deduce the output on a set of data
having the same nature as the training set.

In [10], the authors propose to use deep learning to select
the best relays to enhance dissemination of data. The studied
case is made of a road network with static Road Side Units
(RSU) near the roads and vehicles moving around on the
roads. Although the use of several features is good to make
a more relevant choice, relays are static and dedicated units.
This makes this solution non-adapted if deployment cost of
the infrastructure is too high or if it is not possible to deploy
a dedicated architecture at all.
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Fig. 1: The proposed architecture with several types of users
and the controller running the ML algorithm.

Authors in [11] propose to use deep learning to select the
most appropriate relay for nodes suffering blocking of radio
waves. A user that has bad radio conditions will consider
several metrics for the deep learning algorithm to find a suitable
relay. However, the presented architecture does not consider a
user can connect to the base station through several hops.

In [12], the authors propose a powerful model using the
K-nearest neighbors ML algorithm. They consider a vehicular
network composed of several RSUs and many vehicles driving
around. The idea is to connect a vehicle directly to a RSU
if one is in range, otherwise it tries to find a path through
other vehicles to connect to a RSU using several features.
Though the model uses many relevant features in the context of
mobility, it relies on static relays and only motorized vehicles
are considered.

As aforementioned, state of the art solutions either require
dedicated relays or make use of some information considered
as known beforehand. We are convinced a more general ap-
proach is key in improving performance and in adding a great
flexibility. This is why we propose a solution that only requires
one cellular antenna to connect to Internet and a few users with
cellular access to this antenna.

III. ARCHITECTURE AND CLASSIFICATION ALGORITHM

We first present the studied architecture (section III-A)
before introducing the classification algorithm (section III-B).

A. Proposed architecture

As depicted in figure 1, we are in the context of IoMT.
Different types of user are supposed to be present in the en-
vironment : soft mobility users such as bicycles or pedestrians
and high mobility users like cars, trucks or buses. They can
either connect to a nearby cellular antenna or they can connect
to other users on the network. These users make the fog part
of the architecture (see fig. 1). A user directly connected to the
antenna can act as a mobile relay. Users that cannot directly
connect to the cellular network connect to the MRs or to
another user. The resulting topology is a tree where relays
act as root of the topology they manage (it is the same kind
of topology as in the Routing Protocol for Low-power and



Lossy Networks (RPL), RFC 6550 [13]). The other part of
the architecture is the cloud part (as shown in fig. 1). It is
composed of the cellular antenna used by users in the fog
network and a control server (or controller). The antenna is
connected to the controller via Internet with a wired link (fiber
optic, for instance). The control server gathers users’ data and
runs the ML algorithm using this data (this is explained below,
in section III-B).

Once the prediction is done, the topology can be built :
figure 1 shows a network already set up : 2 users (1 car and
1 pedestrian) are directly connected to the antenna and they
act as relay. The other users are connected to these relays
or intermediate users to reach the antenna. In this paper, we
focus on how the controller selects MRs in the fog part of
the architecture. Given the topology is based upon RPL, the
way a node (user) selects a parent to connect to is left to the
developer. We have used a routing algorithm from previous
work [14] that we will not detail here, as it is out of the scope
of this article. The following section presents the proposed ML
algorithm more in detail.

B. Classification algorithm based on mobility profile

The proposed solution uses supervised ML, more specifically
decision trees. Supervised learning for classification works by
first training the algorithm on a problem where the classes are
already known. A decision tree is a binary tree such that on
each node a comparison is made : if the answer is true go to
left branch (or right), otherwise go to right branch (or left). In
our case, the input of the algorithm is data gathered from users
such as speed, acceleration, position (i.e. type of road the user
is on), etc. These inputs are the features (see section II-B). The
output is the mobility class (car, bicycle, pedestrian). Once this
step is done, it is possible to determine which users are the best
candidates to serve as relays. A “best candidate” can be a user
with soft mobility (a pedestrian, perhaps, or a static node), a
device lightly used (e.g. high available resources, low buffer
occupancy) or any other target device suited for the current
context.

We define a network composed of U users and C different
classes of mobility. Each user u stores a vector M of mobility-
related metrics :

Mu = [m0,m1, . . . ,mµ] (1)

Where µ is the number of different metrics (speed, acceleration,
and so on). Each user periodically records values for these
metrics (recording of speed, position, etc.). Depending on the
ML algorithm used, different metrics (features) can yield a
different expected accuracy (output). Hence, we introduce the
vector of relevant metrics Mρ

u for user u :

Mρ
u ⊆Mu s.t. |Mρ

u | > 0 (2)

Mρ
u can be composed of all metrics from equation (1). At least

one metric must be used otherwise no input will be fed to the
prediction algorithm. We suppose the recorded values for the
metrics of equation (1) are sent to the controller after a time τ
that we call the prediction time. We define the ML algorithm

that takes as arguments the vector of relevant metrics and the
prediction time :

cpu = A(Mρ
u , τ) (3)

Where cpu ∈ C is the predicted class of user u. A user can
either be correctly classified or wrongly classified. Let cru ∈ C
be the real mobility class of user u :

cpu =

{
cru if the prediction is correct
cx ∈ (C \ cru) if the prediction failed

(4)

From equation (4), we see the predicted class (cpu) can either be
the real class of the user (cru) or some other class which is not
the right one (depicted as cx in eq. (4)). As aforementioned,
the resulting accuracy of the considered algorithm depends on
the time since a user exists. Indeed, more data is gathered if
the user has been on the network for a longer duration and the
predicted class usually1 has a higher probability of being the
correct one.

Now, we define Cb ∈ C as the best mobility class. Users
belonging to this class are determined by equation 4. To act as
relay, a user must have access to Internet (for instance via 5G).
We define I ⊆ U the set of users with Internet access. Thus,
only users within the correct mobility class and with access to
Internet can potentially be selected as relays :

R = I ∩ Cb (5)

Where R is the set of potential relays. It is now possible to
determine the set of selected relays Rs that will serve as relays
in the network :

Rs ⊆ R s.t. |Rs| > 0 (6)

From equation 6, we see there can be one relay or as many as
the size of Rs. This number will depend on the context and
constraints. If a high connectivity is of paramount importance,
more relays might be desirable. However, if the number of users
and traffic are low, having only a few relays can be better. Note
that Rs can be small if the number of users with Internet access
is small and/or if few users have the best profile as determined
by function A(t) (see eq. 4). If no users are in the set R (eq. 5),
non-optimal users have to be selected. Note that a non-optimal
user can end up in R if the prediction failed (eq. 4). Hence,
if the predictive algorithm is not adapted at all to the current
context QoS might suffer greatly.

Finally, if we set the gathered metrics of a user as constant,
the probability the algorithm from equation (3) yields a correct
prediction is proportional to τ :

P (cpu = cru) ∝ τ (with Mρ
u constant) (7)

Algorithm 1 illustrates the use of the proposed solution.
It is called whenever the number of relays is less than the
specified amount and a delay of τ has elapsed. The algorithm
is supposed to be called with two parameters : the maximum

1In some cases, for instance in a heavy traffic jam, it might be hard to
discern from the different classes of mobility even if a long time τ is used by
the algorithm.



Algorithm 1 The machine learning algorithm to classify users
depending on their mobility profile.

1: maxRelays← arg[0]
2: relevantMetrics[]← arg[1]
3: relays← NULL
4: for all users do
5: user.gatherData()
6: end for
7: for all users do
8: if A(user, relevantMetrics) == optimal then
9: relays.append(user)

10: end if
11: if relays.size() == maxRelays then
12: break
13: end if
14: end for
15: return relays

Delay (s) 2 4 6 8 10
Accuracy (%) 20 27 88 79 86

TABLE I: The accuracy of the predictive algorithm given the
delay to gather data.

number of mobile relays and the vector of relevant metrics
(arg[0] and arg[1] in algorithm 1, respectively). Lines 1 to 3
are the initialization steps, where relays is the set of selected
relays (eq. 6). The users’ data are sent to the controller (lines 4
to 6; see section III-A). Lines 7 to 14 is the prediction step : the
relevant data of all users are used to predict their mobility class
(line 8; eq. 3 and 4). If the current user is predicted as being in
the best mobility class, it is added to the set of selected relays
(line 9; eq. 6). The algorithm stops when the target amount of
mobile relays is reached (line 11 in algorithm 1). If there are
more candidates than the amount of required relays, users not
connected to Internet (or not in range of a parent able to connect
to Internet) have priority to increase connectivity. Note that in
the case not enough relays are selected, non-optimal users will
have to be selected.

IV. PERFORMANCE EVALUATION

We have evaluated the proposed solution using the OM-
NeT++ simulator. We also used the Simulation of Urban
MObility (SUMO) to have more realistic results.

A. Simulation setup

The simulation was run using OMNeT++ 5.4.1 and SUMO
0.32.0. The Veins framework was used to interface OMNeT
with SUMO. We have imported a real map from Open-
StreetMap2 into SUMO and we have generated urban traffic
using a tool from the SUMO package. Veins allows to run
an OMNeT simulation using the mobility patterns of users
(cars, bicycles) generated from SUMO to create and move
nodes in a more realistic way. That is, each user in SUMO

2The real map is a sub-area of the Saint-Laurent borough, Montreal, Canada.

Parameter Value
Playground size 1 km2

User generation period 1.5 s
Num. of users, total ±4800
Num. of users, inst. 10’s to 100’s

Num. of relays† 5
Car:bike ratio 9:1

Simulation duration 8000 s
Traffic model VBR
Traffic density 10 packets/s

Data packet size 1280 bytes
Max. user throughput 10 Mbps

TABLE II: Values for the most relevant parameters of the
simulations. †Number of relays is set for the predictive case
and varies from 2 to 7 in the case of static dedicated relays.

will have a corresponding entity in OMNeT (a “node” in our
case). Thus, OMNeT will create one “node” from each user
in SUMO and destroy those when they reach their destination.
The ML model was trained using a real map different from the
the map used to test the model (i.e. run the simulation) : this
allows to test the generalization of the studied algorithm. Table
I shows the accuracy of the decision tree in correctly predicting
the mobility class of users. A good prediction means a car,
for instance, is predicted as a car. A wrong prediction means
a bicycle, for instance, is predicted as something else than a
bicycle. The “Delay” column in table I corresponds to the time
data is gathered from users before making the prediction (see
section III). When the delay is very short (2s for instance),
the error is rather high because the user was not active long
enough. For example, a car just starting might stop at a red
light right away and it is not possible to differentiate it from
a bicycle on such a short notice. However, although a longer
delay allows for better accuracy, it also means a longer time
before choosing a new sink. During this time, no connectivity
will degrade QoS and might not be the right choice. This is
why a compromise must be found between accuracy and delay
to yield the best QoS possible. The predictive algorithm is
compared to a random selection of sinks. The random selection
serves as a base case and has the advantage of a zero delay
to choose a new sink. The random choice is not represented
in table I. We also ran the simulation without prediction using
static relays (from 2 to 7) to compare the proposed solution
with a solution using a dedicated infrastructure. They are placed
randomly on the simulated area.

We suppose all users can connect to Internet (directly via
cellular network or not) to send their mobility-related data.
Users without cellular connectivity will connect to other users
and eventually transmit these data to the controller.

B. Result analysis

In the following, bar charts (figs. 2a, 3a, 4a and 5) represent
results using dynamic relay selection amongst users. The
horizontal axis is the time taken to make the prediction. The
leftmost bar is the random selection (selection delay of 0s) and
other bars represent the ML algorithm (selection delay of 2s
to 10s). The line plots (figs. 2b, 3b and 4b) represent results
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Fig. 2: The average PDR of the data packets of users.

without prediction using static dedicated relays. The horizontal
axis is the number of relays placed on the area. We recall the
reader simulations with dynamic relay selection are achieved
using 5 relays (see table II).

1) Packet Delivery Ratio: The PDR is the amount of data
packets that reach the destination divided by the amount of data
packets sent. This metric allows to understand the reliability of
the network. The higher the PDR the better.

Figure 2 shows PDR results of the different simulations.
The random selection (fig. 2a) yields a PDR of about 11%.
Considering error bars, the proposed solution performs signifi-
cantly better when the selection delay is 2s (fig. 2a) because the
selecting of soft-mobility users as relays allows the topology
to be more stable, reducing the amount of packet loss. PDR
is potentially higher when using ML and tends to decrease as
the selection delay increases because waiting longer to choose
a new sink causes data packets to be rerouted after a longer
delay, increasing the probability of packet lost. Static relays
(fig. 2b) have lower PDR than the predictive solution because
users move around and those relays eventually service no users
at all. Those results are comparable to the random selection.
When 2 relays are used, results from figure 2b show a PDR
significantly lower than the proposed solution with a delay of 2s
and 4s : static relays have a limited coverage, so only 2 yields
low performance. More relays, in this case, help to increase
performance, as shown in figure 2b. Note that in figure 2a the
lowest PDR value with a selection time of 2s is 17.9865%
whereas in figure 2b the highest PDR value with 5 relays is
18.0529%, so there is a slight overlap.

2) Connectivity ratio: The connectivity ratio is the percent-
age of time a user is connected to a sink during her trip. For
instance, a connectivity of 25% on a 8000s run means the user
was connected during 2000s in total. Connectivity is linked to
PDR, as more connectivity increases the chance for packets to
reach their destination though it is not necessarily the case, as
a non-connected user will not try to send packets. This metric
allows to see the coverage of the studied area and if sinks/relays
are well placed. The higher the connectivity ratio the better.

The connectivity ratio is depicted in figure 3. The proposed
solution is comparable to the random selection (fig. 3a) with a
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Fig. 4: Study of the amount of signaling packets (excluding
acknowledgments) in two different scenarii. Note vertical axes
have different scales.

connectivity of about 30%. Indeed, mobile relays are located
such that there is similar connectivity no matter the selection
method. However, with a prediction time of 2s or 4s, the
proposed solution performs significantly better when compared
to static relays (fig. 3b) when using 2 or 3 relays. This is caused
by the fact static relays (fig. 3b) eventually spend some time not
being in range of users. A longer selection delay will negatively
impact the predictive algorithm because users will spend more
time disconnected.

3) Amount of signaling: The amount of signaling represents
to number of packets sent on the topology excluding data and
acknowledgment packets. Signaling is mostly used to set up
and maintain the topology. Sending a signaling packet again
because it was not acknowledged counts in the amount of
signaling. This metric shows how much overhead is generated
and how good transmissions are. The lower the signaling the
better.

We can see in figure 4 the random selection performs
significantly better (about 1.5 packets per minute per user on
average) than the proposed solution (around 2.25 packets per
minute per user on average) when the selection delay is 2s or
4s (see fig. 4a). The lower overhead of the random selection
is due to lower performance in terms of PDR (fig. 2) and
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connectivity (fig. 3). Indeed, less signaling will be sent in
absolute if users are less connected to one another. In figure 4b,
the amount of signaling is very high when there is (are) 1 or
2 relay(s). This is due to low coverage causing long paths (i.e.
high number of hops from any user to the sink) with higher
probability of retransmissions. Long paths also increase the
probability of any user moving away causing the need to repair
the topology. Transmission distances are longer as well because
relays are static, causing many losses. The proposed solution
is significantly better than the case of static relays (fig. 4b)
except when the number of relays is 4 or 7, with overheads
of about 2.2 packets per minute and 1.7 packets per minute
respectively. A high number of overhead does not necessarily
means performance is bad (see PDR in fig. 2). However, the
scaling will be problematic if overhead is very high, as is the
case of 1 and 2 relay(s) (fig. 4b).

4) Number of sink change: When dynamic selection of sinks
happens, this metric shows how many times sinks are replaced.
When an elected sink leaves the area of interest or fails due to
low battery, a new one will be chosen. This metric shows the
stability of the topology. The lower the number of changes the
better.

Figure 5 shows the predictive algorithm performs signifi-
cantly better in all instances. The random selection process
causes more changes of sink. This is due to selecting high
mobility users (cars) more often that leave the area of interest
quicker, so a change is required. The proposed solution yields
more stability as the number of changes is below 1.5 per
minute on average. This means that one new sink is chosen
approximately every 40s on average, compared to the random
case (around 3 changes per minute) where one sink is chosen
every 20s on average.

V. CONCLUSION

The solution proposed in this paper aims at determining
the mobility class of users to select the best relays using a
machine learning based approach, without requiring a dedi-
cated infrastructure. This solution can be coupled with other
algorithms to further improve network performance. Simulation
results show the proposed algorithm increases performance in
terms of PDR and stability compared to a random selection.
The contribution also performs better than an approach with

static relays in terms of PDR, connectivity and overhead and
it is able to scale from several tens to several hundreds of
users simultaneously in different scenarii. Future works will
focus on extending the model with more mobility classes (e.g.
pedestrians) and different traffic densities.
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