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Abstract

The Fog Computing paradigm provides a seamless bridge between
the Cloud and the Edge computing architectures. Depending on the
their QoS requirements, tasks can be processed in either the Edge or
the Cloud or migrated from one to the other. For the benefits of this
flexible architecture to be seen, task allocation algorithms should be
able to adapt to the load in the Fog and in the Cloud, and send the
tasks to a lightly loaded resource.

Current task allocation algorithms in Fog computing literature use
a simple offloading strategy: a task is first sent to the nearest Fog
node. If the nearest Fog node is saturated, it offloads the task to
the Cloud. Although simple to implement, such a strategy disregards
available resources in the Fog nodes that could be further away but
less congested.

Using a discrete-event simulation approach which relies on the net-
work simulation framework OMNeT++, we show that simple adaptive
algorithms based on congestion estimation outperform the standard
nearest node algorithm. For this, we choose four distributed routing
algorithms that were proposed for other networking applications but
which are also well-suited for Fog networks. These algorithms im-
prove the resource usage as well as reduce the mean job processing
times in scenarios with offloading as well as without offloading. Our
usecase is that of Fog networks that use the cellular network: base
stations (access nodes) forward traffic to computing nodes (Fog and
Cloud nodes) in a distributed way without coordination and sharing
of state-information.

We evaluate the performance of these algorithms on several scenar-
ios that include sudden changes in the arrival rate of requests (to model
peak hours) and changing the variance of request processing times (to
study the robustness to request-size distributions) to understand the
advantages and drawbacks of each of them.



1 Introduction

The Internet of Things (IoT) will connect various objects, buildings or fa-
cilities to the Internet generating a tremendous amount of data and will
thus result in a another dramatic increase of network usage. Examples of
emerging loT applications are connected cars, tactile internet, smart homes,
augmented reality.

This breed of applications will likely contain latency critical features
that have stringent delay requirements that will not be satisfied by the
far away Cloud. This calls for the extension of the classical centralized
Cloud computing architecture towards a distributed architecture closer to
user premises at the edge of the network. One extension proposed over the
last decade is Fdge computing.

While the Cloud is about sharing infrastructure and finding cost saving
opportunities, the Edge is about distributing infrastructure closer to user in
order to increase availability and improve Quality of Service (QoS).

They are complementary and allow a better usage of resources. The
Cloud does it by sharing computing resources while the Edge computing
does it by keeping computation local, making it useless to reach the deeper
Internet and saving network resources.

Fog Computing, a paradigm introduced by Cisco in 2015 [1], recognizes
the benefits of both the Cloud and the Edge and tries to bridge them seam-
lessly in a unified model where different jobs can be processed on either the
Edge or the Cloud or migrated from one to the other depending on their
requirements.

Connected vehicles are expected to become one of biggest usecases of
the Fog Computing architecture. Vehicles in the future will be sharing data
and requests amongst themselves as well as the network. Requests requiring
a quick turnaround (information of nearby road safety restrictions, e.g.)
are more suited for processing in a nearby Fog node, while others with
more flexible constraints (infotainement applications, e.g.) can be sent to to
Cloud.

To exploit the benefits of Fog Computing paradigm, one has to design
the right task allocation algorithms that routes jobs to either one of the Fog
nodes or the Cloud in a way that balances the load while respecting the QoS
constraints. For example, during off-peak hours when the vehicular traffic
is sparse, jobs can be handled exclusively by the Fog nodes. On the other
hand, when traffic is dense during peak hours, the algorithm should divert
some of its traffic to the Cloud so as not to overload the Fog nodes. That
is, the algorithm should be able to adapt and react to changes in traffic
patterns and user demands.

Current task allocation algorithms in Fog computing literature use a sim-
ple offloading strategy: a request is first routed to the nearest Fog node. If
the nearest Fog node is saturated, then the request is offloaded to the Cloud.



Although very simple to implement, such a strategy disregards available re-
sources in Fog nodes that could be further away but less congested. Can
we design adaptive algorithms that make better use of Fog resources? One
approach involves adapting the allocation decision based on the estimated
congestion in Fog nodes and allocate tasks to nodes that are less congested.
Of course, if all the nodes are congested, the request can be sent to the
cloud.

1.1 Contributions

The main contribution of this article is to show that simple adaptive al-
gorithms based on congestion estimation indeed outperform the standard
nearest node algorithm. For this, we choose four distributed routing algo-
rithms that were proposed for other networking applications but which are
also well-suited for Fog networks. These algorithms improve the resource
usage as well as reduce the mean job processing times in scenarios with of-
floading as well as without offloading. Our usecase is that of Fog networks
that use the cellular network for communicating with end-user. This is the
case for connected vehicles where cars use the cellular network to exchange
information. The base stations (access nodes) forward traffic to computing
nodes (Fog and Cloud nodes) in a distributed way without coordination and
sharing of state-information.

The four distributed task allocation algorithms considered require nei-
ther cooperation between base stations nor knowledge of the physical infras-
tructure. These algorithms are learning based and do not rely on a specific
model of the infrastructure but just react to the response times they observe
from the Fog nodes. We assume that each base station independently adapts
its task allocation strategy, without coordination or even clock synchronisa-
tion with the other base stations.

We adopt a discrete-event simulation approach which relies on the net-
work simulation framework OMNeT++. We evaluate the performance of
these algorithms on several scenarios that include varying the arrival rate
of requests (to model peak hours) and changing the variance of request
processing times (to study the robustness to request-size distributions) to
understand the advantages and drawbacks of each of them.

1.2 Organization

This article is organized as follows. Section [2]is devoted to related work.
Section [4 presents the different task allocation strategies considered. Nu-
merical results are presented in Section Finally, some conclusions are
drawn in Section [6l



2 Related literature

In [12], the authors aim to allocate tasks adaptively and efficiently in the
Cloud and provides a platform named TAP (Task Allocation Platform) that
uses a Linux kernel module and can compare scenarios in a realistic setting.
They use a reinforcement learning algorithm based on random neural net-
work proposed in [8] in order to allocate tasks to the Cloud.In our study
we use an OMNeT-++ simulation model instead an actual Linux implemen-
tation. In comparison with our work this happens in a centralized fashion
since the TAP control gathers all information. The sensible strategy we use
is taken from this paper and we compare it with many more strategies.

In [4] the authors formulate a cooperative offloading policy between two
edge data centers for load balancing. They define a blocking state in which
the requests are dropped and compare with two other schemes in order to
minimize the amount of blocked requests: with an isolated policy, where no
data center works with cooperation with the other, and a fully shared where
any request is forwarded to any other datacenter. The cooperative scheme
they propose behaves better than the two others. The problem the authors
study is similar with ours as the offloading scenario we study dynamically
happens when a Fog node is overloaded with tasks. However their scheme
is static whereas the strength of our approach is that it is dynamic and can
adapt to the unknown.

A theoretical work is 7] where authors consider the scenario of offloading
with a certain probability blocked requests at the Fog to the neighboring
data centers and to the Cloud. Through functional equations and Markov
theory they estimate the gain achieved via cooperation between neighboring
data centers.

In [3], the authors formulate the load balancing problem as a Markov
Desicion Process (MDP) solved by Q-learning. Q-learning is a common
reinforcement learning algorithm that can solve MDPs. The multi-armed
bandits algorithms we use are simpler forms of reinforcement learning that
deal with problems with only one state in contrast with MDPs that model
problems with several states. This allows Q-learning models to keep knowl-
edge over time and remember the past to better handle the future. Their
reward function takes into account processing time to minimize and over-
load probability. A difference in our approach is that we take the constraint
of giving base stations no knowledge of the system, while the authors place
their Q-learning algorithm in the SDN controller which has an overview of
all the system.

There are different studies on offloading which describe benefits other
than latencies improvements, such as energy saving opportunities. This
is particularly interesting in fog models where Fog nodes may be battery-
powered devices. In [10] for instance authors formulate a multi-objective
optimization problem to minimize the energy consumption, execution delay



and payment costs that finds the optimal probability to offload.

We can mention existing surveys on computation offloading such as [5] [9]
which provide a review of the state-of-the-art of computation offloading in
the various contexts it can be useful: energy consumption minimization,
Quality of Services guarantees, and computation and storage requirements.
There are also a number of tools and frameworks that help building offload-
ing infrastructure or mobile application developers implement the required
facilities. In [6] the authors present a framework that allows computations
to be dynamically offloaded to the Cloud with a runtime optimizer that can
transform local computation into remote calls on-demand and thus make it
easy for application developers to built adaptive applications. They show
energy consumption improvement in resource-intensive workloads.

3 Simulation Model

In our simulation model, message objects are used to represent jobs, but also
events such as the end of service of a job on a given server. A job is specified
by a source, a destination and a delay, which represents the processing time
of the job. Two main elements in our simulation model are a base station
and a Fog/Cloud node.

For simplicity, a Fog/Cloud node is modelled as a set of parallel single
server queues (Fig. [1)). A load-balancer assigns incoming jobs to one of
the queues. The queues in our model represent a single-server queues with
infinite capacity. We assume that the discipline of service is FCFS.

The parameters of a Fog/Cloud node are the number of servers it is
composed of, the service time of a job on a server for instance we can define
exponential service times or Pareto distributions. (for simplicity, we assume
homogeneous servers) as well as the routing algorithm for assigning jobs to
servers (e.g., round-robin or join-the-shortest-queue policies).

A base station is connected to all Fog nodes. It has a task allocation
algorithms that can be one of the five algorithms described in the next
section. There are other parameters such as inter-arrival time between job
requests and traffic perturbations.

4 Adaptative Tak Allocation Algorithms

In this section, we present the task allocation algorithms considered in this
paper. In all these algorithms, an access node ¢ = 1,..., K maintains a prob-
abilistic choice vector p;, and allocates a job to Cloud/Fog node j = 1,..., N
with probability p; ;. Most of the algorithms update the choice vector p;
whenever a new job reply is received, usually based on an estimation G;
of the mean response time of Fog node j. We first explain how the mean
response time of a Fog node can be estimated from job replies in Section
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Figure 1: Fog node processing in parallel queues

We then briefly describe how each algorithm computes the probabilistic
choice vector p; in Section

4.1 Estimation of the mean response time of a Cloud/Fog
node

In most algorithms, the task allocation agent maintains a weighted average
of the response times of Fog node j. Let Gj(k) be the estimated value of
the response time of Fog node j = 1,..., N after k job replies have been
received from it. This estimated value is updated each time a new job reply
is received as follows

Gi(k) = (1 — )Gk — 1) +ad;(k), k=1,2,..., (1)

where d;(k) is the response time of the k" job sent to node j. The parameter
0 < a <1is used to vary the weight given to the most recent measurement
as compared to past values. In our experiment, we have used the value
a = 0.1. Initial values G;(0) are set to 0 to encourage exploration. Note
that after k measurements, we have

k
G;(k)=(1—-a)a }:1—ak"d()

so that the weight of a measure decays exponentially according to the ex-
ponent on (1 — ).



Instead of choosing a constant step-size «;, it is of course possible to vary
the step-size as the number of measures grows. For stationary problems, it
is known that the conditions Y 7o | a = 00 and Y _po; af < oo are sufficient
to guarantee convergence to the (true) mean values. In particular, the choice

ap = 1/k is often used and gives G;(k) = M, that is, the estimated
value of Fog node j is just the average value of response times for jobs
processed at this node. In our work, we shall however stick to a constant
step-size a because it is known to be more convenient for non-stationary
problems |11].

4.2 Task Allocation Probabilities

We now describe how the different algorithms compute the probabilistic
choice vector p; used at access node ¢ when a new job request arrives. It
is always assumed that the most recent estimates G; of the mean response
times are used. The algorithms work as follows:

e Static Task Allocation: in this task allocation strategy, which is
also known as Bernoulli routing, the probabilistic choice vector p; is
initially given and it is not updated when a new job reply is received.
A special case that we shall consider in the following is the case where
pi,j = 1if j = j* and 0 otherwise, where j* is the geographically closest
micro-datacenter to the access node i.

e c-greedy Allocation: the e-greedy algorithm is a method used for
solving multi-armed bandits problem (see Chapter 2 of |[11]). The basic
idea of this method is to behave greedily most of the time, that is to
choose the fog node j with the lowest estimated response time GG; most
of the times, but every once in a while (with small probability €) to
select instead another fog node uniformly at random. More precisely,
let 5* be the Fog node with the lowest estimated response time, that
is, 7* € argmin,G,. Then, the next job is allocated to fog node j*
with probability 1 — ¢, and to another fog node j # j* with probability
~—1, Where N is the total number of Fog nodes.

e Softmax Allocation: with the Softmax algorithm [11], the next job
is allocated to Fog node j with probability

e—Gj/T

P = S G

where 7 is a positive parameter called the temperature. High temper-
atures cause all choices to be (nearly) equiprobable, while low tem-
peratures favour Fog nodes with low estimated response times (in the
limit 7 — 0, the Fog node with the lowest estimated response time



is selected with probability 1). In our experiments, we have used the
value 7 = 30 ms, which is the value of the same order of magnitude as
the total response time of a job.

e Sensible Routing: in the sensible routing algorithm, which was pro-
posed in [12], the probability p;; to allocate a job to Fog node j is
computed as follows

Dij = 71/Gj
> N )
Zn:l 1/Gn
where again G,, represents the most recent estimate of the mean re-
sponse time of node j=1,..., N.

e EXP3 Allocation: the adversarial bandit is a version of the multi-
armed bandit problem introduced by Auer and Cesa-Bianchi in 1998
in which almost nothing is assumed about the mechanism that gener-
ates the rewards. In this problem, it is simply assumed that, at each
iteration, an agent chooses an arm and an adversary simultaneously
chooses the cost structure for each arm. The goal is still to compete
with the best action in hindsight. The EXP3 algorithm was proposed
in 2001 by Auer, Cesa-Bianchi, Freund, and Schapire [2] and is known
to have an expected regret bound of \/2Tnlog(n) when costs take
their values in [0,1]. In contrast to previous algorithms, EXP3 does
not use directly the estimates G;, j = 1,..., N, but it instead assigns a
weight w;(j) to each node j. Initially set to 1, the weights are updated
as follows when the k' job reply is received from node j

)=t 1) e (%))

where d;(k) represents the response time of the k" job sent to node
J, as in Section [£.1] When a new job request arrives, the choice vector
p: is computed as follows

W 1 )
p‘,‘: 1_774_777 .7:17"'7N7
2,] ( )Zg::lwn N

where again it is assumed that the most recent values of the weights
are used.

In the next section we present various experiments we performed using
the above task allocation algorithms.



5 Performance Evaluation

The objective of this section is to compare those adaptive learning-based
task allocation schemes.

We focus on two main scenarios. One scenario where base stations are
connected to two Fog nodes and the main Cloud and can allocate their jobs
without coordination. The second is similar but this time the Fog nodes are
connected to the Cloud and can use a dispatching strategy to offload their
tasks. We compare the two scenarios and the gains observed in response
times by using offloading.

The organization of the experiments is the following. In the first scenario
we perform experiments with constant link delays and with variable link
delays. We as well compare the response times obtained for exponentially-
distributed service times against those obtained with Pareto service time
distributions. We then perform robustness tests by executing each scenario
5000 times and taking the average, minimal and maximal values on all of
these scenarios. In the case of offloading, we first compare four different dis-
patching policies: power-of-two-choices, join the shortest queue first, random
policy and round robin and then we perform similar tests.

5.1 First Scenario : Task Allocation without offloading

5.1.1 A. Exponentially-distributed Service Times - Constant Link
delays

We first consider the scenario illustrated by Figure In this scenario,
there are two Fog nodes (corresponding to fog[0] and fog[1]), one cloud
datacenter (corresponding to fog[2]) and two access nodes. Note that
communication delays are symmetric for client [0] and client[1]. The
access node client [0] is closer to fog[0], and similarly client[1] is closer

to fog[1].
/14 \\«
( :QKZ:J ‘>

Figure 2: A simple scenario with two Fog nodes and one Cloud.



Strategy fogl0] fogl[l]l fogl[2] Total

Static 24.7 43.5 0.0 68.2
e-greedy 4.3 4.6 1.8 10.7
Sensible 4.5 4.6 0.9 10.0
Exp3 6.4 7.9 1.0 15.3
Softmax 5.0 5.1 0.9 11.0

Table 1: Mean number of jobs under the different task allocation strategies.

The network is simulated for 100 seconds. Each Fog node has only 5
parallel serversEL and the service times are exponentially distributed with
mean 15 ms for both nodes. In contrast, the Cloud (that is, fog[2]) has
100 parallel servers, and the service times in the Cloud are exponentially
distributed with mean 10 ms. Jobs requests are generated according to
Poisson processes, with mean 7.75 ms for the first access node and with
mean 6.06 for the second one. The intensity of the traffic generated by the
first access node is multiplied by 2.5 between ty = 15 s and to = 40 s. The
inter-arrival times of job requests at the second access nodes are divided by
a factor 2.0 between times 7 = 30 s and t3 = 60 s. Note that, if we choose
to always process an incoming job at the closest Fog node, it means that
the utilization rate of node fog[0] (resp. fogl[1]), which is initially 0.387
(resp. 0.495), becomes 0.968 (resp. 0.99) between times ¢y and t2 (resp. t;
and t3). In other words, under this routing strategy, the system is stable
but operates in heavy load between times ¢y and t3. Values are averaged
over 5,000 parallel simulation runs.

The results obtained for this scenario are shown in Tables [1] and 2l

Table [1| gives the time-average number of jobs in each datacenter under
each task allocation strategy. It is clear that, even though they are very
simple and assume almost no knowledge of the infrastructure, the adaptive
task allocation algorithms all lead to a significant reduction of the number
of jobs in the system.

We now turn our attention to Figure |3 which shows the job routing
probabilities as functions of time under the different task allocation strate-
gies. We remark that the adaptation of routing probabilities is very slow for
the EXP3 algorithm as compared to other dynamic strategies. We also note
that under peak traffic conditions (between times ¢; and t2), the e-greedy
strategy send much more jobs to the Cloud (almost 65% for both access
nodes) than the sensible routing and softmax strategies, which sends only
30% and 40% of their jobs to the Cloud between times ¢; and ts, respectively.

!The number of servers in Fog nodes and in the Cloud are of course not realistic. These
values have been chosen so as to reduce the simulation times.
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The two latter strategies lead to similar routing probabilities.
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(c) Sensible routing (d) EXP3 algorithm

Figure 3: Task allocation strategies.

Table [2| gives the time-average values of the response time for every
source-destination pair under the different task allocation strategies. It is
clear from this table that dynamic task allocation strategies lead to a sig-
nificant reduction of response times. We also note that the sensible task
allocation strategy outperforms the other strategies.

client[0] client[1]

Strategy fogl[0] fogl1l]l fogl[2] fogl0] fogll] fogl2]

Static  99.5 - - -~ 1560 @ -

egreedy 46.1 561  70.3  56.1 480  70.3
Sensible 389  49.2  70.1 489 392  70.1
Exp3 452 59.2 701 547  49.0  70.1
Softmax 42.0  52.7  70.2 523 424  70.2

Table 2: Response times (ms) for each origin-destination pair under the
different task allocation strategies.
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client [0] client[1]
Strategy fogl0] fogl1]l fogl[2] fogl0] fogl1]l fogl2]

Static 100.2 - - - 156.1 -

e-greedy  45.9 55.6 70.0 95.8 47.8 70.2
Sensible  38.9 49.1 70.1 48.8 39.2 70.2
Exp3 45.4 58.3 70.0 48.8 39.2 70.2
Softmax  41.9 52.5 70.1 52.3 42.4 70.2

Table 3: Response times (ms) for each origin-destination pair under the
different task allocation strategies under variable link delays.

5.1.2 B. Exponentially distributed Service Times - Variable Link
Delays

In order to evaluate the impact of the variability of link delays on the per-
formance, we now use a uniform distribution to model them. More precisely,
we replace the constant communication delay of 5 ms by a random delay
with the same mean but uniformly drawn in the interval [3 ms,7 ms] (the
standard deviation is o = 1.15). Similarly we replace fixed delays of 10 ms
(resp 30 ms) by uniform random delays in the interval [4 ms, 16 ms]| (resp.
[20 ms, 40 ms]), which yields a standard deviation o = 3.46 (resp. o = 5.77).

Table [3| presents the response times under the different task allocation
algorithms when link delays are variable. These values have to be compared
to the mean response times obtained for fixed link delays, which are given in
Table[2l Sweeping through all values in both tables, we see that the variation
of the mean response times never exceeds 1.2%. We thus conclude that the
adaptive algorithms considered in our simulations are relatively robust to a
moderate variability in the communication delays.

5.1.3 C. Pareto-distributed Service Times - constant link delays

In order to evaluate the impact of the variability of job sizes on the task
allocation algorithms, we now assume that the processing times of the job
follow a Pareto distribution, instead of an exponential distribution. In other
words, we assume that the probability that the processing time X of a job
be greater than some number z is given by

(L)% 2 > ayy,

1 T < Ty,

Pr(X > z) :{

where z, is the (necessarily positive) minimum possible value of the pro-
cessing time, and « is a positive parameter. If a > 2, the Pareto distribu-
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client [0] client[1]
Strategy fogl0] fogl1]l fogl[2] fogl0] fogl1]l fogl2]

Static 103.1 - - - 161.1 -

e-greedy  50.5 59.8 70.7 59.6 52.9 70.7
Sensible  44.2 54.6 70.1 53.9 45.0 70.1
Exp3. 48.6 60.1 70.2 57.6 51.2 70.2
Softmax  52.3 61.2 70.5 65.1 95.2 70.5

Table 4: Response times (ms) for each origin-destination pair under the
different task allocation strategies for the first Pareto distribution of job
sizes.

tion has a finite mean and variance which are given by azy,/(a — 1) and
ax? / [(a = 1)*(o — 2)]. We consider two different Pareto distributions:

e First Pareto distribution - We choose @ = 2.25 and compute the
minimum value x,, so as to keep the same mean values for the job
processing times as in Section (that is, 15 ms in Fog nodes and
10 ms in the Cloud). For the jobs executed in the Fog nodes (resp. in
the Cloud), the standard deviation of the processing time is now 20 ms
(resp. 13.3 ms) instead of 15 ms (resp. 10 ms) with the exponential
distribution.

e Second Pareto distribution - We choose a@ = 2.05 and, as before,
we compute the minimum value zy, so as to keep the same mean values
for the job processing times. For the jobs executed in the Fog nodes
(resp. in the Cloud), the standard deviation of the processing time is
now 46.8 ms (resp. 31.2 ms) instead of 15 ms (resp. 10 ms) with the
exponential distribution.

We note that the variability of job sizes is greater with the first Pareto
distribution than with an exponential distribution, and that its is even
greater with the second Pareto distribution.

The average response times obtained are reported in Table 4l The best
results are obtained with the e-greedy and sensible allocations. We note
that, the EXP3 allocation scheme provides better average results than the
softmax allocation.

If we compare to the mean response times reported in Table [2, we see
that all values increase when passing from exponentially-distributed service
times to Pareto-distributed service times. This is something expected since
it is well known that a greater variability in job sizes lead to larger response
times. We note however the impact on response times is not the same for

13



client[0] client[1]
Strategy fogl0] fogl1]l fogl[2] fogl0] fogl1]l fogl2]

Static 127.1 - - - 1924 -

e-greedy  59.3 66.0 71.4 67.9 99.9 71.5
Sensible  57.9 69.5 70.2 67.4 60.0 70.2
Exp3. 59.1 64.2 70.3 66.0 97.9 70.4
Softmax  54.1 70.9 70.7 73.4 72.3 70.7

Table 5: Response times (ms) for each origin-destination pair under the
different task allocation strategies for the second Pareto distribution of job
sizes.

all task allocation algorithms. In order to assess the robustness of the algo-
rithms with respect to the variability of job sizes, we consider the following
metric for each access node ¢ and each Fog node j

A _ BETo(i §) — RE™G)
b Ry (i, )

I

where RE€°(j, j) (resp. fop (7,7)) represents the mean response time
of job requests sent by access node i to Fog node j under task allocation
algorithm A and for Pareto-distributed (resp. Exponentially-distributed)
service times. Using the values in Tables [2| and 4l we can compute vfj for
each source-destination pair (7, 7) and each algorithm A, and compare the
increase in response times obtained under the different algorithms. This
comparison is done in Figure where the minimal, maximal and average
increases relative to the exponential distribution are displayed for each algo-
rithm. Interestingly, the EXP3 allocation scheme seems to be more robust
to the variability of job sizes. Indeed, we see that with EXP3 the mean
response times increase by at most 7.5% when we pass from an exponential
distribution to the first Pareto distribution. The increase in response times
is as high as 30.2% (resp. 14.8%) for the Softmax allocation (resp. sensi-
ble allocation). Although slightly less robust, the e-greedy allocation is also
quite robust to the variability of job sizes since the increase in the mean
response times is at most 10.2%. While the minimal variations observed
are non-significant, we see that the average relative increases is smallest in
EXP3 with 3.2%, confirming its good performance. e-greedy remains quite
robust when looking at that metric with an increase of 5.7%, followed by
sensible routing at 8.6%. However, Softmax allocation does not handle the
variation well with an average increase of 16%.

Similarly Table [f] and Figure [4b] present the results obtained with the
second Pareto distribution, comparing them with the exponential distribu-
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tion. The response times from the exponential distribution to the second
Pareto distribution increase the least in e-greedy and EXP3 allocation with
28,6% and 30, 7% increase. We note much larger gaps in Sensible routing
and Softmax with 53% (resp. 70%). The average increase is best in EXP3
with 13.1%, then with e-greedy with 16%. Surprisingly, while the maximal
relative increase was significantly worse in Softmax, Sensible routing and
Softmax allocation both obtain comparable average increases with respec-
tively 30.3% and 29.3%.

70
60

50

Relative gap (%)
Relative gap (%)

Re: s Response Times
Task Allocation Algorithm Task Allocation Algorithm
m— i B Avg e Max m— i E— Vg e M

(a) First Pareto distribution (b) Second Pareto distribution

Figure 4: Relative performance degradation between the first/second Pareto
distribution and exponential distribution for service times across task allo-
cation algorithms.

5.2 Second Scenario: Task Allocation with offloading

The second scenario is similar to the first one, except that the Fog nodes are
now connected to the Cloud (Figure . The communication delay between
the Fog nodes and the Cloud is constant and equal to 28 ms. Note that this
value was chosen so as to satisfy the triangle inequality. In this scenario,
Fog nodes can offload jobs to the Cloud. All other parameters are similar
to those used in Scenario 1.
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Figure 5: A scenario in which Fog nodes can offload jobs to the Cloud.

The offloading mechanism that we consider assumes that the execution
time of a job in the Cloud is constant and equal to the processing time of
the job in the Cloud (i.e., it assumes that a job request sent to the Cloud
always find a free server). Under this assumption, a job request offloaded to
the Cloud ¢ by Fog node j will have a response time equal to /; . + i +4ej,
which yields 66 ms with the values used in this scenario. The mechanism is
then as follows. Upon reception of a job, the dispatcher of the Fog node j
first selects the application server n for executing this job. It then queries
the number of jobs ¢, at this server, so as to estimate the execution time of
the job using the formula (g, + 1) x ;1] = (gn +1) x 15 ms. If this execution
time is greater than the response time obtained by offloading the job to the
Cloud, then the job is offloaded to the Cloud.

We note that this dispatching mechanism requires the dispatcher to keep
track of the number of jobs executing at each server. We also note that this
mechanism depends on the job dispatching scheme used in the Fog nodes.
If the Fog nodes use the ”Join the Shortest Queue” scheme, then the execu-
tion time estimated by the dispatcher corresponds to the minimum execution
time that can be achieved. However, for another dispatching scheme such as
a random allocation, the estimated execution time will be greater. We em-
phasize that the information used in this offloading mechanism is completely
different from the one used by the adaptive routing algorithms discussed so
far, even though the information used by the offloading mechanism is either
local (number of jobs executing at each server) or static (response time from
the Cloud). In the following we shall assume that all Fog/Cloud nodes use
the Join-The-Shortest-Queue policy to select the server to which a task is
allocated.

Figure [6] compares the performance obtained under different strategies.
The first one uses only job offloading to the Cloud by Fog nodes and a static
allocation strategy routing tasks to the closest node (in this case always Fog
node 0 for the first base station and Fog node 1 for the second base station).
The second one uses only an adaptive task allocation strategy (which is
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sensible routing in this case), but once affected to a Fog node, jobs cannot
be offloaded to the Cloud. Finally, the third one corresponds to the case

where both mechanisms
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floading for exponentially distributed service times

As we can observe the offloading mechanism enables a significant reduc-
tion of response times. This mechanism outperforms adaptive task alloca-
tion strategies in this scenario. We note however that the use of an adaptive
task allocation algorithm in combination with an offloading strategy drops

response times.
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client [0] client[1]
Strategy fogl0] fogl1]l fogl2] fogl0] fogll] fogl2]

egreedy 33.7 447  70.0 447 347  70.0
Sensible 27.2 373  70.0 372 273 70.0
Exp3. 29.2 417 699 392 317  70.0
Softmax 27.9 382 70.0 380 281  70.0

Table 6: Response times (ms) obtained in the second scenario by combining
job offloading and adaptive task allocation in the case of exponentially-
distributed service times.

client[0] client[1]

Strategy fogl0] fogl1i] fogl2] fogl0] fogll]l fogl2]

e-greedy  34.6 45.4 70.1 45.6 35.7 70.1
Sensible  27.0 37.1 70.0 37.0 27.1 70.0
Exp3. 28.8 41.1 69.9 38.8 31.0 69.9
Softmax  28.2 38.4 70.0 38.2 28.4 70.0

Table 7: Response times (ms) obtained in the second scenario by combining
job offloading and adaptive task allocation for the first Pareto distribution
of service times.
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5.2.1 Pareto distributed Service Times

Once again, we aim to evaluate the impact of the variability of job sizes on
the task allocation algorithms. We compare the results obtained with the
offloading configuration using an exponential service distribution and the
first Pareto distribution described in subsection [5.1.3l

We look at these results further in Table [7|showing the average response
times from our simulation using the first Pareto distribution. Comparing it
with Table [6] which uses the exponentially distribution for service times, we
notice surprisingly that EXP3 and sensible routing perform slightly better
in this distribution with an average decrease of response times of 1% (resp.
0.4%). The Softmax and e-greedy algorithms, on the other hand, perform
worse with average response times seeing a maximum increase of 1.1% (and
2.9%). We suppose that the relative stability of these algorithms under job
size variability is compensated by the offloading strategy in the Cloud which
always can handle the jobs even when the Fog node queues are full due to
the increase in the service times.

6 Conclusion

Our simulation results show that very simple task allocation algorithms yield
remarkable improvements in terms of average response times with respect to
a static allocation strategy. It should be emphasized that all these algorithms
are very simple to implement as they require neither cooperation between
base stations nor knowledge of the physical infrastructure. Our results also
show that, although significant gains on response times are obtained when
Fog nodes are allowed to offload their tasks to the Cloud, a far more efficient
solution is obtained by combining an offloading mechanism and an adaptive
task allocation strategy. The main advantage of the latter solution is that
it considers all Fog nodes as a single pool of resources to which job requests
can be allocated. Finally, we have noticed that Sensible Routing provides
the best response times, but that EXP3 is more robust to the variability of
job processing times.
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