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____________________________________________________________________________________ 

Abstract 

In the context of automatic and preventive condition monitoring of rotating machines, this paper revisits the 

demodulation process essential for detecting and localizing cracks in gears and bearings. The objective of 

the paper is to evaluate the performance of the well-known Hilbert demodulation by providing a quantified 

assessment in terms of signal processing. For this purpose, vibration test signals are simulated guided by 

the analysis of real-world measurements. The database comes from a natural wear experimentation on a test 

bench at an industrial scale and without any fault initiation. In the proposed simulated model, the amplitude 

modulation is designed in a physical approach in order to be able to set up the number of faulty teeth and 

their location. The impact of a limited spectral bandwidth filtering is quantified not only for the amplitude 

but also for the phase modulation estimations. The interactions between the amplitude and phase estimations 

are discussed. A focus is made on the analytic signal ambiguity due to the non-uniqueness of the amplitude 

estimation. This property induces an original investigation when demodulating the residual generated after 

a time synchronous averaging. Finally, as the objective is a continuous surveillance of a machine, results 

are given for a sequence of real-world measurements in order to visualize the fault evolution through the 

demodulation process. 
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tracking 
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1. Introduction 

Advanced signal processing is essential to provide automatic and thorough monitoring of a complex 

mechanical system to assess its health as part of a condition-based preventive maintenance strategy. It 

concerns various application domains such as energy (nuclear plants, onshore and offshore wind turbines, 

marine and tidal turbines, wave energy converters, hydropower plants…), manufacturing and industrial 

equipment (paper machines, mills, grinders, presses…), transport (railway tracks and vehicles, large-sized 

construction machines, mining machineries, aircrafts …) or civil engineering (bridges, high-rise buildings, 

dams…). 

Many papers have been published on the spectral analysis of vibrations generated by rotating machines. 

Among others, B. Randall in 1982 [1] highlighted the importance of identifying modulation sidebands. 

Three years later, McFadden [2] identified an early fatigue crack in a helicopter gear after looking at the 

averaged and band-pass filtered signal. Then, a year later, the same author [3] proposed a demodulation 

process to estimate the amplitude and phase modulations of the same helicopter gear signal. These 

modulations revealed a small phase lag with minor amplitude modulation in the early stage, and an 

amplitude falling to near zero with a phase shift of 360° when the crack is advanced and the gear is under 

load. These studies [1, 2, 3] clearly indicate that a fault investigation should be completed with a 

demodulation of specific frequency bands to estimate the amplitude, phase or frequency modulations. The 

demodulation is a very crucial step for the fault localization and characterization. 

In this context, an automatic and data-driven sideband demodulation has already been proposed by the 

authors [4]. The objective of this paper is to assess the performance of that approach by the comparison of 

the analyses of a proposed vibration signal model and of real-world measurements on a test bench. This 

paper also compares 2 methods: demodulation on the original signal and on its residual part. The fitting of 

the proposed model to real-world signals allows a right parametrization of the model and the illustration of 

the limits of the proposed method by extending the model. As the objective is the continuous surveillance 

of a system, the measurements are a sequence of signals which convey the evolution of the system state. 

Without loss of generality, this paper focuses on a parallel-shaft gear multiplier from a test bench named 

GOTIX which is described in [5]. Vibration measurements come from a natural wear test at an industrial 

scale and without any fault initiation. 

The multi-estimator method described in [4] and [6] is applied to process both simulated and measured 

signals. This method provides a detection of all the peaks of a spectrum through a hypothesis test defined 

in frequency and an automatic clustering of the harmonic families and sidebands. When processing a 

sequence of measurements over time characterizing the evolution of a system, an automatic tracking method 
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detailed in [7]  links the corresponding peaks from signal to signal to form time-frequency trajectories. These 

trajectories are a precious help for monitoring a system. This approach has been validated on onshore wind 

turbines [8] [9] [10] and paper machines [11]. 

In this approach, the demodulation process needs the estimation of the analytic signal which can be achieved 

in different ways. The Hilbert transform, a linear operator which produces the orthogonal signal of a real 

input, is a way to compute the imaginary part of the analytic signal. Another way commonly used in digital 

communications is called the synchronous or coherent detection and consists of low-pass filtering the output 

of a multiplier between a complex oscillator at the gearmesh frequency and the signal [12]. As mentioned 

in the same reference, the Hilbert transform is the only operator that satisfies physical conditions such as 

amplitude continuity and differentiability, phase independence of scaling and harmonic correspondence. 

Nevertheless, whatever the estimation is, this complex representation is unique and does not generate a 

unique decomposition in amplitude and phase which can lead to some ambiguities [14]. In addition, to 

satisfy these properties, the signal should respect the Bedrosian constraints [13]. Given these conditions and 

constraints with the use of the Hilbert transform for computing the analytic signal, this paper studies the 

impact of this choice on the demodulation, in particular the impact of filtering, and deduces some judicious 

choices for a well-behaved amplitude and phase estimation. 

In the faulty gear vibration model proposed, more attention is given to the amplitude modulation. Indeed, 

this modulation is often modelled as a Fourier series [3] or with a Hanning window [15]. After comparison 

with the results of the real-world data analysis, this paper considers a model closer to the physics in order 

to be able to set up physical parameters and to evaluate the detection performance of the demodulation. 

This paper presents an in-depth study of the results obtained in [16], in addition to focusing on the 

ambiguities of the analytic signal. The interactions between amplitude and phase estimations are further 

analyzed. In addition, given that the gear wear has increased, it is really of interest to show that the 

demodulation process proposed is now able to detect several failures on specific teeth which actually present 

spalls. Thus, the proposed model to generate simulated signals is more complex and the performance 

analysis is thoroughly investigated. All the vibration data used in this paper can be downloaded in [5]. 

The paper is organized as follows. Section 2 derives the vibration model of a faulty gearbox with specific 

simulated models for the frequency and amplitude modulations. In Section 3, after a brief recap of the used 

demodulation already published in [4], the simulated model parameters are set thanks to a comparison with 

real-world measurement analyses. In Section 4, variations of the model parameters give then the possibility 

to evaluate the demodulation process in both healthy and faulty cases. Section 5 is a focus on the analytic 

signal ambiguity according to its definition and its consequences when demodulating a residual signal 
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generated after time synchronous averaging. Section 6 comments on the results of the continuous 

monitoring and the evolution of two natural failures. Finally, Section 7 draws conclusions and perspectives. 

2. Simulation model of a faulty gearbox 

Aiming to assess the demodulation process of vibratory measurements, the investigation of a model is 

necessary. A pair of meshing gears is considered at steady-state conditions, that is with a meshing under a 

constant speed and load. Such a healthy system at nominal speed and at a given load produces a vibration 

component due to the transmission error of the meshing gears. This component, due to the elastic 

deformation of the loaded teeth, is load dependent and periodic at the gearmesh frequency with integer 

harmonics. In addition, geometrical deviations from the ideal tooth profiles contribute to the error 

transmission also but are not load dependent [17]. Moreover, since there are 2 shafts, one for driving (gear 

side) and one for braking (pinion side), harmonics at smaller amplitude from the rotations of these shafts 

can also be found. 

In case of a healthy system, a vibration model denoted as 𝑥ℎ𝑒𝑎𝑙𝑡ℎ𝑦(𝑡)  can be written as 

𝑥ℎ𝑒𝑎𝑙𝑡ℎ𝑦(𝑡) = ∑ 𝐴ℎ
𝑚𝑒𝑠ℎ 𝑠𝑖𝑛(2𝜋ℎ𝑓𝑚𝑒𝑠ℎ𝑡 + 𝜙ℎ

𝑚𝑒𝑠ℎ) + ∑ 𝐴𝑔
𝑔𝑒𝑎𝑟

𝑠𝑖𝑛(2𝜋𝑔𝑓𝑔𝑒𝑎𝑟 𝑡 + 𝜙𝑔
𝑔𝑒𝑎𝑟)

𝑁𝐺

𝑔=1

𝑁𝐻

ℎ=1

+ ∑ 𝐴𝑝
𝑝𝑖𝑛𝑖𝑜𝑛 𝑠𝑖𝑛(2𝜋𝑝𝑓𝑝𝑖𝑛𝑖𝑜𝑛𝑡 + 𝜙𝑝

𝑝𝑖𝑛𝑖𝑜𝑛)

𝑁𝑃

𝑝=1

+ 𝑛(𝑡) 

(1) 

where, for the gearmesh frequency 𝑓𝑚𝑒𝑠ℎ , 𝑁𝐻 is the number of harmonics, 𝐴ℎ
𝑚𝑒𝑠ℎ   is the amplitude and 

ϕh
mesh is the phase of the hth harmonic, for the gear shaft frequency 𝑓𝑔𝑒𝑎𝑟 , 𝑁𝐺 is the number of harmonics, 

𝐴𝑔
𝑔𝑒𝑎𝑟

 is the amplitude and 𝜙𝑔
𝑔𝑒𝑎𝑟

 is the phase of the gth harmonic, for the pinion shaft frequency 𝑓𝑝𝑖𝑛𝑖𝑜𝑛 , 

𝑁𝑃 is the number of harmonics, 𝐴𝑝
𝑝𝑖𝑛𝑖𝑜𝑛

 is the amplitude and 𝜙𝑝
𝑝𝑖𝑛𝑖𝑜𝑛

 is the phase of the pth harmonic. In 

addition to these deterministic parts induced mainly by the meshing and shaft rotating forces, the random 

part of the vibration signal and the non-periodic components 𝑛(𝑡) are simply approximated by a stationary 

Gaussian noise, non-necessarily white. 

Let us now assume the occurrence of a local gear fault such as small pits or spalls. This damage gives rise 

to a local disturbance of the vibration signal. Variations in the meshing force and pressure due to the 

variation of the tooth surface and profile cause amplitude modulation. These variations create torque 

transmission errors, which cause speed fluctuations and thus generate frequency modulation as well. The 

signal is then modulated in amplitude and phase by periodic functions at the rotation frequency of the shaft 

supporting the faulty gear. Therefore, the vibration model in Eq. (1) denoted now as 𝑥𝑓𝑎𝑢𝑙𝑡𝑦(𝑡)  is modified 

as 
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𝑥𝑓𝑎𝑢𝑙𝑡𝑦(𝑡) = 𝑥𝑓𝑎𝑢𝑙𝑡𝑦,𝑓𝑚𝑒𝑠ℎ(𝑡) + ∑ 𝐴𝑔
𝑔𝑒𝑎𝑟

𝑠𝑖𝑛(2𝜋𝑔𝑓𝑔𝑒𝑎𝑟 𝑡 + 𝜙𝑔
𝑔𝑒𝑎𝑟

)

𝑁𝐺

𝑔=1

+ ∑ 𝐴𝑝
𝑝𝑖𝑛𝑖𝑜𝑛

𝑠𝑖𝑛(2𝜋𝑝𝑓𝑝𝑖𝑛𝑖𝑜𝑛𝑡 + 𝜙𝑝
𝑝𝑖𝑛𝑖𝑜𝑛)

𝑁𝑃

𝑝=1

+ 𝑛(𝑡), 

(2) 

with  𝑥𝑓𝑎𝑢𝑙𝑡𝑦,𝑓𝑚𝑒𝑠ℎ(𝑡) = ∑ 𝐴𝑀ℎ(𝑡) sin(2πhf mesht + 𝑃𝑀ℎ(𝑡) + ϕh
mesh) ,

𝑁𝐻
ℎ=1  

where 𝐴𝑀ℎ(𝑡) and 𝑃𝑀ℎ(𝑡) are the amplitude and phase modulations of the hth harmonic of 𝑓𝑚𝑒𝑠ℎ  

respectively.  

All these vibration sources are transmitted through the structure to the measurement point where the 

accelerometer is located. As a consequence, a simulated signal denoted as 𝑠𝑓𝑎𝑢𝑙𝑡𝑦(𝑡) is obtained through a 

linear time invariant filter that models this transmission path in the structure 

𝑠𝑓𝑎𝑢𝑙𝑡𝑦(𝑡) = 𝑥𝑓𝑎𝑢𝑙𝑡𝑦(𝑡) ∗ ℎ(𝑡) (3) 

with h(t) the impulse response of this filter and ∗ the convolution operator. 

The following section will focus on a local fault on one or several gear teeth and consequently on the 

evolution of 𝑥𝑓𝑎𝑢𝑙𝑡𝑦,𝑓𝑚𝑒𝑠ℎ(𝑡) in Eq. (2). In this context, the aim is to propose a simulation model for both 

𝐴𝑀ℎ(𝑡) and 𝑃𝑀ℎ(𝑡). 

2.1. Simulation models of the amplitude modulation 

The modelling of the amplitude modulation 𝐴𝑀ℎ(𝑡) is crucial since its choice can lead to different 

possibilities to fit the reality. 

This paper reviews the classical model based on Fourier series and compares it to a second model based on 

the physics. In both cases, a constraint prevents negative values of 𝐴𝑀ℎ(𝑡). The impact of this constraint is 

discussed in Section 5. 

2.1.1. As a Fourier series 

As the modulation is a periodic process, 𝐴𝑀ℎ(𝑡) is often represented by discrete Fourier series [2], denoted 

as AMh
f (𝑡) 

𝐴𝑀ℎ
𝑓(𝑡) = 𝐴ℎ

𝑚𝑒𝑠ℎ (1 + 𝑚ℎ
𝑓(𝑡)) (4) 
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𝑤𝑖𝑡ℎ  𝑚ℎ
𝑓(𝑡) = ∑ 𝑚ℎ,ℓ 𝑠𝑖𝑛(2𝜋ℓ𝑓𝑔𝑒𝑎𝑟𝑡 + ∅𝒉,ℓ)

𝐿

ℓ=1

, 𝑎𝑛𝑑     |𝑚ℎ
𝑓(𝑡)| < 1,    

with 𝐿 the harmonic number, 𝑚ℎ,ℓ  and ∅ℎ,ℓ  respectively the amplitude modulation index and the random 

phase of ℓ-order harmonic. 

Any periodic function with a finite power can be decomposed in an infinite sum of sines, which argues for 

the use of this model. Nevertheless, the sinusoidal property of 𝐴𝑀ℎ
𝑓(𝑡) has no direct link with the physics, 

hence the need of considering high orders. 

At some angles, the vibration amplitude of the faulty signal can be lower than the healthy vibration 

amplitude. As an alternative, the authors in [15] model the fault impact with a Hanning window, the length 

of which represents the angular duration of the impact. 

2.1.2. As a shock series 

In order to be closer to physics, another model for 𝐴𝑀ℎ(𝑡) is developed and proposed in this paper. The 

meshing contact plays the role of the excitation input of the system. To write it simple by considering one 

degree of freedom only, the equation of a linear motion writes as [18], 

𝑚𝑦̈(𝑡) + 𝑏𝑦̇(𝑡) + 𝑘𝑦(𝑡) = 0, (5) 

with 𝑦(𝑡) the position of the mass m, b the damping coefficient and k the stiffness. Then the free solution 

writes as 

𝑦(𝑡) = 𝐴𝑒−𝛼𝑡 𝑠𝑖𝑛 (2𝜋𝑓0√1 − 𝜂2𝑡 + 𝜙), (6) 

with 𝐴 and 𝜙 the amplitude and phase respectively, 𝛼 the damping factor, 𝑓0 the natural frequency and 𝜂 

the damping ratio. 

Dealing with vibration signals measured by accelerometers, the second derivative of Eq. (6) gives the 

acceleration generated by the meshing 

𝑦̈(𝑡) = −𝐴4𝜋2𝑓0
2𝑒−𝛼𝑡 𝑠𝑖𝑛 (2𝜋𝑓0√1 − 𝜂2𝑡 + 𝜙 + 2𝑎𝑟𝑐𝑠𝑖𝑛(𝜂)), (7) 

with the notation  𝑓0 =
1

2𝜋
√

𝑘

𝑚
, 𝛼 =

𝑏

2𝑚
, 𝜂 =

𝛼

2𝜋𝑓0
=

𝑏/𝑚

2√𝑘/𝑚
. 
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The aim of this notation is to highlight the role of the stiffness k in the following. Indeed, the amplitude 

writes as 𝐴
𝑘

𝑚
𝑒−𝛼𝑡 . This equation shows that the amplitude modulation of the instantaneous acceleration is 

linearly dependent on the stiffness k in the case of one-degree of freedom. 

For example, in [27], it is shown that a spall on a gear tooth or a tooth break induce a local drop of the gear 

stiffness, the profile of which depends a lot on the geometry of the fault. According to Eq. (7), these stiffness 

drops induce a drop in the amplitude of the instantaneous acceleration. To differentiate cracks and spalls, 

[28] studies the effect on the transmission error taking into account the load. In [16], the measurements of 

GOTIX test bench show some amplitude bumps. Inspired by these remarks, and in order to have a generic 

model, both drops and bumps of the amplitude modulation of the instantaneous acceleration at each gear 

rotation are considered. Each drop and bump, called a shock, is the response of the system to the fault 

excitation. The values of these modulation parameters are given by the analysis of the GOTIX measurements 

in order to be close to the reality. It should be clear that, in this paper, the objective is to generate simulated 

signals as close as possible to real-world signals in order to evaluate the performance of the signal processing 

and not to give mechanical interpretation as it is interestingly done for example in [29]. 

An accelerometer measures the resulting acceleration filtered through the mechanical system. Each input 

excites the resonance modes of the system, the response of which is the sum of both the forced and free 

responses of the system at these resonance modes. Thus, let us model 𝐴𝑀ℎ(𝑡) in Eq. (2) as a series of S 

shocks, a shock s having a positive or negative amplitude and an exponential damping. Let 𝑡0,𝑠 be the instant 

of the shock on the first rotation of the gear with regard to a tooth reference.  

For a measurement over R rotations of the gear, a series of 𝑆 shocks occurs at each rotation 𝑟 at instant 

𝑡𝑟,𝑠 = 𝑡0,𝑠 + 𝑟 × 1/𝑓𝑔𝑒𝑎𝑟 with 𝑟 = 0, … , 𝑅, and 𝑠 = 1, … , 𝑆. The modal response of the system can be 

written as 

 𝑥𝑓𝑎𝑢𝑙𝑡𝑦,𝑓𝑚𝑒𝑠ℎ(𝑡) = ∑ 𝐴ℎ
𝑚𝑒𝑠ℎ 𝑠𝑖𝑛(2𝜋ℎ𝑓𝑚𝑒𝑠ℎ 𝑡 + 𝜙ℎ

𝑚𝑒𝑠ℎ) 

𝑁𝐻

ℎ=1

 

 + ∑  

𝑅

𝑟=0

∑ ∑ 𝐴ℎ
𝑚𝑒𝑠ℎ 𝑚ℎ,𝑠𝑒−𝛼ℎ,𝑠(𝑡−𝑡𝑟,𝑠) 𝑢(𝑡 − 𝑡𝑟,𝑠) 𝑠𝑖𝑛(2𝜋ℎ𝑓𝑚𝑒𝑠ℎ(𝑡 − 𝑡𝑟,𝑠) + 𝜙ℎ

𝑚𝑒𝑠ℎ) ,

𝑆

𝑠=1

𝑁𝐻

ℎ=1

 (8) 

where 𝑢(𝑡)  is the Heaviside step function, 𝑚ℎ,𝑠 and 𝛼ℎ,𝑠 the amplitude and damping factor of the shock s. 

More details of this model are given in [18]. The damping factor 𝛼ℎ,𝑠 is linked to the duration for the stiffness 

to return to its normal value. Therefore, the amplitude modulation 𝐴𝑀ℎ(𝑡), denoted as 𝐴𝑀ℎ
𝑠ℎ𝑜𝑐𝑘(𝑡) for this 

shock series model, writes 

𝐴𝑀ℎ
𝑠ℎ𝑜𝑐𝑘(𝑡) = 𝐴ℎ

𝑚𝑒𝑠ℎ(1 + 𝑚ℎ
𝑠ℎ𝑜𝑐𝑘(𝑡)), (9) 
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𝑤𝑖𝑡ℎ  𝑚ℎ
𝑠ℎ𝑜𝑐𝑘(𝑡) =  ∑ ∑  𝑚ℎ,𝑠 𝑒−𝛼ℎ,𝑠(𝑡−𝑡𝑟,𝑠)𝑢(𝑡 − 𝑡𝑟,𝑠)

𝑆

𝑠=1

𝑅

𝑟=0

,   𝑎𝑛𝑑     |𝑚ℎ,𝑠(𝑡)| < 1. 

 

In this paper, it is assumed that the fault does not evolve during the measurement so that the shock 

parameters, the amplitude 𝑚ℎ,𝑠 and the damping 𝛼ℎ,𝑠, are the same at each rotation r. Over one faulty gear 

rotation and as a function of the rotation angle 𝜃 = 360𝑓𝑔𝑒𝑎𝑟𝑡 within [0,360] in degrees, the amplitude 

modulation in Eq. (9) is no more r-dependent and writes 

𝐴𝑀ℎ
𝑠ℎ𝑜𝑐𝑘(𝜃) = 𝐴ℎ

𝑚𝑒𝑠ℎ (1 + 𝑚ℎ,𝑠(𝜃)) , 

𝑤𝑖𝑡ℎ  𝑚ℎ
𝑠ℎ𝑜𝑐𝑘(𝜃) =  ∑  𝑚ℎ,𝑠𝑒−𝛼ℎ,𝑠 (𝜃−𝜃𝑠)/360𝑓𝑔𝑒𝑎𝑟

𝑢(𝜃 − 𝜃𝑠),

𝑆

𝑠=1

 
(10) 

with 𝜃𝑠 = 360𝑓𝑔𝑒𝑎𝑟𝑡0,𝑠. To characterize each shock from a physical point of view, a direct relation to the 

relaxation time is given. The relaxation time of a shock modelled by Eq. (9) is equal to 1/𝛼
ℎ,𝑠

. In this study, 

the width of a shock is defined as corresponding to three times the relaxation time, i.e., to an attenuation of 

26 dB (or an amplitude decrease of 95%). Expressed in pitch, this shock width writes 

𝑤𝛼 =
3

𝛼ℎ,𝑠
𝑓𝑔𝑒𝑎𝑟 𝑍𝑔𝑒𝑎𝑟, (11) 

with 𝑍𝑔𝑒𝑎𝑟 the gear tooth number (see Appendix). 

2.2. Simulation model of the phase modulation 

If we assume that a local fault is on one gear tooth, 𝑃𝑀ℎ(𝑡) in Eq. (2) can be modelled with a sum of 𝐶 

harmonic sine waves of the fundamental 𝑓𝑔𝑒𝑎𝑟 , denoted as 𝑃𝑀ℎ
𝑓(𝑡), 

𝑃𝑀ℎ
𝑓(𝑡) = ∑ 𝛽ℎ,𝑐 𝑠𝑖𝑛(2𝜋𝑐𝑓𝑔𝑒𝑎𝑟 𝑡 + 𝜓ℎ,𝑐), 

𝐶

𝑐=0

 (12) 

with 𝛽ℎ,𝑐 and 𝜓ℎ,𝑐, respectively the phase modulation index and the phase of the harmonic c of the fault 

frequency 𝑓𝑔𝑒𝑎𝑟and C the sine number in the phase modulation. This model has been proposed by [3]. 

Whatever the value of ℎ , 𝛽ℎ,0 = 0. Thus, 𝐶 = 0 induces 𝑃𝑀ℎ(𝑡) = 0, a way to represent the case without 

phase modulation. The frequency modulation rate denoted as 𝐹𝑀𝑅ℎ  is defined as 

𝐹𝑀𝑅ℎ =
𝑓ℎ 𝑚𝑎𝑥 − 𝑓ℎ 𝑚𝑖𝑛

𝑓ℎ 𝑚𝑎𝑥 + 𝑓ℎ 𝑚𝑖𝑛
, (13) 
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with 𝑓ℎ 𝑚𝑎𝑥 and 𝑓ℎ 𝑚𝑖𝑛 respectively the maximum and minimum frequency of the instantaneous frequency 

defined from the derivate of 𝑃𝑀ℎ(𝑡). Getting the analytical expression of 𝐹𝑀𝑅ℎ   for any value of C is a 

tricky task. For 𝐶 = 1, the frequency excursion is equal to 2𝛽ℎ,1𝑓𝑔𝑒𝑎𝑟  and 

𝐹𝑀𝑅ℎ =
2𝛽ℎ,1𝑓𝑔𝑒𝑎𝑟

2ℎ𝑓𝑚𝑒𝑠ℎ
=

𝛽ℎ,1

ℎ𝑍𝑔𝑒𝑎𝑟
. (14) 

3. Simulation model identification through demodulation process 

After a brief presentation of the analysis and demodulation methods, the aim of this section is to use the 

models proposed in Section 2.1 to generate simulated signals with characteristics as close as possible to 

those of real vibrations measurements. 

The reference measurements come from the database of the GOTIX test bench located in GIPSA-lab [5]. 

The proposed demodulation is applied together with an automatic spectral analysis based on a multi-

estimator approach [6]. The analysis of the measurements provides the estimated amplitude and phase 

modulations, 𝐴𝑀ℎ(𝑡) and 𝑃𝑀ℎ(𝑡) respectively. These estimations are used to generate the simulated signals 

from the models described in the previous section. In what follows, all amplitude and phase modulations 

are written as a function of 𝜃 in degrees. 

3.1. The analysis and demodulation methods 

This section briefly recalls the used methods. The spectral analysis is realized thanks to a multi-estimator 

approach based on Fourier estimators [6] and adapted to vibration signals. It automatically detects peaks, 

harmonics, sidebands and provides a wide list of advanced features, that can be a posteriori associated to 

kinematic values or labels of the analyzed system [4]. This spectral component detection is based on a two-

hypotheses test, as explained in what follows. Let 𝑥(𝑡) be a discrete stationary random signal with an 

estimated power spectral density denoted by 𝛾𝑥(𝜐) and defined as a sum of an unknown signal of interest 

𝑠(𝑡) and a noise signal 𝑛(𝑡), 

𝑥(𝑡) = 𝑠(𝑡) + 𝑛(𝑡), (15) 

where 𝑠(𝑡) is a stationary random process, whose estimated power spectral density is denoted by 𝛾𝑠(𝜐), 𝜈 

being the frequency variable. 𝑛(𝑡) is assumed to be a zero mean stationary Gaussian noise, independent of 

the signal 𝑠(𝑡), and with an estimated power spectral density denoted by 𝛾̃𝑛(𝜐). This additive noise is not 

necessarily white. A statistic test based on two hypotheses is defined in the frequency domain, 

𝑇(𝜐) =
𝛾𝑥(𝜐)

𝛾̃𝑛(𝜐)

𝐻0

≶
𝐻1

𝜇𝑃𝐹𝐴 , (16) 
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with the two hypotheses 𝐻0: 𝛾𝑥(𝜐) = 𝛾𝑛(𝜐), 𝐻1:  𝛾𝑥(𝜐) =   𝛾𝑠(𝜐) +   𝛾𝑛(𝜐), and 𝜇𝑃𝐹𝐴 the threshold adjusted 

from the probability of false alarm of the test. 

Adjusting and setting up this test requires answering the following three questions: 1) which kind of 

estimator should be used for the estimated power spectral density 𝛾𝑥(𝜐), 2) how can the noise power spectral 

density can be estimated and 3) what is the statistics of the test variable 𝑇(𝜐) in order to adjust the threshold 

to a given false alarm probability. 

For the estimation of 𝛾𝑥(𝜐), one key idea of the approach is to combine the results of several different 

Fourier estimators according to their complementary properties. Studying the degree of freedom, the 

spectral leakage percentage, the effective statistical bandwidth and the frequency resolution of various 

Fourier estimators enable the selection of a set of methods and windows. More details are in [6]. 

Then, 𝛾𝑥(𝜐) is used to estimate 𝛾̃𝑛(𝜐), as the result of a filtering of 𝛾𝑥(𝜐). Previous studies [32] compare 

various nonlinear filters such as median or morphological filters, but also n-path filters that iterate nonlinear 

estimation and detection for the peak removal. Whatever the choice is, the filter length 𝑀 should be adjusted 

according to the spectral window of the Fourier estimator. 

The choice of both estimators makes possible the derivation of the distribution of the test statistic under 

hypothesis 𝐻0. For example, the choice of a median filter for the noise estimation leads to a distribution 

which can be approximated by a Fisher-Snedecor law 𝐹𝑟,𝑟𝑀, with parameters 𝑟 and 𝑟𝑀, 𝑟 being the degree 

of freedom of the chosen estimator for 𝛾𝑥(𝜐) and 𝑀 being the median filter length. Under hypothesis 𝐻1, 

the distribution is unknown given that 𝑠(𝑡) is unknown. Then, at each spectrum maximum corresponding 

to a frequency 𝜐𝑚𝑎𝑥 , the test is assessed with the p-value, defined under 𝐻0 as the probability of having a 

test value equal or more extreme than the one observed 

𝑝0 = 𝑃𝑟[𝑇(𝜐) ≥ 𝑇(𝜐𝑚𝑎𝑥) ∕ 𝐻0] = ∫ 𝐹𝑟,𝑟𝑀(𝑥)𝑑𝑥
+∞

𝑇(𝜐𝑚𝑎𝑥)
 (17) 

If the p-value is lower than a given threshold corresponding to a probability of false alarm, the corresponding 

peak potentially belongs to 𝐻1. 

Once all peaks belonging to 𝐻1 are detected, a specific algorithm patent-protected [33] and then published 

in [7] groups all the peaks in harmonic families with their own sidebands. As mentioned in the introduction, 

this approach has been validated on onshore wind turbines [8] [9] [10] and paper machine [11] in the context 

of two European projects. 

This multi-estimator approach detects all the modulated frequency bands, which can then be demodulated. 

The used demodulation follows a classical two-steps scheme: first, the signal is band-pass filtered around 
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the band of interest and second, after a time synchronous averaging, amplitude and phase modulations are 

calculated through a Hilbert transform. In order to enhance the performance of the final Hilbert transform, 

sharp transition bands are necessary in the context of real-world signals with a rich spectral content. 

However, designing such digital filters using conventional methods can be difficult: finite impulse response 

filters which have a length inversely proportional to the transition width would have a crippling high order 

and infinite impulse response filters may suffer from a high sensitivity due to their possible instability. To 

tackle this stability problem, in [4], an innovative band-pass filtering is proposed. It is based on a multi-rate 

approach [34] to provide a fully automatic solution to design the band-pass filter, whatever the bandwidth 

constraints are. The objective is to find the stable elliptic filter of the highest order, to benefit from the sharp 

transition of such filters, while imposing strong constraints to minimize bandwidth ripple. The required 

elliptic filter order 𝜌 is given by 

𝜌 =
𝐾(𝜏)𝐾 (√1 − 𝜏1

2)

𝐾(𝜏1)𝐾(√1 − 𝜏2)
 

where 𝐾(. ) represents the complete elliptic integral of the first kind, 𝜏 the transition ratio and 𝜏1 a function 

of the passband ripple and of the stopband attenuation [35]. Even if for a given order, elliptic filters are 

optimal in the sense that no other filter has a sharper transition, the strong constraints on the filter 

specifications may prevent from designing a stable filter. The proposed approach [4] is iterative and uses a 

multistage implementation of a well-chosen decimation of the signal in order to “zoom” around the passband 

of interest before designing the filter. The decimation factor is chosen as a compromise between a 

sufficiently high final sampling frequency and the “relaxing” effect on the required transition band of the 

filter to be designed: for a given decimation factor D, the transition band expressed in normalized 

frequencies becomes  

Δ𝑓𝐷 = Δ𝑓0𝐷, 

where Δ𝑓0 is the original required transition band in normalized frequencies. Thus, decimation is a way to 

transform a highly sensitive filter design problem into a simpler one. Note that the anti-aliasing filter used 

before decimation is a Butterworth to avoid any distortion in the spectral zoom done by the decimation. 

Moreover, to perform this decimation whatever the factor D required, a multi-stage implementation is 

proposed. 

Even though other demodulation approaches exist, this paper focuses on this Hilbert-based method 

combined with this efficient band-pass filtering. The aim is to highlight and illustrate the performance of 

this approach, by looking at the influence of the fault size, the filter band sensitivity, the phase-amplitude 

correlation, the amplitude rectification of the analytical signal, and the impact of a residual analysis. These 
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properties are empirically illustrated thanks to the simulated signals inspired from the analysis results on 

vibration measurements. 

3.2. Analysis and demodulation of the measurements 

Real-world vibration measurements are performed on the GOTIX bench [5], a test bench which has been 

designed to produce a database on a natural wearing of a gearbox with two parallel straight gears meshing 

together. It is important to mention that no fault has been initiated. At the initiation of the test, the gears 

were new. A gear and a pinion are connected respectively to a driving asynchronous 3-phase motor rotating 

at 474rpm and a loading DC-generator applying a 200Nm torque on the pinion shaft. The ratio between gear 

and pinion shaft is 3.8. Then, 𝑓𝑔𝑒𝑎𝑟 = 7.91 𝐻𝑧, 𝑓𝑝𝑖𝑛𝑖𝑜𝑛 = 3.8 × 𝑓𝑔𝑒𝑎𝑟 = 30.06 𝐻𝑧 and 

𝑓𝑚𝑒𝑠ℎ =  450.87 𝐻𝑧. At the time of writing, the database contains over a thousand timestamp folders (more 

than 6000 hours of rotation), each folder including 18 synchronous measurements such as vibration and 

electrical data at a sampling frequency 𝑓𝑠 = 25600 𝐻𝑧. The detail of the bench kinematic can be found in 

the Appendix. 

 

Fig. 1. Detected spectral peaks of a GOTIX measurement at 6240h. (a) The gearmesh harmonics are highlighted with blue arrows. 

(b) A zoom around 𝟑 𝒇𝒎𝒆𝒔𝒉, the modulation sidebands are highlighted with purple arrows, undetected sidebands are indicated by a 
purple cross and a specific focus is made on the 19th sidebands with black arrows. 

Applying the multi-estimator approach recalled in section 3.1, Fig. 1 shows the detected peaks and harmonic 

families of a GOTIX measurement at 6240 hours of rotation in the database, that is in the most advanced 

state of wearing so far. Fig. 1 (a) illustrates the main harmonic family due to the gearmesh frequency, each 
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gearmesh harmonics being modulated by the gear and pinion shafts. For the sake of clarity, only the gear 

shaft sideband family around the third harmonic is highlighted. Fig. 1 (b) presents a zoom around the third 

gearmesh harmonic with the detected sideband family at the gear shaft frequency. 

According to the sensor location, the transmission path can have an impact on the measured vibration and 

then on the demodulation result. In this study, this transmission path is computed for the measurement 

considered in Fig. 1. through cepstral liftering [30]. The estimation result is shown in Fig. 2 (a).  A frequency 

zoom around the 3rd harmonic in the filtering band considered for the demodulation is shown in Fig. 2 (b). 

It is clear that, for this harmonic, the transfer function is constant over this narrow filtering band. 

  

Fig. 2. Estimated transmission path of GOTIX measurement at 6240h. (a) On the entire frequency band. (b) Zoom on the 
demodulation band around the 3rd harmonic. 

Therefore, after the signal analysis, the GOTIX measurements are automatically demodulated by the method 

recalled in section 3.1 considering the number of sidebands detected around the 3rd harmonic. Since each 

gearmesh harmonic is modulated by the same gear frequency, the demodulation band is limited to half the 

gearmesh frequency on each side, that is to the sidebands ±𝑍𝑔𝑒𝑎𝑟/2. However, in the GOTIX case, the 

assembly design is not optimal. The gear tooth number 𝑍𝑔𝑒𝑎𝑟 = 57 = 3 × 19 and the pinion tooth number 

𝑍𝑝𝑖𝑛𝑖𝑜𝑛 = 15 = 3 × 5 are not co-prime and have a greatest common divisor equals to 3.  It means that 3 

tooth family pairs can be present on both the gear and the pinion. One family from the gear (19 teeth) is 

only meshing with its corresponding family from the pinion (5 teeth). This generates an assembly phase 

frequency three times lower than in the optimal case when all gear teeth mesh with all the pinion teeth. In 

the studied case, the sideband structure at the gear frequency has higher energies at frequencies multiple of 

19 ∗ 𝑓𝑔𝑒𝑎𝑟 , as can be seen in Fig. 1 (b). These harmonics, with their own sidebands at 𝑓𝑔𝑒𝑎𝑟 , are interfering 

with the modulation pattern. 
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Fig. 3. Design of the filter automatically chosen by the multirate technique. (a) Amplitude response. (b) Phase response. (c) Spectral 
zoom of the GOTIX measurement at 6240h before filtering (blue) and after filtering (red) around the 3rd harmonic. 

Thus, the demodulation band is set to ± 9 sidebands. Obviously, the fact that this assembly phase family is 

present indicates that the 3 family pairs are in a different state of wear. This presence could be used as a 

fault indicator, but it is not the scope of this paper. The demodulation method described in the previous 

section is then applied in the band [1291 Hz, 1434 Hz] around the 3rd harmonic. Fig. 3 shows the amplitude 

and phase responses of the elliptic filter found by the method [4] and a spectral zoom before and after 

filtering. In this particular case, the demodulation band is equal to 143 Hz (corresponding to 0.0054 in 

normalized frequencies which highlights the extreme narrowness of the required filter band). The algorithm 

converges in one iteration to an elliptic filter order of 11 and a down sampling factor of 36. The peak-to-

peak passband ripple equals 0.005 dB and the stopband attenuation equals 80 dB. These values confirm a 

challenging design filter. 

 

Fig. 4. (a) The estimated amplitude demodulation results 𝐴𝑀̂3(𝜃) of the 3rd harmonic of 𝑓𝑚𝑒𝑠ℎ of GOTIX measurement at 6240h. 
(b) Gear tooth 21. (c) Gear tooth 31. (d) Gear tooth 46. 

Fig. 4 (a) shows the estimation of the amplitude modulation over one gear rotation, 𝐴𝑀̂3(𝜃), for GOTIX 

measurement at 6240 hours of rotation. This estimated amplitude presents 2 drops in amplitude clearly 

identifiable and several bumps. A visual inspection on the GOTIX gearbox confirmed that these shocks are 
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angularly corresponding to the zones of the gear where spall marks are present. The two most severe spall 

marks have been observed on teeth 31 and 46. Fig. 4 (c) and (d) show pictures of these teeth whose numbers 

remarkably correspond to the two minima of 𝐴𝑀̂3(𝜃) in Fig. 4 (a). Other spall marks have been observed, 

but notably smaller, on tooth 21 in Fig. 4 (b) for example. 

The spatial sampling δ is the ratio of the gear circumference to the sample number on one gear rotation, 

𝛿 =
𝜋 𝑀𝑍𝑔𝑒𝑎𝑟 

𝑓𝑠/𝑓𝑔𝑒𝑎𝑟
 (18) 

with 𝑀 the gear module. Numerical values listed in Appendix give 𝛿 = 0.14 𝑚𝑚. This very low sampling 

period is the result of both relatively low rotation speed and high frequency sampling. Nevertheless, this 

low sampling does not induce a high resolution. The contact ratio in the GOTIX bench is 1.526. This ratio 

is the average number of tooth pairs in contact. This value greater than 1 necessarily impacts the confidence 

interval of the tooth position estimation; this interval is then wider than 1 tooth. But the strongest alteration 

of the spatial resolution comes from the demodulation process, as shown in Section 4. 

This preliminary part provides a full spectral estimation of GOTIX measurements, noise line, peaks, 

harmonic families, sidebands, and demodulated sidebands, from which the simulated signals are generated. 

For the sake of clarity, only results around the 3nd harmonic are described. The same way can be applied 

for all harmonics. Note that the different behaviors of all the harmonics are discussed in [33]. 

3.3. Generation of the simulated signals 

Thanks to the analysis of one GOTIX measurement in the previous section, the algorithm provides the 

amplitude values of the peaks associated to the harmonic families of gear and pinion shafts, and gearmesh. 

It thus provides the amplitude terms 𝐴ℎ
𝑚𝑒𝑠ℎ

, 𝐴𝑔
𝑔𝑒𝑎𝑟

, 𝐴𝑝
𝑝𝑖𝑛𝑖𝑜𝑛

 in Eq. (2), which represent the temporal 

amplitude values of the sine waves that are not corrupted by the noise level. The following discussion will 

be focused around the 3rd harmonic. Therefore, given the shape of the transmission path estimated in the 

previous section, the convolution in Eq. (3) only impacts the signal of a multiplicative constant amplitude 

and a linear phase given the operational conditions are constant. This convolution will then have no 

influence on the demodulation carried on a very narrow frequency band. 

The objective now is to find the other parameters of the model so that the quadratic errors between the model 

and the measurement estimations 𝐴𝑀̂ℎ(𝜃) and 𝑃𝑀̂ℎ(𝜃) are minimal. It is an optimization problem 

impossible to formulate analytically given that the observation is through an estimation. This error function 

being scalar-valued and nonlinear, a nonlinear unconstrained optimization problem is formulated and can 
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be solved thanks to the Nelder-Mead simplex algorithm [26], a simple and fast method for minimizing a 

function without any derivative. 

First a vibration model is simulated with the amplitude modulation 𝐴𝑀ℎ
𝑓(𝜃), modelled as the Fourier series 

described in Eq. (4). The sine number L is found equal to 13. A white noise has been added with a signal-

to-noise ratio equivalent to the one estimated on GOTIX measurements and provided by a method based on 

the autocorrelation function of the signal and published in [20], that is 10 dB. This value has been chosen 

for all the simulated signals discussed in this paper. 

Fig. 5 (a) shows the demodulated amplitude 𝐴𝑀̂3
𝑓(𝜃) of the Fourier series model as a function of the gear 

rotation angle 𝜃. The result is satisfying when comparing with GOTIX demodulation. This result was 

expected knowing the concept of Fourier series. Nevertheless, this formalism does not give the possibility 

to link the model parameters to the physical parameters such as the number and localization of faulty teeth. 

This functionality is very useful to validate the demodulation result; therefore, such a drawback of the 

Fourier series model was a motivation for a model with physical parameters. 

 

Fig. 5. Comparison of the amplitude demodulation of GOTIX around the 3rd harmonic of 𝑓𝑚𝑒𝑠ℎ, 𝐴𝑀̂3(𝜃) at 6240h (blue), with 2 

models (red). (a) 𝐴𝑀̂3
𝑓(𝜃) from Fourier series model, (b) 𝐴𝑀̂3

𝑠ℎ𝑜𝑐𝑘(Θ) from shock series model. 

For this reason, the amplitude modulation is then modelled as 𝐴𝑀3
𝑠ℎ𝑜𝑐𝑘(𝜃), the shock series model described 

in Eq. (10). The amplitudes 𝑚3,𝑠, the shock instants 𝑡0,𝑠 and the damping factors 𝛼3,𝑠 are chosen such that 

the resulting 𝐴𝑀̂3
𝑠ℎ𝑜𝑐𝑘(𝜃)  of the model demodulation fits the estimated 𝐴𝑀̂3(𝜃) of the GOTIX 

measurement demodulation using the same optimization process. But, for this model, the parameters to set 

are of 2 kinds, the amplitudes and the damping factors that are continuous, the shock instants and number 

that are discrete. The used optimization algorithm does not allow to optimize the discrete parameters, so 

they are a priori set, which is a simple task, and the continuous parameters are estimated thanks to the 

optimization algorithm. In the end, 𝑆 = 12 shocks have been necessary in order to fit, after demodulation, 

all variations observed in 𝐴𝑀̂3(𝜃), including the two important drops in amplitude corresponding to the two 
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minima. Fig. 5 (b) shows that the demodulation of the simulated signal fits quite well with GOTIX 

demodulation. All the drops and bumps of 𝐴𝑀̂3(𝜃) observed in the GOTIX case match this simulation. The 

identified amplitude modulation, denoted as 𝐴𝑀3
𝑓𝑖𝑡(𝜃) , is of interest for the following section due to the 

physical meaning of its parameters. This model is relevant for studying the impact of demodulation since 

the parameter setting of the modal response is possible in terms of number, location and damping factors of 

faulty teeth. 

The phase modulation 𝑃𝑀3(𝜃) is estimated with the phase model of Eq. (12), applying the same 

optimization algorithm. Fig. 6 shows the result 𝑃𝑀̂3
𝑓(𝜃) with 𝐶 = 9 and 𝐹𝑀𝑅3 = 0.26%. The identified 

frequency modulation is denoted as 𝑃𝑀3
𝑓𝑖𝑡(𝜃). 

 

Fig. 6. Comparison of the phase demodulation estimation of GOTIX, 𝑃𝑀̂3(𝜃) at 6240h (blue), with a phase model (red) with 

𝐴𝑀3
𝑓𝑖𝑡(𝜃) and 𝑃𝑀̂3

𝑓𝑖𝑡(𝜃) (𝐶 = 9, 𝐹𝑀𝑅3 = 0.26%). 

4. Fault detection using demodulation  

In the previous section, estimation of the model parameters of Eq. (2) is done based on real-world signals 

of the GOTIX test bench, using the proposed model of a shock series for the amplitude modulation given 

by Eq. (10) and the sine model of Eq. (12) for the phase modulation. Using these model parameters, 

simulated signals are generated. 

The objective of this section is to show how the efficiency of demodulation in fault detection is impacted 

by the shock width, strongly dependent on the damping, and the phase modulation, within the context of a 

very narrow band pass filter linked to the demodulation process. This study has already been performed in 

the case of a mono-carrier model [16] in which only one harmonic of the mesh frequency was considered 

in the model. 

The aim of this section is to consider a more realistic model. The signals simulated are composed of a greater 

number of harmonics (𝑁𝐻 = 20). The characteristics of the amplitude and phase modulation of these signals 
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are modified from the 𝐴𝑀ℎ
𝑓𝑖𝑡(𝜃) and 𝑃𝑀ℎ

𝑓𝑖𝑡(𝜃) identified in the previous section. The modified parameters 

are: the width of the main shock (fit value: 5.9 pitches) for the amplitude modulation, the number C of sines 

(fit value: 9) and its 𝐹𝑀𝑅ℎ  (fit value: 0.26%) for the phase modulation. 

First, in Section 4.1, in order to study the effect of the shock width, simulated signals are generated with 

amplitude modulation only (no phase modulation), with different shock widths 𝑤𝛼 in a range close to the 

one identified on GOTIX signals. 

Second, in Section 4.2, the simulated signals are modulated in both amplitude and phase, while, in order to 

study the effect of phase amplitude, different phase model parameters (C, 𝐹𝑀𝑅ℎ) are used.  

In both cases, as explained in Section 3.2, the demodulation of the simulated signals is done around the 3rd 

harmonic as for the GOTIX measurement. As the filter does not depend on the signal but on its 

characteristics and the sampling frequency, the filter is exactly the same as in Fig. 3 (a) and (b). The 

performance and the limits of the fault detection using demodulation are evaluated thanks to well-chosen 

criteria. A first criterion of comparison is the classical normalized mean square error (𝑁𝑀𝑆𝐸) between the 

demodulated result and the original model. Two other criteria are introduced to better characterize the drop 

detection, namely the normalized shock amplitude error (𝑆𝐴𝐸) and the shock position error (𝑆𝑃𝐸), which 

are defined as follows, 

𝑆𝐴𝐸 =
|𝐴𝑚𝑖𝑛 − 𝐴̂𝑚𝑖𝑛|

𝐴𝑚𝑖𝑛
× 100        and            𝑆𝑃𝐸 = |𝜃𝑠 − 𝜃𝑠|, (19) 

where 𝐴𝑚𝑖𝑛 = 𝐴𝑚𝑒𝑠ℎ − 𝑚𝑖𝑛 (𝐴𝑀ℎ
𝑠ℎ𝑜𝑐𝑘(𝜃)) represents the amplitude drop of this shock, 𝐴̂𝑚𝑖𝑛 its 

estimation, and 𝜃̂𝑠 the estimation of the rotation angle 𝜃𝑠 of the drop (see Eq. (10)). 

4.1. Amplitude modulation only 

As explained above, the aim of this section is to study the effect of shock width on the capacity of the 

demodulation to detect a fault. Therefore, signals are generated with amplitude modulation only, with 

different shock widths for the 3rd harmonic. For the sake of clarity, only the shock width of the strongest 

drop in amplitude around the tooth 31 in Fig. 4 (a) is varying. Five values of 𝛼3,𝑠 are chosen in order to get 

five angular widths 𝑤𝛼 which are (0.25, 0.5, 1.5, 3.5, 8.5), expressed in pitch. No phase modulation is 

applied to these simulations, referred to as PM0 case. 

The demodulation results are presented in Fig. 7 where the comparison is made between the demodulated 

amplitude and its corresponding original one. In Fig. 7 (b), the zoom on the drop with different shock widths 

shows that this drop is no longer identifiable for the lowest values of 𝑤𝛼, concealed by the other shocks. 
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Table 1 gives NMSE, 𝑆𝑃𝐸 and 𝑆𝐴𝐸 values corresponding to these different shock widths. For the shock 

widths, 𝑤𝛼 = 0.25  and 0.5 pitches, the 𝑆𝐴𝐸 values confirm that the amplitude drop is too small for being 

correctly detected, due to the influence of other surrounding shocks. For the other shock widths, 𝑤𝛼 =

1.5, 3.5, 8.5 pitches, the position error 𝑆𝑃𝐸 increases with 𝑤𝛼, until nearly one gear pitch for 𝑤𝛼 =  8.5 

pitches. 

 

Fig. 7. Influence of model parameters of amplitude modulation without phase modulation. (a) Theoretical models AM3
shock(𝜃) with 

𝑤𝛼 varying from 0.25 to 8.5 pitches for the deepest amplitude drop (dashed lines) and the estimated 𝐴𝑀̂3(𝜃)(solid line). (b) Zoom 

on the main amplitude drop. 

These results illustrate the impact of the demodulation as a filtering process, which “smoothes” the output 

compared to the original model, and introduces an estimation error characterized by the 𝑁𝑀𝑆𝐸 values of 

Table 1. 

Table 1 

NMSE, SAE and SPE values of AM̂3(θ) for various shock widths (case of amplitude modulation only). 

Indicators of the amplitude 
demodulation 

𝑤𝒂 of the amplitude drop model 

¼ pitch ½ pitch 1.5 pitch 3.5 pitches 8.5 pitches 

𝑁𝑀𝑆𝐸 (%) 11.1 11.4 13.8 14.3 11.0 

𝑆𝐴𝐸 (%) 79.1 75.0 66.1 54.1 35.9 

𝑆𝑃𝐸 (degrees) 
       (pitch) 

3.47  

(0.55) 

2.46  

(0.39) 

1.57  

(0.25) 

2.24  

(0.35) 

5.04 

(0.8) 

Thus, in order to diagnose a tooth fault properly, obviously, the longer the relaxation time compared to the 

meshing period, the easier it is to detect. Note that even for the largest shock considered in this study (𝑤𝛼 =

8.5), the position error does not impede diagnosis, as it is still below 1 pitch.  

4.2. Both amplitude and phase modulations 

Let us now consider the case where both amplitude and phase modulations are present. In this section, the 

simulated signals are modulated in amplitude with different shock widths from 0.25 to 8.5 pitches, including 

the value estimated in the GOTIX analysis (5.9 pitches). Moreover, to simulate an increasing rate of 
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frequency modulation, ten couples of (C, 𝐹𝑀𝑅3) are used as detailed in Table 2, C being the sine number 

in the phase modulation and 𝐹𝑀𝑅3 the frequency modulation rate (see Eqs. (12) and (13)). 

Table 2 

Values of (C, 𝐹𝑀𝑅3) for the phase model of the simulated signals 

 PM0 PM1 PM2 PM3 PM4 PM5 PM6 PM7 PM8 PM9 

C 0 1 5 9 1 5 9 1 5 9 

𝐹𝑀𝑅3 0 0.041% 0.22% 0.26% 0.21% 1.1% 1.3% 0.42% 2.19% 2.56% 

Note that PM3 corresponds to 𝑃𝑀3
𝑓𝑖𝑡(𝜃) issued from the GOTIX analysis and that PM0 corresponds to the 

case without phase modulation (amplitude modulation only as in previous section). 

 

Fig. 8. Impact of phase modulation: theoretical (dashed line) and estimated (solid line). 1st line: AM3(𝜃). 2nd line: PM3(𝜃).1st 

column: low FMR3 and variable C. 2nd column: increasing FMR3 and C=9. 3rd column: increasing C and close middle FMR3. 

The demodulation results in the case of a shock width 𝑤𝛼 = 8.5 are illustrated in Fig. 8, with the 

demodulated amplitude in Fig. 8 (a) to (c) and the demodulated phase in Fig. 8 (d) to (f). 

Regarding amplitude demodulation, in Fig. 8 (a) where the 𝐹𝑀𝑅3 is low (<0.26% corresponding to the 

GOTIX case) and Fig. 8 (c) with a higher 𝐹𝑀𝑅3 (around 1.2%), whatever the number C of sine components 

in the phase model is, the amplitude estimation is mostly impacted by the “smoothing” effect of the 

demodulation, as already shown in the previous section. However, in Fig. 8 (b), showing the results for the 

highest values of both C and 𝐹𝑀𝑅3, the estimated amplitude modulation becomes useless for PM9 to 

perform a diagnosis. 
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This behavior is different for phase demodulation. While theoretical and estimated values are almost 

identical at intermediate and strong 𝐹𝑀𝑅3 in Fig. 8 (e) and Fig. 8 (f), the strongest errors appear at low 

𝐹𝑀𝑅3. As can be seen in Fig. 8 (d) for PM1 and for PM0, the estimated phase modulation is fluctuating 

with important variations close to the positions of all amplitude bumps and drops. For PM0, the phase should 

even be equal to zero. The estimated phase in these cases has errors concentrated around the positions of 

the shocks, especially for the most important one around 200 degrees. 

 

Fig. 9. NMSE, SAE and SPE values for different shock widths and phase modulations. 

To highlight the influence of both shock widths and frequency modulation on amplitude demodulation, Fig. 

9 presents the amplitude NMSE values (first row of the figure), SAE values  (second row) and SPE values 

(third row) as a function of the shock width, at low frequency modulation rates (PM0 to PM3) in the left 

column (Fig. 9 (a), (d) and (g)), for increasing frequency modulation rate with the same number of 

components (PM3, PM6 and PM9) in the middle column (Fig. 9 (b), (e) and (f)) and for an increasing 

number of components for a comparable 𝐹𝑀𝑅3 in the right column (Fig. 9 (c), (f) and (i)). 

At low 𝐹𝑀𝑅3, amplitude NMSE values in Fig. 9 (a) are below 15%, whatever the shock width is. Moreover, 

for any given shock width, the amplitude NMSE values are almost of the same order of magnitude at all 

𝐹𝑀𝑅3 from PM0 to PM3. This shows that at low 𝐹𝑀𝑅3, the amplitude demodulation error is mainly due to 

the demodulation process and its corresponding filtering effect. However, for higher 𝐹𝑀𝑅3, in Fig. 9 (b), 
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the amplitude NMSE is increasing with 𝐹𝑀𝑅3, going up to more than 50% for PM9 (the strongest 𝐹𝑀𝑅3in 

our simulations), whatever the shock width is. The same holds in Fig. 9 (c) where the amplitude NMSE is 

increasing with the number of phase components, for a given 𝐹𝑀𝑅3>1%. This highlights the influence of 

frequency modulation on the amplitude demodulation in the case of a strong frequency modulation. 

Fig. 9 (d), Fig. 9 (e) and Fig. 9 (f) illustrate an expected behavior with a decreasing SAE as a function of 

the shock width: the larger the shock width, the easier the detection. This behavior is observed, whatever 

the frequency modulation. 

Regarding the fault localization, SPE values in Fig. 9 (g) are below one pitch, whatever  the value of the 

shock width at all frequency modulation rates from PM0 to PM3. Moreover, as shown in figures Fig. 9 (a), 

(d) and (g), for a given shock width, amplitude NMSE, SAE and SPE values are of the same order of 

magnitude, regardless of the low modulation rate present in the signal of interest. This confirms that in the 

case of a low frequency modulation rate, the amplitude demodulation is not influenced by the frequency 

modulation. However, for a higher frequency modulation or an increasing number of phase components for 

a given 𝐹𝑀𝑅3>1%, Fig. 9 (h) and (i) clearly show the influence of frequency modulation on the result of 

the amplitude demodulation and on the fault localization, with SPE values higher than 1 pitch. 

As illustrated in Fig. 8 for a given shock width, the estimation of the phase modulation is also impacted by 

the amplitude modulation shape. Unlike the amplitude estimation, the greatest impact is at low 𝐹𝑀𝑅3. Table 

3 confirms this behavior through the phase NMSE values. If 𝐹𝑀𝑅3<1%, (PM0 to PM4 and PM7), the phase 

NMSEs are higher than for the other rates, whatever the number of phase components is. Note that for the 

clarity, this table is for a shock width 𝑤𝑎 = 8.5 but the same behavior has been observed for all tested shock 

widths. Note also that the case without phase modulation, PM0, is not in this table, since it cannot be 

normalized (the reference being zero). 

Table 3 

𝑁𝑀𝑆𝐸 values of 𝐏𝐌̂𝟑(𝜃) for 𝑤𝑎 = 8.5 and different frequency modulation rates. 

Phase model PM1 PM2 PM3 PM4 PM5 PM6 PM7 PM8 PM9 

𝑁𝑀𝑆𝐸 1.9% 0.8% 0.4% 0.03% 0.02% 0.06% 0.01% 0.02% 0.1% 

4.3. Conclusions  

As it is well-known, applying a Hilbert demodulation with a strong filtering alters the estimated amplitude 

and phase modulations. This alteration comes from the removal of distant sidebands, which contain 

information about both modulations. However, as shown in the two previous sections, even with the 

observed degradations on the demodulation results, the detection and the localization of the faulty teeth are 

still possible, except for the cases where phase modulation is too important or when the relaxation time of 

the modal response is shorter than the meshing period. The dual interpretation in the frequency domain is 
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easily understandable since it means that the frequency response of the modal response, linked to the inverse 

of the relaxation time, is greater than the meshing frequency over 2, the limit of the filtering bandwidth. 

For a test bench as GOTIX with a 𝑃𝐺𝐶𝐷(𝑍𝑔𝑒𝑎𝑟, 𝑍𝑝𝑖𝑛𝑖𝑜𝑛) > 1 , that is the possible existence of an assembly 

frequency, when this frequency is not present in the spectrum, the filter is correct given that the band can 

be equal to ±𝑍𝑔𝑒𝑎𝑟/2  sidebands. The presence of this assembly frequency, which in itself is a sign of wear, 

makes the spectrum more complex as the sidebands are potentially overlapping. Therefore, the filter band 

should be drastically reduced to ±𝑍𝑔𝑒𝑎𝑟/2𝑃𝐺𝐶𝐷(𝑍𝑔𝑒𝑎𝑟, 𝑍𝑝𝑖𝑛𝑖𝑜𝑛)  sidebands. This section copes with this 

case where the filter band equals to 0.0554 in normalized frequency. The used multi-rate filtering method 

succeeded in designing such a filter with a low passband ripple and a high stopband attenuation. This narrow 

filtering band makes the demodulation performance worse in terms of NMSE, with an aggravation increased 

for a complex phase modulation. Nevertheless, it allows an interesting fault detection. 

This section comments the cross-influence between amplitude and phase modulation. The sidebands out of 

the filter band contain information from both modulations. Their numbers and energies are troublesome to 

calculate theoretically. The more components, the wider the spectrum will be. In some particular cases, not 

illustrated in this paper, the distant sidebands may have higher amplitude values than the first ones. For 

example, a centrifugal compressor with 𝑍𝑔𝑒𝑎𝑟 = 375 teeth was found to have a 𝛽ℎ,1 = 50. In these cases, 

the previous drastic filter will produce much worse results.  

In the case of a localized fault, the relaxation time of the modal response is an important characteristic to 

define the demodulation performance. The shorter it is as compared to the meshing period, the lower is the 

demodulated amplitude, making it possible to miss a fault. The longer it is, the less accurate is the maximum 

position, influencing the determination of the faulty tooth. 

A high relaxation time coupled with a low amplitude of the modal response (e.g. a mild fault affecting 

several teeth) may have the same demodulated shape as a severe fault located on one tooth. This limitation 

of the demodulation regardless of the used method, is due to the non-unity of the amplitude-phase 

decomposition of the analytic signal as developed in the next section. 

5. Demodulation of the residual signal 

Some papers, such as [36], [37], report on the demodulation on the residual signal. The residual signal is 

obtained after applying a time synchronous average with the gearmesh frequency to remove the gearmesh 

harmonics and enhance the signal to noise ratio. However, in this case, fault detection on the demodulation 

result has to be done, considering some possible ambiguities, as detailed hereafter. 
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5.1. The ambiguity of the analytic signal and its polar decomposition 

In 1946, Gabor [19] has proposed a definition of the analytic signal 𝑧(𝑡) such that the real part equals the 

analyzed signal denoted here by 𝑥(𝑡) and the imaginary part equals the Hilbert transform of this signal 

𝑧(𝑡) = 𝑥(𝑡) + 𝑖ℋ(𝑥(𝑡)) , (20) 

with ℋ(∙) the Hilbert operator. The Hilbert transform of a real-valued function is a real-valued function. 

The analytic signal 𝑧(𝑡) is complex and unique by definition. As it is the case in the demodulation process, 

it is often interesting to write 𝑧(𝑡) in polar coordinates, 

𝑧(𝑡) = 𝐴𝑀(𝑡)𝑒𝑖𝛹(𝑡), (21) 

with AM(t) being the instantaneous amplitude of z(t) and Ψ(𝑡) its instantaneous phase. Unlike 

representation in Cartesian coordinates of Eq. (20), the representation in polar coordinates of Eq. (21) is 

not unique. It means that the decomposition of the analytic signal in amplitude and phase is not unique as 

mentioned in former papers [12],[14]. Commonly, the instantaneous amplitude of the analytic signal is 

defined as 

𝐴𝑀(𝑡) = √𝑥(𝑡)2 + ℋ(𝑥(𝑡))
2

, (22) 

and the instantaneous phase as 

𝛹(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛(ℋ(𝑥(𝑡))/𝑥(𝑡)). (23) 

By doing this, AM(t) is implicitly constrained to be nonnegative. The ambiguity occurs when the amplitude 

of the signal x(t) is negative at some instants. For example, consider the following signal 

𝑥(𝑡) = 𝑎(𝑡) 𝑐𝑜𝑠(𝜔𝑡), (24) 

where a(t) is a function negative at some instants and 𝜔 the pulsation of the signal. The unique 

corresponding analytic signal 𝑧(𝑡) is 

𝑧(𝑡) = 𝑎(𝑡) 𝑐𝑜𝑠(𝜔𝑡) + 𝑖 𝑎(𝑡)𝑠𝑖𝑛 (𝜔𝑡) (25) 

Computing the polar form that is to say the amplitude and phase decomposition using the definitions of Eq. 

(22) and (23) gives 

𝐴𝑀(𝑡) = |𝑎(𝑡)|, 𝛹(𝑡) = 𝜔𝑡, (26) 

which are not correct. As written, the complex signal |𝑎(𝑡)|𝑒𝑖𝜔𝑡 does not equal to Eq.(25). Indeed, in this 

case, the two following decompositions 
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𝑧(𝑡) = 𝑎(𝑡)𝑒𝑖𝜔𝑡 = |𝑎(𝑡)|𝑒𝑖[𝜔𝑡+1
2

𝜋(1−𝑠𝑔𝑛(𝑎(𝑡)))], (27) 

are correct (the function sgn(. ) taking ±1 values depending on the sign of 𝑎(𝑡)). In the first expression, the 

instantaneous amplitude is negative, a choice rarely used in practice. In the second expression, the added 

phase is a function of time to compensate for the rectification of the amplitude constrained to be positive. 

By convention, this second expression is commonly used. In this second case, whereas the amplitude is 

rectified at each time the value is negative and aliased around the horizontal time axis, at the same instants, 

the instantaneous phase presents jumps, and the instantaneous frequency, defined as the derivative of the 

phase, presents spikes. 

5.2. The case of residual signal demodulation 

It turns out that this ambiguity problem occurs when demodulating the residual signal. To the best of our 

knowledge, this problem is not mentioned in the literature. This rectification can lead to a wrong 

interpretation of both the instantaneous amplitude and the phase. The observed jumps of the phase should 

not be interpreted as a fault but only as a mathematical artefact. The objective of the following discussion 

is to illustrate this problem when demodulating a residual signal knowing that an amplitude modulation 

index lower than 1 is the most frequent case. 

The residual signal is obtained by removing the time-synchronous averaged signal at the gearmesh 

frequency from the vibration signal. This approach is frequently used in vibration analysis and was first 

proposed by [21]. It is used either to process the obtained time average signal, or to process the residual 

signal. Details and performances of this method are not the scope of the paper and can be found in many 

published papers such as [22], [23]. This process is different from the one used in the demodulation process 

described in Section 3.1, where modulation frequency is used instead of the gearmesh frequency. 

After removal of the synchronous part, the amplitude modulation of the residual signal denoted in that case 

by 𝐴𝑀ℎ
𝑟𝑒𝑠(𝜃) is 

𝐴𝑀ℎ
𝑟𝑒𝑠(𝜃)  = 𝐴ℎ

𝑚𝑒𝑠ℎ  𝑚ℎ(𝜃), (28) 

given that the gearmesh frequencies and their harmonics have been removed. This removal keeps only the 

sidebands of interest, as shown in Fig. 10. The residual amplitude 𝐴𝑀ℎ
𝑟𝑒𝑠(𝜃) is necessarily lower than 

𝐴𝑀ℎ(𝜃) and may be close to zero, even negative, particularly in the presence of a fault.  
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Fig. 10. Spectrum (a) of a simulated signal and (b) of its residual signal around the 3rd harmonic. 

Processing the demodulation of the residual signal is usually justified by the strong amplitude influence of 

the tooth meshing vibration. Indeed, these vibrations are not only important but also positively correlated to 

their modulation sidebands [25]. However, in that case, it is worth pointing out the ambiguity brought by 

the amplitude and phase decomposition of the Hilbert-based demodulation, as detailed in the previous 

section 5.1. 

Fig. 11 (a) compares both the estimated amplitude of a simulated signal and its residual signal which should 

almost be the same, up to an additive constant. For the sake of clarity, the simulated signal is simply designed 

with only one shock in the amplitude and, what is very important to notice, without phase. AM̂3
res(𝜃) is 

clearly rectified at the shock location in order to respect the positivity constraint. Without this constraint, 

the estimation would have been as a translation of AM̂3
res(𝜃), this expected curve is represented by a dashed 

curve in Fig. 11 (a). 

This amplitude rectification has also a strong impact on the phase, knowing that the simulated signal has no 

phase modulation. As shown in Fig. 11 (b), phase jumps occur at each amplitude rectification. As explained 

above, these phase jumps of value 𝜋 are equivalent to a negative sign and thus preserve the unicity of the 

analytic signal. Furthermore, the unwrapping of the phase becomes trickier, and leads to a drift. The 

positions of the phase jumps are clearly visible in the instantaneous frequency, derivative of the phase, and 

represented in Fig. 11 (c). The reading of the phase or instantaneous frequency can incorrectly conclude to 

the presence of more than one fault. 
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Fig. 11. Comparison of the demodulation of a model (blue) for a one-shock model without phase modulation (PM0) with its residual 

(red). (a) 𝐴𝑀̂3(𝜃) and 𝐴𝑀̂3
𝑟𝑒𝑠(𝜃). The dashed red line is a translation of the model to be at the same level as the residual, for 

comparison purpose. (b) 𝑃𝑀̂3(𝜃) and PM̂3
res(𝜃). (c): Corresponding instantaneous frequencies. 

Consequently, this amplitude rectification and these phase jumps can clearly induce a wrong interpretation 

of the demodulation functions. In particular, it might be tempting to conclude that the phase is more 

meaningful than the amplitude. However, in this example, the strong impacts in the phase come from a 

processing artefact when demodulating the residual.  

 

Fig. 12. Comparison of the demodulation of GOTIX measurement (blue) at 6240h and around the 3rd harmonic and its residual 

(red). (a) 𝐴𝑀̂3(𝜃), AM̂3
res(𝜃) and (𝐴𝑀̂3(𝜃) − 𝐴3

𝑚𝑒𝑠ℎ) (dashed red) (b) 𝑃𝑀̂3(𝜃) and 𝑃𝑀̂3
𝑟𝑒𝑠(𝜃). (c) Corresponding instantaneous 

frequencies. 

This problem of the residual signal demodulation, highlighted in Fig. 11 on a simulated signal, has been 

often observed when processing real-word signals with or without time synchronous averaging. Indeed, 

when comparing both results of demodulation applied directly on the GOTIX measurement or on its residual 

signal, the rectification of the residual amplitude estimation is clearly visible, as shown in Fig. 12 (a) where 

the dashed red curve corresponds to what should be obtained. The difference in the phase estimations or 

instantaneous frequencies in Fig. 12 (b) and (c) is really striking. 

The ambiguity inherent to the demodulation process when applied to the residual signal is explained in this 

section and illustrated on simulated as well as real signals. This leads us to conclude that, to avoid false 

detection, the demodulation should be applied on the signal and not on the residual signal. 
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6. Surveillance: results of a continuous monitoring 

The interest of demodulation is not only for analyzing one signal but also for a continuous preventive 

surveillance of a system. In a continuous monitoring, successive signals are analyzed by the same approach 

described in section 3.1. A dedicated time-frequency tracking over all previous time stamps [7] builds 

trajectories of peak, harmonic and sideband families that generate continuous system health indicators. This 

tracking is of interest to evaluate the evolution of the system health. 

In that context, the GOTIX test bench provides a sequence of measurements regularly updated with new 

ones. The objective of this section is to show the demodulation results of a sequence of 427 measurements 

during the last 3200 hours of rotation. At the beginning of this sequence, the GOTIX bench has already been 

running for over 3000 hours, but with a change in an operational parameter, a decrease in the braking torque. 

Hence the choice to consider only the signals after this change. This means that the gear on the first analyzed 

signals in Fig. 13 was already slightly worn. Each signal is synchronized thanks to a top-tour connected to 

the gear. Thus, each signal begins at the same gear angular position, and the amplitude modulations 

correspond to one rotation starting always from the same point. 

 

Fig. 13. Monitoring of GOTIX based on the estimated demodulations around the 3rd harmonic between 0 and 3200h. (a) Normalized 

amplitude modulations 𝐴𝑀̂3(𝜃). (b) 𝑃𝑀̂3(𝜃). (c) Instantaneous frequency. All measurements were synchronized with reference to 
a top-tour encoder. The red lines show the 2 main worn teeth, gear teeth 31 and 46. 

The used method is able to automatically compute the demodulation of the measurements in all the sequence 

of measurements The demodulation is done around the third harmonic for each signal. Fig. 13 shows the 

3D representations of the amplitude in (a), of the phase in (b) and of the instantaneous frequency obtained 

by derivative of the phase in (c). Thanks to synchronization and constant operating conditions, these 

functions show a very continuous evolution. The two red lines in the 3 representations track the position of 

tooth 31 and tooth 46 respectively. In Fig. 13 (a), the variations of 𝐴𝑀̂ℎ(𝜃) shows a bump just before tooth 

31 at the beginning of the test. This bump disappears after a few hours of rotation. Then, an increasingly 

large drop in amplitude is clearly initiated at tooth 31. At tooth 46, a drop in amplitude occurs after about 

1000 hours of rotation only. In contrast, in Fig. 13 (b) and (c), the trends of 𝑃𝑀̂ℎ(𝜃) and of the instantaneous 
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frequency are not as easily interpreted as those of 𝐴𝑀̂ℎ(𝜃). Nevertheless, it is remarkable that the two areas 

around teeth 31 and 46 are the only ones that show significant variations during the test. 

 

Fig. 14. Cross-sections in Fig. 13 over 3200 hours of rotation. (a) At tooth 31. (b) At tooth 46. 

Cross-sections of these 3 estimators, amplitude, phase and instantaneous frequency, represented in Fig. 14 

at two positions, teeth 31 and 46, illustrate clearly a noticeable decreasing trend in the amplitude for these 

two faulty teeth. 

 

 

Fig. 15. Tracking of GOTIX measurements between 3012h and 6245h through demodulation around 1st (top) and 4th (bottom) 

harmonics. (a) Normalized amplitude modulations 𝐴𝑀̂ℎ(𝜃). (b) Phase modulation 𝑃𝑀̂ℎ(𝜃). (c) Instantaneous frequency (derivative 

of 𝑃𝑀̂ℎ(𝜃)). All measurements were synchronized with reference to a top-tour encoder. The red lines show the 2 main wear teeth, 
gear teeth 31 and 46. 
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The demodulation amplitudes decrease consistently over time, featuring an aggravation of the spalls. Thus, 

the choice of the 3rd harmonic for the demodulation is a posteriori justified by the good results on its long-

term monitoring. In order to compare with other harmonics, the monitoring is performed on harmonics 1 

and 4, as shown in Fig. 15. 

This extended monitoring also shows signs of faults around teeth 31 and 46, in particular with the 

appearance of shocks in the amplitude modulation. However, the trends are not as clear as around the 3rd 

harmonic, and these shocks are now positive. In order to increase the reliability of the detection in a 

continuous automatic monitoring context, the demodulation should thus be performed around several 

different harmonics. 

7. Conclusions 

In the context of automated monitoring for preventive maintenance purposes, this paper explores the steps 

of demodulation or so-called ‘envelope analysis’, an essential process for an earlier detection and 

localization of faults in the analysis of vibrations generated by rotating machines. This paper focuses on the 

well-known and often used method based on the Hilbert transform. The main objective is to quantify the 

performance of the demodulation process by comparing analyses of real-world vibration measurements and 

models. Results are computed from the database of a natural wear test of a parallel straight-teeth multiplier 

on the GOTIX test bench. At the test beginning, the multiplier was a new-build gear without fault initiation. 

This wear test is carried out at a point where several spalls of different wear degrees are observed.  

A performance assessment requires simulated signals and then a model is used for this purpose only. A 

shock series function models the amplitude modulation. The model parameters are set thanks to an 

experimental fitting with the measurement analysis. Such a parametrization is expressed directly in terms 

of physical parameters. These parameters are then tuned to simulate a variety of failures in terms of number 

of faulty teeth, their position, and the severity of their degradation. The phase modulation is modeled with 

a sum of harmonic sine waves. 

The main trouble in the Hilbert demodulation is the filter bandwidth around the carrier frequency; this 

bandwidth could not be wide enough due to aliasing with the other harmonics. The performance is discussed 

in the case of a strong filtering, which necessarily impacts the modulation estimation. Nevertheless, the 

results show that a detection and localization of the failure are still possible except for the cases where phase 

modulation is too important or when the relaxation time of the modal response is shorter than the meshing 

period. In the paper context, the fault detection based only on the phase is not performing, whereas the 

amplitude modulation is able to highlight the presence of several faults. 
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This paper comes back to the non-unicity of the amplitude and phase decomposition of the analytic signal. 

A demodulation process based on Hilbert transform needs a polar transform of the analytic signal. This 

decomposition being not unique, it can lead to misinterpretation when the amplitude modulation index is 

lower than the unity. An example is illustrated when demodulating a residual signal obtained after the 

removal of all gearmesh harmonics.  

In the end, a sequence of measurements is automatically demodulated for a continuous preventive 

surveillance of the GOTIX bench. The 3D or 2D representation of the amplitude and phase modulations 

may be of a great help for detecting the faulty tooth positions. Further works are in progress for defining 

new condition monitoring features from these representations. 

 

Appendix. GOTIX test bench 

- Driving three-phase asynchronous motor Leroy-Somer P280 S-8, 55 kW. 𝑓𝑔𝑒𝑎𝑟 = 474 𝑟𝑝𝑚 

- Braking DC generator Leroy-Somer 54.3 kW, commanded by a Leroy-Somer DMV 2342 inverter. 

The motor is powered either by Altivar 66 inverter. Parallel straight teeth in case-hardened steel. 

- Module M=2.5 mm, Tooth number: 𝑍𝑔𝑒𝑎𝑟 = 57, 𝑍𝑝𝑖𝑛𝑖𝑜𝑛 = 15 

- OROS acquisition system, 𝑓𝑠 = 25600 𝐻𝑧, data length 10s, 18 synchronous channels: 6 

accelerometers, 3 phase current & voltage sensors, 1 torquemeter, 1 tachometer and 2 optical 

encoders with top-tour. 

See the synoptic view in Fig. 16. Further details can be found in GOTIX website [5] where data used in this 

paper can also be downloaded. 0 to 3200 hours of rotation correspond to 3012h and 6245h timestamps. 

 

Fig. 16. Synoptic view of the test bench GOTIX. 
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